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ABSTRACT

Context. The interpretation of observations of atomic and molecular tracers in the galactic and extragalactic interstellar medium (ISM)
requires comparisons with state-of-the-art astrophysical models to infer some physical conditions. Usually, ISM models are too time-
consuming for such inference procedures, as they call for numerous model evaluations. As a result, they are often replaced by an
interpolation of a grid of precomputed models.
Aims. We propose a new general method to derive faster, lighter, and more accurate approximations of the model from a grid of
precomputed models for use in inference procedures.
Methods. These emulators are defined with artificial neural networks (ANNs) with adapted architectures and are fitted using regression
strategies instead of interpolation methods. The specificities inherent in ISM models need to be addressed to design and train adequate
ANNs. Indeed, such models often predict numerous observables (e.g., line intensities) from just a few input physical parameters and can
yield outliers due to numerical instabilities or physical bistabilities and multistabilities. We propose applying five strategies to address
these characteristics: (1) an outlier removal procedure; (2) a clustering method that yields homogeneous subsets of lines that are simpler
to predict with different ANNs; (3) a dimension reduction technique that enables us to adequately size the network architecture; (4) the
physical inputs are augmented with a polynomial transform to ease the learning of nonlinearities; and (5) a dense architecture to ease
the learning of simpler relations between line intensities and physical parameters.
Results. We compare the proposed ANNs with four standard classes of interpolation methods, nearest-neighbor, linear, spline, and
radial basis function (RBF), to emulate a representative ISM numerical model known as the Meudon PDR code. Combinations of the
proposed strategies produce networks that outperform all interpolation methods in terms of accuracy by a factor of 2 in terms of the
average error (reaching 4.5% on the Meudon PDR code) and a factor of 3 for the worst-case errors (33%). These networks are also
1000 times faster than accurate interpolation methods and require ten to forty times less memory.
Conclusions. This work will enable efficient inferences on wide-field multiline observations of the ISM.
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1. Introduction

Many aspects of star and planet formation are still only par-
tially understood. Studies around the efficiency of star formation
require a better understanding of the effects of feedback mech-
anisms and of gas dynamics, both in the Milky Way and other
galaxies. In addition, understanding the evolution of interstellar

⋆ Equal contribution.

matter from diffuse clouds to planet-forming disks requires
investigations of the interstellar chemistry, for instance, exam-
ining the development of the chemical complexity or the frac-
tionation of isotopologues. New and large hyperspectral surveys
in radioastronomy stand as a game-changer for the study of
these processes, as they enable observing full molecular clouds
(∼10 pc size) at a dense-core scale (<0.1 pc) spatial resolu-
tion. For instance, the “Orion B” IRAM-30 m Large Program
(Pety et al. 2017) covers about 250 pc2 of the Orion B giant
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molecular cloud. It has produced a hyperspectral image of one
million pixels and 200 000 spectral channels, allowing for the
emission of dozens of molecules to be mapped over the whole
cloud. More generally, instruments with multispectral or hyper-
spectral capabilities such as the IRAM-30 m, ALMA, NOEMA,
and the James Webb Spatial Telescope (JWST) are now poised to
provide observation maps with hundreds or thousands of pixels
in multiple emission lines.

Astrophysical codes for interstellar medium (ISM) environ-
ments are able to model observed regions and link numer-
ous observables (e.g., line intensities) to a few local phys-
ical conditions (e.g., the gas density or thermal pressure).
For instance, radiative transfer and excitation codes can be
used to relate gas density, temperature, and column densities
of detected species to their observable line intensities. Such
codes include RADEX (van der Tak et al. 2007), RADMC-
3D (Dullemond et al. 2012), LIME (Brinch & Hogerheijde 2010),
MCFOST (Pinte et al. 2022), and MOLPOP-CEP (Asensio
Ramos & Elitzur 2018). Some other codes adopt a more holis-
tic approach and take multiple physical phenomena into account
as well as their coupling, for instance, large chemical networks,
thermal balance, and radiative transfer. Furthermore, HII region
models such as Cloudy (Ferland et al. 2017) reconstruct the
chemical structure of ionized regions. They evaluate line intensi-
ties from input parameters including illuminating star properties,
the medium density, metallicity, and elementary abundances.
Shock models such as the Paris-Durham code (Godard et al.
2019) and the MAPPINGS code (Sutherland et al. 2018) com-
pute the chemical structure of interstellar shocks and observables
such as line intensities. Here, the main input parameters are the
shock velocity, pre-shock densities, and the intensity of the mag-
netic field. Finally, photodissociation region (PDR) models such
as the Meudon PDR code (Le Petit et al. 2006) describe the ultra-
violet (UV) irradiated medium at the edge of molecular clouds
in star-forming regions or diffuse interstellar clouds. They com-
pute the thermal and chemical structure of these objects as well
as observables such as the atomic and molecular line intensities.
The input parameters mainly include the intensity of the incident
stellar UV radiation field, the gas density or thermal pressure,
the visual extinction, the metallicity and the cosmic ray ioniza-
tion rate. In the following, we use the term “physical parameters”
to refer to a subset of interest of the input parameters that a code
uses to compute observables.

For each of these models, small changes in the physical
parameters can lead to very different predicted observables. The
adjustment of the physical parameters to allow the predicted
observables to match the actual observations can therefore be
used to estimate these physical parameters. Codes that model
the observed environment more realistically lead to more mean-
ingful estimations. However, the complexity of the physics
considered in a code directly impacts its evaluation time and,
hence, its applicability.

On the one hand, a simple 0D code such as RADEX can
run in just a few seconds. Such fast codes can be used directly
for inference in minimization-based or Bayesian Markov chain
Monte Carlo (MCMC) sampling approaches (Robert & Casella
2004, Chap. 7), which require numerous iterative evaluations.
For instance, RADEX and UCLCHEM (Holdship et al. 2017)
have already been used as is in inference with Bayesian methods
in low-dimensional cases (Makrymallis & Viti 2014; Holdship
et al. 2018; Keil et al. 2022; Behrens et al. 2022; Gratier et al.
2016; Maffucci et al. 2018).

On the other hand, a more comprehensive model such as the
Meudon PDR code, which handles multiple physical processes

on a 1D spatial grid, typically requires several hours of compu-
tations. These durations are prohibitively long for inferring the
physical parameters on large observation maps. Such cases can
be addressed by deriving a faster emulator either of the numeri-
cal model or of the full likelihood function, which includes both
the numerical model and a noise model for observations. For
instance, the Bayesian algorithm BAMBI (Graff et al. 2012),
used for instance in Jóhannesson et al. (2016), relies on the
SKYNET neural network (Graff et al. 2014) to emulate the
full likelihood function. Emulating the full likelihood requires
the assumption of a noise model and it is therefore either
observation-specific or generic. For instance, SKYNET assumes
a Gaussian likelihood with a fixed variance for continuous vari-
able inference. In this work, we focus on full numerical code
emulation to be able to apply the obtained emulator to any obser-
vation from any telescope, with any noise model and any set
of lines.

In practice, the emulation of a numerical model is based on
a grid of precomputed models that spans the relevant parameter
space, generated prior to any comparison with observations. A
search for the point in the grid that best reproduces the obser-
vations is sometimes performed (Sheffer et al. 2011; Sheffer
& Wolfire 2013; Joblin et al. 2018). A better and more com-
mon way of exploiting the grid is to approximate the numerical
model using interpolation methods, which permits the observ-
ables for new points to be predicted with a lower evaluation
time (Wu et al. 2018; Ramambason et al. 2022). In the following,
a numerical code emulator defined from a grid of precomputed
models using, for example, an interpolation method, is called a
“surrogate model”. A grid of precomputed models is called a
“dataset”.

Interpolation methods have become the main approach to
build surrogates of comprehensive ISM models over the last
years thanks to their conceptual and implementation simplic-
ity (e.g., Wu et al. 2018; Ramambason et al. 2022). Nearest-
neighbor interpolation, linear interpolation, spline interpolation,
and radial basis function (RBF) interpolation are the four most
commonly used families of methods. By definition, a surro-
gate model defined with an interpolation method passes exactly
through the points of the dataset. This constraint does not guar-
antee a good level of accuracy with respect to new points.
Besides, a surrogate model defined with an interpolation method
requires the whole dataset to be stored, which can be very heavy
if it contains many precomputed models or many quantities asso-
ciated to each model. Finally, although they are generally faster
than the original numerical codes, interpolation methods han-
dle outputs (i.e., observables) independently. Thus, they are quite
slow when the number of outputs is large.

In this work, we aim to derive accurate, fast, and light sur-
rogate models. To do so, we relaxed the constraint of having the
model pass through the points of the dataset. In this case, deriv-
ing a surrogate model thus becomes a regression problem, which
benefits from many recent advances in numerical optimization
developed for machine learning. Such approaches have already
been applied in ISM studies. For instance, in Smirnov-Pinchukov
et al. (2022), a k-nearest-neighbor regression algorithm was used
to emulate a protoplanetary disks model, while in Bron et al.
(2021), a random forest was trained to emulate a chemistry
model. However, most often, the versatile class of artificial neu-
ral networks (ANNs) is preferred to address the complexity of
comprehensive ISM models. For instance, ANN emulators of
astrochemical models were derived in (de Mijolla et al. 2019;
Holdship et al. 2021; Grassi et al. 2022). In addition, in Grassi
et al. (2011), the authors derived a new simulation code and

A198, page 2 of 14



Palud, P., et al.: A&A, 678, A198 (2023)

an associated ANN emulator. Here, we emulate a state-of-the-
art ISM code, namely, the Meudon PDR code (Le Petit et al.
2006). Such a code sometimes produces outliers due to potential
numerical instabilities or physical bistabilities or multistabilities.
It also predicts several thousands of observables from a handful
of parameters, which is unusual in the machine learning com-
munity – except for networks that generate structured data such
as images, text, or times series. In observations, only a fraction
of these observables are measured. However, different observa-
tions can detect very different subsets of observables. To avoid
having to derive one surrogate model per subset of observables,
we chose to emulate the full code at once.

