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A B S T R A C T 

We present an application of unsupervised Machine Learning clustering to the PAU surv e y of galaxy spectral energy distribution 

(SED) within the COSMOS field. The clustering algorithm is implemented and optimized to get the rele v ant groups in the data 
SEDs. We find 12 groups from a total number of 5234 targets in the surv e y at 0.01 < z < 0.28. Among the groups, 3545 galaxies 
(68 per cent) show emission lines in the SEDs. These groups also include 1689 old galaxies with no active star formation. 
We have fitted the SED to every single galaxy in each group with CIGALE. The mass, age, and specific star formation rates 
(sSFR) of the galaxies range from 0.15 < age/Gyr < 11; 6 < log (M � /M �) < 11.26, and −14.67 < log (sSFR/yr −1 ) < −8. The 
groups are well-defined in their properties with galaxies having clear emission lines also having lower mass, are younger and 

have higher sSFR than those with elliptical like patterns. The characteristic values of galaxies showing clear emission lines are 
in agreement with the literature for starburst galaxies in COSMOS and GOODS-N fields at low redshift. The star-forming main 

sequence, sSFR versus stellar mass and UVJ diagram show clearly that different groups fall into different regions with some 
o v erlap among groups. Our main result is that the joint of low- resolution (R ∼ 50) photometric spectra provided by the PAU 

surv e y together with the unsupervised classification provides an excellent way to classify galaxies. Moreo v er, it helps to find 

and extend the analysis of extreme ELGs to lower masses and lower SFRs in the local Universe. 

Key words: fundamental parameters – stellar content – photometry – starburst – galaxies: star formation. 

1

T  

n
l
T
f  

i  

t
c  

�

h
w  

n  

R  

2  

o  

w

s
l  

©
P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/3/3569/7225529 by guest on 01 April 2024
 I N T RO D U C T I O N  

he classification of galaxies into different types is as old as the
otion of ‘extragalactic nebulae’ (Hubble 1926 ). Galaxies in the 
ocal Universe display a variety of shapes and structural properties. 
he main classification system still in use is Jeans–Hubble tuning 

ork diagram (Jeans 1928 ; Hubble 1936 ), with all the refinements
ntroduced by Sandage ( 1961 ) and de Vaucouleurs ( 1959 ), based on
he morphological properties of galaxies. The basic Hubble classifi- 
ation of galaxies into ‘early’ and ‘late’ types (and their subtypes)
 E-mail: analuisagonzalezmoran@gmail.com , parrabalh@gmail.com 
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as survived because, among other reasons, these types correlate well 
ith other properties of galaxies, such as colours, stellar content, or
eutral hydrogen, among others (Kennicutt 1992 ; Buta et al. 1994 ;
oberts & Haynes 1994 ; Strate v a et al. 2001 ; S ́anchez Almeida et al.
011 ; Aguerri et al. 2012 ; Moutard et al. 2016 ). This is based mostly
n traditional ways of galaxy classification, typically used in the past,
hich are based on broad-band (BB) colours. 
Classifications based on spectroscopic surv e ys pro vide enough 

pectral resolution to clearly distinguish absorption and emission 
ines as well as other spectral features from their spectral continuum,
hich provide information about different physical processes. Emis- 

ion lines inform about the ionized interstellar medium (ISM; see 
 e wley, Nicholls & Sutherland 2019 , for a re vie w on the topic), while
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Table 1. Overview of the PAU filters. 

Filter λeff FWHM m 5 σ

( Å) ( Å) (AB mag) 

NB455 4549.76 134.79 22.81 
NB465 4644.65 134.25 22.81 
NB475 4750.71 135.03 22.81 
NB485 4845.87 135.03 22.81 
NB495 4948.25 130.38 22.80 
NB505 5047.50 132.11 22.80 
NB515 5147.12 132.89 22.79 
NB525 5249.58 132.45 22.78 
NB535 5348.23 133.62 22.77 
NB545 5348.23 133.62 22.79 
NB555 5552.23 133.70 22.79 
NB565 5653.18 133.03 22.46 
NB575 5748.19 133.08 22.71 
NB585 5847.12 132.64 22.74 
NB595 5948.15 132.07 22.59 
NB605 6046.08 133.18 22.59 
NB615 6145.16 133.88 22.73 
NB625 6252.25 132.74 22.79 
NB635 6347.43 132.23 22.23 
NB645 6443.39 133.45 22.13 
NB655 6548.42 135.21 22.79 
NB665 6647.45 133.76 22.80 
NB675 6748.52 134.67 22.78 
NB685 6847.70 134.44 22.75 
NB695 6948.68 137.05 22.65 
NB705 7050.10 134.53 22.77 
NB715 7146.52 133.68 22.80 
NB725 7254.03 135.80 22.69 
NB735 7354.69 136.38 22.60 
NB745 7453.55 133.26 22.65 
NB755 7547.60 118.09 22.52 
NB765 7657.67 118.09 22.42 
NB775 7750.97 135.02 22.55 
NB785 7849.11 132.19 22.42 
NB795 7949.79 134.19 22.54 
NB805 8053.69 135.51 22.51 
NB815 8146.03 133.54 22.49 
NB825 8259.04 132.36 22.28 
NB835 8358.30 132.65 22.30 
NB845 8454.65 131.47 22.39 

