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Evaluation using mouse subcutaneous tumour models is a key process in cancer 

drug development. Tumour material is implanted subcutaneously and tumour 

growth measured using callipers. However this methodology can have poor 

reproducibility and accuracy due to observer variation. Furthermore the physical 

pressure of using callipers can distress the mouse and lead to tumour damage. 

Non-invasive digital tumour imaging would reduce handling stresses and allow 

volume determination without physical contact. This thesis focusses on capturing 

2D digital images of subcutaneous tumours, then using image processing and 

machine learning methods to determine 3D volume. The biggest challenge faced 

was lack of differentiation between tumour and surrounding skin, rendering 

tumour boundary identification difficult. Whilst image processing methods such 

as colour segmentation and edge detection were unsuccessful, machine learning 

proved more successful. Three convolutional neural networks, VGG-Face, VGG-

19 and VGG-16 models were evaluated, with VGG-Face producing the best 

results. Using the layer FC7 before RELU activation for extraction in the VGC-
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Face model, a tumour recognition rate of 98.86% was achieved. This was 

increased to 100% through a semi-automatic step with detection repeated on 

cropped versions of negatively classified images. Finally, volume was determined 

through extracting image features using the VGG-Face model and conducting 

partial least squares regression (error of 0.1). This work has successfully 

demonstrated that with computational methods the volume of subcutaneous 

tumours can be evaluated through non-invasive digital imaging without need to 

have contact with the tumour itself, thus offering refinement benefits to the mice 

as well as eliminating observer bias.  
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 Introduction 

1. Introduction 

 

1.1 The Challenges of Cancer Treatment 

 

In the UK, 1 in 2 people born after 1960 will be diagnosed with cancer during their 

lifetime[1][2]. Cancer is an aggressive neoplastic disease characterised by 

uncontrollable cell division, resulting from mutations in the cell genome. 

Mutations occur spontaneously or through stimulation from environmental 

factors, such as UV radiation[3].  They trigger increased expression of 

oncogenes, cancer causing genes, and deactivation of tumour suppressor genes. 

Multiple cell pathways are manipulated resulting in heterogeneity in the disease 

and therefore, cancer is extremely challenging to control. With a diagnosis of 

cancer every 2 minutes and a cancer-related death every 4 minutes in the 

UK[1][2], there is a pressing need for new therapies[4]. Treatment is challenging 

due to the heterogeneous nature of cancer coupled with its ability to metastasise. 

With over 200 types of cancer, patients are commonly given a cocktail of 

therapies to ensure maximum effectiveness.  

  

1.1.1 Surgery 

 

When a cancerous mass is localised and caught before metastasis, the best 

option for treatment is surgical removal, known as resection. Other therapies can 

kill a proportion of the cancerous cells but surgery guarantees the death of all 

removed cells[5]. For example, 90-92% of patients with colon cancer[6] and 84% 

of patients with rectal cancer[7] are treated with surgery. However, cancers 

eventually metastasize leading to a poor prognosis. When  colorectal cancer 
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metastasizes to  the liver, surgery is used to remove both the primary and 

secondary tumour resulting in 30-40% improvement for 5-year survival rates[8]. 

Surgery can be used in combination with other therapies, such as radiotherapy, 

to shrink the size of the tumour thus making it easier to remove and to ensure the 

majority of cancer cells are destroyed[5]. As with other treatments, new 

improvements to surgery are constantly being introduced, such as fluorescence-

guided surgery which is a relatively new approach currently in clinical trials. This 

allows visualisation of the tumour through targeting the tumour with fluorescently 

labelled molecules[9]. In some cases, cancerous masses can grow in difficult to 

reach places thus rendering surgery obsolete as a treatment option and therefore, 

alternative treatment options must be explored. 

 

1.1.2 Radiotherapy 

 

Radiotherapy gained popularity in the 1920’s and is used for treatment in at least 

45% of new cancer cases[10]. Radiation, such as X-rays, are used to damage 

the DNA of cancer cells thus killing the cell. Early head and  neck  tumours and 

early Hodgkin’s disease look to radiotherapy as a curative treatment[5]. 

Radiotherapy is often given in conjunction with surgery, being utilised both before 

and after surgery.  Preoperative radiotherapy is used to control the disease 

ensuring that it does not spread further before surgery; this has proven to be 

successful for rectal cancer. Treating patients with only local surgical resection 

resulted in a 5.3% occurrence at two years. This decreased to 2.4% when 

combined with preoperative radiotherapy[11]. Furthermore, radiotherapy is used 

postoperatively to decrease the chances of recurrence and ensure that all cancer 

cells have been killed.  For example, there was a 9-10% improvement in the 
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survival of breast cancer patients after 10 years when postoperative radiation was 

applied[12].  

 

Another methodology is intraoperative radiotherapy, where radiation is applied to 

exposed cancer tissue during surgery. This method provides a boost for 

postoperative treatment permitting reduced exposure to radiation therapy 

resulting in fewer side effects. 21Gy given in intraoperative radiation is equivalent 

to 60Gy given postoperatively[13]. Recurrent adenocarcinoma of the prostate, 

after treatment with radiation therapy, was found in 75% of patients, measured 

by the elevated levels of a prostate-specific antigen found through biopsy[14]. 

Cryotherapy, a treatment injecting cold gasses directly into the prostate to kill 

cancer cells, is often used as a salvage therapy for failed radiotherapy treatment 

of the prostate. A study by Bahn et al conducted a 7 year follow up after 

cryotherapy treatment and reported improved survival rates[14]. Radiotherapy 

can induce an immune response as well as altering the tumour 

microenvironment, and thus combination therapy of radiotherapy with 

immunotherapy is an area of great interest [15]. 

 

1.1.3 Chemotherapy 

 

Anticancer agents were initially developed in the 1940s. Nitrogen mustards were 

alkylating agents causing cross linking in DNA molecules which resulted in cell 

death[16]. Antifolate drugs blocked the functions of folate requiring enzymes thus 

causing regression in tumours[16]. Since then, a variety of cytotoxic DNA 

damaging drugs designed to kill cancer cells by obstructing cell replication have 

been developed. For example, Doxorubicin is an anthracycline chemotherapy 
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drug and works by intercalating DNA strands, directly obstructing DNA 

replication[17]. Paclitaxel is also a chemotherapy drug but works by interfering 

with microtubules during the cell  division process[18]. In a study for metastatic 

breast cancer, 36% of patients treated with doxorubicin had a response and had 

median survival of 18.9 months and 34% of patients treated with paclitaxel had a 

response and had a median survival of 22.2 months. Interestingly, when patients 

were treated with both doxorubicin and paclitaxel, a response was seen in 46% 

of patients[19].  

 

The disadvantages of chemotherapy are the toxic side effects. Even though the 

agents have highly specific interactions with their target cells they are not 

selective for tumour cells. Therefore, normal cells with high proliferation rates are 

also targeted resulting in a narrow therapeutic window[20]. Tumours are excellent 

in adapting to their environment and are quickly able to develop resistance 

against the treatment given via the activation and overregulation of counteracting 

pathways, this is aided by their heterogeneity[3]. An increase in the 

understanding of the mechanisms of cancer enables a more targeted approach 

to drug therapies. An example of this is hormone therapy. 

 

1.1.4 Hormone Therapy 

 

Certain cancers are driven via hormones and these hormones can be targeted. 

Breast and prostate cancer are largely driven by hormones oestrogen and 

testosterone, respectively. Oestrogen plays an important role in breast cancer by 

aiding proliferation and stimulating the breast cancer growth. 50-80% of breast 

tumours have an oestrogen receptor[21]. Tamoxifen is a selective oestrogen 
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receptor modulator (SERM) which is an antagonist to the oestrogen receptor thus 

stopping its effects. An 11% improvement in the 10 year  survival rate was found 

in patients taking tamoxifen[22]. However, tamoxifen led to an increased risk of 

other cancers such as uterine cancer and so was succeeded by the more 

successful aromatase inhibitors (AIs). Aromatase is an enzyme which is involved 

in oestrogen production thus AIs cause oestrogen depletion without interacting 

with oestrogen receptors[23]. 

 

Testosterone is an androgen hormone which contributes to stimulating prostate 

cancer growth. Bicalutamide is a selective androgen receptor modulator (SARM) 

used to treat prostate cancer through blocking testosterone by   binding to the 

androgen receptor. Disease progression was significantly reduced with a 

reduction of 42%[24]. Not all cancers are driven by hormones; an alternative 

approach is to focus on the body’s own immune system. 

 

1.1.5 Immunotherapy 

 

The immune system is configured to ensure that all foreign substances, known 

as antigens, are eliminated. Cancer cells are either too powerful for the immune 

system or undetectable as foreign as they originated from normal cells. 

Immunotherapy involves using the body’s natural defence system to fight the 

cancer. Antibodies are proteins created by plasma cells which can attach to 

antigens and mark them to be destroyed by other components of the immune 

system[25]. The drug Alemtuzumab is a monoclonal antibody used to treat 

chronic lymphocytic leukaemia (CLL) in which the white blood cells, mature B 

lymphocytes, are abnormal.  The B lymphocytes have a CD52 protein on the 
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surface and Alemtuzumab attach to the CD52 protein thus marking them for 

destruction,  ensuring that the abnormal cells are destroyed[26]. 

