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ABSTRACT 14 

The orientation of slopes in alpine zones creates microclimates, e.g. equatorial-facing slopes (EFSs) 15 

are generally drier and warmer than are polar-facing slopes (PFSs). The vegetation growing in these 16 

microhabitats responds divergently to climatic warming depending on the slope orientation. We propose a 17 

spatial metric, the greenness asymmetric index (GAI), defined as the ratio between the average normalized 18 

difference vegetation index (NDVI) on PFSs and EFSs within a given spatial window, to quantify the 19 

asymmetry of greenness across aspects. We calculated GAI for each non-overlapping 3 × 3 km2 (100 × 100 20 

Landsat pixels) grid, and seamlessly mapped it on Tibetan Plateau (TP) grassland using NDVI time series 21 

from the Landsat-5, -7 and -8 satellites. PFSs were greener than EFSs (GAI > 1) in warm and dry areas, 22 

and EFSs were greener than PFSs (GAI < 1) in cold and wet areas. We also detected a stronger greening 23 

trend (0.0037 vs 0.0033 y-1) and a higher sensitivity of NDVI to temperature (0.038 vs 0.033 ℃-1) on PFSs 24 

than EFSs, leading to a significant positive trend in GAI (0.00062 y-1, P < 0.01) in the TP from 1991 to 25 

2020. Our results suggest that global warming exacerbated the greenness asymmetry associated with the 26 

slope orientation: PFSs are more sensitive to warming and have been greening at a faster rate than EFSs. 27 

The gradient of EFSs and PFSs provided a “natural laboratory” to study interaction of water and temperature 28 

limitations on vegetation growth. Our study is the first to detect the effect of aspect on the greening trend 29 

in the TP. Future research needs to clarify the full biotic and abiotic determinants for this spatial and 30 

temporal asymmetry of greenness across aspects with the support of extensive field measurements and 31 

refined high-resolution NDVI products. 32 
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1. INTRODUCTION 36 

Ecosystems at high latitudes and altitudes are strongly limited by low temperatures (Nemani et al., 37 

2003; Seddon et al., 2016). Satellite observations indicate that cold-adapted vegetation under a warming 38 

climate experiences a substantial greening trend (Berner et al., 2020; Keenan and Riley, 2018; Myneni et 39 

al., 1997; Piao et al., 2020; Zhong et al., 2019). Latitude- and altitude-dependent warming further 40 

exacerbate this greening trend in cold regions (Pepin et al., 2015; Pithan and Mauritsen, 2014). Greening 41 

increases the amount of photosynthetically active radiation absorbed by vegetation and thus increases 42 

productivity (Piao et al., 2020). The recent prominent greening in cold regions has therefore exerted crucial 43 

influences on the temporal dynamics of atmospheric CO2 concentrations. For example, the seasonal 44 

amplitude of CO2 concentrations over the Northern Hemisphere has increased immensely since the 1950s 45 

(Forkel et al., 2016; Graven et al., 2013). 46 

Whether the positive effect of warming on the growth of vegetation will continue in the predicted 47 

further warming, however, remains uncertain (Penuelas et al., 2017; Zhang et al., 2022). Recent studies 48 

have reported a slowing or even a reversal of greening in the Northern Hemisphere (Piao et al., 2014; 49 

Vickers et al., 2016; Zhang et al., 2021), which is often attributed to the approaching photosynthetic 50 

temperature optima (direct warming effects) (Duffy et al., 2021; Huang et al., 2019; Yin et al., 2022) and 51 

to the increase in other resource constraints with the mediation of temperature limitation, e.g. water 52 

constraints (indirect effects of warming) (Jiao et al., 2021; Yuan et al., 2019; Zhang et al., 2021). Examining 53 

the direct and indirect effects of warming on greenness across a wide spectrum of conditions of temperature 54 

and water availability using manipulative experiments is still rare due to their high cost, so the future 55 

trajectory of greenness under a warming climate remains unclear. 56 

As an important topographic variable, aspect affects the amount and temporal cycle of solar radiation 57 

received by vegetation. This difference in radiation creates local microclimates with different temperatures 58 

and water availabilities (Bennie et al., 2008). Specifically, polar-facing slopes (PFSs) are generally wetter 59 

and colder than equatorial-facing slopes (EFSs) (Kumari et al., 2020). Aspect is therefore a key determinant 60 

of vegetation greenness. The contrast in greenness between EFSs and PFSs depends on the tradeoff between 61 

limitations of water and temperature (Kumari et al., 2020). An aspect gradient may therefore represent a 62 

natural laboratory for studying the codetermination of temperature and water availability on greenness. 63 