We present five main strategies to derive high performance
surrogate models in these conditions. First, a robust regression
framework (Rousseeuw & Leroy 1987) was used to identify and
remove outliers. Secondly, we applied a clustering method to
derive homogeneous subsets of lines that are simpler to emu-
late, so that we could define and train one network per cluster.
We chose an adequate layer size in the network architecture
thanks to a dimension reduction technique. A polynomial trans-
form of the input is applied to ease the learning of nonlinearities.
Finally, we limited any redundant computations with the recent
dense architecture (Huang et al. 2017). All obtained ANNs were
then compared with interpolation methods with respect to speed,
memory requirements, and accuracy. The best obtained surro-
gate model will be exploited to perform inference of physical
parameters from observations in Palud et al. (in prep.). We note
that ANNs come with the ability to automatically and efficiently
compute derivatives such as the gradient and the Hessian matrix,
which enables using faster and more accurate inference meth-
ods. All proposed ANNs were implemented using the PyTorch
Python library1. The most accurate ANN obtained in this work
has been made publicly available2.

The paper is structured as follows. Section 2 describes the
emulation methods to be compared. Section 3 describes the
Meudon PDR code and the dataset of precomputed models. It
also introduces the framework used to compare surrogate mod-
els. In Sect. 4, we describe our design of ANNs that address
the ISM numerical codes specificities. In Sect. 5, we compare
these ANNs with classic interpolation methods with respect to
speed, memory requirements, and accuracy. Section 6 provides
our concluding remarks.

2. Interpolation and regression methods

Some notations used throughout this paper are introduced. Four
families of interpolation methods are then presented and feed-
forward ANNs succinctly described. The regression paradigm
is finally described with some ANNs specificities. For a more
detailed introduction on ANNs, we refer to Shalev-Shwartz &
Ben-David (2014, chap. 20)3.

2.1. Notation

Throughout this paper, scalars are denoted with regular letters,
such as indices j or vector dimensions D and L. Vectors are
denchapteroted using bold lowercase letters, such as vectors of

1 The code used to build the proposed ANNs can be found at https:
//github.com/einigl/ism-model-nn-approximation
2 https://data.obspm.fr/ism/files/ArticleData/2023_
Palud_Einig/2023_Palud_Einig_trained_ANN.zip
3 Accessible at https://www.cs.huji.ac.il/~shais/
UnderstandingMachineLearning/index.html

D physical parameters x ∈ RD, or vectors of L line intensi-
ties y ∈ RL. Vectors are considered as collections of scalars:
y = (yℓ)L

ℓ=1 with, for example, yℓ as the intensity of a line ℓ.
Matrices are written with bold uppercase letters. The notation for
functions is set accordingly, such as f(x) = ( fℓ(x))L

ℓ=1, with fℓ(x)
as the function that links an input x to the intensity of a line ℓ.

2.2. Interpolation methods in ISM studies

Interpolation methods yield functions that pass exactly through
the points of a dataset of precomputed models. In this paper,
four common families of interpolation methods are studied:
nearest-neighbor interpolation, linear interpolation, spline inter-
polation (Bojanov et al. 1993), and RBF interpolation (Fasshauer
2007, Chap. 6). The nearest-neighbor interpolation assigns the
value of the closest point in the dataset to a new point. It is fast
but generally performs poorly in terms of accuracy. It is some-
what equivalent to a search for the closest point in a grid, which
is common in ISM studies (e.g., Sheffer et al. 2011; Sheffer &
Wolfire 2013; Joblin et al. 2018). The piece-wise linear interpo-
lation generally performs better, while remaining quite fast. It
first triangulates the dataset, so that a new point is associated
to a cell of the triangulation. It then returns a weighted aver-
age of the cell point values. It was used in some ISM studies,
such as in Ramambason et al. (2022). Spline interpolation meth-
ods are based on piece-wise polynomials, yielding an even more
accurate and still fast surrogate model. Finally, the RBF interpo-
lation, used, for example, in Wu et al. (2018) to study a PDR,
exploits the full dataset for each evaluation. For a new point, it
returns a weighted sum of the values of all the dataset points,
where the weights depend on the distance to this new point. Sur-
rogate models defined with RBF interpolation are generally very
accurate but slower than other interpolation methods.

In ISM studies, datasets of precomputed models are often
structured as uniform grids (i.e., as lattices, Joblin et al. 2018;
Wu et al. 2018). This structure is not necessary for RBF interpo-
lation methods or in regression approaches, and other structures
that can be obtained with, for example, Latin hypercube sam-
pling (McKay et al. 1979), Stratified Monte Carlo (Haber 1966),
or the low-discrepancy sequences used in Quasi-Monte Carlo
methods (Asmussen & Glynn 2007, Chap. 9), might yield more
accurate surrogate models. However, a uniform grid structure has
many advantages. First, it is often more convenient to manually
inspect a dataset with such a structure. Second, it allows for the
use of certain efficient interpolation methods such as splines, for
which a uniform grid structure is mandatory. Also, the regular-
ity of the grid can be exploited to accelerate nearest-neighbor
and linear interpolations. In this work, we aim to perform a fair
comparison between interpolation and ANN regression methods
and, thus, we restrict the structure of the dataset used for fitting
to uniform grids.

Figure 1 shows a comparison of the aforementioned interpo-
lation methods on the log Rosenbrock function:

log R : x ∈ R2 7→ log
[
1 + (1 − x1)2 + 100

(
x2 − x2

1

)2]
, (1)

which is positive and admits a minimum at (1, 1) such that
log R(1, 1) = 0. The interpolation methods are fitted on a 7 × 7
coarse regular grid on the square [−1, 1] × [−0.5, 1.5]. They are
then evaluated on a 101 × 101 much finer grid on the same
square. The accuracy of each method is evaluated using the abso-
lute error (AE) that quantifies how distant the prediction fℓ(x) is
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Fig. 1. Comparison of the most popular interpolation methods on the
log Rosenbrock function with a dataset structured as a coarse regular
grid. (a) Log Rosenbrock function log R (Eq. (1)), i.e., the true function
that interpolation methods are to emulate. (b) Coarse uniform grid and
corresponding values of the true function. All four interpolation meth-
ods are fitted using these values only. The grid is also shown on the
remaining figures. (c), (e), (g), and (i) Surrogate model obtained with
each interpolation algorithm. (d), (f), (h), and (j) Absolute error (Eq. (2))
between the corresponding surrogate model and the true function.

to the corresponding true value yℓ

AE (f ; (x, yℓ)) = | fℓ(x) − yℓ |. (2)

The absolute error is chosen in this example because it is more
intuitive to interpret than other error functions such as the
squared error (see Sect. 2.3.2) or the Cauchy error (see Sect. 4.1).
In general, the results of such a comparison depend on the choice
of the error function.

The fitted models and the associated errors shown in Fig. 1.
The set of absolute errors is summarized with its mean and maxi-
mum values. The figure reveals general properties of considered
interpolation methods. The nearest-neighbor interpolation pro-
vides a piece-wise constant surrogate model with high errors.
The piece-wise linear and cubic spline yield better accuracies.
RBF interpolation performs best on this synthetic case with
respect to both mean and max absolute error, but can be outper-
formed on other examples, mostly by spline interpolation. As the

grid is coarse, all four methods struggle to reproduce the banana
shape of the Rosenbrock function. In ISM models, such strong
and fast variations can correspond to a change of physical regime
and are thus of critical importance.

2.3. Performing regression with neural networks

By relaxing the constraint of passing exactly through the points
of the dataset of precomputed models, the derivation of a surro-
gate model becomes a regression problem. In machine learning,
a regression problem consists in estimating the function f̂ :
RD → RL that best maps input vectors x to output vectors y.
This function f̂ is learned from a dataset of precomputed models
D = {(xn, yn) ∈ RD × RL, n = 1, . . . ,N}. In this work, the input
vector x corresponds to a vector of physical parameters (e.g.,
temperature, thermal pressure, volume density) and the output
vector y to observables computed by a numerical code (e.g.,
intensities of specific lines). To perform this estimation, func-
tions f are parametrized with vectors θ. This parametrization
restricts the search to a class of functions. In the following, func-
tions are sometimes denoted fθ to emphasize this association. For
instance, in linear regression, an affine function x 7→Wx + b is
uniquely described by θ = (W,b). Given the complexity of ISM
numerical models, this class is too restrictive to produce accurate
surrogate models, and richer classes are required.

Multiple classes of functions and the associated regression
algorithms enable the emulation of complex nonlinear func-
tions from data of precomputed models, such as polynomial
functions, k-nearest-neighbor regression (used e.g., in Smirnov-
Pinchukov et al. 2022), Gaussian process regression (Rasmussen
& Williams 2006), decision trees, and the associated ensemble
methods such as random forests (used e.g., in Bron et al. 2021) or
XGBoost (Chen & Guestrin 2016), ANNs, and others. All meth-
ods based on decision trees or nearest neighbors yield piece-wise
functions, which prevents a desirable regularity property to be
enforced in the surrogate model (e.g., continuity or differen-
tiability). Besides, all the listed algorithms, except ANNs and
nearest-neighbor interpolation, can only handle multiple outputs
independently, which slows down predictions when the number
of outputs is high. An ANN predicts all outputs at once using
a sequence of intermediate computations, which is considerably
faster. In addition, ANNs are known to yield very accurate sur-
rogate models both in theory and in practice. Finally, an ANN
comes with the ability to automatically and efficiently compute
the derivative of its outputs with respect to its inputs, using auto-
matic differentiation (Paszke et al. 2017). Overall, to address the
complexity of ISM numerical models, exploit prior knowledge
on the regularity of the function to approximate, and efficiently
predict all outputs simultaneously, we adopted the rich and ver-
satile class of ANNs. Below, we introduce this class of functions
and then describe the approach used to fit an ANN to a dataset.