 

One of the fastest growing areas of cancer treatment research at the moment is 

in the development of immune-checkpoint inhibitors (ICI), as highlighted by the 

award of the 2018 Nobel Prize for Medicine and Physiology to James Allison and 

Tasuku Honjo. Although monoclonal antibodies have been approved for immune 

checkpoint proteins PD-1/PD-L1 and CTLA4, such as Nivolumab, Avelumab and 

Ipilimumab, there are issues with off-target toxicities with these agents, and 

further work is necessary to develop safer and more effective ICI’s, looking at 

targeting other immune checkpoint proteins [27]. 

 

1.1.6 Biological (Targeted) Therapy 

 

An increase in knowledge of the biology of cancer and a need to avoid the toxic 

side effects has led to an up rise in specific target driven agents. These are aimed 

at targeting a specific physiological process or function in tumours which are 

essential for the survival of the cancer but  not essential in normal cells[28].  

 

Chronic myelogenous leukaemia (CML) is a cancer in which there is an increased 

unregulated production of mature granulocytes in the bone marrow. CML has a 

characteristic abnormal chromosome in over 90% of its patients. Fusion of 

chromosome 9 and 22 known as the Philadelphia chromosome results in the 

synthesis of the oncoprotein P210bcr/abl,  a tyrosine kinase[29]. This deregulates 

tyrosine kinase activity  resulting in inhibiting apoptosis and increasing the 

potential for the mutant bcr/abl cells to proliferate[30]. Imatnib is an oral targeted 
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therapy made to inhibit the bcr/abl tyrosine kinase and a study was conducted 

comparing this to interferon-alpha, a human cytokine that was the first line 

therapy for CML[31]. A study  found that 87.1% of patients had a major 

cytogenetic response with imatnib in comparison to 34.7% response from 

interferon-alpha[32]. Imatnib replaced interferon-alpha as the first line therapy for 

CML. 

 

Although targeted therapies are selective for cancer cells, these agents can have 

poor efficacy. To improve the targeting ability as well as ability to kill cancer cells, 

antibody-drug conjugates, agents which consist of a monoclonal antibody 

attached to a cytotoxic drug, have risen in popularity, with several having been 

approved for clinical use in recent years [33].  For example, Mirvetuximab 

soravtansine and Tisotumab vedotin-tftv were developed to treat Platinum-

resistant ovarian cancer and recurrent or metastatic cervical cancer, 

respectively[34]. 

 

Ultimately, cancer continues to dominate due to heterogeneity in the disease and 

acquired drug resistance[35].  

 

1.1.7 Heterogeneity and Drug Resistance 

 

The genetic complexity of cancer cells becomes harder to treat due to 

heterogeneity in the disease; a tumour of the same type can have different 

genetic and epigenetic make-up in different patients, thereby rendering some 

treatment plans ineffective[36]. When Herceptin, a monoclonal antibody, which 

attaches itself to the human epidermal growth factor receptor 2 (HER-2), was 
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given as treatment to patients overexpressing the HER-2 receptor in breast 

cancer, only 26% had an objective response rate[37]. The low response rate can 

be further attributed to intra-tumour heterogeneity, which suggests that genetic 

differences can also be found in sub-populations of cancer cells within the same 

tumour[36]. Heterogeneity also plays a role in acquired drug resistance.  

 

Heterogeneity results in inherent drug resistance, where cancer cells are 

predisposed to resistance due to their genetic makeup. Furthermore, acquired 

drug resistance can occur, where the cancer initially responds to treatment but 

then develops resistance[38]. Although caused by multiple factors, common 

reasons include changes in the drug target, DNA damage repair, an inability of 

the cells to uptake drugs with the same vigour and the utilisation of alternative 

pathways that reduce cell death and promote survival[39], [40].  

 

This was seen with non-small-cell lung cancer, where mutations were found in 

the epidermal growth factor receptor (EGFR) in approximately 40% of the cancer 

cases; the mutation resulted in activation of EGFR signalling and therefore had 

oncogenic properties. These cancers were successfully treated with EGFR 

tyrosine kinase inhibitors, drugs targeting the tyrosine kinase domain of the 

EGFR[41], but approximately 60% of patients developed acquired drug 

resistance due to a further mutation in the EGFR. This mutation resulted in an 

increase of ATP which then competed with the treatment drugs in binding to the 

mutated EGFR[42].  

 

Although there is a large variety of treatment options available, the clinical 

success rate for pharmaceutical agents reaching registration is extremely poor. 
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From approximately 10,000 compounds sourced at the drug discovery phase, 

only 1 – 5 will be submitted for approval to be tested in clinical trials and the 

process can take up to 10 years[43]. Cheaper, more efficient and accurate 

preclinical screening methods in the drug development process could improve 

the output of drugs reaching clinical testing in humans.   

 

1.2 Preclinical Screening 

 

Therapeutics can be sourced through screening natural products, creating 

derivatives of compounds already established and through purposeful design to 

target a specific biological target. The therapeutics are subjected to a screening 

cascade, including in silico, in vitro and in vivo stages, designed to test if the drug 

is active in producing an effect.  

 

Increasing knowledge of bioactivity and drug interactions has facilitated extensive 

data collection. In addition to biological targets, targets with known clinical side-

effects, termed ‘anti-targets’, have also been found[44].  This information has 

been collated in multiple online databases, such as ChEMBL, which contains the 

data of over 2 million compounds and over 14 million bioactivity data points[45].  

These databases facilitate in silico, computer based, testing of compounds 

against protein targets and anti-targets to find the best combination to produce a 

potential therapeutic effect with minimal side effects[46]. Mestres et al collated 

interactions between 802 drugs and 480 biological targets from 7 different 

databases finding 4767 unique interactions thus concluding an average of 6 

targets for every drug[47].  However, these are only predictions. For a drug to be 



 

10 
 

 Introduction 

approved for testing in clinical trials, more robust testing is required, moving away 

from simulations and predictions to physical evidence. 

 

When analysing drug-target interactions, testing is done  in vitro, where assays 

and analytical procedures, are performed in cells or tissue samples maintained 

outside a living organism[48]. Initial screens in cell-free biological assays and cell-

based assays are used to determine target specificity, activity and mechanism of 

action[49]. Furthermore, information can be collected on acute and long term 

cytotoxicity, mutagenicity, adhesion, angiogenesis, migration and invasion[49]. In 

vitro testing is advantageous as assays are simple, cheap and allow for high 

throughput testing of potential therapeutics against multiple biomolecules or cell 

lines[50]. Unfortunately, in vitro conditions are not reflective of those in human 

patients and so have limited predictive value. Increased use of more 

sophisticated 3D and mixed cell models have resulted in improved analysis but 

this cannot account for systemic complexities found in whole living organisms. 

 

A therapeutic agent’s pharmacokinetic profile must be analysed, looking at how 

the body interacts with the agent once it is inside the body. This includes the 

agent’s absorption into systemic circulation, how it is distributed from the 

bloodstream to tissues, the metabolism of the agent and its elimination from the 

body. Therefore, once lead molecules have been identified, they must be tested  

in vivo,  inside whole living organisms, animals[50].  
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1.2.1 Ethics of Animal Use 

 

If testing is to be carried out on animals, it is important that an ethical framework 

is in place which can ensure that there is no mistreatment or unjustified use of 

animals. One of the cornerstones of such framework is the 3Rs. These come 

from a book written by Russell and Burch ‘The principles of humane experimental 

technique’, published in 1959, which advocated safe and ethical experiments on 

animals[51]. They proposed the 3Rs, replacement, reduction and refinement, 

which endeavour to eradicate animal use by ensuring every effort is made to find 

suitable alternatives. Furthermore, Russell and Burch went beyond focussing on 

experimental methodology, encouraging ethical thinking and empathy, by 

referring to the concepts of humanity and inhumanity, with inhumanity being 

described through distress, anxiety and frustration of a need[51]. It encouraged 

a holistic view regarding animals as opposed to viewing them as an empty vessel 

used to test drugs[52]. 

 

Since then, the 3Rs have been incorporated in legislation worldwide. In the UK, 

the Animals (Scientific Procedures) Act 1986 specifies that the 3Rs must be 

justified in every experiment using animals.  The first of the 3Rs is replacement. 

It must be proved a suitable alternative to using protected animals, living 

vertebrates, is not available. Full replacement involves not using any animals at 

all[53]. Animals can be replaced via established animal cell lines, human 

volunteers or mathematical computer models[54]. Partial replacement involves 

using animals incapable of experiencing suffering, including immature forms of 

vertebrates and invertebrates such as amoebae and nematode worms[53].  
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Next of the 3Rs is reduction, whereby the number of animals used in a study must 

be reduced to as few as possible. It is imperative that good planning precedes 

animal experiments to ensure maximum information is obtained from a limited 

number of animals. Statistical design has a key role in reduction through 

predicting the number of animals required to form an accurate conclusion from 

the data[55]. 