Most in situ measurements have indicated that vegetation grows better on PFSs than EFSs, especially for 64 

arid and semiarid ecosystems (Bale et al., 1998; Fekedulegn et al., 2003; Gong et al., 2008; Guerrero et al., 65 

2016). Whether this phenomenon prevails at a regional scale, due to the sparse distribution of sampling 66 

sites, however, is still not clear. Studies have also not examined the interannual variation of the asymmetry 67 

of greenness across aspects, which is key to better understanding the responses of vegetation to warming. 68 
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Satellite-derived vegetation indices have been widely used to monitor the spatiotemporal dynamics of 69 

vegetation activity (An et al., 2018; Kumari et al., 2020; Yin et al., 2020). The normalized difference 70 

vegetation index (NDVI) was designed to represent the activity of vegetation based on information on the 71 

amounts of solar radiation absorbed by chlorophyll in the red band and scattered by mesophyll in the near-72 

infrared band (Huete et al., 2002). NDVI is a reliable proxy for green biomass, with low sensitivity to many 73 

other confounding factors, e.g. topography and sun-observer geometry (Huete et al., 2002; Myneni et al., 74 

1997; Shen et al., 2008). The Landsat satellites provide long-term (from 1972 to the present) and high-75 

resolution (30 m) remotely sensed data (Wulder et al., 2019). The free delivery of the Landsat historical 76 

archive provides a novel opportunity to calculate NDVI and characterize the spatial pattern and interannual 77 

variation of aspect-dependent greenness over large areas at a higher spatial resolution and for a longer time 78 

record than do other satellites such as MODIS. 79 

We used a spatial metric, the greenness asymmetric index (GAI), defined as the ratio of NDVIs for 80 

PFSs and EFSs, to quantify the asymmetry of greenness within a spatial window. We used long-term 81 

Landsat NDVI data, a digital elevation model (DEM) and a climatic data set to calculate GAI in each non-82 

overlapping 3 × 3 km2 (100 × 100 Landsat pixels) grid, mapped its spatial distribution and interannual 83 

variation in grassland on the Tibetan Plateau (TP) and explored their links to climate. The TP is the largest 84 

and highest plateau on Earth and is characterized by a cold and generally dry climate (Yao et al., 2019). 85 

Rapid warming has substantially increased the greenness of TP grassland (Zhong et al., 2019), but the effect 86 

of aspect on the spatiotemporal dynamics of greenness remains unknown. This study also deepens our 87 

understanding of the future trajectory of grassland greenness on the TP. 88 

2. MATERIALS AND METHODS 89 

2.1. Study area 90 

The TP, also known as “the third pole of the Earth”, is the largest and highest plateau in the world 91 

(Yao et al., 2019). Climate on the TP is generally characterized by low air temperatures and low 92 

precipitation, with the eastern TP is relatively warmer and wetter than western TP (Figure S1). Climatic 93 

warming on the TP has been intensive in recent decades, with a rate of about 0.03 ℃ y-1 (Figure S2a), which 94 

is nearly twice the global rate. This high rate of warming persisted even during the global “warming hiatus” 95 

period (An et al., 2018). Precipitation during this period also shows a significantly increasing trend (1.45 96 

mm y-1, P = 0.03. See Figure S2b). 97 

Grass is the dominant type of vegetation on the TP (Figure 1a), where grassland greenness is co-98 

controlled by temperature and water availability (Li et al., 2020; Shen et al., 2015). Rapid warming has 99 

significantly increased the greenness of TP grassland (Zhong et al., 2019). Topography on the TP is 100 