2.3.1. Generalities on neural networks

The class of mathematical models known as ANNs are inspired
by biological neural systems. The first ANN was proposed
in McCulloch & Pitts (1943) to perform logical operations. Since
then, multiple hardware (e.g., GPU computing) and algorith-
mic developments (e.g., backpropagation as in Rumelhart et al.
1986) endowed them with the capacity to learn more complex
patterns and relationships among the data. They enjoy fun-
damental theoretical results. For different sets of assumptions
on the architecture, universal approximation theorems establish
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Fig. 2. Structure of a simple feedforward ANN with H = 2 hidden layers
and a linear layer graph, shown on the left.

that ANNs can approximate almost any continuous function
with an arbitrary high level of precision (Hornik et al. 1989;
Leshno et al. 1993). This class gained widespread popular-
ity after the 2012 ImageNet Challenge, an image classification
competition in which an ANN significantly outperformed rival
methods (Krizhevsky et al. 2017). Nowadays, they are consid-
ered a state-of-the-art method for a variety of tasks in vector,
image, sound, or text processing across multiple scientific or
industrial fields, including astrophysics. For instance, ANNs
have been successfully applied in exoplanet detection (Shallue &
Vanderburg 2018), Galaxy morphology classification (Huertas-
Company et al. 2015), ISM magnetohydrodynamic turbulence
classification (Peek & Burkhart 2019), and to approximate ISM
numerical models (Grassi et al. 2011, 2022; de Mijolla et al.
2019; Holdship et al. 2021). For a more general review of
applications of Machine Learning in astronomy, see Fluke &
Jacobs (2020).

Throughout this work, an ANN is considered as a function
f : x ∈ RD 7→ y ∈ RL, where D and L are input and output dimen-
sions, respectively. For a numerical model, D is the number
of considered physical parameters, such as thermal pressure or
visual extinction, and L is the number of predicted observables,
for instance, line intensities. An ANN is made of H + 1 interme-
diate functions f( j), called “layers”. Intermediate layers 1 ≤ j ≤ h
are called the “hidden layers” and the final layer is the “output
layer”. The jth layer takes an intermediate vector x( j) ∈ Ri j as
input and computes an intermediate output y( j) ∈ Ro j . The inter-
mediate dimensions i j and o j can be chosen arbitrarily, except
for i1 = D and oH+1 = L. In a feedforward ANN, connections
between layers form an acyclic graph. The output of a layer j
feeds one or more of the next layers j′ > j, hence the notion of
direction in a feedforward ANN.

Figure 2 shows the structure of a simple ANN that contains
H = 2 hidden layers and one output layer. This ANN takes in
input D = 2 physical parameters and predicts L = 10 observ-
ables. It is indeed a feedforward ANN as its layer graph is linear,
as shown on the left. The output of one of its layers j is thus
the input of the next layer j + 1, that is to say x( j+1) = y( j) and
i j+1 = o j. Alternative feedforward architectures with nonlinear
layer graph exist, such as residual networks (He et al. 2016) and
dense networks (Huang et al. 2017). These architectures include
skip connections between layers that bypass the activation func-
tion to preserve original input information and intermediate
computations. However, linear layer graphs are widespread and

remain the simplest multilayer architectures for vector classifica-
tion or regression tasks. In the rest of this paper, all the ANNs
exhibit such architectures, unless otherwise noted.

A hidden layer combines an affine transformation and a
nonlinear scalar function g( j) applied element-wise as follows:

f( j) : x( j) 7→ y( j) = g( j)(W( j)x( j) + b( j)), (3)

with W( j) ∈ Ro j×i j and b( j) ∈ Ro j the weight matrix and bias
vector of the affine transformation, respectively. The nonlinear
scalar function g( j) is called an activation function. Common
activation functions include the sigmoid, hyperbolic tangent, rec-
tified linear units (ReLU), and multiple variants (Nwankpa et al.
2021). Choosing different activation functions g( j) for the H hid-
den layers might lead to better performance but would require
training many ANNs. A unique g is therefore generally set for all
hidden layers.

The output layer transforms the outputs of one or more
hidden layers into the desired prediction using an affine transfor-
mation and an output activation function. This output activation
function depends on the considered problem. The sigmoid and
the softmax functions are usually employed to return proba-
bilities in binary and multiclass classification, respectively. In
regression tasks, the identity function is generally used.

Overall, in a regression context, the architecure of an ANN
is uniquely defined by its layer graph, an activation function
g, a number of hidden layers H ≥ 0, and a sequence of sizes
representing its layers (i j, o j)H+1

j=1 . The corresponding class of
ANNs is parametrized with a vector θ = (W( j),b( j))H+1

j=1 that can
be very high-dimensional, depending on the number of hidden
layers H and their sizes (i j, o j)H+1

j=1 . We note that if g is differ-
entiable, so is the full ANN f. The gradient ∇xf can then be
efficiently evaluated with automatic differentiation techniques
(Paszke et al. 2017).

2.3.2. Fitting a neural network to a dataset

In regression, once the class of function is set (here with an ANN
architecture), the parameter θ is adjusted so that fθ fits the dataset
D of precomputed models. A loss function L(f ;D) quantifies
the distance between predictions fℓ(xn) and the corresponding
true values ynℓ. It is based on an error function, such as the
absolute error (AE, Eq. (2)) or the squared error (SE), as follows:

SE (f ; (x, yℓ)) = ( fℓ(x) − yℓ)2 . (4)

The loss function summarizes the set of N × L errors obtained
on the dataset D. The mean is often used for computational
efficiency of evaluation and differentiation, yielding, for exam-
ple, the mean squared error (MSE) or the mean absolute
error (MAE). Obtaining the best function f̂ boils down to
minimizing the loss function with respect to the parameter θ

f̂ ∈ arg min
θ
L (fθ ;D). (5)

Problems of the form of Eq. (5) rarely admit a closed-form
solution. Furthermore, with ANNs, the loss function L(fθ ;D)
is generally not convex and contains multiple saddle points and
local minima (Shalev-Shwartz & Ben-David 2014, Chap. 20).
Such problems can be solved approximately using a meta-
heuristic (e.g., genetic algorithms, particle swarm, simulated
annealing) when θ is low-dimensional. As ANNs typically con-
tain at least hundreds of parameters to tune, these methods
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are prohibitively slow. In contrast, gradient descent methods
are computationally very efficient. They rely on automatic
differentiation to efficiently evaluate the gradient of the loss
function ∇θL and on backpropagation (Rumelhart et al. 1986)
to efficiently update θ. The stochastic gradient descent algo-
rithm (see, e.g., Shalev-Shwartz & Ben-David 2014, Chap. 14)
accelerates the search by using “batches” instead of the full
dataset in gradient evaluations. Preconditioned variants such
as RMSProp (Tieleman & Hinton 2012) or Adam (Kingma &
Ba 2017) exploit the local geometry of the loss function to
escape from saddle points and further accelerate convergence
to a good local minimum. This optimization procedure is often
called “training phase” or “learning phase” with ANNs, because
the network progressively learns from data as the loss function
decreases.

3. Approximating the Meudon PDR code

The Meudon PDR code, selected as a representative ISM model,
is presented below. The datasets used in the comparison between
interpolation algorithms and ANNs as well as their preprocess-
ing are described. Finally, the considered comparison metrics are
defined.

3.1. The Meudon PDR code: a representative ISM model

The Meudon PDR code4 (Le Petit et al. 2006) is a 1D stationary
code that simulates interstellar gas illuminated with a stellar radi-
ation field. It can simulate the physics and chemistry of a wide
variety of environments, such as diffuse clouds, PDRs, nearby
galaxies, damped Lyman alpha systems, circumstellar disks, and
so on. It permits the investigation of effects such as the radiative
feedback of a newborn star on its parent molecular cloud.

The user specifies physical conditions such as the thermal
pressure in the cloud Pth, the intensity of the incoming UV radi-
ation field GUV (scaling factor applied to the Mathis et al. 1983
standard field), and the depth of the slab of gas expressed in
visual extinctions, Atot

V . The code then iteratively solves large
systems of multiphysics equations. First, the code solves the
radiative transfer equation at each position on an adaptive spatial
grid, considering absorption in the continuum by dust and in the
lines of key atoms and molecules such as H and H2 (Goicoechea
& Le Bourlot 2007). Then, from the specific intensity of the
radiation field, it computes the gas and grain temperatures by
solving the thermal balance. The heating rate takes into account
the photoelectric effect on grains as well as cosmic ray heating.
The cooling rate is estimated from the nonlocal thermodynamic
equilibrium (non LTE) excitation in the energy levels of the
main species by considering radiative and collisional processes
as well as chemical formation and destruction. Additional pro-
cesses can either heat or cool the gas, such as H2 heating or
gas-grain collisions. Finally, the chemistry is solved, provid-
ing the densities of about 200 species at each position. About
3000 reactions are considered, both in the gas phase and on
the grains. The chemical reaction network was built combin-
ing different sources including data from the KIDA database5

(Wakelam et al. 2012) and the UMIST database6 (McElroy et al.
2013) as well as data from articles. For key photoreactions, we
used cross sections from Heays et al. (2017) and also taken

4 https://ism.obspm.fr
5 https://kida.astrochem-tools.org/
6 http://udfa.ajmarkwick.net/

from Ewine van Dishoeck’s photodissociation and photoioniza-
tion database7. The successive resolution of these three coupled
aspects (radiative transfer, thermal balance, chemistry) is iter-
ated until a global stationary state is reached. A full run is
computationally intensive and typically lasts a few hours.

The code provides density profiles of the chemical species
and the temperature profiles of both the grains and the gas. It also
outputs the line intensities emerging from the cloud that can be
compared to observations. As of version 7 (yet to be released),
a total of 5 409 line intensities are predicted from species such
as H2, HD, C+, C, CO, 13CO, C18O, 13C18O, SO, HCO+, OH+,
HCN, HNC, CH+, CN or CS.

We choose to work on the Meudon PDR code because
we consider it a representative element of the most complex
ISM models. Multiple complex ISM codes compute numerous
observables from a few physical parameters (Ferland et al. 2017;
Sutherland et al. 2018). The complex physical and chemical
processes taken into account in such codes make the relations
between the line intensities and the input parameters highly non-
linear and thus challenging to emulate. Often, ISM numerical
models focusing on a subset of physical processes included in
the Meudon PDR code, such as radiative transfer and excita-
tion codes, yield simpler relations between observables and input
parameters and might thus be simpler to emulate.