Notes. Data taken from Mart ́ı et al. ( 2014 ) and 
https://pausurv e y.org/paucam/filters/
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bsorption lines inform of the properties of the stellar population (SP;
araston et al. 2009 ). Ho we ver, spectroscopic observ ations require

arge integration times whereas BB photometric surveys, with filters
ith full width at half maximum (FWHM) ∼ 1000 Å allow to obtain
 high signal-to-noise ratio (SNR) with relatively low integration
imes but the detection of spectral features other than the continuum,
iven the low spectral resolution, is limited to detecting the features
ith the highest equi v alent widths. 
A good compromise comes from narrow-band (NB) photometric

urv e ys (FWHM ∼ 100 Å) such as SHARDS (P ́erez-Gonz ́alez et al.
013 ), COSMOS SC4K (Sobral et al. 2018 ), or PAU (Physics of
ccelerated Universe; Eriksen et al. 2020 ; Serrano et al. 2022 ). The

ets of consecutive narrow band filters employed in this kind of sur-
 e ys o v er a wide wav elength range allo w the observ ation of specific
pectral features besides the spectral continuum, which are essential
o determine galaxy properties. In this way, spectrophotometric
urv e ys achiev e the required spectral resolution for robust redshift
etermination as well as the characterization of several spectral
ignatures, which are difficult to analyse in their BB counterparts
see, e.g. Cava et al. 2015 ; Hern ́an-Caballero et al. 2017 ; Arrabal
aro et al. 2018 ; Sobral et al. 2018 ; Barro et al. 2019 ; Lumbreras-
alle et al. 2019 ). 
PAU surv e ys a large Northern area of the sky while simultaneously

chieving a high number density of galaxies with sub-per cent pho-
ometric redshift accuracy. This is possible thanks to the photometric
amera, PAUCam: a unique combination of a large field-of-view,
ith 40 NB filters (13.5 nm FWHM) spanning a wavelength range

rom 450 to 850 nm. PAUCam was commissioned in June 2015
n the William Herschel Telescope (WHT), atop of the Roque
e los Muchachos Observatory. This wavelength sampling results
n photometric redshifts, with a precision more than an order of
agnitude more precise that conventional BB surveys, while being

ble to co v er large areas of sky. 
The use of unsupervised Machine Learning (ML) classifications

 v er more traditional grouping methods enables a fast processing
f large surv e ys and, most importantly, the capability of identifying
idden interconnections between different parameters of the sample
hat classical predefined grouping algorithms could miss. Unsuper-
ised ML algorithms have already been used in the past to perform
utomatic classifications of large samples of galaxies based on their
pectral energy distributions (SED; D’Abrusco, Longo & Walton
009 ; S ́anchez Almeida et al. 2010 ; D’Abrusco et al. 2012 ; S ́anchez
lmeida & Allende Prieto 2013 ; Baron & Poznanski 2017 ; Siudek

t al. 2018 ; Turner et al. 2021 ; Dubois et al. 2022 ; Teimoorinia
t al. 2022 , among others). In particular, S ́anchez Almeida et al.
 2010 ) used an unsupervised k-means cluster analysis algorithm to
lassify all spectra in the Sloan Digital Sky Survey data release
 (SDSS/DR7). They identified as many as 17 different classes of
alaxies. This would have been extremely challenging using classical
ethods due to the huge number of spectra ( ∼ 174 k) to be processed.
The goal of this paper is to perform an unsupervised ML clustering

f the PAU surv e y within the COSMOS field, focusing on the search
or differences in the shape of normalized rest-frame low-z SEDs
nd linking them to SP properties. This work shows the potential of
he PAU surv e y data in this regard. 

This paper is organized as follows: Section 2 describes the data
ample. In Section 3 , we explain the methodology applied to do
n unsupervised ML classification. In Section 4 , we describe the
rocedure applied to perform the SED fitting. In Section 5 , we present
nd discuss the results of possible differences associated with the SPs
f the galaxies from each class while the conclusions are given in
ection 6 . 
NRAS 524, 3569–3581 (2023) 
 DATA  SAMPLE  

o perform this study we used the full data from the PAU spectro-
hotometry catalogue provided by the P AU collaboration. P AU spans
 fraction of the COSMOS field (Scoville et al. 2007 ; Lilly et al.
009 ). The data were taken with the WHT at the Observatorio
el Roque de los Muchachos at La Palma, Canary Islands (Spain).
he images were obtained with the especially conceived PAUCam

nstrument (Padilla et al. 2019 ). PAUCam is an optical camera
quipped with 40 narrow band (NB) filters. The NB filters have

130 Å FWHM and are spaced at intervals of 100 Å, entirely
o v ering the wav elength range from 4500 to 8500 Å (Casas et al.
016 ), which results in an ef fecti ve resolution of R ∼ 50. The basic
roperties of these 40 consecutive PAU NB band filters are showed in
able 1 , where in column 1 are the names, in column 2 the ef fecti ve
avelength, in column 3 the FWHM and, in column 4 the 5 σ depth.
he entire photometric catalogue comprises 64 151 galaxies up to
 AB < 23. These data have been used in photo-z studies published

https://pausurvey.org/paucam/filters/
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y the PAU collaboration (e.g. Eriksen et al. 2019 ; Cabayol-Garcia 
t al. 2020 ; Cabayol et al. 2021 ). PAU achieves a photometric redshift
recision in the COSMOS field of σ 68 /(1 + z) = 0.0037 to i AB <

2.5 (Eriksen et al. 2019 ). These results have been further impro v ed
ith enhancements o v er the original photo-z code (Alarcon et al.
021 ), or ML approaches (Eriksen et al. 2020 ; Soo et al. 2021 ). For
his paper we use the 30-bands photo-z from Ilbert et al. ( 2009 ) with

68 /(1 + z) = 0.007 at i AB < 22.5 rather than the PAU photo-z in
rder to use the entire PAU catalog with 64 151 targets against the
AU photo-z catalog with 44 318 targets. 

 ML  CLASSIFICATION  

ith the goal of identifying differences in the rest-frame SED of
AU galaxies, we perform an unsupervised clustering using Gaussian 
ixture (GM; Duda & Hart 1973 ) models. This algorithm presents

ome advantages o v er the more classical k -means, in which each
bject can e xclusiv ely belong to a single group, depending on the
istance to the center of the said group. On the contrary, the GM
ethod assigns probabilities of belonging to different groups. In 

his way, objects in inter-group regions can belong to one or more
roups with similar probabilities, defining transitions between those. 
inally, the GM method is also more flexible at the time of defining

he covariance of the groups, while that is constrained to be spherical
n the k -means models. That means that the variance of the different
omponents defining a group must be the same in the k -means
odels, while the components of the GM models are allowed to 

ave dif ferent v ariances, which in turn translates into a more accurate
efinition of the groups. 