characterized by micro-relief (Figure 1b), so pairs of grasslands on EFSs and PFSs are readily available 101 
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within a kilometric scale. The high rate of warming, relative homogeneous vegetation type and widely 102 

distributed micro-terrain make TP a suitable study area to assess the role of aspect in greenness (Figure 1) 103 

and its variation under ongoing climatic warming. 104 

 105 

Figure 1 Land-cover type (a) and a typical landscape on the Tibetan Plateau (b) exemplifying micro-relief. (c) NDVI 106 

stacking on elevation in a 3 × 3 km2 grid. In this case, NDVI on northward (polar-facing) slopes was larger than that 107 

on south-facing (equatorial-facing) slopes, resulting a greenness asymmetric index (GAI) value larger than 1.0 (see 108 

Analysis section). WorldCover, Landsat and GDEM data were used for the land cover, NDVI and elevation 109 

respectively (see the Data sets section). 110 

2.2. Data sets 111 

2.2.1. Landsat NDVI 112 

We used Landsat-derived NDVI to represent the greenness of the grasslands. Landsat satellites provide 113 

the longest series of Earth observations using similar sensors with decametric resolutions (~30 m). All 114 

available observations of Landsat-5, -7 and -8 were used in this study, after masking out the cloud-115 

contaminated observations identified by the CFMask algorithm (Zhu et al., 2015). NDVI was then 116 

calculated as the normalized difference between surface reflectances at near-infrared and red bands. For 117 

each pixel × year, we selected the maximum NDVI during July and August to represent the seasonal peak 118 

of greenness. This maximum compositing minimizes the influence of residual cloud and atmospheric 119 

contamination. All of the above preprocessing of the Landsat data was performed using the Google Earth 120 

Engine (GEE) platform (Gorelick et al., 2017). Code regarding the preprocessing can be found in 121 

https://code.earthengine.google.com/ec9fad54d1bc5071c13737fd784d9ccf?noload=true. 122 
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Landsat-5 and -7 have very similar spectral configurations, so their NDVIs are statistically the same 123 

(Claverie et al., 2015). Landsat-8, however, has narrower red and near-infrared bands, causing a positive 124 

bias for the derived NDVI relative to Landsat-5 and -7 (Roy et al., 2016). For consistency, we converted 125 

the Landsat-8 NDVI (NDVIL8) to the Landsat-7 NDVI (NDVIL7) by, 126 

NDVIL7 = 0.0029+0.9589NDVIL8.                                                (1) 127 

The parameters in Eq. (1) were derived from a linear regression between 6317 NDVIL8 and NDVIL7 image 128 

pairs (Roy et al., 2016), which have been widely demonstrated to be reliable for long-term analyses of time 129 

series (Anderson et al., 2020; Fassnacht et al., 2019). 130 

2.2.2. Gridded climatic data set 131 

Gridded climatic data were obtained from the National Earth System Science Data Center of the 132 

National Science Technology Infrastructure of China (http://www.geodata.cn). This data set was 133 

reconstructed by scaling down the data from the Climatic Research Unit (CRU) at a resolution of 0.5° to a 134 

resolution of 1 km using data from 496 meteorological stations (Peng et al., 2019). We calculated the mean 135 

annual air temperature and mean annual precipitation from the original monthly resolution and resampled 136 

them to a spatial resolution of 3 km by averaging values of 3 × 3 pixels at the original resolution. 137 

2.2.3. Land-cover data 138 

We delineated TP grassland based on the WorldCover 10-m land-cover product of the European Space 139 

Agency (https://esa-worldcover.org/en). WorldCover was generated from Sentinel-1 and Sentinel-2 data 140 

with an overall accuracy of 74.4% (Zanaga et al., 2021). For consistency with the Landsat data, the 141 

WorldCover data were resampled to a resolution of 30 m using the nearest-neighbor method. 142 

2.2.4. Elevational data 143 

Elevational data were provided by the Advanced Spaceborne Thermal Emission and Reflection 144 

Radiometer Global Digital Elevation Model (GDEM) version 2 (http://www.jspacesystems.or.jp/ersdac/ 145 