3.2. Dataset generation

In this work, we restrict ourselves to constant pressure mod-
els as they appear to better reconstruct observations for typical
PDRs (Marconi et al. 1998; Lemaire et al. 1999; Allers et al.
2005; Goicoechea et al. 2016; Joblin et al. 2018; Wu et al. 2018).
We approximated the code with respect to the D = 4 input
parameters that are most relevant for inference (Wu et al. 2018;
Palud et al., in prep.). The three main ones are the thermal
pressure, Pth, the scaling factor, GUV, of the interstellar stan-
dard radiation field and the size of the slab of gas measured in
total visual extinction, Atot

V . As in Wu et al. (2018), we consider
a wide variety of environments with Pth ∈ [105, 109] K cm−3,
GUV ∈ [1, 105] and Atot

V ∈ [1, 40] mag. The Meudon PDR code
computes line intensities for multiple angles α between the cloud
surface and the line of sight. In the Meudon PDR code, this
angle α can cover a [0, 60] deg interval. A face-on geometry
corresponds to α = 0 deg and α = 60 deg is the closest to
an edge-on geometry. To enable analyses of PDRs with known
edge-on geometry such as the Orion Bar (Joblin et al. 2018), this
angle is added to the considered physical parameters. Table 1
details the values of the main input parameters and of other
parameters, fixed at standard values from the literature.

We generated two datasets of Meudon PDR code eval-
uations to assess the approximation quality of the Meudon
PDR code: a training set and a test set8. The training set
is used to fit all surrogate models. It contains Ntrain =
19 208 points, structured as a 14 × 14 × 14 × 7 uniform grid
on (log10 Pth, log10 GUV, log10 Atot

V , α). This uniform grid struc-
ture is chosen to simplify the outlier identification procedure (see
Sect. 4.1) and to include spline interpolation in the comparison.
We note that all the other considered methods, and ANNs in par-
ticular, do not require such a structure for the training dataset
and using other dataset structures generated, for instance, with

7 https://home.strw.leidenuniv.nl/~ewine/photo/index.
html
8 Both datasets can be found in https://ism.obspm.fr/files/
ArticleData/2023_Palud_Einig/2023_Palud_Einig_data.zip
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Table 1. Input parameters in the Meudon PDR code.

Free parameters

Parameter Value Unit Grid

Gaz thermal pressure, Pth [105, 109] K cm−3 on log. scale
UV intensity, GUV [1, 105] (1) on log. scale
Visual extinction, Atot

V [1, 40] mag on log. scale
Inclination angle, α [0, 60] deg on lin. scale

Fixed parameters

Parameter Value Unit Note

Cosmic ray ionization rate 10−16 s−1 per H2 (2), (3)
Dust extinction curve Galaxy . . . (4)
RV 3.1 . . . (4)
NH/E(B − V) 5.8 × 1021 cm−2 (5)
Mass grain/mass gas 0.01 . . . . . .
Grain size distribution ∝ a−3.5 . . . (6)
Min grain radius 10−7 cm . . .
Max grain radius 3 × 10−5 cm . . .

References. (1) GUV is the scaling parameter relative to the inter-
stellar standard radiation field from Mathis et al. (1983); (2) Le Petit
et al. (2004); (3) Indriolo et al. (2007); (4) Fitzpatrick & Massa (2007);
(5) Bohlin et al. (1978); (6) The distribution of grain radius a is a power
law (Mathis et al. 1977).

Latin hypercube sampling (McKay et al. 1979), stratified Monte
Carlo (Haber 1966), or low discrepancy sequences used in Quasi-
Monte Carlo methods (Asmussen & Glynn 2007, Chap. 9) might
improve accuracy. The Meudon PDR code predicts line intensi-
ties that are strictly positive and span multiple decades. To avoid
giving more weight in the regression to lines with high intensi-
ties and disregarding the faintest ones, in the following, y ∈ RL

denotes the log-intensities. Similarly, Pth, GUV and Atot
V are

considered in log scale. Even in log scale, the parameters of
interest cover intervals with quite different sizes. For instance,
log10 GUV ∈ [0, 5], while log10 Atot

V ∈ [0, 1.602]. In other words,
Atot

V covers an interval more than three times smaller than GUV.
Both interpolation methods and ANN based regression typically
suffer from this difference. The D parameters are thus stan-
dardized to have a zero mean and a unit standard deviation.
This simple transformation generally improves accuracy for both
interpolation methods and ANNs (Shalev-Shwartz & Ben-David
2014, Chap. 25).

The test dataset was used to assess the accuracy of surro-
gate models on data not used in the training step. It contains
Ntest = 3 192 points. These points were generated with 456
independent random draws from a uniform distribution on the
(log10 Pth, log10 GUV, log10 Atot

V ) cube and with a uniform grid
of 7 values on α. To ensure consistent preprocessing between the
two sets, both the input values x and output values y of the test
set undergo the same transformations as for the training set. In
particular, the standardization applied to its input values x relies
on the means and standard deviations obtained on the training
set, and its output values y are considered in decimal log scale.

Numerical codes may yield numerical instabilities. In its
domain of validity, the Meudon PDR code produces few of them.
However, the considered complex nonlinear physics can also
lead to physical bistabilities or multistabilities. For example, the
H2 heating process can produce bistable solutions (Burton et al.
1990; Röllig & Ossenkopf-Okada 2022). In such a case, profiles

computed by the code, for example, of a species density or of the
gas temperature, can oscillate between the possible solutions at
each position in the modelled cloud. The line integrated inten-
sities computed from these profiles can contain errors of up to
a factor of 100 and thus are highly unreliable. The code being
deterministic, an input vector x consistently leads to a unique
output vector y. However, in the regions of the parameter space
with such multistabilities, variations of intensities can be very
chaotic and challenging for a surrogate model to reproduce. Such
chaotic values thus lead to the deterioration of the accuracy of
any surrogate model, interpolation, or ANN, thus they should
not be used. Unfortunately, as of today there exists no simple
or complete procedure to check the physical validity of a pre-
computed model of the Meudon PDR code. With a first scan of
the datasets, we remove a few lines that are particularly affected.
The total number of considered lines is therefore reduced from
5409 to L = 5375. This simple filter leaves other outliers in the
training and test datasets. Although we observe that these out-
liers are rare (i.e., less than 1% expected), we do not have any
specific a priori knowledge on their location nor on their exact
proportion. To manually check the validity of each value is unre-
alistic given the sizes of the two datasets. The most informative
hypothesis we can make on outliers is that if one line in a pre-
computed model is identified as an outlier, then it is likely for
this precomputed model to contain other outliers, especially in
the lines of the same species or of isotopologues. This hypoth-
esis is exploited in the more thorough outlier detection method
using an ANN, which is presented and described in Sect. 4.1.

Overall, the Meudon PDR code version to emulate is a func-
tion f : x ∈ RD 7→ y ∈ RL, with D = 4 and L = 5 375. We assume
the predictions of the Meudon PDR code f to vary continuously
with respect to the inputs, except in the case of outliers that
should be disregarded. We also assume f to be differentiable.
In Sect. 4, we build our emulators such that they satisfy these
regularity properties.

3.3. Comparison metrics

Interpolation methods and ANNs are compared on evaluation
speed, memory requirements, and approximation accuracy. We
describe here the metrics used for the comparison, regardless of
how the surrogate models are defined or trained.

The evaluation speed is measured on the full set of L lines
for 1000 random points. The measurements are performed on
a personal laptop equipped with a 11th Gen Intel(R) Core(TM)
i7-1185G7, with eight logical cores running at 3.00 GHz. The
ANNs and interpolation methods are run on CPU to obtain a
meaningful comparison. Running ANNs on a GPU could further
reduce their evaluation times. The implementations of interpola-
tion methods are from the SciPy Python package, popular in ISM
studies (Wu et al. 2018). Nearest-neighbor, linear, and RBF inter-
polation implementations allow for the evaluation of a vector
function at once. Conversely, the spline interpolation implemen-
tation requires looping on the L lines, which is a slow process.
To avoid an unfair comparison, the spline interpolation speeds
are not evaluated.

The memory requirements are quantified with the number
of parameters necessary to fully describe the surrogate model.
Interpolation methods, for instance, require storing the full train-
ing set. It corresponds to Ntrain(D + L) ≃ 1.03 × 108 parameters.
In Python, these parameters are stored using 64-bit floating-point
numbers. Storing the full grid requires about 1.65 GB.

The accuracies of surrogate models are evaluated on the test
set, which contains points that they did not see during training.
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To quantify accuracies, we define a new metric called the error
factor (EF). As line intensities are considered in log-scale, the
absolute error (Eq. (2)) corresponds to the ratio (in log scale) of
predicted and true line intensities. The error factor is this ratio
transformed back in linear scale. For a surrogate model f on a
given tuple (xn, yn) and line ℓ, it is expressed as:

EF (f ; (xn, ynℓ)) = 10| fℓ(xn)−ynℓ | = max
{

10 fℓ(xn)

10ynℓ
,

10ynℓ

10 fℓ(xn)

}
, (6)

where both ynℓ and fℓ(xn) are line log-intensities. As the absolute
value ensures positivity in log scale, an error factor is always
superior or equal to 1. It can be expressed in percents using a
100 × (EF − 1) transformation. For readability, error factors are
displayed in percents when EF < 2, that is 100%. An error factor
that is not in percents is indicated by the multiplication sign. For
instance, “×3” corresponds to EF = 3.

The error factor is a symmetrized relative error, as the abso-
lute value also ensures symmetry in log scale. For small errors,
namely, EF ≃ 1, it is similar to the standard relative error. How-
ever, for larger errors, the error factor is more relevant in our
case. A standard relative error would return 100% for a factor
of two too high and 50% for a factor of two too low, while in
both cases, EF = 2. In the worst case, a relative error of 100%
corresponds to a factor of two too high or a prediction of exactly
zero, while EF = 2 in the former case and EF = +∞ in the latter.
Minimizing a standard relative error would therefore lead to an
under-estimation tendency, which is not the case for the proposed
error factor.