 

Finally, the last of the 3Rs is refinement and relates to animal welfare and 

suffering, ensuring that living conditions are satisfactory and all attempts have 

been made to minimise any pain or stress the animal is subjected to, as well as 

incorporating humane endpoints.  Ultimately, it is ensuring the animal is as happy 

as possible[56]. Hurst and West found that reducing stress for animals through 

improved husbandry techniques positively impacted experimental results as the 

data was less-variable[57]. For instance, mice exhibited lower anxiety levels 

when handled with a cupped hand where they were free to roam around the glove 

or were led through a clear acrylic tunnel in comparison to being lifted by their 

tail. Allowing them to choose to enter a tunnel or cupped hand gave them 

autonomy thus making human contact less intimidating and threatening[57]. In 

vivo models are an essential step in evaluating a drug before it goes into clinical 

testing in humans.  

 

Whilst in vitro tests can give very specific information about drug-target 

interactions, they aren’t able to cover the complexities of tumour growth in vivo. 

Tumours in vivo have an altered microenvironment and extracellular pH, with 

poor blood flow resulting in hypoxia and a change in interstitial fluid pressure. 

These conditions can alter properties of the agent culminating in poor conditions 
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for drug penetration and delivery[58]. Tumour cells tested in vitro are exposed to 

the full concentration of agent applied whereas in vivo the drug circulates around 

the body and is subject to metabolising enzymes before reaching the tumour. In 

vivo models provide important safety information regarding dosage and toxicity 

ahead of clinical trials with humans[58]. Ultimately, in vivo animal models have 

higher predictive values than in vitro models and therefore, guidelines worldwide 

stipulate that all new medicines must be tested on animals to ensure patient 

safety[59].  

 

Furthermore, not testing drugs adequately in vivo can lead to catastrophic events, 

as was seen with the drug thalidomide, originally an antiepileptic drug which was 

then prescribed to alleviate morning sickness in pregnant women[60]. 

Unfortunately, due to a lack of thorough, appropriate preclinical testing, it was 

unknown that the drug was able to travel through the placenta with damaging 

results; over 5000 infants were born with malformations[61]. Whilst it is 

recognised that animal research is crucial, it is closely governed and the 3Rs, 

play an important role in achieving this. 

 

In terms of preclinical cancer screening, mice are the most commonly used 

species. With similar nervous and reproductive systems, the mouse genome has 

many comparable genes with humans. Consequently, mice suffer from diseases 

similar to humans, including but not limited to cancer, diabetes and anxiety 

disorders[62]. The anatomy and physiology of mice is well understood and thus 

any changes are easily observed. Their rapid metabolism, short lifespan and high 

reproductive rates allow analysis through different stages of the life cycle in 

multiple generations[63].  
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1.2.2 Preclinical Animal Models 

 

In vivo preclinical screening cancer models play an essential role in the drug 

discovery process and are involved in target validation, lead compound 

identification and lead compound optimisation[58]. The main screening models 

are: subcutaneous transplantation models, where cells are injected under the 

skin; orthotopic models, where cells are transplanted at the tumour site of origin, 

and genetically engineered models (GEM), in which genes are manipulated 

resulting in spontaneous tumours[58], [63]. Subcutaneous models are the most 

commonly used. 

 

1.2.2.1  Subcutaneous Models 

 

Subcutaneous (s.c.) models involve implanting established tumour cell lines or 

tissue underneath the mouse skin[64]. The three main types of subcutaneous 

models are allografts, xenografts and patient derived xenografts (PDX). Allograft 

mice models have a full immune system. The implanted tumour is of the same 

genetic background as the host mouse, therefore, tumour rejection is less likely 

and the tumour micro-environment closely resembles the original tumour 

microenvironment[65].  However, a study by Voskoglou found murine allografts 

had very poor translation from preclinical to clinical activity in humans in 

comparison to xenograft models[48].   

 

Xenograft models consist of established human, or other species, tumour cell 

lines implanted subcutaneously in immunocompromised mice. This model 

enables testing of a variety of tumour cell lines and provides fast and reproducible 
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results. Furthermore, the mice are nude, hairless, thus the tumour sits under the 

skin and is visible and easily accessible. Issues with these models are that the 

majority of cell lines are not implanted at their site of origin, xenografts suffer from 

a loss of heterogeneity, due to continual passage of the cell lines, and low 

metastatic rates[66].  

 

PDX models improve on xenografts as human tumour tissues are excised and 

implanted in the mouse; the genetic, histological and phenotypic features of the 

tumour are preserved and stabilised[67]. Although this model has high 

physiological relevance, it is difficult to access freshly excised human tumours. 

The limited engraftment rates and long latency time for tumour development is 

unfortunate considering the process carries high costs and is labour 

intensive[58].   

 

Human tumour grafting highlights the potential for personalised medicine as the 

patient’s own tumour is propagated in the mice and used for testing. In one study, 

a patient with advanced pancreatic cancer was initially treated with  conventional 

gemcitabine treatment but was found to be resistant and the disease progressed 

significantly[68]. Human tumour graft analysis of the patient’s tumour found a 

biallelic (mutation in both alleles of the gene) inactivation of the PALB2 gene, a 

gene which functions in tumour suppression. The tumour responded to treatment 

with mitomyocin C, even though this is not a common second line therapy for 

patients resistant to gemcitabine[68]. When the patient was treated mitomyocin 

C, a DNA damaging agent, the patient remained symptom free for 3 years which 

is a big improvements from the median 3 month survival expected for patients 

with gemcitabine resistance[68]. In another study, PDX were developed for 
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gynecologic cancer and provided information on the patient’s prognosis. The 

more successful the PDX engraftment rate, the poorer the prognosis of the 

ovarian cancer[69]. Interestingly, genes that were up-regulated in the PDX 

models correlated with the patient outcome, highlighting the usefulness of this 

model in personalised medicine[69]. 

 

1.2.2.2  Orthotopic Models 

 

Where cell lines in s.c. models are implanted under the skin, cell lines in 

orthotopic tumour models are implanted at the site of the tumour origin thus 

reconstituting the original tumour microenvironment. Orthotopic tumour models 

also use established cell lines in immune-competent or immune-deficient rodents. 

Models are site-specific where cells are injected so that they form tumours in 

specific locations and so can also be used to mimic metastatic tumours. As the 

model facilitates local and metastatic spread, the interactions between the stroma 

and tumour can be observed [70].  

 

Testing Bevacizumab (Avastin) in an orthotopic model gave positive results.  

Avastin is a very popular drug used to treat breast carcinoma, colorectal cancer, 

renal cell carcinoma, and non-small cell lung cancer[71]. The drug is a humanized 

monoclonal antibody targeting the VEGF protein, therefore inhibiting the growth 

of new blood vessels. When tested in an orthotopic model the drug significantly 

reduced the disease progression. Most patients were seen to have a prolonged 

survival rate of up to 3 years[71].  Using orthotopic models to predict disease 

progression was highlighted in another study looking at metastatic prostate 
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cancer. Resecting the primary tumour resulted in significantly longer survival 

rates due to slower disease progression and reduced metastasis[72]. 

 

1.2.2.3  Genetically Engineered Mouse Models 

 

Genetically engineered mouse (GEM) models involve inducing specific genetic 

changes in a mouse to increase the chances of developing cancer or resistance. 

This can include oncogene expression, gene knockout or knock in, promoter 

genes or mutations in tumour suppressor genes. The mice are usually immune-

competent and the tumour growth is spontaneous and autochthonous[73].  

Aspirin and Enalapril work by inhibiting the angiotensin-converting-enzyme 

inhibitor and are commonly used to treat high blood pressure and kidney 

disease[74]. Aspirin is used to treat pain and inflammation mainly used for 

cardiovascular patients. These drugs are shown to have chemo-preventive 

properties in genetically engineered mouse model that had pancreatic cancer. 

Treatment after 3-5 months showed a delay in progression of pancreatic 

cancer[74].  

 

In another study, GEM models were used to identify proteins involved in 

metabolic and inflammation processes as potential  biomarkers in saliva in 

relation to tumour development in breast cancer with the aim to detect the cancer 

early thus leading to an improved diagnosis as well as prognosis. [75]. A major 

advantage of using GEM models is the tumours develop spontaneously and are 

not implanted, and so are histologically and genetically accurate[76]. Therefore, 

the tumours are more readily translated to human tumours in comparison to 

subcutaneous xenograft models. Conversely, GEM models are subject to 
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heterogeneity and variability and so can be difficult to co-ordinate for longitudinal 

studies[76].  

 

1.2.2.4  Summary 

 

The s.c. tumour transplantation model is the gold standard for in vivo screening. 

It  is the most commonly used to demonstrate drug anti-tumour efficacy, dosing 

regimens and toxicology as the model is simple and provides fast, cheap,  

reproducible  results with easy access to the tumour[66]. S.c. models affirm that 

sufficient amounts of a therapy can get through the body and to a solid tumour 

without getting metabolised or causing off-target effects in order to shrink the 

tumour or delay its growth compared to untreated controls. Unlike orthotopic and 

GEM models, the tumour is not at its site of origin and therefore the native tumour 

microenvironment is not present and can result in s.c. models having poor clinical 

predictive power.  