GDEM/E/1.html), which has a spatial resolution of 30 m. We calculated slopes and aspects for all pixels of 146 

the TP using GEE. Values of 0 and 180° in the aspect map correspond to north and south aspects, 147 

respectively. We identified pixels as EFSs when their slopes were >5° and their aspects were in the range 148 

of 135-225°. Similarly, PFSs pixels corresponded to pixels with slopes >5º and aspects in the range of 315-149 

360° or 0-45°. 150 

2.3. Analysis 151 

We proposed GAI to quantify the asymmetry of greenness on contrasting aspects. GAI was calculated 152 

as, 153 

GAI = NDVIPFS / NDVIEFS                                                             (2) 154 
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where NDVIPFS and NDVIEFS are the maximum NDVI values during July and August on PFSs and EFSs, 155 

respectively. A GAI >1 indicates that PFSs are greener than EFSs. Contrarily, a GAI <1 indicates that EFSs 156 

are greener than PFSs. 157 

Before calculating GAI, the original Landsat images were divided into non-overlapping 3 × 3 km2 158 

grids (100 × 100 Landsat pixels). The difference in vegetation type in each grid may induce uncertainty in 159 

GAI calculation, so only grassland pixel identified by the WorldCover product were selected for following 160 

processing. The grassland pixels on EFSs and PFSs were then extracted from each grid based on their 161 

definitions provided in Section 2.2.4. NDVIs for EFS and PFS were averaged to obtain NDVIPFS and 162 

NDVIEFS, respectively, at a resolution of 3 km. Grid cells with <50 grassland pixels of valid Landsat data 163 

during July-August of either PFSs or EFSs were masked out to obtain a robust result. GAI was then 164 

calculated using Eq. (2) for each grid. This procedure generated one 3-km resolution GAI map, representing 165 

peak growing season, for each year. The TP started to be observed in 1986 by Landsat-5 (Pan et al., 2022). 166 

However, due to the low frequency of Landsat-5 acquisitions, the percentage of grids with available GAI 167 

values was very low (~50%) at the beginning of the time series and increased progressively with the 168 

combination of Landsat-5, -7 and -8 reaching percentages >90% after 1991 (Figure S3). To avoid possible 169 

issues introduced by the low number of valid estimates and to increase the robustness of the analysis, we 170 

therefore limited our study period to 1991-2020. 171 

We first analyzed the spatiotemporal pattern of GAI relative to mean annual air temperature and mean 172 

annual precipitation. Collecting data for climatic variables to represent microclimatic conditions for each 173 

Landsat pixel at a decametric resolution is currently technically impossible, so we correlated GAI with both 174 

climatic variables at the 3-km resolution. We also compared the temporal trend and sensitivity of NDVIPFS 175 

and NDVIEFS to temperature for 1991 to 2020 to identify the influences of aspect on the response of 176 

greenness to climatic warming. The sensitivity of NDVI to temperature was calculated as the slope of the 177 

linear regression between NDVI and temperature (both at 3-km resolution). All trend statistics for GAI and 178 

NDVI were calculated using the linear regression of annual GAI and NDVI against year. All significance 179 

levels reported were estimated using a two-tailed Student’s t-test. 180 

3. RESULTS 181 

3.1. Spatial pattern of greenness asymmetric index 182 

Figure 2 shows the spatial distribution of mean GAI from 1991 to 2020. GAI was >1 in 63.6% of the 183 

grassland pixels, mainly in the western and northeastern TP. In contrast, fewer pixels (36.4%) had a GAI 184 

<1.0. These pixels were mostly in the eastern and central TP. Greenness generally differed significantly on 185 

the contrasting aspects (GAI ≠ 1) in 83.1% of the study area (P < 0.01) (Figure 2b). 186 
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 187 

Figure 2 Spatial distribution of the average multiyear (1991-2020) (a) greenness asymmetric index (GAI) and (b) 188 

corresponding P values of the significant test results for mean GAI ≠ 1. P values are divided into three levels: P < 189 

0.01, 0.01 < P < 0.05 and P > 0.05. Note that GAI > 1.0 represents greener polar-facing than equatorial-facing slopes 190 

and that GAI < 1.0 represents the opposite case. Gray background in the maps represent non-grassland land covers. 191 