When applied to the full test set, the error factor yields a dis-
tribution of errors. This distribution is summarized by its mean,
its 99th percentile, and its maximum. The mean provides an esti-
mation of the average error to expect. The 99th percentile and
maximum provide upper bounds on the error. The maximum is
very sensitive to outliers while the 99th percentile is more robust.
To illustrate this sensitivity of upper bounds, consider a fictional
dataset of error factors including 0.5% of outliers at much higher
values. The maximum is affected by the outliers, which induces
a pessimistic bias for the corresponding error upper bound esti-
mation. The 99th percentile is not significantly affected by the
outliers, and provides a more relevant estimator of the actual
upper bound of the error factor for this fictional dataset. This
example shows that the choice of percentile is a trade-off based
on the expected proportion of outliers. Lower percentiles (e.g.,
90 or 95) underestimate the upper bound on the error factor and
percentiles higher than 99.5 would, in turn, be sensitive to out-
liers like the max. The training and test sets generated with the
Meudon PDR case are expected to contain less than 1% of out-
liers. The 99th percentile is therefore expected to be an estimator
of the error upper bound that is robust to outliers.

In current IRAM-30 m observations, the relative day-to-day
calibration accuracy ranges from 3 to 10% (see, e.g., Einig et al.
2023). The absolute flux calibration accuracy for ground based
observations is more difficult to estimate but cannot be better
than the relative calibration accuracy. For a surrogate model to be
relevant for observations analysis and physical parameter infer-
ence, we set the constraint that satisfactory surrogate models
must have a mean error factor below 10%.

4. Designing and training adapted ANN

The choice of architecture and training approach of ANNs are
now discussed. In the following, ANNs are trained with the MSE
loss function. In addition, we assume the Meudon PDR code to

be differentiable. To derive an ANN satisfying this constraint, we
set the activation function g to the exponential linear unit (ELU,
Nwankpa et al. 2021). Unless explicitly mentioned, our ANNs
have H = 3 hidden layers of equal size. This choice may not
be optimal. A hyperparameter optimization step could improve
the network performance, but would require a validation dataset
and the training of many networks. As the results of Sect. 5 will
show, this step is not necessary to obtain satisfactory results.

The specificities inherent in ISM models such as the Meudon
PDR code, namely, the presence of outliers and the unusual
dimensions of the problem, very few inputs to predict many
outputs. To address these specificities, the required dedicated
strategies are as summarized here and described in the subsec-
tions that follow: (1) we apply an outlier removal procedure;
(2) we cluster lines to obtain homogeneous groups simpler to
emulate with separate networks; (3) to select an adequate size
for hidden layers, we resort to a dimension reduction technique;
(4) we apply a polynomial transform to augment the input data
and thus ease the learning of nonlinearities; and (5) finally,
we replace the standard ANN architecture by a dense architec-
ture exploits values in intermediate layers to re-use intermediate
computations.

4.1. Removing outliers from the training set

Outliers that come from either numerical instabilities or physical
bistabilities or multistabilities can be found in both the train-
ing and test sets, as described in Sect. 3.2. With a loss function
such as the MSE, outliers in the training set greatly deteriorate
the quality of a fitted neural network. Performing regression in
presence of outliers is thus a crucial topic in machine learning.
Multiple methods exist for nonlinear regression (Rousseeuw &
Leroy 1987). We resort to the method proposed in Motulsky &
Brown (2006). This method fits a statistical model to the training
set with a strategy robust to outliers. Then, the training points
with largest errors are reviewed. Identified outliers are removed,
and a new statistical model is fitted to the cleaned training set. To
avoid any risk of biasing our analysis towards optimistic results,
we do not remove any value from the test set.

For this first fit, we resort to an ANN designed as described
at the introduction of Sect. 4. The size of hidden layers is fixed
with the dimension reduction strategy that will be described in
Sect. 4.2.2. We also include the polynomial transform of the
input, to be described presented in Sect. 4.3. For specific outlier
removal step, this fit is performed using the Cauchy loss function
(CL):

CL (f ; (xn, ynℓ)) = log
[
1 + ( fℓ(xn) − ynℓ)2

]
. (7)

Figure 3 shows how the squared error (Eq. (4)), the absolute error
(Eq. (2)), the error factor (Eq. (6)), and Cauchy function penalize
errors. The Cauchy function gives less weight to outliers than the
other error functions, which makes it more robust to outliers.

The review of training points with high errors is performed
with a manual procedure. An instability in a given model of the
grid does not affect all lines, as all lines are not emitted in the
same spatial regions of the model. Therefore, we only remove
affected lines instead of the full model. To accelerate this pro-
cedure, we exploit similarities between lines are exploited. For
instance, when one water line intensity is identified as an out-
lier, it is highly likely that most of the water line intensities of
the corresponding precomputed model are outliers. We empha-
size that outliers are associated to instabilities or multistabilities.
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maximum provide upper bounds on the error. The maximum is
very sensitive to outliers while the 99th percentile is more robust.
To illustrate this sensitivity of upper bounds, consider a fictional
dataset of error factors including 0.5% of outliers at much higher
values. The maximum is affected by the outliers, which induces
a pessimistic bias for the corresponding error upper bound esti-
mation. The 99th percentile is not significantly affected by the
outliers, and provides a more relevant estimator of the actual up-
per bound of the error factor for this fictional dataset. This ex-
ample shows that the choice of percentile is a trade-off based
on the expected proportion of outliers. Lower percentiles (e.g.,
90 or 95) underestimate the upper bound on the error factor and
percentiles higher than 99.5 would, in turn, be sensitive to out-
liers like the max. The training and test sets generated with the
Meudon PDR case are expected to contain less than 1% of out-
liers. The 99th percentile is therefore expected to be an estimator
of the error upper bound that is robust to outliers.

In current IRAM-30m observations, the relative day-to-day
calibration accuracy ranges from 3% to 10% (see, e.g., Einig
et al. 2023). The absolute flux calibration accuracy for ground
based observations is more difficult to estimate but cannot be bet-
ter than the relative calibration accuracy. For a surrogate model
to be relevant for observations analysis and physical parameter
inference, we set the constraint that satisfactory surrogate mod-
els must have a mean error factor below 10%.

4. Designing and training adapted ANN

The choice of architecture and training approach of ANNs are
now discussed. In the following, ANNs are trained with the MSE
loss function. In addition, we assume the Meudon PDR code to
be differentiable. To derive an ANN satisfying this constraint, we
set the activation function g to the exponential linear unit (ELU,
Nwankpa et al. 2021). Unless explicitly mentioned, our ANNs
have H = 3 hidden layers of equal size. This choice may not
be optimal. A hyperparameter optimization step could improve
the network performance, but would require a validation dataset
and the training of many networks. As the results of Sect. 5 will
show, this step is not necessary to obtain satisfactory results.

The specificities inherent in ISM models such as the Meudon
PDR code, namely, the presence of outliers and the unusual di-
mensions of the problem, very few inputs to predict many out-
puts. To address these specificities, the required dedicated strate-
gies are as summarized here and described in the subsections that
follow: 1) we apply an outlier removal procedure; 2) we clus-
ter lines to obtain homogeneous groups simpler to emulate with
separate networks; 3) to select an adequate size for hidden lay-
ers, we resort to a dimension reduction technique; 4) we apply
a polynomial transform to augment the input data and thus ease
the learning of nonlinearities; and 5) finally, we replace the stan-
dard ANN architecture by a dense architecture exploits values in
intermediate layers to re-use intermediate computations.

4.1. Removing outliers from the training set

Outliers that come from either numerical instabilities or physi-
cal bistabilities or multistabilities can be found in both the train-
ing and test sets, as described in Sect.3.2. With a loss function
such as the MSE, outliers in the training set greatly deteriorate
the quality of a fitted neural network. Performing regression in
presence of outliers is thus a crucial topic in machine learning.
Multiple methods exist for nonlinear regression (Rousseeuw &
Leroy 1987). We resort to the method proposed in Motulsky &

Fig. 3. Graph of different loss functions. As with the line intensities,
errors are in decimal log scale. An error of 30 thus corresponds to a
factor of 1030 between predicted and true intensities. Since some line
intensities range from 10−50 to 10−2, this kind of very high error can
occur, especially early in the training phase.

Brown (2006). This method fits a statistical model to the train-
ing set with a strategy robust to outliers. Then, the training points
with largest errors are reviewed. Identified outliers are removed,
and a new statistical model is fitted to the cleaned training set. To
avoid any risk of biasing our analysis towards optimistic results,
we do not remove any value from the test set.

For this first fit, we resort to an ANN designed as described
at the introduction of Sect. 4. The size of hidden layers is fixed
with the dimension reduction strategy that will be described in
Sect. 4.2.2. We also include the polynomial transform of the in-
put, to be described presented in Sect. 4.3. For specific outlier
removal step, this fit is performed using the Cauchy loss func-
tion (CL):

CL (f ; (xn, ynℓ)) = log
[
1 + ( fℓ(xn) − ynℓ)2

]
. (7)

Figure 3 shows how the squared error (Eq. 4), the absolute error
(Eq. 2), the error factor (Eq. 6), and Cauchy function penalize
errors. The Cauchy function gives less weight to outliers than
the other error functions, which makes it more robust to outliers.

The review of training points with high errors is performed
with a manual procedure. An instability in a given model of the
grid does not affect all lines, as all lines are not emitted in the
same spatial regions of the model. Therefore, we only remove
affected lines instead of the full model. To accelerate this pro-
cedure, we exploit similarities between lines are exploited. For
instance, when one water line intensity is identified as an out-
lier, it is highly likely that most of the water line intensities of
the corresponding precomputed model are outliers. We empha-
size that outliers are associated to instabilities or multistabilities.
Physically consistent intensities that are challenging to repro-
duce (e.g., due to fast variations in a change of regimes) are not
considered as outliers and maintained in the training set. In to-
tal, 71 239 values were identified as outliers, making up 0.069%
of the training set. We note that this outlier identification step is
very informative, as it reveals regions of the parameter space that
lead to multistabilities. However, studying these regions is be-
yond the scope of this paper. A binary mask matrix M = (mnℓ)nℓ
is defined from this review. It permits to disregard only the iden-
tified outliers instead of removing all L lines of precomputed
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Fig. 3. Graph of different loss functions. As with the line intensities,
errors are in decimal log scale. An error of 30 thus corresponds to a
factor of 1030 between predicted and true intensities. Since some line
intensities range from 10−50 to 10−2, this kind of very high error can
occur, especially early in the training phase.