.1 Input SED sample 

o automatically search for differences in the shape of the SEDs,
hich trace physical properties between groups, we have to take 

nto account some considerations before performing the ML clas- 
ification. First, we must work with rest-frame SEDs. Otherwise, 
he differences introduced in the observed SEDs by the variety of
edshifts present in the sample would interfere in the clustering 
rocess, making the redshift become one of the factors driving our 
lassification instead of inner physical properties of the galaxies. 

The rest-frame SEDs are then interpolated to a common wave- 
ength grid (24 steps in a range of 454.15 < λrest nm 

−1 < 653.11) to
e used as the homogeneous input information for our GM model. 
nce in a common wavelength frame, the SEDs are also normalized 

o their mean fluxes to a v oid getting GM classes purely defined by
he bolometric luminosity of the galaxies. 

The redshift range selected for this work (0.01 < z < 0.28)
llows us to co v er H α, H β and [O III ] λ5007 Å in all the SEDs
imultaneously within the spectral co v erage of our data set. These
ines can be well-identified in the SEDs thanks to the good spectral
esolution provided by the PAU spectrophotometry. Note that the 
edshift interval employed cannot be wider or we would lose 
omogeneity in the rest-frame SEDs sampled by the PAU filters 
t higher z. In total, 6061 objects in the redshift range 0.01 < z
 0.28 are detected in the 40 PAU NB filters, from which 801
ere discarded as they are labelled as stars in the PA U’ s catalogue.
6 other objects were discarded in the common wavelength grid 
reation. This is because in the interpolation process, if the points fall
utside the common wavelength grid, an extrapolation was applied. 
o, a ne gativ e value was obtained for the flux corresponding to the
rst wavelength for these 26 objects. After this, the final number of
alaxies at 0.01 < z < 0.28 in our input sample is 5234. 
.2 GM clustering description 

he GM algorithm used in this work models the SEDs as a mixture of
-dimensional Gaussian distributions. The corresponding d-variate 
aussian probability density distribution can be expressed as: 

 ( X| μ, � ) = 

exp 
[− 1 

2 ( X − μ) T � 

−1 ( X − μ) 
]

√ 

2 π | � | , (1) 

here μ represents a d-dimensional mean vector and � is the 
ovariance matrix. 

Considering K different groups within the sample, we can define 
k as the mixing coefficient of the k th Gaussian distribution, 

ssociated to the probability of observing a data point from the k th
aussian distribution. The combination of all K distributions results 

n the total probability density function: 

 ( X ) = 

K ∑ 

k= 1 

πk G ( X| μk , � k ) . (2) 

The means, covariances and mixing coefficients are esti- 
ated maximizing the log-likelihood of p ( X ) making use of the
xpectation–Maximization (EM) algorithm (Dempster, Laird & Ru- 
in 1977 ), an iterative way of finding maximum-likelihood solutions 
or incomplete data or data with hidden v ariables. Gi ven that the
M algorithm employed in the GM models can sometimes provide 

ocal optima solutions, the clustering process is e x ecuted a hundred
imes for each number of groups desired in the final configuration,
mploying different initial random seeds each time as well as 
ifferent kinds of covariances. 

.3 Best GM model selection 

he optimal number of groups in the most common unsupervised 
lustering methods is usually determined by the minimum of the 
ayesian Information Criterion (BIC, Schwarz 1978 ) trend with the 
umber of groups, where BIC is derived from Bayesian statistics 
nd penalizes the likelihood in terms of q , the number of parameters
f the model used and m, the number of independent data points
vailable, as: 

I C = χ2 + q ln ( m ) , (3) 

Ho we ver, it is possible that the BIC trend with the number of
roups does not converge to a clear minimum but instead continu-
usly decreases with the number of groups. Fig. 1 shows the just
entioned behavior for the BIC distribution obtained in our SEDs 
M clustering. In this situation, the best number of groups can be

stimated from the BIC gradient by identifying the number of groups
p to which an increase in the amount of groups does not translate into
 substantial BIC reduction. In fact, for this purpose, we e v aluated
his gradient using a BIC significance, σ BIC , analysis, as: 

BIC = 

BI C n i − BI C n i+ 1 
εBIC i+ 1 

, (4) 

here BI C n i and BI C n i+ 1 are the mean of the BIC parameters 
iven by the combinations in the i th and ( i + 1)th numbers of
roups, respectively; and εBIC i+ 1 is the standard deviation of the BIC 

arameters in the ( i + 1)th number of groups. Notice here that, as
entioned in Section 3.2 , a hundred different solutions from different

nitial random seeds are computed for each number of groups. 
The BIC gradient presented in Fig. 2 shows that most classifica-

ions with a number of groups higher than 10 are within 1 σ , although
 well defined decreasing-increasing σ BIC occurs between the 12- and 
MNRAS 524, 3569–3581 (2023) 
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M

Figure 1. The trend of the BIC parameter with the number of groups. The 
blue squares represent the BIC mean value among the models resulting in 
each number of groups. 
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Figure 2. Evaluation of the BIC parameter gradient in terms of the σBIC 

as a function of the transitions between consecutive numbers of components 
(see equation ( 4 )). This is used to identify up to which number of groups an 
increase in the amount of groups does not translate into a substantial BIC 

impro v ement. The horizontal dashed blue line represents to σBIC = 1. 
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3-classes solutions. Increasing the amount of groups beyond that
oes not result in a significant impro v ement. Based on this criterion,
e select 12 as the best number of groups for our SED clustering. 
Among all the different solutions obtained for 12-groups classifi-

ation with our SED sample, we pick that with the highest silhouette
core (Rousseeuw 1987 ). This coefficient is defined as: 

( x i ) = 

{
b( x i ) −a( x i ) 

max { a( x i ) ,b( x i ) } if | C k | > 1 
0 if | C k | = 1 . 