 

Although orthotopic and GEM models boast higher metastasis rates, they are 

hindered by long tumour development times and high expenses. Access to 

tumours is difficult as the primary and secondary tumours can be located 

anywhere in the mouse body whereas the tumour sits on the surface of the mouse 

in the s.c. model. Ultimately, s.c tumour transplantation models are still most 

commonly used due to their numerous practical advantages over orthotopic and 

GEM models. The next section discusses in detail the methodology for s.c tumour 

transplantation models [58], [63].  
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1.3 Evaluation of Efficacy in Subcutaneous Tumour Transplantation 

Models 

 

1.3.1 Calliper Measurements 

 

For an agent to be considered successful in these models, it must be able to 

significantly delay tumour growth in treated tumours in comparison to control 

tumours. Tumour growth is monitored through measuring tumour volume. This is 

normally done by taking 2D measurements of the tumour and translating them 

into a volume using a geometrical formula. The measurements are usually taken 

with Vernier callipers. 2D measurements are taken with a calliper in the X and Y 

axis to find the length and width. It is difficult to measure the Z axis, height, as 

tumours are rounded or abstract in shape[77]. Vernier callipers, Figure 2, have a 

main scale and a secondary moving vernier scale offering increased precision 

benefits[78]. The longest length of the tumour and it’s perpendicular width are 

measured; both measurements are decided upon by the investigator[78]. When 

taking measurements, the tumour is often squeezed until resistance is felt. 

Finally, the measurements are inputted into a formula to calculate volume.  
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Image highlighting the inside and outside jaws which hold the object being measured 

and the main and Vernier scale from which the measurements are read. 
 

Before the 1980’s, multiple formulas were used to calculate volume; Tomayko 

and Reynolds grouped and tested the various formulas and these are 

summarised in Table 1.1[78]. The absolute volume, used for comparison, was 

found through excising the tumours and weighing them on a digital balance to 

find their mass. Formulas based on the tumour area and diameter performed 

poorly whereas spheroid, rectangular and ellipsoid formulas had improved 

predictive potential[78]. From these, Tomayko and Reynolds found the ellipsoid 

formulas had the lowest mean square errors and boasted the best correlation 

with tumour size.  Furthermore,  every formula in Table 1.1, including the ellipsoid 

formula, was poor in predicting the volume for larger tumours and there was no 

significant difference between single and multi-lobed tumours[78]. 

 

 

  

Main Scale (fixed) 

Vernier Scale (moving) 

Inside Jaws 

Outside Jaws 

Object 

Figure 1.1: Vernier calliper  
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Table 1.1: Formulas used to calculate tumour volume. 

Formulas used to calculate tumour volume are shown in the table below with their 

correlation to true volume and mean square error[78]. L= length, W = width and H = 

height. True volume was calculated by excising the tumours and weighing them on a 

digital balance to find mass. 

Category Formula Correlation with 
tumour size 

Mean 
square error 

Area L x W 0.88 6.7 
π/4 x L x W 0.88 11.4 

Diameter L 0.63 53.0 
(L + W)/2 0.65 59.4 
(L x W x H)1/3 0.66 68.0 

Rectangular solid volume  L  x W x H 0.93 121.9 
L x  W2 0.82 484.2 

Spheroid volume 4/3 π x r3     
    r = L/2 0.77 291.7 
    r = (L + W)/2 0.85 79.8 

Ellipsoid volume π/6 x L x  W x H 0.93 5.2 
π/6 x [(L + W)/2]3 0.85 79.8 
π/6 x L x W2 0.82 52.0 
π/6 x (L x W)3/2 0.85 71.8 
0.4 x L x W2 0.82 18.4 

Ellipsoid volume 
assuming π=3  

½ x L x W2 0.82 43.0 
½ x L x W x H 0.93 5.1 

 

  

From the ellipsoid formulas that required only two measurements of  length and 

width, omitting the height measurement, the formula with the highest correlation 

with tumour size and lowest mean square error became the industry standard: 

 

Modified ellipsoid formula: ½ (L x W²) 

 

Calliper measurements are highly subjective as the location of the longest length 

and perpendicular width are decided upon by the investigator. Additionally, the 

tumour is often squeezed until resistance is felt before the measurement is taken. 
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In one study, inter and intra-observer variation in calliper measurements was 

tested using experienced investigators[79].  The average difference between any 

two observers was found to be 15%. The intra-observer variation was tested 

through repeated measurements of the same tumour, whilst investigators 

believed the tumours were different to each other. The  difference was 27%  and 

7% for small and large volumes, respectively[79].  

 

Evidently, callipers carry poor reproducibility and accuracy as a result of human 

error and observer bias.  Kersemans et al constructed a Bland-Altman analysis, 

also known as a difference plot showing the agreement between two quantitative 

measurements, which in this case highlights the differences in calliper 

measurements between three observers shown in Figure 1.2[80].  The findings 

illustrate a high and inconsistent percentage difference between observers in 

taking calliper measurements[80].  

 

 

 

Graphs (a), (b) and (c) show a large percentage difference between the three different 

observers highlighting the interobserver variation[80].  

 

In addition to this, using callipers can cause refinement issues as the animal is 

subjected to handling and its tumours are squeezed; the process of squeezing 

could result in damage to the tumour and its surroundings thus defeating the 

Figure 1.2: Interobserver Bland–Altman analysis for calliper measurements. 



 

23 
 

 Introduction 

purpose of the experiment[79], [81]. Although the calliper is the gold standard 

instrument, it is important to explore alternative methodologies to find accurate 

tumour volume whilst ensuring the mice gain maximum refinement benefits. 

 

1.3.2 Alternatives to Calliper Measurements 

 

The ideal replacement for callipers would be a non-invasive system where 

minimal to no contact with the animal is required. From electromagnetic fields to 

sounds waves, tumour information can be collected without compromising 

tumour tissue via handling with callipers. Additionally, these methods are reverse 

translated from clinical use. Techniques used to find s.c. tumour volume are 

reviewed below and in Table 1.2 and compared with calliper measurements. 

 

1.3.2.1  MicroCT 

 

Micro computed tomography (microCT) is an imaging system using powerful 

electromagnetic X-rays to provide cross sectional slices in both 2D and 3D. The 

different tissues and densities in the body absorb or block the X-rays at different 

levels and therefore the tissues can differentiated from each other, facilitating the 

visualisation process[82]. Proven to be successful on bone studies, mapping the 

bone architecture and its different densities, the imaging modality is fast 

establishing itself in preclinical imaging in small animals, being used in both in 

vitro and in vivo studies. In vitro uses involve providing microscopic histological 

information and in vivo studies range from whole body to vascular imaging[83].  

Furthermore, microCT is able to detect metastasis as well as measuring response 
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to treatment[84]. Whilst this technique has the penetrative power and resolution 

to image deep-lying tumours, it has also been used to evaluate surface tumours. 

Jensen conducted a comparative study to ascertain if the microCT imaging 

system could improve upon volume measurements of s.c. xenograft tumours 

found using callipers and the modified ellipsoid formula[81]. Xenografts were 

implanted subcutaneously in mice with the human breast adenocarcinoma cell 

line. Calliper measurements were taken and the mice were then anaesthetised 

and fixed onto a bed for a 7 minute CT scan. For the reference tumour volume, 

tumours were excised and the volume was calculated from weight and 

density[81].  

 

When compared with reference tumour volume, volumes obtained from both 

microCT and callipers gave R2 values of 0.97 and 0.8, respectively; results can 

be seen in Figure 1.3. Interestingly, intra-observer variance was twice as high in 

calliper measurements. Evidently, microCT surpassed callipers in accuracy, 

reliability and reproducibility[81].  
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Showing calliper tumour volume (y = 1.27 ± 0.15x + 56.9 ± 24.2, R2 = 0.80) and microCT 

tumour volume (y = 1.01x - 6.1, R2 = 0.97) against the reference tumour volume[81].The 

microCT volume measurements  have higher accuracy in comparison to the calliper 

volume measurements. 

 

Although microCT surpassed callipers in volume measurements, the mouse was 

anaesthetised, fixed onto a bed and subjected to long imaging times[83].  This 

was improved upon by Abou-Alkacem who used both microCT and calliper 

measurements to measure the tumour growth for human colon cancer cell line 

implanted subcutaneously in 9 mice[85].  Although the study still used 

anaesthesia, the imaging time was reduced to 90 seconds per mouse[85]. When 

compared to the reference volume, found after excising the tumour, volumes 

obtained from both microCT and callipers gave R2 values of 0.93 and 0.8, 

respectively. Therefore, MicroCT exceeded callipers in accuracy in predicting 

tumour volume.   

 

 

 

Figure 1.3: Linear regression with CT and calliper tumour volume.  
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1.3.2.2  PET Scanning 

 

Positron emission tomography (PET) is a type of non-invasive imaging utilising  a 

tracer[86] to monitor physiological functions. A tracer is a substance that can be 

tracked via distinctive properties such as colour or radioactivity.  A commonly 

used tracer is [18F]-fluorodeoxyglucose (FDG) which is an analogue of glucose. 