Physically consistent intensities that are challenging to repro-
duce (e.g., due to fast variations in a change of regimes) are
not considered as outliers and maintained in the training set.
In total, 71 239 values were identified as outliers, making up
0.069% of the training set. We note that this outlier identification
step is very informative, as it reveals regions of the parame-
ter space that lead to multistabilities. However, studying these
regions is beyond the scope of this paper. A binary mask matrix
M = (mnℓ)nℓ is defined from this review. It permits to disregard
only the identified outliers instead of removing all L lines of pre-
computed models with at least one outlier. In this binary mask,
mnℓ = 1 indicates that ynℓ is an outlier and should not be taken
into account, and mnℓ = 0 indicates that ynℓ is not an outlier.
Elements of the training set (xn, yn) ∈ RD × RL are augmented
with corresponding binary mask vectors mn ∈ {0, 1}L. On the one
hand, ANNs can easily take this mask into account for training
by computing the loss function and its gradient on non-masked
values only. In the following, a masked version of the MSE rely-
ing on the binary mask M is used when this outlier removal step
is taken into account.

Existing implementations of interpolation methods, on the
other hand, lack flexibility to handle such a mask during the
fit. As some points of the grid are removed for some lines, the
spline interpolation cannot be applied on the masked training
set. Nearest-neighbor, piece-wise linear and RBF interpolation
methods can be applied but would require line by line fits
and predictions, as outliers don’t occur for the same train-
ing points x for all lines. Such a line-by-line manipulation
would be extremely slow with a Python implementation. To
present a somewhat meaningful comparison between ANNs
and interpolation methods on the masked dataset, the masked
values are imputed. This imputation relies on a line by line
fit of an RBF interpolator with linear kernel. Masked values
are replaced by interpolations computed from available data
points. Interpolation methods are then fitted with this imputed
training set.

4.2. Exploiting correlations between line intensities

Line intensities computed by the Meudon PDR code come from
the radiative de-excitation of energy levels. While non-local
effects are accounted for in the radiative transfer, the excitation
of many lines is affected to a large extent by local variables

Fig. 4. Meudon PDR code correlations among the L = 5 375 pre-
dicted lines from 27 chemical species, shown with the L × L matrix of
absolute Pearson correlation coefficients. A value of exactly 1 for two
lines means that there exists an exact affine relationship between their
log-intensities. The black squares on the diagonal group lines from a
common chemical species. For readability reasons, only the names of
species with more than 100 lines predicted by the Meudon PDR code
are displayed.

such as the gas temperature or density. As a result, high cor-
relations between some lines are expected. Figure 4 shows the
L × L matrix of absolute Pearson correlation coefficients, with
lines grouped by molecule. We indeed find some strong cor-
relations. In particular, lines from the same species are often
highly correlated, especially for water isotopologues and molec-
ular hydrogen. However, some species produce lines that are not
correlated. For instance, high energy lines of SO have a very
small correlation with low energy lines, as the corresponding
submatrix has a diagonal shape. Finally, some lines from differ-
ent species are highly correlated, such as OH+, SH+, and H2.
Handling the L lines independently, as in the interpolation meth-
ods, ignores these correlations in the line intensities. We exploit
these correlations with two strategies: a line clustering and a
dimension reduction.

4.2.1. Line clustering to divide and conquer

Some clusters of highly correlated lines appear in Fig. 4. These
clusters are not simply related to the line carrier. We derive
clusters of lines automatically from the correlation matrix using
the spectral clustering algorithm (Shalev-Shwartz & Ben-David
2014, Chap. 22). Spectral clustering defines clusters such that
lines from the same cluster are as similar as possible and such
that lines from different clusters are as different as possible. It
relies on similarity measures (such as a Pearson correlation),
while most clustering algorithms are distance-based. We set the
number of clusters to the value that maximizes the ratio of intra
to inter-cluster mean correlations.

Figure 5 presents the four clusters we obtained. The mean
intra and inter-cluster correlations are 0.895 et 0.462, respec-
tively, while the mean correlation among all lines is 0.73.
The obtained clusters contain 3712, 1272, 241, and 150 lines,
respectively. This imbalance between clusters comes from the
imbalance between molecules. For instance, H2 corresponds to
3282 lines, that is 61% of the lines computed by the Meudon
PDR code, and these lines all are highly correlated as shown in
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Fig. 5. Description of the four obtained line clusters. Top row: com-
position of each cluster. Each bar indicates the proportion of lines of
a species in a cluster. The red crosses correspond to exactly zero line.
For each cluster, the three species with most lines and the correspond-
ing number of lines are highlighted. Bottom row: Pearson correlation of
the most representative line of each cluster with the three main physical
parameters. The most representative line of a cluster is defined as the
line with the highest average correlation with the other lines. A round
marker at a vertex indicates a negative correlation.

Fig. 4. Appendix A provides a more complete description of the
content of these four clusters. With this approach, an ANN is
trained for each cluster.

4.2.2. Using PCA to set the size of the last hidden layer

A second and complementary approach to exploit these correla-
tions is to hypothesize that a vector y with the L line intensities
can be compressed to a vector of size L̃ < L with a limited loss of
information. Formally, we hypothesize that the line intensities y
live in a subspace of dimension L̃ < L, where L̃ can be estimated
using a dimension reduction algorithm. We resort to a princi-
pal component analysis (PCA) (Shalev-Shwartz & Ben-David
2014, Chap. 23) on the training set, which performs compres-
sions using only affine transformations. We obtain that the
compression of all L = 5 375 lines, with only L̃ ≃ 1000 principal
components leads to a decompression with mean error factor
below 0.1% on the training set, which confirms our hypothesis.

In an ANN such that D ≪ L, most parameters belong to the
last hidden layer, as illustrated in Fig. 2. The size of this layer is
thus critical to obtain a good accuracy. Too large a layer might
lead to overfitting, while too small a layer could not capture the
nonlinearities of the dataset. In regression, this last hidden layer
applies an affine transformation. We therefore set its size to the

estimated dimension L̃. To predict the L̃ intermediate values of
the last hidden layer, which are then used to predict all L line
intensities, the first two hidden layers are set with the same size.

For the networks trained on the four clusters of lines obtained
in Sect. 4.2.1, the size of the last hidden layer is also set to
the minimum number of principal components that ensures a
decompression with mean error factor below 0.1% on the train-
ing set. The obtained sizes L̃ are approximately 500 (about 13%
of the L = 3 712 lines of the cluster), 350 (about 28%), 100
(about 41%), and 75 (50%), respectively. As the bigger clusters
are the most homogeneous, they have the smallest ratio L̃/L of
subspace dimension L̃ with the total number of lines L. The num-
ber of parameters necessary to describe four small specialized
ANNs is thus greatly reduced in comparison to a single larger
general network.

4.3. A polynomial transform for learning nonlinearities

The nonlinearities in the Meudon PDR code make the approxi-
mation task challenging. In an ANN, nonlinearities come from
the activation function g. However, learning meaningful and
diversified nonlinearities is difficult with few hidden layers. Con-
versely, an ANN with numerous layers can lead to overfitting
and requires more time for evaluations and memory for stor-
age. Preprocessing the physical parameters x with a variety of
pre-defined nonlinear functions eases this learning task, while
maintaining a small network architecture. We chose to apply
a polynomial transform Pp which replaces the input vector x
of a dimension D with an input vector containing all mono-
mials computed from the D entries of degree up to p. For
instance, for D = 3 and p = 2, x = (x1, x2, x3) is replaced with
P2(x) = (x1, x2, x3, x2

1, x2
2, x2

3, x1x2, x1x3, x2x3) ∈ R9. For D =
4 and p = 3, we have P3(x) ∈ R34. This approach is classic in
regression (Ostertagová 2012) but less common in ANNs.

It is well known in polynomial regression that a high max-
imum degree p can lead to overfitting (Shalev-Shwartz &
Ben-David 2014, Chap. 11). The analysis of the physical pro-
cesses indicates that the gas structure and emission properties
depend on control quantities combining GUV, nH (or Pth) and
Atot

V . For instance, GUV/nH is known to play an important role
in PDRs (Sternberg et al. 2014). It is therefore important to con-
sider monomials combining these three physical parameters. In
contrast, the angle α is assumed to have a simpler role in the
model. To avoid overfitting, we choose the minimum value that
combines the three parameters, p = 3, and thus consider the
polynomial transforms P3. This transformation is applied to the
input variables after the preprocessing step described in Sect. 3.2
(log scale for Pth, GUV and Atot

V , and standardization of the D = 4
parameters). It is implemented as an additional first fixed hidden
layer. The gradient ∇xf can thus be efficiently evaluated with
automatic differentiation methods.

4.4. Dense networks to reuse intermediate computations

The fully connected ANNs architecture considered so far (shown
in Fig. 2) is widely used in the deep learning community. How-
ever, this architecture struggles to maintain input information
in hidden layers, as it is transformed in nonlinear activation
functions. It might therefore fail to reproduce very simple rela-
tionships. For instance, the intensity of UV-pumped lines of H2 is
highly correlated with GUV. Using GUV directly to predict inten-
sities of such lines thus might be more relevant than passing it
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lines from the same cluster are as similar as possible and such
that lines from different clusters are as different as possible. It re-
lies on similarity measures (such as a Pearson correlation), while
most clustering algorithms are distance-based. We set the num-
ber of clusters to the value that maximizes the ratio of intra to
inter-cluster mean correlations.

Figure 5 presents the four clusters we obtained. The mean in-
tra and inter-cluster correlations are 0.895 et 0.462, respectively,
while the mean correlation among all lines is 0.73. The obtained
clusters contain 3 712, 1 272, 241, and 150 lines, respectively.
This imbalance between clusters comes from the imbalance be-
tween molecules. For instance, H2 corresponds to 3 282 lines,
that is 61% of the lines computed by the Meudon PDR code,
and these lines all are highly correlated as shown in Fig. 4. Ap-
pendix A provides a more complete description of the content
of these four clusters. With this approach, an ANN is trained for
each cluster.