Putting GAI in a climatic space (Figure 3a) identified a significant correlation (P < 0.01) between GAI 192 

and both temperature (Figure 3b) and precipitation (Figure 3c), suggesting that GAI was co-determined by 193 

the ambient conditions of temperature and precipitation. This result indicated that PFSs were generally 194 

greener than EFSs in warm and dry areas and that the opposite case often occurred in cold and wet areas. 195 

Closer scrutiny indicated that precipitation (correlation coefficient = 0.93) was slightly more strongly 196 

correlated with the spatial pattern of GAI than was temperature (correlation coefficient = 0.91). 197 

 198 

Figure 3 Distribution of the greenness asymmetric index (GAI) in the climatic space for TP grassland during 1991-199 

2020. (a) GAI in each bin of mean annual temperature and mean annual precipitation. (b) GAI vs temperature, with 200 

GAI averaged over all precipitation bins. (c) GAI vs precipitation, with GAI averaged over all temperature bins. 201 
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3.2. Divergent greening rates on equatorial-facing and polar-facing slopes 202 

The regional mean GAI significantly (P < 0.01) increased from 1991 to 2020 at a rate of 0.00065 y-1 203 

(Figure 4), albeit with obvious spatial heterogeneity (Figure 5). Specifically, GAI increased in 60.4% of the 204 

study area, and the increasing trend was significant in 39.6% of the study area at P < 0.01, mainly in eastern 205 

and central TP. In contrast, GAI decreased significantly in only 15.1% of the pixels (P < 0.01), distributed 206 

mainly in northeastern TP. 207 

 208 

Figure 4 Temporal trend of the greenness asymmetric index (GAI) averaged over the entire Tibetan Plateau. The solid 209 

line and shaded area represent the linear regression and 95% confidence limit of the estimated slope, respectively. 210 

 211 

Figure 5 Spatial distribution of the trend in the greenness asymmetric index (GAI) and its significant test results from 212 

1991 to 2020 for the Tibetan Plateau. P(+) and P(-) are the P values of the increase and decrease in GAI, respectively, 213 

which are divided into three levels: P < 0.01, 0.01 < P < 0.05 and P > 0.05. Gray background in the maps represent 214 

non-grassland land covers. 215 

The increase in GAI implied that the greening rate on PFSs may outpace the rate on EFSs. We therefore 216 

compared the temporal trends in NDVI on the two opposite aspects. NDVI significantly increased (P < 217 

0.01) from 1991 to 2020 on both aspects, but at different rates: 0.0040 and 0.0034 y-1 for PFSs and EFSs, 218 

respectively (Figure 6). The spatial distributions of the NDVI trend on the two contrasting aspects 219 

confirmed the significant greening trend for the entire TP (Figure S4a and c). This greening trend was 220 

significant (P < 0.01) in 77.6 and 83.3% of all pixels for the EFSs and PFSs, respectively (Figure S4b and 221 

d). We further mapped the pixel-wise difference in NDVI trends between the EFSs and PFSs for the entire 222 

TP (Figure 7) and observed widespread positive values (67.7% of all pixels, Figure 7a), i.e. PFSs benefited 223 
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more from climate change than did EFSs. A two-tailed Student’s t-test for all pairs of EFSs and PFSs 224 

confirmed a significant difference in the greening rates between the two contrasting aspects at P < 0.01 225 

(Figure 7b). 226 

 227 

Figure 6 Temporal trends in the average NDVI on equatorial-facing (red lines) and polar-facing (blue lines) slopes 228 

from 1991 to 2020 on the Tibetan Plateau grasslands. The solid lines and shaded areas represent the linear regressions 229 

and 95% confidence limits of the estimated slopes, respectively. 230 

 231 

Figure 7 Spatial distribution of the difference in NDVI trends between polar-facing (PFSs) and equatorial-facing 232 

slopes (EFSs) (a) and their box plots (b). Gray background in (a) represent non-grassland land covers. The asterisks 233 

in (b) indicate a significant difference in the greening trends between the equatorial-facing (EFSs) and polar-facing 234 

slopes (PFSs) at P < 0.01. The error bars indicate standard errors of the means. 235 