Glucose absorption is increased in the majority of cancers because cancer cells 

consume more glucose in comparison to normal cells. Therefore, there is 

increased expression of GLUT-1 glucose transporters[87]. PET scanning is 

useful  in providing 3D images showing functional processes in the body and is 

able to identify benign tumours from malignant and the staging of the cancer[88].  

 

Jensen used FDG-PET scanning and callipers to measure and compare s.c. 

tumour volume measurements. When the FDG-PET scanning and calliper 

measurements were compared to the reference volume, found after excising the 

tumour, R2 values were 0.75 and 0.8, respectively[81]. The FDG-PET was unable 

to reproduce the accuracy of the callipers. Moreover, the FDG-PET scanning 

process required the mice to be anaesthetised, fixed onto a bed and scanned for 

20 minutes offering no refinement benefits[81]. Furthermore, there is increased 

uptake of FDG in response to  an infection thus activity is recorded at  the site of 

the infection as well as in healing bone, joints and lymph nodes[89].  Ultimately, 

the FDG-PET scanner is not a viable replacement for callipers.  
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1.3.2.3  Magnetic Resonance Imaging 

 

Magnetic resonance imaging (MRI) is commonly used to measure tumour volume 

and track metastasis, finding the size and position of the tumour and tracking  

longitudinal treatment effects[84]. Tumour characteristics such as 

vascularisation, apoptosis and diffusion can also be determined[90].   MRI does 

not use any harmful ionising radiation. Instead, it exploits hydrogen atoms from 

fat and water molecules found in most tissues by subjecting them to a strong 

magnetic field and radio frequency[91].  Altering radio frequencies and magnetic 

field strengths enable data collection from different parts of the body allowing 

visualisation of different layers of the tissue[92].  

 

MRI was used in a study measuring s.c. tumour xenograft volume, directly 

comparing calliper measurements with high resolution MRI images[80]. This high 

resolution scan took approximately 9 minutes and the mice were anaesthetised. 

The volume found from the high resolution images served as the reference 

volume; the tumours were not excised as the volumes were measured over time. 

The study found callipers to have a r < 0.92 correlation with the reference 

volume[80]. 

 

Furthermore, the study went on to improve refinement benefits to mice by also 

finding volume from images obtained from awake, manually constrained mice 

where no anaesthesia was administered. A correlation of r > 0.96 was found. Not 

only did this give improved volume measurement compared to callipers, the MRI 

imaging time was reduced from 9 minutes from the high resolution images to 1 

minute[80].   
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A study by Abou-Elkacem also used both MRI and calliper measurements to 

measure volume[85]. The reference volume used to compare the volumes found 

was found by excising the tumours and finding their mass. The volume found 

from MRI had a R2 of 0.96, whereas the calliper measurements, when compared 

to the MRI volume, had a R2 volume of 0.80[85]. Although MRI imaging 

equipment is expensive and requires a high level of training, they provide 

improved volume measurements compared to callipers[93]. 

 

1.3.2.4  Ultrasound 

 

Like MRI's, ultrasound does not use harmful ionising radiation[94]. Instead, it 

uses high frequency sound waves. Ultrasound machines are known for their role 

in prenatal pregnancy but are becoming increasingly popular in preclinical 

imaging, providing information on anatomical imaging; more sophisticated 

ultrasound machines can quantify tumour blood flow and perfusion.  The real-

time imaging, which carries fewer costs compared to the MRI equipment, is able 

to provide fast  information and is easier to use[84].  

 

Ayers conducted a study comparing calliper measurements and 3-D ultrasound 

imaging for finding s.c. xenograft volume[94]. Once calliper measurements were 

taken, the mice were anaesthetised and placed on a heated stage where the 

xenograft was coated with a warm ultrasound gel and the scan took place 

producing 3-D images.  Four trained observers manually identified and 

segmented tumour regions in the images to determine the volume. True volume 

was calculated once the tumour was excised and its mass determined through 
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direct correlation between tumour volumes found by water displacement, and the 

mass itself. Ultrasound deviation from the true volume was P=0.0005, 

significantly lower than calliper deviation at P=0.001,  (Figure 1.4)[94].  

Furthermore, although volume determination for ultrasound involved four 

observers manually determining the tumour region, the calliper volumes had a 

volume variance 1.3 fold higher than ultrasound measurements.  

 

 

Ultrasound deviation from the true volume was seen to be P=0.0005, significantly lower 

than calliper deviation at P=0.001[94]. 

 

Pfanzler et al built upon the previous study by combining 3D ultrasound imaging 

with speckle and 3D wall motion tracking algorithms to determine s.c. xenograft 

volume[95]. The study determined ultrasound measurements both in vivo and ex 

vivo but mice were sacrificed for both measurements, with in vivo measurements 

taking place immediately after the sacrifice. True volume was calculated ex vivo 

through determining tumour mass density, following the same method used by 

Figure 1.4: Findings from Ayers et al showing deviation in subcutaneous xenograft 

volume determined via ultrasound and callipers from the true volume. 
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Ayers et al[94]. Volume determined by ultrasound was closer to true volume in 

comparison to calliper measurements for 5 out of 7 tumours[95]. In summation, 

although ultrasound requires anaesthesia and increased animal handling when 

compared to callipers, it has better reproducibility and accuracy for volume 

prediction. 

 

1.3.2.5  Thermal Imaging 

 

Thermal imaging was first used clinically in the 1960’s where an elevation of 1-

2°C in human breast cancer tissue was seen[96]. This was believed to be due to 

hyper-vascularity occurring at tumour sites to accommodate for growing cell 

masses. In the 1970’s,  the Breast Cancer Detection Demonstration Projects 

tested thermography, as well as mammography, for diagnostic purposes but 

thermography was eventually abandoned in 1977[97] as thermal images were 

difficult to interpret due to lack of experience and technical training of staff[98], 

[99]. Digital infrared imaging devices are now more readily available and offer a 

cheaper alternative to other non-invasive imaging devices such as CT, MRI and 

PET scans.  

 

Where previous studies demonstrated a temperature elevation clinically at a 

human breast tumour site, studies on subcutaneously implanted experimental 

human breast (MDA-MB-231, MCF7)[100] and rat mammary adenocarcinoma 

(13762 MAT)[101] xenograft models, showed a significant decrease in 

temperature. Furthermore, Song et al found that tumours were detected using 

thermal cameras up to 3 days before they were visible to the human eye, 

highlighting the sensitivity of the thermal camera to pick up vascular changes very 
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early in tumour development[100]. They found  that the temperature decreased 

further as the tumour grew indicating that thermal imaging could monitor tumour 

volume[100]. A study by Xie et al then went on to link the temperature decrease 

to poor vasculature in the xenograft tumours caused by rapid growth, the effect 

was intensified through using anti-angiogenic  drugs which damaged the 

vasculature further and caused a further decrease in the temperature[101]. 

 

A decrease in temperature at the site of subcutaneous xenograft tumours, in 

multiple cell lines, was confirmed in laboratories here at Bradford by Hussain et 

al, as can be seen in Figure 1.5[102]. In the same study it was demonstrated that 

thermographic imaging can be used to not only monitor tumour volume, but also 

differentiate between treatment types and measure drug toxicity[102].  

 

It took only 3 seconds to image each tumour and there is no requirement for 

anaesthesia or any contact with the tumour itself[102]. Although simpler than CT, 

MRI and PET scans, thermographic imaging equipment and relevant training 

would still be required.   Moreover, it can be difficult to isolate the tumour outline 

in thermographic images (Figure 1.5b) as there is also a temperature change in 

the tumour microenvironment.  

 

 

 

 

 

 

 Figure 1.5: Thermographic imaging of tumours 
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Figure (a) shows thermal images alongside corresponding digital images, clearly 

showing a reduction of temperature at the tumour site.   (b) Shows the effect is consistent 

with different tumour types[102]. 

 

1.3.2.6  Optical Imaging 

 

Optical imaging is a form of non-invasive imaging, using luminescence for 

preclinical testing. Fluorescence imaging (FLI) is a form of these. The cancer cell 

lines used to create the tumour in the mice are infected with fluorescence proteins 

(FP).  The tumours are then inflicted with light, the FP absorbs light and reaches 

an excited state. Next, the FP decay from the excited state and whilst doing so, 

emit a fluorescent light which can be measured with specialised equipment. FLI 

is commonly used in preclinical testing, from drug efficacy to monitoring the 

growth of tumours[84]. 

 

A study compared multiple modalities and found that ex-vivo tumour volume 

correlated highly with volume found using MRI (r2 = 0.96). In-vivo volume 

determined using callipers correlated with the MRI at (r2 = 0.80). The study went 

on to then compare MRI volume with volumes found from optical imaging, using 

both green and red fluorescent probing for testing. Where MRI also finds depth 

in an image allowing it to find a 3D volume, the FLI, similar to in vivo calliper 

measurements,  can only find two  dimensions of length and width and therefore, 

the modified ellipsoid formula was used to determine volume. The study found 

that FLI had a high correlation with MRI volume (r2=0.73), although not as high 

as the in vivo volumes (r2 = 0.80). Furthermore, it was found that both FLI and in 

vivo calliper measurements overestimated the size of tumours, indicating the 
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flaws in basing volume on an ellipsoidal measurement. Bioluminescence imaging 

(BLI) is an alternative optical imaging method using the enzyme luciferase to emit 

light, but no comparative studies have been done in using BLI to determine s.c. 

xenograft volume and compare this with calliper measurements.   