(5) 

here a ( x i ) is the mean distance between a given SED x i belonging
o the group C k (with | C k | members) and the rest of SEDs in its same
roup, while b ( x i ) is the minimum distance between said SED and
ll the other group. In this way, the higher the silhouette coefficient,
he better defined the SED is within its group. This indicator can
e extended to a mean silhouette score of each individual group or
f the complete sample, providing information of how differentiated
he groups are in the o v erall classification. F ollowing this criterion,
he model with the highest silhouette score among those resulting in
2 groups is selected as the best unsupervised classification of the
ED sample. 
The SEDs of the targets separated in the different groups from

he selected clustering model are shown in Fig. 3 , as well as the
umber of elements in each group. In order to visualize a clearer
omparison among the different groups, Fig. 4 shows the mean SEDs
or classes in Fig. 3 . A first glance to the SEDs groups reveals obvious
ifferences in size and physical properties such as continuum pattern
r presence/absence of emission lines. Four groups (B, C, D, and
) do not show emission lines, and some groups (B, C, D, E, F,

nd J) present absorption lines such as Magnesium (Mg λ5175 Å)
nd Sodium (Na I λλ5889, 5895 ÅÅ), which are characteristic of
lliptical galaxies. Four groups (A, E, F, and J) have a large scatter
ith coincidence factor (see below) minimal < 43 per cent and rms
 0.06. Five groups (A, H, I, K, and L) present a clear detection in

mission lines such as H β, [O III ] λ5007 Å and H α. In particular,
roup K hosts a small amount of objects with intense emission lines.
To further e v aluate the robustness of the different classes in our

ducial clustering model, we compute the coincidence factor as
efined in S ́anchez Almeida et al. ( 2010 ). This parameter is calculated
s the fraction of elements in each group that remain in the same
roup under a different 12-groups classification (i.e. using a different
NRAS 524, 3569–3581 (2023) 
nitial random seed of the GM model). According to this parameter,
hose groups with higher coincidence factor can be considered as
ore resolved for the clustering algorithm, while groups with lower

oincidence factor could be more subtle and/or poorly defined. 
The coincidence factors for the 12 groups under 100 different GM

lassifications (see Fig. 5 ) suggest that groups A, E, J, and L are the
orst classified (if we consider the minimal value of the coincidence

actor), which in turn relates with these groups presenting the largest
nner SEDs scatter (see Fig. 3 ). The statistical properties of the targets
ithin each group classified using ML are shown in Table 2 . 

 ANALYSI S  O F  SED  FITTING  

he analysis of SPs of the galaxies was made by fitting the SED to
ach single galaxy. Ho we ver, modelling the SED of galaxies is not
o easy as galaxies with different properties can have broadly similar
EDs. This is particularly the case when the SED wavelength ranges
re too short as is the case of the SED obtained with PAU data. To
ircumvent this, we extend the wavelength coverage adding 10 BB
lters to the 40 NB SED. Note that, these BB filters are not considered

n the ML classification. Fig. 6 shows an example of the complete
ED to be used in this section to fit the SP models. In the figure,

he shape of the filters used for each data point is also drawn. The
oints correspond to the photometric fluxes for one target, ID49378,
elonging to group K (see Fig. 3 ). 
The SP modelling was performed using the Code Investigating

ALaxy Emission (CIGALE; Noll et al. 2009 ; Boquien et al. 2019 ).
IGALE has already been successfully applied to PAU NB data
efore to derive rest-frame colours and luminosities (Johnston et al.
021 ) also stellar masses and specific star formation rates (sSFR;
ortorelli et al. 2021 ) as well as the D4000 spectral break index
Renard et al. 2022 ). 

CIGALE builds grids of models based on stellar spectra from
he Star Formation History (SFH) and SP models. It includes
s well models for the nebular emission (lines and continuum),
he attenuation of the stellar and nebular emission assuming an
ttenuation law, dust emission, and emission of an active nucleus.
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Figure 3. SEDs of the targets in the different groups resulting from the best classification derived via GM clustering. Note that the groups are not equally 
populated. Also, the continuum level detected in the same wavelength range changes depending on the group. Some groups represent the galaxies in a star-forming 
phase showing clear detection of H β, [O III ] λ5007 Å and H α emission lines. The colour points represent the SEDs means colour-coded by different groups. 
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he resulting grid of models is fitted to the photometric data, and
he galaxy properties are estimated analysing the posterior likelihood 
istribution, producing a best-fit model, and a Bayesian estimate for 
ach parameter. 

In CIGALE it is possible to use a double exponential SFH 

onsisting of a first decaying exponential corresponding to the long- 
erm star formation responsible for the bulk of stellar mass, plus
 second exponential that models recent starbursts (e.g. P apo vich, 
ickinson & Ferguson 2001 ; P ́erez-Gonz ́alez et al. 2003 ; Rodriguez
spinosa et al. 2014 ; Grazian et al. 2015 ; Lumbreras-Calle et al.
019 ; Arrabal Haro et al. 2020 ). 
For SED modelling, we use Bruzual & Charlot ( 2003 ) SP models

ith a Salpeter Initial Mass Function (IMF; Salpeter 1955 ), as
ell as a modified Charlot & Fall ( 2000 ) attenuation law for dust

xtinction. The dust emission templates are from Dale et al. ( 2014 ).
esides, the models were constructed by varying the ISM properties 
f metallicity (Z), the V-band attenuation in the ISM (Av ISM 