4.2.2. Using PCA to set the size of the last hidden layer

A second and complementary approach to exploit these correla-
tions is to hypothesize that a vector y with the L line intensities
can be compressed to a vector of size L̃ < L with a limited loss of
information. Formally, we hypothesize that the line intensities y
live in a subspace of dimension L̃ < L, where L̃ can be estimated
using a dimension reduction algorithm. We resort to a principal
component analysis (PCA) (Shalev-Shwartz & Ben-David 2014,
chapter 23) on the training set, which performs compressions us-
ing only affine transformations. We obtain that the compression
of all L = 5 375 lines, with only L̃ ≃ 1 000 principal components
leads to a decompression with mean error factor below 0.1% on
the training set, which confirms our hypothesis.

In an ANN such that D ≪ L, most parameters belong to the
last hidden layer, as illustrated in Fig. 2. The size of this layer is
thus critical to obtain a good accuracy. Too large a layer might
lead to overfitting, while too small a layer could not capture the
nonlinearities of the dataset. In regression, this last hidden layer
applies an affine transformation. We therefore set its size to the
estimated dimension L̃. To predict the L̃ intermediate values of
the last hidden layer, which are then used to predict all L line
intensities, the first two hidden layers are set with the same size.

For the networks trained on the four clusters of lines ob-
tained in Sect. 4.2.1, the size of the last hidden layer is also set
to the minimum number of principal components that ensures a
decompression with mean error factor below 0.1% on the train-
ing set. The obtained sizes L̃ are approximately 500 (about 13%
of the L = 3 712 lines of the cluster), 350 (about 28%), 100
(about 41%), and 75 (50%), respectively. As the bigger clusters
are the most homogeneous, they have the smallest ratio L̃/L of
subspace dimension L̃ with the total number of lines L. The num-
ber of parameters necessary to describe four small specialized
ANNs is thus greatly reduced in comparison to a single larger
general network.

4.3. A polynomial transform for learning nonlinearities

The nonlinearities in the Meudon PDR code make the approxi-
mation task challenging. In an ANN, nonlinearities come from
the activation function g. However, learning meaningful and di-
versified nonlinearities is difficult with few hidden layers. Con-
versely, an ANN with numerous layers can lead to overfitting
and requires more time for evaluations and memory for stor-

Fig. 6. Structure of a dense ANN, with H = 2 hidden layers and the
same sequence of layer input sizes (i j)H+1

j=1 used to illustrate the feedfor-
ward architecture in Fig. 2.

age. Preprocessing the physical parameters x with a variety of
pre-defined nonlinear functions eases this learning task, while
maintaining a small network architecture. We chose to apply
a polynomial transform Pp which replaces the input vector x
of a dimension D with an input vector containing all mono-
mials computed from the D entries of degree up to p. For in-
stance, for D = 3 and p = 2, x = (x1, x2, x3) is replaced
with P2(x) = (x1, x2, x3, x2

1, x2
2, x2

3, x1x2, x1x3, x2x3) ∈ R9. For
D = 4 and p = 3, we have P3(x) ∈ R34. This approach is classic
in regression (Ostertagová 2012) but less common in ANNs.

It is well known in polynomial regression that a high maxi-
mum degree p can lead to overfitting (Shalev-Shwartz & Ben-
David 2014, chapter 11). The analysis of the physical pro-
cesses indicates that the gas structure and emission properties
depend on control quantities combining GUV, nH (or Pth) and
Atot

V . For instance, GUV/nH is known to play an important role
in PDRs (Sternberg et al. 2014). It is therefore important to con-
sider monomials combining these three physical parameters. In
contrast, the angle α is assumed to have a simpler role in the
model. To avoid overfitting, we choose the minimum value that
combines the three parameters, p = 3, and thus consider the
polynomial transforms P3. This transformation is applied to the
input variables after the preprocessing step described in Sect. 3.2
(log scale for Pth, GUV and Atot

V , and standardization of the D = 4
parameters). It is implemented as an additional first fixed hidden
layer. The gradient ∇xf can thus be efficiently evaluated with au-
tomatic differentiation methods.

4.4. Dense networks to reuse intermediate computations

The fully connected ANNs architecture considered so far (shown
in Fig. 2) is widely used in the deep learning community. How-
ever, this architecture struggles to maintain input information in
hidden layers, as it is transformed in nonlinear activation func-
tions. It might therefore fail to reproduce very simple relation-
ships. For instance, the intensity of UV-pumped lines of H2 is
highly correlated with GUV. Using GUV directly to predict inten-
sities of such lines thus might be more relevant than passing it
through nonlinear transformations. This architecture also strug-
gles to pass gradient information all the way back to the first
hidden layers. This phenomenon, known as gradient vanishing,
might lead to largely suboptimal trained networks. The recent
residual (He et al. 2016) and dense architectures (Huang et al.
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Fig. 6. Structure of a dense ANN, with H = 2 hidden layers and the
same sequence of layer input sizes (i j)H+1

j=1 used to illustrate the feedfor-
ward architecture in Fig. 2.

through nonlinear transformations. This architecture also strug-
gles to pass gradient information all the way back to the first
hidden layers. This phenomenon, known as gradient vanishing,
might lead to largely suboptimal trained networks. The recent
residual (He et al. 2016) and dense architectures (Huang et al.
2017) address these two issues. We used the dense architecture
for our regression problem.

A dense architecture is a special type of feedforward archi-
tecture where the input of a layer j + 1 is the concatenation of
the input and output vectors of the previous layer j: x( j+1) =
[[x( j), y( j)]]. This architecture focuses on reusing intermediate
values in hidden layers and can thus reduce the number of
parameters to train.

Figure 6 illustrates this dense architecture for a simple ANN
with H = 2 hidden layers and the same sequence of layer input
sizes (i j)H+1

j=1 used to illustrate the standard feedforward architec-
ture in Fig. 2. The output sizes o j of hidden layers are much
smaller with the dense architecture, as the input of layer j con-
catenates the input and output of layer j− 1. The weight matrices
W( j) of hidden layers are thus much smaller as well, which
reduces the total number of parameters to train. By lowering the
number of parameters to learn while providing the same number
of inputs to the output layer, this architecture limits overfitting
risks.

As the number of parameters per layer is reduced, we define
ANNs with H = 9 hidden layers, which is six more layers than
in the proposed networks with the standard architecture, yet still
with a similar number of parameters. By definition, the size of
the hidden layers in a dense architecture is strictly increasing,
as the size i j+1 of a layer input is the sum i j + o j of the input
and output sizes of the previous layer. The network is set so that
the input i j+1 of a layer j + 1 is 50% larger than the input of
the previous layer i j. With this geometric progression and the
polynomial transform P3, the input of the output layer contains
1296 neurons, which is 29.6% larger than the recommenda-
tion from PCA obtained in Sect. 4.2.2. However, out of these
1296 neurons, 34 correspond to the input values, 17 to the out-
put of the first hidden layer, 25 to the output of the second hidden
layer, and so on. In other words, though the input of the output
layer contains more neurons for the considered dense ANN than
the PCA recommendation, a majority of these neurons are the
result of fewer transformations.

When using this dense architecure strategy with the cluster-
ing approach, four dense networks with H = 9 hidden layers are
designed. The size of the last hidden layer is also set to a slightly

Table 2. Performance of interpolation methods and of the proposed
ANNs, with and without the removal of outlier from the training set.

Method
Error factor Memory Speed

mean 99th per. max (MB) (ms)

N
o

ou
tli

er
re

m
ov

al

near. neighbor ×13.1 ×11.3 ×3e5 1650 62
linear 15.7 ×2.3 ×143 1650 1.5e3

sp
lin

e linear 15.7 ×2.3 ×144 1650 . . .
cubic 11.2 ×2.2 ×122 1650 . . .

quintic 19.1 ×2.9 ×304 1650 . . .

R
B

F linear 10.2 96.8 ×99 1650 1.1e4
cubic 10.4 ×2.1 ×112 1650 1.1e4

quintic 10.9 ×2.1 ×118 1650 1.1e4

A
N

N R 7.3 64.8 ×81 118 12
R+P 6.2 49.7 ×84 118 13

O
ut

lie
rr

em
ov

al
on

tr
ai

ni
ng

se
t

near. neighbor ×13.1 ×11.6 ×3e5 1650 62
linear 15.9 ×2.4 ×143 1650 1.5e3

sp
lin

e linear 15.9 ×2.4 ×144 1650 . . .
cubic 11.1 ×2.2 ×120 1650 . . .

quintic 20.0 ×2.7 ×285 1650 . . .
R

B
F linear 10.3 97.3 ×97.5 1650 1.1e4

cubic 10.5 ×2.0 ×106 1650 1.1e4
quintic 10.9 ×2.0 ×114 1650 1.1e4

A
N

N

R 5.1 42.0 ×32.8 118 12
R+P 5.5 42.3 ×41 118 13

R+P+C 4.9 44.5 ×44 51 14
R+P+D 4.5 33.1 ×33.8 125 11

R+P+C+D 4.8 37.9 ×37.6 43 14

Notes. Evaluation speeds are measured on the full set of L lines for
1000 random points. The measurements are performed on a personal
laptop equipped with eight logical cores running at 3.00 GHz. Error
factors are evaluated on the test set. For neural network architectures,
C stands for a line clustering and specialist networks, D for a dense
architecture, P for a polynomial transform and R for the design of the
last hidden layer using PCA. For each criterion, the best obtained values
are highlighted in bold.

larger value than the PCA recommendation. The geometric pro-
gressions of these four networks are set to 35, 30, 15, and 10%,
respectively.

5. Results on the Meudon PDR code

Here, we compare ANNs designed and trained with the proposed
strategies with interpolation methods with respect to accuracy,
memory, and speed. Table 2 shows the results of the comparison.
It is divided in two halves. The first presents models trained on
the raw training set, while the second contains models trained
on the cleaned training set (using the outlier detection procedure
of Sect. 4.1). In each half, the results of interpolation methods
are first listed, followed by ANNs combining one or more of the
presented strategies.