 

1.3.2.7  Summary of Alternative Methods 

 

Whilst the non-invasive methods mentioned above all offer some advantage over 

the use of callipers to measure s.c. tumours, these are offset by the issues with 

most methodologies as discussed and summarised in, Table 1.2. The high level 

of training required as well as the expensive equipment has resulted in the 

callipers maintaining the gold standard position for measuring s.c. tumour 

volume, although the methodology is clearly flawed. Furthermore, some non-

invasive imaging modalities require anaesthesia and some require animals to be 

restrained and subjected to long imaging times. This project proposes using basic 

digital imaging involving taking a 2D digital image on a basic personal-use digital 

camera, which is both cheap, accessible and can be purchased from a non-

specialist outlet, to replace all previous methods. As well as being inexpensive 

and easy to capture images, digital imaging is easily accessible for labs 

throughout the world.  
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Table 1.2: Non-invasive imaging methods 

Advantages and disadvantages of various non-invasive imaging modalities. 

Non-invasive 
Imaging 
Modality 

Advantages Disadvantages 

CT High sensitivity anatomical 

images, provides 3D image. 
Lower resolution, limited 

functional information, poor soft 

tissue contrast, requires 

expensive equipment. 

PET High sensitivity, 3D imaging, 

biochemical information. 

Limited anatomical information, 

specialised equipment, need 

radio-nucleotide facilities, 

equipment is expensive. 

MRI High spatial resolution, good 

soft tissue contrast, provides 

anatomical and functional 

information. 

Low sensitivity, relatively long 

acquisition time, requires 

expensive equipment. 

Ultrasound Good resolution, provides 

anatomical and functional 

information, fast and portable 

technique, relatively 

inexpensive, amenable to 

smaller research laboratories. 

Inability to image through bone. 

Thermography Fast and portable technique, 

relatively inexpensive, 

amenable to smaller research 

laboratories. 

Preclinical results differ from 

results found with humans. 

Optical (BLI 
and FLI) 

Wide applicability, relatively 

inexpensive, amenable to 

smaller research laboratories. 

Requires genetic manipulation of 

investigated cells, limited 

anatomical information, reduced 

sensitivity with increased imaging 

depths. 
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1.4 Digital Imaging 

 

Digital image capture devices ranging from non-specialist shop-bought digital 

cameras to smartphones, are globally accessible to all. Advantages include 

portability, low costs and ease of use. A digital image can be considered as a 2D 

function of the spatial plane co-ordinates of X and Y. Therefore, a digital image 

consists of a number of X and Y co-ordinates, where each co-ordinate represents 

an element of the image with an intensity level (or grey level).   

 

When taking a digital image, clicking the button to take the image results in the 

opening of a lens which allows light through to a sensor, fragmenting the incoming 

light source into pixels before measuring and storing the pixel colour and 

brightness as a number. Thus, a digital image is collection of numbers describing 

pixels which form together to give an image. Images can be examined in 2 ways: 

image processing and machine learning. Image processing involves accessing 

the stored information and extracting useful information including, but not limited 

to, the intensity of colours or any stark differences in colours which could be 

indicative of boundaries. Conversely, machine learning doesn’t look at singular 

images, but finds relationships and common patterns in multiple images. This 

section discusses image processing and machine learning techniques that can 

be utilised to enable the detection of the tumour and deciphering of its tumour 

volume.  
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1.4.1 Image Processing Techniques that can be applied to find 3D 

measurement from 2D image 

 

Image processing involves analysing and manipulating image features to extract 

information. Various image processing techniques such as colour segmentation, 

edge detection and histograms are explored for their usefulness in fulfilling the 

aim of this thesis which is to find a 3D s.c. tumour volume measurement from a 

2D digital image. 

 

1.4.1.1  Colour Segmentation 

 

Colour segmentation is an image processing technique that uses colour spaces, 

or defined sets of rules to define colours, to find colour differentiation within an 

image. This could be useful to detect s.c. tumours as there may be differences in 

colour between the mouse flank and the tumour. Colour spaces can be 

categorised into RGB, YUV, CIE and HSV groups[103].  The RGB model is 

popular and well known because it is commonly used in displays technology, 

including mobile screens, computer displays and television screens[104]. Table 

1.3 shows the commonly used colour spaces, with the parameters used to 

determine colour and its intensity. 
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Table 1.3: Showing the commonly used colour spaces RGB, YUV, CIE and HSV with 
their colour definitions describing how they define and segment colour 

Colour Space Parameters 

RGB Red,  green, blue 

YUV Luminance, chrominance 

CIE X, Y, Z  

HSV Hue, saturation, value 

 

 

As the colour of nude mice closely resembles human skin colour, skin detection 

models can potentially be used to identify the mouse and possibly the tumour 

from a digital image. A study measured the success of the different colour spaces 

in skin detection[103]. 

 

Skin detection involves finding pixels corresponding to skin colour and the ability 

to detect these in an image or video thus forming the basis of facial recognition. 

The CIE and RGB models performed poorly, CIE was successful in 86.2% of 

cases, whilst RGB and CMY models detected 86.55% and 86.15%, respectively. 

The YUV colour space models ranged in their success, with YIQ having the 

lowest detection at 86.93% and YCgCr was best at 92.63%. The best skin 

detection was delivered by the HSV colour space models at 95.06%[103].  

 

Additionally, colour segmentation allows the reduction of information in an image 

by separating it out into separate colour channels. The colour channels can be 

used to threshold an image, ensuring that any pixels outside the colour range are 

removed. This was seen in the work of Arslan on segmenting white blood cells in 

bone marrow and peripheral blood images[105].  The work found that by 
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converting the RGB image to greyscale for processing, multitudes of information 

were lost. Instead, they applied a threshold  the images to only focus on the green 

band, in which  the white blood cells had a greater colour intensity[105].  

 

Focusing on different colours in an image is useful for extracting features from 

digital images. As well as looking at different colours, the intensity of boundaries 

and image regions in grayscale images can be used to outline and isolate image 

features using edge detection. 

 

1.4.1.2  Edges and Gradients 

 

Edge detection and finding image gradients are useful tools in image 

segmentation and can potentially be useful in differentiating the tumour from the 

mouse body. The technique utilises the discontinuities in image intensities to 

decipher boundaries once it has been converted from colour to  grayscale[106]. 

Detectors also incorporate gradients, which look for the magnitude and 

directional change of the pixel intensity. Edges take the forms of steps, lines and 

junctions; steps are the most common form. Steps represent the difference in 

grey levels within a segment of the image and therefore, the grey level will reach 

both a maximum and minimum point, hence showing the edge[107].  
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(a) Ideal step showing difference in two grey levels in an image, (b) step is corrupted with 

noise resulting in a smoothed step edge, (c) first order derivative of smoothed edge in 

(b), (d) second order derivative of (c), (e) pulse double step edge and (f) staircase double 

step edge[107].  

 

When images are captured, the response of the image system to the object being 

captured is called a point spread function (PSF). The PSF is convoluted with the 

light source and the object to give a final image. This results in blurring of the 

object. Decreased blurring is indicative of an imaging system with better quality. 

Due to this, the step edges found in images are blurred and so produce smooth 

edges[107]. This is known as noise. Figure 1.6a. and b. represent this[107]. An 

image is a continuous function, and gradients are a measure of any changes in 

this function thus finding the gradients leads to edge detection[108]. 

 

Other ways of representing step edges is using first and second order derivatives, 

but these fail to show the distribution of space around the edges, shown in Figure 

1.6c. and d. Finally, steps can be represented as inflection points. This means 

double edges are shown, showing both the high and lows in the differences 

Figure 1.6: Types of step edges  
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between the grey levels. The two types are pulse and staircase, shown in Figure 

1.6e. and f, respectively[107].  The double step edge model is most commonly 

used. 

 

Edge detectors use convolutional masks to find edges in an image, convolution 

masks are created by a kernel, a specified matrix, or sequence of numbers in a 

square format, used by the detector. Various edge detectors along with their 

method and specified convolution masks are described in Table 1.4.  
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Table 1.4: Edge detectors 

Commonly used edge detectors including those in this study are described. Although 

they use different techniques, there is clear overlap in the overall method of extraction. 

Edge 
Detector 

Method (Defines Edge) Convolutional Mask and its Use 

Sobel 
[109] 

Where image gradient is at 

maximum intensity 

 
Pixels in the centre. Uses mask to find 

edges vertical and horizontal to the 

pixel grid in the image. 

Prewitt 
[110] 

Where image gradient is at 

maximum intensity 

 
No focus on central pixels in the mask. 

Finds vertical and horizontal edges to 

the pixel grid in the image. 