Finally, we compared the apparent sensitivity of NDVI to temperature (ST) between EFSs and PFSs 236 

to directly determine whether the aspect would regulate the response of greenness to warming. We detected 237 

a widespread positive ST of NDVI on both the EFSs and PFSs, accounting for 88.4 and 90.6% of their total 238 

pixels, respectively (Figure S5a and c). A positive ST was significant (P < 0.01) in 21.9 and 27.4% of the 239 

pixels for the EFSs and PFSs, respectively, mostly in the eastern TP (Figure S5b and d). A map of the 240 

difference in ST on the two contrasting aspects indicated that ST was generally higher for PFSs (Figure 8a). 241 

The regional mean ST was accordingly significantly (P < 0.01) higher on PFSs than EFSs (0.031 ± 0.025 242 

vs 0.026 ± 0.025 ℃-1, mean ± σ). These results suggest that PFSs would benefit more than EFSs from the 243 

ongoing warming. 244 
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 245 

Figure 8 Spatial distribution of the difference in apparent sensitivity of NDVI to temperature (ST) between polar-246 

facing (PFSs) and equatorial-facing slopes (EFSs) (a) and their box plots (b). ST is defined as the slope of the linear 247 

regression between NDVI and temperature for 1991-2020. Gray background in (a) represent non-grassland land covers. 248 

The asterisks in (b) indicate a significant difference in the NDVI rates between the equatorial-facing (EFSs) and polar-249 

facing slopes (PFSs) at P < 0.01. The error bars indicate standard errors of the means.  250 

4. DISCUSSION 251 

Different orientations of EFSs and PFSs generate contrasting microclimatic conditions that influence 252 

vegetation growth and its response to climate change (Dobrowski, 2011). Our findings validate the 253 

previously sparsely tested observations of widespread differences in greenness between EFSs and PFSs 254 

(Bale et al., 1998; Fekedulegn et al., 2003; Gong et al., 2008; Guerrero et al., 2016). The variation in 255 

greenness between EFSs and PFSs depends on the relative importance of temperature and water limitations 256 

in shaping regional vegetation growth. PFSs exhibit higher greenness (GAI > 1) in water-limited areas and 257 

was lower greenness than EFSs (GAI < 1) in temperature-limited areas (Figure 3). The GAI threshold of 1 258 

represents the transition point between temperature and water limitations. The distinct spatial pattern of 259 

GAI, suggests that western TP (GAI >1) is primarily limited by water, while the eastern TP (GAI <1) 260 

predominantly limited by temperature, which is consistent with a recent study (Zhu et al., 2023). This 261 

indicates that GAI can serve as a reliable metric for quantifying water and temperature limitations of in an 262 

ecosystem. We also observed an increasing trend in GAI from 1991 to 2020, indicating a stronger influence 263 

of water constraints relative to temperature constraints on the TP grasslands, despite the concurrent 264 

warming and wetting trends in the region (see Figure S2). Ding et al. (2018) also reported a similar shift in 265 

climatic constraints on vegetation growth over the TP using direct correlation analysis between climatic 266 

variables and vegetation growth. 267 

The warming climate has caused a greening trend in areas at high latitudes and altitudes, where 268 

vegetation growth is mainly constrained by low temperatures (Berner et al., 2020; Keenan and Riley, 2018; 269 

Myneni et al., 1997; Zhong et al., 2019). Recent studies, however, have reported that this greening trend 270 

may slow or even reverse with continuous warming (Yin et al., 2022; Yuan et al., 2019; Zhang et al., 2022). 271 