), the
onization parameter (log U) for nebular emission, the e-folding time 
f the main SP model ( τ 0 ), the age of the main SP in the galaxy
 t 0 ), and the burst parameter ( f burst = 0) o v er a wide parameter space
s indicated in Table 3 . The f burst = 0 parameter accounts for the
elative mass of the young burst with respect to the old population
r main population, because it does not necessarily have to be old.
hen f burst = 0, a single population is considered. 
An example of the SEDs fitting for two targets belonging to

ifferent ML classified groups is shown in Fig. 7 . The target on the
eft, ID 9343 belongs to group G, with no strong nebular emission.
he panel on the right shows ID 49378, a target belonging to group
, which has a significant nebular emission. The purple circles 

epresent the observed fluxes and the black line represents the best
odel spectrum. The residuals between the observed and model 
uxes are shown on the bottom panel. From the physical properties
btained using CIGALE we estimated the sSFR = SFR/M � of 
og(sSFR/yr −1 ) = −13.94 ± 1.90 and −8.86 ± 0.24 for ID9343 and
D 49378, respecti vely. Table 4 sho ws the mean physical properties
or the targets belonging to each group. These were derived fitting
IGALE to each individual object. As examples, for a very well
opulated class (G group), with no strong emission lines observed, 
e see that their SEDs fitting give that this group is the most massive

log (M � /M �) ∼ 10.5), oldest (age ∼ 10 Gyr), and with the lowest
SFR (log(sSFR/yr −1 ) ∼ −12.4) while group K is the least massive
log (M � /M �) ∼ 8), youngest (age ∼ 1 Gyr), and with the highest
SFR (log(sSFR/yr −1 ) ∼ −8.7). These results are in agreement with 
he SED shapes observed in each group (see Fig. 3 ). 
MNRAS 524, 3569–3581 (2023) 
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M

Figure 4. Mean SEDs for classes in Fig. 3 colour-coded for a clearer comparison among the different groups. 

Figure 5. Coincidence factor versus Group. This represents the percentage 
of the number of targets that fall in the same class in each group for 100 
independent GM runs. The horizontal markers within each rectangle indicate 
the median value of the coincidence factor. The quartiles of the coincidence 
factor are shown with rectangles, while the complete error bars show the 
entire range of the coincidence factor. Outliers are determined in terms of the 
inter-quartile range and are marked by empty circles. 
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Table 2. Statistical properties of the targets within each group classified 
using ML. 

Name N rms a 
Coinc. 

min b (per cent) 
Coinc. 

median c (per cent) 

Group A 630 0.033 34 54 
Group B 41 0.065 61 95 
Group C 494 0.014 43 55 
Group D 476 0.021 46 56 
Group E 280 0.084 35 54 
Group F 164 0.074 43 78 
Group G 678 0.011 46 49 
Group H 902 0.025 49 78 
Group I 601 0.018 55 80 
Group J 288 0.057 37 67 
Group K 37 0.166 43 87 
Group L 643 0.041 36 83 

Notes. a The rms is derived taking into account the difference between the SED 

mean and all SED. The standard deviation of this distribution is considered 
the rms. 
b Minimal value of the coincidence factor. This means that at least this per cent 
of targets fall in the same classification when the code is run 100 times. 
c Median value of the coincidence factor. 
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 RESULTS  A N D  DISCUSSION  

e have classified the galaxies in the COSMOS field using the data
n the PAU surv e y and an unsupervised ML clustering procedure.
he algorithm classified the 5234 galaxies in the sample into 12
roups. Each group has its particular SED with different slopes and
atterns. Four groups (B, C, D, and G) do not show emission lines,
nd some groups (B, C, D, E, F, and J) present absorption lines such
s Mg λ5175 Å and Na I λλ5889, 5895 ÅÅ, which are characteristic
f elliptical galaxies. Four groups (A, E, F, and J) have a large scatter
ith coincidence factor minimal < 43 per cent and rms > 0.06. Five
roups (A, H, I, K, and L) present a clear detection in emission lines
uch as H β, [O III ] λ5007 Å and H α. The most extreme case in the
mission pattern is group K, which includes galaxies with intense
mission lines. In this sense and more specifically, 68 per cent of
NRAS 524, 3569–3581 (2023) 
he total sample of 5245 galaxies in the PAU surv e y at 0.01 < z
 0.28 show emission lines in their spectra. The 12 groups are
ell-populated although the number of galaxies and scatter among
alaxies shows a wide range. The details are summarized in Section
.3 , Fig. 3 and Table 2 . Specially, group K with very intense emission
ines has the smallest number of members (37). 

Once the ML classification was done, we extend the wavelength
ange co v erage adding BB photometric data to extend the wavelength
o v erage and characterize the classes properties using CIGALE SED
ttings. From the analysis of physical properties obtained using
IGALE, we found that the range of age, mass, and sSFR of the
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Figure 6. Observed SED of one target from our sample (ID49378). Pink dots are the photometric fluxes obtained from NB filters and the rest dots are the 
photometric fluxes obtained from BB filters. The transmission profile of filters used to get the fluxes are overplotted. 

Table 3. Selected parameters values for model to analyse the SEDs. 

Parameter Min Max N 

τ 1 
0 (Myr) 50 30 000 11 

f 2 burst 0.0 0.2 9 

t 3 0 (Myr) 10 12 000 10 

Z 

4 (Z �) 0.0001 0.05 6 

log U 

5 −2 −2 1 

Av 6 ISM 

(mag) 0.0 4.0 21 

Notes. 1 e-folding time of the main SP model. 
2 The burst strength, f burst , is defined as the fraction of stars formed in the 
second burst relative to the total mass of stars ever formed. 
3 Age of the main SP in the galaxy. 
4 Metallicity. 
5 Ionization parameter. 
6 V-band attenuation in the ISM. 
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alaxies are 0.15 < age Gyr −1 < 11, 6 < log (M � /M �) < 11.26 and
14.67 < log (sSFR/yr −1 ) < −8, respectively. 
The stellar mass, age and sSFR are summarized in Section 4 and

able 4 . Specifically, group G is the most massive, oldest, and with
he lowest sSFR while group K is the least massive, youngest, and
ith the highest sSFR. 
We note that the groups that show emission lines have mean 

alues of age = 3.02 ± 2.16 Gyr, log (M � /M �) = 8.72 ± 0.75 and,
og (sSFR/yr −1 ) = −9.46 ± 0.57, respectively. While the groups 
hat do not show emission lines in the SEDs have mean values of
ge = 8.14 ± 1.94 Gyr, log (M � /M �) = 10.08 ± 0.54 and, log
sSFR/yr −1 ) = −11.36 ± 1.18. The distributions are shown in Fig. 8 .
Our results for groups that show emission lines are in agreement
nside 1 σ with those of log (M � /M �) ∼8.90 and log (sSFR/yr −1 ) =

9.52 given by Hinojosa-Go ̃ ni, Mu ̃ noz-Tu ̃ n ́on & M ́endez-Abreu
 2016 ) for starburst galaxies in the COSMOS field at 0 < z < 0.5 as
ell as with those of log (M � /M �) ∼8.50 given by Lumbreras-Calle

t al. ( 2019 ) for star-forming galaxies at z < 0.36 in the GOODS-N
rom the SHARDS surv e y. 