5.1. Performance analysis

The proposed ANNs outperform all interpolation methods on
all aspects by a large margin: they are between 100 and
1000 times faster than reasonably accurate interpolation meth-
ods and between 14 and 38 times lighter in terms of memory.
Interpolation methods handle the prediction of L lines as L inde-
pendent operations, while ANNs handle the L lines at once,
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which is much faster. Interpolation methods require storing the
full training set that contains 103 million 64-bit floating point
numbers, that is to say, 1.65 GB in size. In contrast, ANNs use
shared intermediate values in hidden layers to predict all lines,
which limits redundant computations and effectively compresses
the dataset. They can thus be fully described with between
2.7 and 7.8 million parameters, that is to say, between 43 MB
and 118 MB. Finally, the proposed ANNs are roughly twice
as accurate as the best interpolation methods on average and
between two and three times as accurate with respect to the
99th percentile. Overall, the proposed ANNs are the only sur-
rogate models that yield a mean error factor lower than 10% and
thus that are suited to a corison with actual observations.

5.2. Removing outliers is crucial

When the outlier removal step is not applied, the distribution of
errors is highly skewed for all surrogate models. For interpola-
tion methods, the 99th percentile reveals that around 99% of the
predictions correspond to errors lower than a factor of two. For
the best ANN (R+P), it reveals that 99% of the errors are lower
than 49.7%. However, for all methods, the maximum error is at
least 80 times higher than the 99th percentile and reaches unac-
ceptable values. An inspection of the highest errors reveals that
they are close to training points with outliers, which indicates
that these outliers significantly deteriorate the fit.

After removing outliers from the training set, interpola-
tion methods do not show average accuracy improvement. Only
slight improvements can be observed on the 99th percentile and
maximum EF, especially for the RBF interpolation methods.
Replacing outliers with interpolated values is therefore not rele-
vant to derive surrogate models based on interpolation methods
in this case. In contrast, the two ANNs trained both with and
without the outlier removal step (R and R+P) show consequent
improvements. With outlier removal, the mean EF decreased
from 7.3 and 6.2% to 5.1 and 5.5%, respectively. Similarly, the
99th percentile dropped from 64.8 and 49.7% to 42 and 42.3%.
Finally, the maximum error is reduced by more than a factor of
two. These important improvements demonstrate the interest of
filtering outliers from the training set before training ANNs.

5.3. Combining polynomial transform with dense network or
line clustering

The polynomial transform improves the accuracy in presence
of outliers in the training set, but then causes it to deteriorate
after the outlier removal step. It provides flexibility to learn
abrupt nonlinearities caused by outliers. However, with out-
liers removed, the function to learn is smoother. The EF on the
masked training set is 1.44% without the polynomial transform
(R) and 0.77% with it (R+P), while the EF on the test set is
lower without the polynomial transform. This improvement on
the training set does not lead to an improvement on the test
set, suggesting an overfit. The polynomial transform therefore
requires additional strategies to better reproduce data unused
during the training phase.

Both the clustering step and dense architecture, used with
the polynomial transform, led to better accuracy. The surrogate
model that exploits the line clustering but not the dense archi-
tecture (R+P+C) improves the mean accuracy by 0.2 percentage
points, while requiring 57% fewer parameters than the first two
networks (R and R+P). A potential cause of the average error
factor improvement is the separation of the trainings of each
specialized ANN. Since H2 lines represent 61% of all L lines,

they dominate the loss function and thus are learned in prior-
ity. To separate them from other clusters might have improved
performance on those other clusters.

The surrogate model based on a single network with dense
architecture (R+P+D) is the most accurate on average and pro-
vides the lowest error upper bound for the robust 99th percentile
estimator. Even with more trainable parameters than the first two
networks, it does not overfit. It is also the fastest model as reusing
intermediate values reduces the number of computations.

Finally, combining both line clustering and dense architec-
tures (R+P+C+D) yields the lowest memory usage with only
2.7 million parameters, that is 43.2 MB, which is 38 times
lighter than for interpolation methods. It also provides very good
accuracy, both on the average and for the upper bounds.

Overall, a dense architecture and the line clustering effec-
tively limit overfitting and thus perform better on data unseen
during the training phase. The line clustering leads to the light-
est models regarding memory requirements, while the dense
architecture leads to the most accurate models.

6. Conclusion

The interpretation of observations of atomic and molecular trac-
ers in galactic and extragalactic ISM requires comparison with
state-of-the-art astrophysical models to infer physical conditions.
Such inference procedure requires numerous evaluations of the
numerical model, which is particularly the case for Bayesian
approaches. Inference on large observations maps, which are
becoming more and more common, further relies on many eval-
uations. The ISM models are often too slow to perform such
inference and are generally approximated using interpolation
methods run on grids of precomputed models. These interpo-
lation approaches induce errors that are seldom quantified in the
literature. Besides, these methods can have high evaluation time
and memory costs.

In this work, the general problem of deriving a fast, accurate
and memory-light surrogate model for a time-consuming ISM
numerical model has been addressed. The proposed approach
has been assessed in the case of the Meudon PDR code, a
state-of-the-art ISM code. In this work, four common families
of interpolation methods (nearest-neighbor, linear, spline, and
RBF) are compared to specifically designed ANNs. We find that
ANNs outperform all interpolation methods by a large margin in
terms accuracy, speed, and memory usage.

Attaining this performance level for ISM models requires
addressing their specificities. First, ISM models usually pre-
dict many observables (e.g., line intensities of many species)
from few parameters (e.g., gas density or temperature), which
is unusual in ANN applications – except in the case of ANNs
that generate structured data such as images, text, or times
series. Second, due to numerical instabilities or physical bistabil-
ities or multistabilities, such models sometimes produce outliers
that harm the training process. We proposed and combined five
strategies to design and train adapted ANNs:

– To identify outliers, we first train an ANN with a loss func-
tion robust to large errors. Training points corresponding to
large errors are manually reviewed. Identified outliers are
removed from the training set.

– Lines are clustered into homogeneous subsets that are sim-
pler to emulate: for each cluster one ANN is defined and
trained.

– A dimension reduction technique (PCA) is used to determine
an adequate size of hidden layers.
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– A polynomial transform of the input physical parameters
provides precomputed nonlinearities to the network, which
permits the learning of nonlinearities with a limited number
of hidden layers.

– A dense architecture exploits intermediate computations and
thus limits redundant computations. Using such an architec-
ture instead of the standard feedforward ANN architecture
improves speed and avoids overfitting.

With the proposed strategies, ANNs can achieve 4.5% aver-
age accuracy, while the best interpolation method, RBF, attains
10.2%. The upper bound on the errors, quantified using their
99th percentile, reach 33.1% for our ANNs compared to 97% for
the RBF interpolation. Besides, our ANNs are 1000 times faster
than RBF and are more than ten times lighter in terms of mem-
ory. The most accurate model presented in this article (denoted
R+P+D in Table 2) is publicly available9.

Although this paper focuses on an application to the Meudon
PDR code, the proposed strategies are general enough to be
applicable to many other ISM models. The fast and accurate
ANN emulators obtained in this article enable the performance
of fully Bayesian inference on observation maps using the
Meudon PDR code, a physically comprehensive model. Such an
approach will be presented in an upcoming paper Palud et al. (in
prep.). It will also permit efficient analyses of large observations
maps produced by today’s instruments (e.g., JWST, ALMA),
such as the ORION-B dataset observed by the IRAM 30 m (Pety
et al. 2017).
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Appendix A: Content of clusters of lines

In this appendix, we describe the content of the four clusters
shown in Fig. 5. All species have lines distributed in at most
three clusters, except for 12CO that has lines in each of the four
clusters. The CO lines are indexed with two quantum numbers:
the rotational number J and the vibrational number v.

The first cluster gathers lines that are emitted from the most
external UV illuminated layers of the cloud and trace hot chem-
istry. It includes all H2 lines but three and is thus the largest. It
also contains all lines from OH+ (209), CH+ (10), S+ (8), N (5),
the fine structure lines of O (3), the 158 µm line of C+, and the
rovibrational lines of CO in the low J values for v = 1 − 0 and
v = 1 − 1 ladders. The line intensities of this cluster are highly
and positively correlated to GUV, and not correlated at all with
Atot

V .
The second cluster contains 99% of the 655 lines from

water H16
2 O and its isotopologue H18

2 O. It also contains lines
from high energy levels for several molecules (HD, CO, 13CO,
C18O, 13C18O, HNC, HCN, HCO+, SO, CN, SH+, C2H, OH,
and CS), as well as transitions from the neutral atoms C, Si, and
S. Line intensities in this cluster are positively correlated with
Pth and GUV and not at all with Atot

V .
The third cluster contains mostly c-C3H2 lines, and some

C2H lines. It also includes two transitions of CO with moder-
ate J values at the lowest vibrational level v = 0 (J = 3 − 2 and
J = 4 − 3). Its line intensities are overall positively correlated
with Pth and Atot

V and negatively correlated with GUV.
The fourth cluster contains the low energy lines of 13CO,

C18O, 13C18O, HNC, HCN, HCO+, SO, and c-C3H2, as well
as the lowest temperature transitions of CO (J = 1 − 0 and
J = 2 − 1). Its line intensities are overall positively correlated
with Pth, strongly positively correlated with Atot

V and negatively
correlated with GUV.

A198, page 14 of 14


	Neural network-based emulation of interstellar medium models
	1 Introduction
	2 Interpolation and regression methods
	2.1 Notation
	2.2 Interpolation methods in ISM studies
	2.3 Performing regression with neural networks
	2.3.1 Generalities on neural networks
	2.3.2 Fitting a neural network to a dataset


	3 Approximating the Meudon PDR code
	3.1 The Meudon PDR code: a representative ISM model
	3.2 Dataset generation
	3.3 Comparison metrics

	4 Designing and training adapted ANN
	4.1 Removing outliers from the training set
	4.2 Exploiting correlations between line intensities
	4.2.1 Line clustering to divide and conquer
	4.2.2 Using PCA to set the size of the last hidden layer

	4.3 A polynomial transform for learning nonlinearities
	4.4 Dense networks to reuse intermediate computations

	5 Results on the Meudon PDR code
	5.1 Performance analysis
	5.2 Removing outliers is crucial
	5.3 Combining polynomial transform with dense network or line clustering

	6 Conclusion
	Acknowledgements
	References
	Appendix A: Content of clusters of lines