Roberts 
[111] 

Where image gradient is at 

maximum intensity 

 
Finds edges at 45 degree angle to the 

pixel grid in the image. 

Laplacian 
[112] 

Approximates the second 

derivative of the gradient and 

finds the zero crossing; where 

the first derivative is at 

maximum. Uses Gaussian 

smoothing. 

 

Canny 
[113],[114]  

Uses Gaussian 

smoothing[115]. Uses Sobel 

detector to find gradient 

magnitude, which is used to 

find the gradient direction.  

 
Pixels in the centre. Uses mask to find 

edges vertical and horizontal to the 

pixel grid in the image. 
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Although edge detectors are sophisticated tools in finding boundaries various 

other image processing techniques, such as morphology operations and 

histogram of gradients, can be used to contribute towards isolating an object from 

an image. In this case, this would be the tumour from the mouse and surrounding 

background.  

 

1.4.1.3  Histograms and Morphology Operations 

 

Where edge detection uses gradients in conjunction with convolutional masks, 

the technique known as histogram of gradients focusses on regions of interest 

within an image. Within a region of interest, the area is divided into cells. 

Histograms are made of each cell, these are then combined and normalised. This 

technique shows how the gradient intensity and direction is distributed in an 

image.  

 

Morphology operations process images based on their shapes. This operation 

consists of implementing structuring elements to an input image which results in 

an output image which is also the same size. Dilation and erosion are the two 

basic types of morphological operations. Dilation differs to erosion as it adds 

pixels to boundaries of an object whereas erosion removes them.  The size and 

shape of the structuring element determines the amount of pixels that are added 

in dilation and removed in erosion. In dilation and erosion, a rule is used to 

establish the state of a pixel in the output image including the neighbouring input 

image. This rule is used to classify the operation as a dilation and erosion. 
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1.4.2 3D Measurement from 2D image 

 

This project proposes to obtain volume measurements with digital imaging. 

However, standard digital images are 2D and volume is a 3D measurement. 2D 

images have two axes, width and height, represented by X and Y, respectively. 

3D has a third axis, depth, represented by Z; this is visually represented in Figure 

1.7. Thus, applying depth to 2D digital images of a mouse tumour would enable 

3D measurement of the tumour. Multiple factors enable the extraction of depth 

information from a 2D image, including height, texture, light intensity, size of an 

object and perspectives. These factors are known as depth cues; these are key  

to processing the digital images and providing depth information, facilitating the 

2D to 3D transformation[116]. The number of image inputs is crucial in deciding 

which depth cues to be used, this is summarised in Table 1.5[116]. 

 

 

 

 

 

 

2D showing X and Y axis and 3D showing X, Y and Z axis. 

 

 

 

 

Figure 1.7: 2D and 3D axes 
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Table 1.5: Depth cues in single and multiple images 

Number 
of Image 
Inputs 

Depth Cue Description 

One 
image 

Defocus Closer objects are clearer and distant objects 
are blurred 

Linear perspective Parallel lines appear to converge to distance 
Atmospheric 
scattering 

Distant objects are less distinct and more bluish 
in colour 

Shading Pixels  with a brighter light intensity are closer 
Symmetric patterns Bilateral symmetric objects from different views 

can be seen as different images 
Patterned textures Distortion in image and rate of change of 

distortions, with distortions further away from 
camera appearing smaller 

Occlusions  Objects which overlap other objects are closer 
Two 
images or 
more 

Binocular disparity Take two  images from different angles and find 
corresponding points 

Motion Near objects move faster than far objects do 
Focus Multiple images with different focus levels and 

different distances are registered 
Defocus Closer objects are clearer and distant objects 

are blurred 
Silhouette Contour of objects which separate them from 

the background 
 

The focus of this project is on obtaining depth information from a single 2D image, 

for maximum refinement benefits to the mouse, and therefore, depth cues from 

single images must be explored further. 

 

1.4.2.1  Depth Cues from Single Images 

 

One way of finding depth is through the identification of parallel lines. Parallel 

lines can be analysed through linear perspective; parallel lines will appear to 

converge with distance, thus increased convergence represents increased 

distance and depth[117]. Patterned texture is another depth cue.  This approach 

builds a 3D impression from the image, by analysing the texture of the pixels, 
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‘texels’. The distortion intensity of the texels and the rate of change of distortion 

are used to build the 3D impression; texels at increased distance seem smaller 

and texels can also appear to be shortening if the texel is not parallel to the image 

plane[118].  

 

Occlusions are depth cues which look at the overlapping of objects; an object is 

overlapped if its view is disrupted by another object.  The object with its view 

disrupted is seen as being further away from the camera. The two depth cues in 

the category of occlusions are curvature and simple transform. Curvature 

involves segmenting the image, separating objects and shapes, and then 

highlighting curved objects, whereas simple transform involves mapping the path 

of pixel intensities[119].  

 

1.4.2.2  Shape from Shading 

 

Shape from shading is another depth cue that can be found in single images and 

instead of focussing on the shapes found in the image, this depth cue involves 

creating and finding depth using light intensity.   It is a concept that involves using 

the difference in shading and light intensity on the 2D image to generate a 3D 

image[120]. The process uses Inverse Square Law and Lamberts Cosine Law.  

The inverse square law states that an increase in distance from a light source 

results in decreased intensity; the light intensity  decreases by the square of the 

distance, this can be seen in Figure 1.8[121]. Light is reflected from a surface 

using either spatial or diffuse reflection. Spatial reflection involves a single ray 

being projected onto a surface and then being reflected away in a single ray with 

an identical angle. In diffuse reflection, the incoming ray onto the surface is 
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reflected back in multiple rays at varying angles and it is assumed that the ray 

intensity from the reflected rays is equal in all directions[120]. 

 

 

 

The inverse square law states that as the distance away from the light source is 

increased, the light intensity decreases by the inverse square of the distance. For 

example, when the distance from the light source is 2ft, the light intensity is 1/4[122]. 

 

Lamberts cosine law involves the use of a surface which has diffuse reflection, 

and it states that the cosine of the angle of incidence between the light source, 

and the surface normal, which is the line perpendicular to the surface, is always 

directionally proportional to the luminance intensity being reflected of the surface. 

Figure 1.9 shows the angle of incidence (ϴ). Shape from shading uses Lamberts 

law to formulate algorithms which generate a 3D shape using the lighting 

intensities[120]. The algorithms vary depending on the task and can be adapted 

according to the needs of the image. 

 

 

 

 

 

Distance

Intensity

Light 
source

1 ft 2 ft 3 ft 4 ft

1 1/4 1/9 1/16

Figure 1.8: Diagram illustrating the inverse square law regarding light intensity.  
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The angle of incidence is the angle between the ray from the light source and the surface 

normal[122].  

 

An example where shape from shading has been applied to a biological sample 

was to generate depth in images captured of small intestine villi morphology via 

video capsule endoscopy[123]. Coeliac disease is an autoimmune condition 

where the immune system attacks the component gliadin in the protein gluten, 

commonly found in in wheat, barley and rye[124]. A characteristic feature of 

patients with coeliac disease is villous atrophy and instead of having uniform folds 

in the villi, coeliac patients have a mosaic appearance[124]. A sequence of 

images were captured using video capsule endoscopy in which a camera and 

light are placed adjacent to each other. There is a direct relationship between the 

reflectance map and image brightness. Brighter pixels are closer to the camera 

in comparison to darker  pixels which  are further away[122].  

 

In order to apply shape from shading an algorithm was developed to detect the 

protruding areas in the intestinal lumen, which are the villi. A 9x9 pixel square 

was moved around the image and when the central pixel was brighter than the 

surrounding pixels, still contained in the 9x9 square, it was identified as a 

ϴ

Normal

Source

Surface

Angle of 
incidence

Figure 1.9: Diagram to show the angle of incidence 
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protrusion[123].  The mean pixel brightness within the 9x9 square was measured.   

Successively larger pixel squares (10x10, 11x11 etc.) were made and they also 

had their mean pixel brightness measured.  The size of the square was increased 

until a minimum brightest was reached.   The dimension of the pixel square with 

minimum brightness was recorded as the width. The difference in average 

brightness levels between the maximum and minimum brightness squares was 

recorded as the height. The spatial relationship between protrusions was also 

quantified by finding the mean absolute difference between a protrusion and its 

four nearest neighbours[123].  

 

The rendered image was successful in creating depth from the corresponding 

grayscale 2D image. There was a clear difference in the villi morphology between 

coeliac patients and control patients with coeliac patients having larger and more 

irregular sized protrusions[123]. As previously mentioned, the principles of shape 

from shading can be applied to different images and output different information. 

As an s.c. tumour has increased height in comparison to its surrounding, it is 

expected that the introduction of light would cause changes in the pixel intensity 

that could differentiate the tumour from the mouse flank.  

 

Where the techniques mentioned above are based on image processing where 

the focus is on a single image feature at a time, the next section discusses 

machine learning where multiple image features are utilised to achieve a task. 