One potential mechanism underlying these findings is the regulation of water availability on vegetation 272 

response to warming. Warming can stimulate vegetation growth under wet conditions but suppress it under 273 
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extremely dry conditions (Quan et al., 2019; Reich et al., 2018). By comparing the vegetation response to 274 

warming under wet and dry conditions while controlling for other confounding environmental factors, we 275 

can enhance our ability to predict vegetation dynamics in future climates. EFSs and PFSs, distinguished by 276 

differences in solar energy exposure, lead to different rates of water vapor release through 277 

evapotranspiration. The increased solar input on EFSs enhances their capability to emit water vapor, leading 278 

to drier conditions compared to the relatively lower moisture loss in PFSs. As a result, EFSs and PFSs, 279 

representing dry and wet conditions respectively within comparable regional ambient climates, function as 280 

a "natural laboratory" for comparing vegetation responses to warming under distinct moisture regimes. The 281 

larger increasing trend (Figure 7) and the apparent temperature sensitivity of NDVI in PFSs compared to 282 

EFSs (Figure 8) support the regulation of water availability on vegetation response to warming.  283 

In addition to background climate, other factors, including slope steepness, community composition, 284 

soil nutrient content and orographic precipitation, may influence the spatiotemporal pattern of GAI. We 285 

compared GAI maps derived from different slope ranges (Figure S6), finding that GAIs calculated from 286 

gentle slopes are much more concentrated around 1, and the steeper slopes would result in GAI with a 287 

higher absolute value, i.e., steeper slope would amplify the aspect effect on vegetation greenness. For 288 

community composition, EFSs and PFSs are generally dominated by drought-tolerant and cold-adapted 289 

species, respectively (Kimball et al., 2017). Plant species have also shifted from EFSs to PFSs in recent 290 

decades due to climatic warming, increasing biodiversity on PFSs (Feldmeier et al., 2020). This species 291 

shift in aspect may also account for the larger greening trend on PFSs because of the positive relationship 292 

between biodiversity and biomass production (Sonkoly et al., 2019; Tilman et al., 1996). The more-fertile 293 

soil on PFSs than EFSs (Kumari et al., 2020) is also a potential cause of the stronger greening trend, due to 294 

the high nutrient limitation on the TP (Liu et al., 2018). Furthermore, the orographic precipitation also plays 295 

a role in regulating the aspect-controlled vegetation growth, as demonstrated by computer simulations in a 296 

recent study (Srivastava et al., 2022). Theses local-scale factors besides climate controls may induce local 297 

variations in GAI, as can be discerned in the spatiotemporal distributions of GAI (Figure 2 and 5). Therefore, 298 

extensive in situ measurements are required to identify all biotic and abiotic factors creating the contrasting 299 

trends of greenness and greening on EFSs and PFSs on the TP.  300 

Our results have some uncertainties. First, we used NDVI as a proxy of vegetation greenness, because 301 

our previous study demonstrated that the topographic influence on NDVI could be neglected due to its 302 

formulation of normalized ratios (Chen et al., 2020). To avoid the topographic effects on NDVI, only slopes 303 

larger than 5° and lower than 25° were selected in a similar study (Kumari et al., 2020). However, since the 304 

two GAI maps, respectively calculated from pixels with slopes larger than 5° and in the range of 5°-25°, 305 

are broadly similar (Figure S7), the uncertainty caused by topographic effects on NDVI is thus very limited 306 

and does not significantly influence our results. Second, we focused on summer greenness, which is 307 
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assumed to well represent the variation in annual gross primary productivity (Xia et al., 2015). The 308 

symmetricity of greenness may exhibit seasonal variation as revealed in (Kumari et al., 2020). We 309 

compared the GAI in grassland growing seasons, i.e., spring, summer and autumn (Figure S8), and found 310 

that the spatial patterns in the three seasons are very similar. Third, the detailed biotic and abiotic differences 311 

between EFSs and PFSs cannot be specified without the support of extensive field measurements, including 312 

meteorological conditions, soil properties and community composition. Dedicated field campaigns are 313 

urgently needed on paired EFSs and PFSs at representative sites on the plateau. Forth, Landsat satellites 314 

have a relatively low revisiting frequency (~16 days), and cloud contamination further lowers the number 315 

of high-quality observations, causing uncertainty associated with NDVI. Advanced spatiotemporal fusion 316 

technology may improve the continuity of NDVI time series for refining our results. Finally, the east and 317 

west facing slopes may also exhibit different greenness due to diurnal cycle of convective system, so the 318 

greenness difference between these two contrasting slopes is also worth comparing in our future study. 319 