In summary, the groups are well-defined in their properties with 
alaxies with clear emission lines being in the lower mass, younger
nd higher sSFR regime than those with quiescent-like patterns. 

The resulting stellar mass versus redshift for all the targets in each
roup is shown in Fig. 9 . Here, it can be seen that groups spread
cross the entire redshift range, with targets with the lowest redshift
n the low-mass zone and targets with the highest redshift located
n the higher-mass region resulting from a luminosity bias. The 
gure shows clearly that the separation in groups is not dominated
y the redshift with targets at almost all redshifts for all of the
roups. 

.1 SF main sequence 

he mass growth of galaxies is mainly through star formation. 
he more massive galaxies undergo a larger fraction of their star

ormation at early times whilst less massive ones are still forming
tars at a high rate today. Indications of how this process takes place
an be revealed through the star-forming main sequence (SFMS), a 
ight quasi-linear relation between stellar mass, and the star formation 
ate in log scale (Renzini & Peng 2015 ; Duarte Puertas et al. 2017 ;
elfiore et al. 2018 ; S ́anchez et al. 2019 ; Shin et al. 2021 ; Vilella-
ojo et al. 2021 ). 
MNRAS 524, 3569–3581 (2023) 
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Figure 7. Example of SED fittings using CIGALE for two targets. The purple circles are the photometric fluxes used in the fit, while the black line represents 
the best model. The dust-free and attenuated stellar emission are also represented by the dashed blue line and yellow line, respectively. The residuals between 
the observed and model fluxes are shown on the bottom panels. 

Table 4. Physical properties of the targets within each group classified using 
ML. 

Name Age log M � f a burst log sSFR N 

(Gyr) M � (10 −4 ) yr −1 

Group A 3.4 + 2 . 9 −2 . 0 8.78 + 0 . 79 
−0 . 34 5 + 4 −3 − 9.66 ± 0.60 630 

Group B 7.5 + 1 . 5 −1 . 5 10.61 + 0 . 29 
−0 . 29 7 + 3 −3 − 10.25 ± 0.36 41 

Group C 8.5 + 0 . 8 −3 . 0 10.20 + 0 . 68 
−0 . 23 1 + 1 −0 − 11.19 ± 0.75 494 

Group D 8.3 + 1 . 0 −3 . 2 9.70 + 0 . 82 
−0 . 29 1 + 1 −2 − 10.78 ± 0.77 476 

Group E 1.5 + 1 . 9 −0 . 7 8.20 + 0 . 79 
−0 . 37 10 + 10 

−5 − 9.12 ± 0.43 280 

Group F 1.4 + 1 . 6 −0 . 7 8.20 + 0 . 60 
−0 . 34 11 + 6 −4 − 9.02 ± 0.37 164 

Group G 9.5 + 0 . 4 −0 . 7 10.50 + 0 . 45 
−0 . 26 0 + 1 −0 − 12.42 ± 1.42 678 

Group H 2.6 + 2 . 7 −1 . 8 9.06 + 0 . 53 
−0 . 29 6 + 4 −2 − 9.48 ± 0.41 902 

Group I 4.2 + 2 . 1 −2 . 6 9.62 + 0 . 65 
−0 . 30 4 + 4 −2 − 9.96 ± 0.49 601 

Group J 3.4 + 3 . 3 −1 . 8 8.20 + 1 . 35 
−0 . 39 8 + 7 −4 − 9.48 ± 0.64 288 

Group K 0.9 + 3 . 2 −0 . 7 8.09 + 1 . 52 
−0 . 39 35 + 166 

−30 − 8.71 ± 0.43 37 

Group L 1.3 + 1 . 9 −0 . 8 8.51 + 0 . 55 
−0 . 33 9 + 6 −4 − 9.10 ± 0.34 643 
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Figure 8. Stellar mass, age, and sSFR distributions for the galaxies with emission
without emission lines (32 per cent) in the SEDs represented in red. 
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The SFMS is presented in Fig. 10 . From here, we can see that
ifferent groups fall into different regions, with some overlap. As
iscussed in Section 3 , the GM classification allows o v erlapping
etween groups. 

To clarify if the behavior observed in the SFMS is dominated
y populations with different stellar mass, in Fig. 11 we plot the
SFR versus stellar mass. The behavior is similar to that observed
n the SFMS. For example, groups G and C, gray and pink points,
ave similar stellar mass ( ∼10 10.5 M �) but different ages (9.5 Gyr
nd 8.5 Gyr, respectiv ely). The y fall in coincident re gions with a
light offset between them. However, group G (which contains the
ldest quiescent galaxies and with the lowest sSFR, see Table 4 )
s almost totally outside of the SFMS. Also, group K, which has
ntense emission lines, (see Fig. 3 ) falls in the region with the highest
SFR. 

The fraction of PAU galaxies in the group K (0.05 per cent)
s similar to the fraction of HII galaxies, HIIG, (0.02 per cent)
rom Ch ́avez et al. 2014 selected from the SDSS DR7 spectroscopic
atalogue (Abazajian et al. 2009 ) for having the strongest emission
ines relative to the continuum at 0.01 < z < 0.2. HIIG are compact
ow mass systems (M � < 10 9 M �) with the luminosity almost
ompletely dominated by a young (age < 5 Myr) massive burst of star
 lines (68 per cent) in the SEDs represented in blue colour and, for galaxies 

ril 2024
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Figure 9. Stellar mass versus redshift for all the targets in each one of the 
12 groups obtained by the unsupervised ML algorithm. The symbol colour 
represents the name of the groups. Note that the targets belonging to each 
group are spread across the entire redshift range. 

Figure 10. SFMS for all the targets in each one of the 12 groups obtained by 
the unsupervised ML algorithm. The symbol colour represents the same as 
in Fig. 9 . The dashed line corresponds to the SFMS for star-forming galaxies 
from Whitaker et al. ( 2012 ) at z = 0. Different groups fall into different 
regions with some overlap between groups. The points separated from the 
main trend are the oldest quiescent galaxies. 
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Figure 11. sSFR versus stellar mass for all the targets in each one of the 
12 groups obtained by the unsupervised ML algorithm. The symbol colour 
represents the same as in Fig. 9 . 
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ormation (Terlevich & Melnick 1981 ; Melnick, Terlevich & Moles 
988 ; Bordalo & Telles 2011 ; Ch ́avez et al. 2014 ). By selection, they
re the population of extragalactic systems with the strongest narrow 

mission lines ( σ < 90 km s −1). HIIG fall well-abo v e the o v erall
 verage for star -forming galaxies of log(sSFR) ∼−10 yr −1 (Guo 
t al. 2015 ) and their sSFR approach to the largest starburst galaxies
uch as ULIRGS with log(sSFR) ∼−8 yr −1 (Doran et al. 2013 ).
o we ver, if we consider the sSFR of the present burst alone, the

urrent starbursts in HIIG are producing new stars at a much higher
ate of log(sSFR) ∼−7 yr −1 (Telles & Melnick 2018 ). In fact, the
ost metal-poor compact starbursts at all redshifts tend to appear as
IIG (Kunth & Östlin 2000 ; Gil de Paz, Madore & Pe vunov a 2003 ;
mor ́ın et al. 2012 , 2017 ; Izotov, Thuan & Guse v a 2012 ; K ehrig et al.
016 , 2018 ; Wofford et al. 2021 ) besides they can be observed even
t large redshifts becoming interesting standard candles (Melnick, 
erlevich & Terlevich 2000 ; Plionis et al. 2011 ; Terlevich et al.
015 ; Ch ́avez et al. 2016 ; Yennapureddy & Melia 2017 ; Gonz ́alez-
or ́an et al. 2019 , 2021 ; Ruan et al. 2019 ; Wu et al. 2020 ; Tsiapi

t al. 2021 ; Mehrabi et al. 2022 ). Therefore, it could be interesting to
xpand the analysis of group K by doing a spectroscopic follow-up
n order to detect if these targets are HIIG. Although the applied
ethodology is different, ML-classified photometric methodology 

ould be a fast way to choose HIIG candidates for incoming large
urv e ys. 

The results mentioned abo v e pose an extra confirmation on the
hysical meaning of the classification using ML. Different groups 
ollow patterns associated to different SPs and the classification using 

L successfully separates an extreme population (G group) from the 
eneral SFMS trend. 

.2 The colour of the galaxies 

he dependence of galaxy colour on morphological type is well- 
stablished since the pioneer works by de Vaucouleurs ( 1961 )
nd colour–colour diagrams have also been used to separate star- 
orming from quiescent galaxies (see e.g. Madau et al. 1996 ; Ferreras
t al. 1999 ; Fioc & Rocca-Volmerange 1999 ). Among the possible
iagrams, the most popular is the UVJ diagram, i.e. rest-frame U −V
ersus V −J (Labb ́e et al. 2005 ; Wuyts et al. 2007 ; Williams et al.
009 ). The ef fecti veness of the UVJ diagram comes from the fact
hat the combination of these two colours can break the de generac y
etween age and dust reddening. The UVJ diagram has been used
or more than merely grouping galaxies into two cate gories. F or
 xample, UVJ colours hav e been used to infer the star formation
ate and dust attenuation for star-forming systems (Fang et al. 
018 ), and the stellar ages for quiescent systems (Belli, Newman &
llis 2019 ). 
We derive U −V and V −J colours from the rest-frame fluxes,

ith the potential advantage that these come from directly observed 
hotometry (e.g. Taylor et al. 2009 ). Fig. 12 presents the mean
f the rest-frame colour–colour and colour–mass relations of the 
MNRAS 524, 3569–3581 (2023) 
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Figure 12. Colour–colour and stellar mass–colour diagrams for our sample. The symbol colour represents the class obtained by the unsupervised ML algorithm. 
On the left-hand panels are the UVJ diagrams whose limits for the quiescent regions (top-left region) are taken from Whitaker et al. ( 2011 ) for z < 0.5. On 
the right-hand panels are the rest-frame U −R versus stellar mass relation. The error bars correspond to the first and the third quartile of the distribution of the 
parameters, while the ellipses are centered in the mean and the axes correspond to the standard deviation of the distribution of the parameters. On the top panels, 
we have excluded the classes E, F, and J with large scatter in the SEDs (see Fig. 3 ) and one of the worst classified by the robustness analysis. 

P  

a  

s  

M  

r
 

r  

1  

U  

q  

o  

m
 

c  

f  

2  

t  

i  

f  

S  

s  

E  

(  

g
 

b  

p  

e  

c  

i  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/3/3569/7225529 by guest on 01 April 2024
AU galaxies, classified into 12 classes with the unsupervised ML
lgorithm. On the left-hand panels are the UVJ diagrams. The
eparation of the groups found in Fig. 12 is clear. Galaxies in each

L classified group have similar properties and span only a small
egion of the available parameter space. 

Comparing our results with those predicted using the age −colour
elation given by Belli et al. ( 2019 ), these are in agreement inside
 σ . This is a relation between the stellar age and the rest-frame
 −V and V −J colours, which can be used to estimate the age of
uiescent galaxies, given their colour. For example, for group G, we
btained using CIGALE an age of 9.5 + 0.4 − 0.7 Gyr and using the
entioned age −colour relation an age of 9.77 Gyr. 
Following Lumbreras-Calle et al. ( 2019 ), we applied the V −J

olour threshold criterion to separate Emission Line Galaxies (ELGs)
rom non-ELGs in blue galaxy samples (V −J < 0.35). We found that
NRAS 524, 3569–3581 (2023) 
0 per cent (groups K and L) of the galaxies with emission lines in
he SEDs (68 per cent of the total sample used in this work) fall
n the ELGs region for blue galaxies on the UVJ diagram. Besides,
rom the analysis of the main integrated properties of their SPs via
ED fitting, these galaxies have the lowest stellar masses and highest
SFR. This suggests that the new V −J colour criterion to separate
LGs from non-ELGs in blue galaxies by Lumbreras-Calle et al.
 2019 ) could be used as well to select the extreme ELGs in blue
alaxy samples. 