5. Conclusions 320 

Our study presents a novel approach, using the greenness asymmetric index (GAI), to seamlessly map the 321 

divergence in greenness between equatorial-facing slopes (EFSs) and polar-facing slopes (PFSs) in the 322 

Tibetan Plateau (TP) grasslands. This widespread distribution of greenness divergence across the TP can 323 

be attributed to the varying influences of water and temperature limitations. Our analysis also revealed an 324 

increasing trend in GAI from 1991 to 2020, indicating a growing significance of water constraints compared 325 

to temperature constraints on the TP. The gradients provided by EFSs and PFSs offer a valuable "natural 326 

laboratory" for furthering our mechanistic understanding of vegetation response to climate change, thereby 327 

enhancing the representation of Earth system models and improving predictions of future vegetation 328 

dynamics. Future studies should focus on dedicated field measurements and refined high-resolution NDVI 329 

products to elucidate the complete range of biotic and abiotic factors contributing to the spatiotemporal 330 

patterns of GAI.  331 
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SUPPLEMENTARY INFORMATION 341 

 342 

Figure S1 Spatial distribution of the mean annual temperature and mean annual precipitation on the Tibetan Plateau 343 

grasslands. Gray background in the maps represent non-grassland land covers. 344 

 345 

Figure S2 Temporal trends in the mean annual temperature and mean annual precipitation from 1991 to 2020 averaged 346 

over the Tibetan Plateau. The solid lines and shaded areas represent the linear regressions and 95% confidence limits 347 

of the estimated slopes, respectively. 348 

 349 

Figure S3 Temporal variation in the percentage of grids with greenness asymmetric index (GAI) values. Due to 350 

Landsat acquisition and cloud contamination, the percentage before 1991 was very low (< 85%), we therefore limited 351 

our study period to 1991-2020. 352 
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 353 

Figure S4 Spatial distribution of the trend in summer NDVI and its significant test results for 1991 to 2020 on the 354 

Tibetan Plateau grasslands. Panels (a) and (b) are for equatorial-facing slopes, and panels (c) and (d) are for polar-355 

facing slopes. P(+) and P(-) in (b) and (d) are the P values of the increase and decrease in NDVI, respectively, which 356 

are divided into three levels: P < 0.01, 0.01 < P < 0.05 and P > 0.05. Gray background in the maps represent non-357 

grassland land covers. 358 

 359 

Figure S5 Spatial distribution of the sensitivity of greenness to temperature (ST) and its significant test results for the 360 

Tibetan Plateau grasslands. Panels (a) and (b) are for equatorial-facing slopes, and panels (c) and (d) are for polar-361 

facing slopes. ST is defined as the slope of the linear regression between NDVI and temperature for 1991-2020. P(+) 362 

and P(-) are the P values of positive and negative ST, respectively, which are divided into three levels: P < 0.01, 0.01 363 

< P < 0.05 and P > 0.05. Gray background in the maps represent non-grassland land covers. 364 
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 365 

Figure S6 Spatial distributions of the greenness asymmetric index (GAI) calculated with different slope ranges: 5°-366 

10° (a), 10°-15° (b), 15°-20° (c), 20°-25° (d) and > 25° (e), and their frequency distribution (f). Note that GAI > 1.0 367 

represents greener polar-facing than equatorial-facing slopes and that GAI < 1.0 represents the opposite case. Gray 368 

background in the maps represent non-grassland land covers. 369 

 370 

Figure S7 Difference between greenness asymmetric indexes (GAIs) calculated from pixels with slopes > 5° and with 371 

slopes in the range of 5°-25°, respectively. There was no significant difference between their bias and 0 (P < 0.01). 372 

Gray background in the maps represent non-grassland land covers. 373 
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 375 

Figure S8 Spatial distribution of the greenness asymmetric index (GAI) in spring (May and June), summer (July and 376 

August) and autumn (September and October). Note that GAI > 1.0 represents greener polar-facing than equatorial-377 

facing slopes and that GAI < 1.0 represents the opposite case. Gray background in the maps represent non-grassland 378 

land covers.  379 
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