To highlight the excellent spectral co v erage of the PAU narrow
ands, we compare our results with previous applications of unsu-
ervised clustering o v er spectroscopic surv e ys, in particular, Siudek
t al. ( 2018 ) also used an unsupervised machine-learning algorithm to
lassify the VIMOS Public Extragalactic Redshift Surv e y (VIPERS)
nto 12 groups. The number of groups, colours, and the SFMS trend
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how a similar classification to ours, although the redshift range 
s different (0.4 < z < 1.3) so the results can not be compared
irectly to ours (0.01 < z < 0.28). Ho we v er, interestingly the y found
hree classes of red passive galaxies with similar properties as us
n the B, C, and G groups (they reported log (M � /M �) ∼10.8 and
og (sSFR/yr −1 ) ∼−12, while our values are log (M � /M �) ∼10.5
nd log (sSFR/yr −1 ) ∼−11.5). Besides, if we compare the SFMS,
he trend is very similar, but the SFR is different perhaps due to a
edshift evolution. These same photometric ML classified groups (B, 
, and G) show a log (SFR/M � yr −1 ) ∼−3, while the spectroscopic
L classified classes have log (SFR/M � yr −1 ) ∼−1. Regarding 

he colours in the UVJ diagram, both trends are similar, but the
iudek et al. ( 2018 ) U −V colours are bluer than ours. Besides, in
eneral, galaxies reported by them are more massive than ours. At 
he same time, group K from our classification falls in a region in
he V −J colour that does not appear in the Siudek et al. ( 2018 )
lassification. It is important to highlight that this group has a log
M � /M �) ∼8, which is an order of magnitude lower than the class
ith the lowest stellar mass reported in Siudek et al. ( 2018 ) with a

og (M � /M �) ∼9, ho we v er, both groups hav e a log (sSFR/yr −1 ) ∼8.6.
lthough our photometric ML classified work has some similarities 
ith the spectroscopic ML classified work from Siudek et al. ( 2018 ),
e emphasize that the Siudek et al. ( 2018 ) sample belongs to a
igher redshift than ours, so both results can not be compared 
irectly. 

 C O N C L U S I O N S  

e have used an unsupervised ML classification associated with 
he shape of 5234 low-redshift SEDs from the PAU surv e y in the
OSMOS field. From the analysis of the SEDs obtained from these 
ata, we have found the following: 

(i) The GM clustering algorithm is implemented and optimized to 
et rele v ant classes. We have chosen 12 as the optimal number of
lasses based on the analysis of the BIC parameter gradient and the
ilhouette score. 

(ii) The number of targets belonging to each ML classified group 
s different, so the groups are not equally populated. Also, the 
ontinuum pattern of the different groups is different; four groups 
B, C, D, and G) do not show emission lines, and some groups (B,
, D, E, F, and J) present absorption lines such as Mg λ5175 Å and
a I λλ5889, 5895 ÅÅ. Four groups (A, E, F, and J) have a large

catter with coincidence factor minimal < 43 per cent and rms >
.06. Five groups (A, H, I, K, and L) present a clear detection in
mission lines such as H β, [O III ] λ5007 Å and H α emission lines.
n particular, group K shows intense emission lines in their SEDs.
n summary, 68 per cent of the total sample of 5245 galaxies in the
AU surv e y at 0.01 < z < 0.28 are in a star-forming phase. The
roups are not biased by redshift with targets in all the redshifts
alues. 

(iii) The differences in the galaxy population among the different 
lasses have been studied. The SP and other physical properties 
av e been e xplored using the CIGALE code. The mass, age and
SFR of the galaxies range from 0.15 < age Gyr −1 < 11, 6 <
og (M � /M �) < 11.26 and −14.67 < log (sSFR/yr −1 ) < −8. The

L classified groups are well-defined in their properties. Galaxies 
howing clear emission lines typically fall in the lower mass, younger 
nd higher sSFR regime (mean values of log (M � /M �) = 8.72 ± 0.75,
.02 ± 2.16 Gyr, and, log (sSFR/yr −1 ) =−9.46 ± 0.57) than galaxies 
n the groups that do not show emission lines in their SEDs (mean
alues of log (M � /M �) = 10.08 ± 0.54, 8.14 ± 1.94 Gyr, and, log
sSFR/yr −1 ) =−11.36 ± 1.18). The SFMS and sSFR versus stellar 
ass plots show that different groups fall into different regions with

ome o v erlap among groups. 
(iv) We applied the new V −J colour criterion to separate ELGs

rom non-ELGs in blue galaxy samples (V −J < 0.35), as suggested
n Lumbreras-Calle et al. ( 2019 ). We found that 20 per cent of the
alaxies with emission lines in the SEDs fall in the ELGs region
or blue galaxies on the UVJ diagram. Besides, these galaxies have
he lowest stellar masses and highest sSFR of the entire sample
uggesting that the V −J colour criterion applied could be used to
elect the extreme ELGs. 

(v) The fraction of galaxies at low-z in the PAU Surv e y with
mission lines is 68 per cent and their characteristic values of
ass, age, and sSFR are consistent with those reported by other
edium-band works in the COSMOS (Hinojosa-Go ̃ ni et al. 2016 )

nd GOODS-N (Lumbreras-Calle et al. 2019 ) fields. 
(vi) We have demonstrated that the joint of low-resolution (R 

50) photometric spectra provided by the PAU survey and un- 
upervised clustering represents an excellent opportunity to classify 
alaxies. Moreo v er, it helps to find and extend the analysis of extreme
LGs to lower masses and lower SFRs in the local Universe. 
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