 

 

 

 



 

49 
 

 Introduction 

1.4.3 Machine Learning 

 

Machine learning involves teaching a computer to identify patterns in data in 

comparison to hard-coding instructions to find specific features in data, as is the 

case with image processing. It is a sophisticated classification process where 

objects can be categorised. The two types of machine learning algorithms used 

in this project are cascade classification and convolutional neural networks, 

furthermore an extra layer of intelligence is added to the two via the use of support 

vector machine (SVM). SVM classifiers separate data using an optimum 

hyperplane usually computed by solving a quadratic optimisation problem. For 

instance, two input variables create a two dimensional space, and in such a 

situation, the hyperplane is a line that separates the two input variables into two 

different categories.  For the purpose of this project, the categories would be 

tumour and non-tumour. 

 

1.4.3.1  Cascade Classification 

 

Cascade classification is a method of object detection that uses multiple 

cascades, or stages, to train classifiers, known as weak learners, with positive 

and negative images. The classifiers are boosted through learning with every 

cascade thus transforming the classifiers into strong learners with increased 

predictive power. The first cascade classification algorithm used in object 

detection on grey images was developed by Paul Viola and Michael Jones in 

2001 for face detection[125]. The novelty was in the classifiers searching for 

features in the image rather than looking at the pixels themselves. The features 

were rectangle based shaded in either grey or white, where the sum of white 
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pixels are subtracted from the sum of grey pixels. The picture itself from which 

the object detection occurs, is transformed into an integral image, where the 

image is separated into quadrants and the lower right hand corner of each 

quadrant is a sum of all the pixels in the quadrants above and to the left of it. The 

integral image allows for fast and efficient computation[125].  

 

A final step is cascading the classifiers using AdaBoost, a technique developed 

by Freund and Schapire. It is known as a boosting algorithm because multiple 

weak classifiers are trained with random sub-sets of the training data set. The 

classifiers with higher accuracy are given higher weights and so will have bigger 

impact on the next stage of the classification whereas the classifiers with low 

weights will have low impact on the next stage of the classification.  Thus, regions 

which do not contain the region of interest are quickly discarded as the classifiers 

working on such areas will have low weights assigned to them. Viola and Jones 

used the AdaBoost algorithm to not only train the classifiers but also select the 

best features in the image, as with every classification, the rectangle that 

performed best was selected. Thus a combination of the best features could be 

used with each iteration of the classifications. The study achieved object 

detection 15 times faster than any previous method described[125].  

 

1.4.3.2  Convolutional Neural Networks 

 

A neural network transmits information from an input to an output through many 

different directions. This function is performed through a series of hidden layers 

which consist of a group of neurons. Despite each neuron being linked to all the 

other neurons in the preceding layer, it still functions independently. The output 
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layer is located in the final layer of the neural network. This is where the 

information is classified and a raw score is obtained. Although the classical neural 

networks (multilayer perceptron) can classify information to detect objects, they 

are not advanced enough to scale to full size image. Convolutional neural 

networks (CNN) have addressed this issue by arranging the groups of neurons 

in 3 dimensions to represent the width, height and depth of an image. 

Furthermore, CNNs have achieved success due to weight sharing, and feature 

space reduction (pooling). 

 

A CNN architecture is derived from 3 main layers: Convolutional (CONV) 

Layer, Pooling Layer, and Fully-Connected Layer. A possible CNN architecture 

can consist of 5 layers; INPUT, CONV, RELU, POOL and FC. The neurons in the 

INPUT layer will store the raw pixel value of an image. The, CONV layer, 

produces a dot product by calculating the output of the neurons from the weights 

and the location of the neuron connection during input. In the RELU (rectified 

linear unit) layer an activation function is applied where the input signal in 

converted to a nonlinear output signal which is then used in the next layer. Each 

layer transforms information to the next and by doing so it increases the number 

of dimensions which can result in the distortion of an image. Therefore, before 

the final step, a down sampling operation is performed in the POOL layer to 

reduce these number of dimensions, this technique has a positive effect of 

making the neural networks rotation invariant.  Finally the FC (fully-connected) 

layer will calculate the raw score. This output is used to predict detection. 

 

The Oxford Visual Geometry Group (VGG) created the popular and commonly 

used CNNs VGG-16, VGG-19 and VGG-face[126]. VGG-16 has a total of 37 
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layers out of which there are 13 convolution layers and 3 FC layers and all the 

convolution layers are equipped with 3 x 3 size filters as depicted in figure 1. The 

remaining layers are activation and pooling layers and the last layer is the 

decision layer. This deep neural network was trained on ImageNet database 

containing over 1.2million images of 1000 categories of objects. In 2015, the 

VGG-16 model was retrained on a dataset of 2.6 million human faces, this they 

named the VGG-Face; it has been reported to have achieved state of the art face 

recognition accuracy. VGG-19 is a deeper version of the VGG-16, the depth of 

the network was increased reaching up to 43 layers comprising of 19 convolution 

layers, 3 FC layers, the rest are interweaved activation and pooling layers. 

 

1.5 Aim and Objectives 

 

As has been reviewed there are several problems using callipers to monitor 

tumour growth in subcutaneous xenograft models. Therefore the aims of this 

project are to develop image analysis software which can calculate the xenograft 

volume in 3D from 2D images thus refining the method for tumour measurement 

and removing physical contact with the tumour. Nude mice were used in this 

thesis as the challenges in differentiating the tumour from the surrounding skin in 

hairy mice would be increased due to the overlying fur causing further disruption 

of the contour of the tumour thus increasing the difficulty of extracting tumour 

measurements. The aim will be achieved through the following objectives: 

 

• Use of image processing and machine learning to detect and isolate the 

tumour from the image through an automated process. 
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• Calculation of volume from the 2D image through using relatively simple 

image manipulation techniques to correlate 2D image analysis using the 

modified ellipsoid formula with calliper measurements.  

• Validation of the process using pseudo-tumours where the true volume is 

obtained through 3D scanning, and this is compared with calculation of the 

volume obtained from the 2D image and callipers. 

• Using shape from shading, to create virtual models with different lighting 

intensities to calculate volume through using regression analysis with volume 

and pixel features.  

• Predict tumour volume from 2D digital images through using machine learning 

and partial least squares regression analysis and compare these with tumour 

volumes found from calliper measurements.   
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2. Materials and Methods 

 

This Chapter presents the materials and sequential methods used to achieve the 

aim of detecting an s.c xenograft tumour in a 2D image and deciphering its 

volume. As can be seen in the flowchart below Figure 2.1, the sections start with 

describing techniques used for tumour detection leading onto methods to 

determine tumour volume.  

 

Figure 2.1: Flowchart showing the techniques used in determining tumour detection and 
tumour volume and the materials used to achieve this. 

 

 

2.1 Materials 

 

2.2 Methods 

 

 



 

55 
 

 Materials and Methods 

2.1 Materials 

2.1.1 Computer Software Programs 

 

A variety of specialist computer software programs were used to ensure best 

practice in achieving the aims and objectives. Program specifications and 

contributions to the project are disclosed in Table 2.1. 

 

Table 2.1: Summary of the computer software programs used in this project. 

Computer 
Software 
Program 

Version Used Description Contributions 

ImageJ ImageJ 1.49, 
open source, 
National 
Institutes of 
Health, USA 

Image processing 
program designed for 
scientific images 

Generate tumour masks 
from digital images of 
xenograft and pseudo-
tumours. 

Matlab Matlab 2014a, 
developed by 
MathWorks, 
USA 

Computing language 
used to develop 
algorithms, visualise and 
analyse data and numeric 
computation 

Build algorithms for 
image processing, 
machine learning and 
statistical analysis.  

Maya Maya 2015, 
developed by 
Autodesk, 
USA 

3D animation and 
modelling software 

Find volume of 3D 
pseudo-tumour models; 
create polygons with 
different degrees of 
shading and volumes. 

PolyWorks PolyWorks 
2014 IR8, 
developed by 
InnovMetric 
Software, 
Canada 

3D scanning visual 
feedback and 3D 
modelling 

Used to generate 3D 
polygons from scanning 
pseudo-tumour models. 

 

2.1.2 Equipment 

 

The specifications and contributions of equipment utilised in the project are 

detailed in Table 2.2. 
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Table 2.2: Description of equipment used in the project 

Equipment Specifications Contributions 
Laptop Latitude E5540, Dell, UK Data collection, analysis and reporting 

 
Camera Panasonic Lumix DMC-

SZ1, UK 
 

Captured all digital images of Xenograft 
tumours, pseudo-tumours and artificial models 
 

3D Scanner Faro Quantum Arm, UK Scanned pseudo-tumours, with results plotted 
on the accompanying software, PolyWorks. 

 

2.1.3  Tumour Models 

 

The project aims are to replace calliper measurements of s.c. tumours in mice 

with a non-invasive digital imaging system. Nude mice were used in this thesis 

as the challenges in differentiating the tumour from the surrounding skin in hairy 

mice would be increased due to the overlying fur causing further disruption of the 

contour of the tumour thus increasing the difficulty of extracting tumour 

measurements. Access to images of s.c. tumours in mice is limited, since it is not 

ethically acceptable to grow tumours solely for the purpose of acquiring imaging 

data. Therefore, in addition to tumour xenografts, pseudo-tumours and virtual 

tumours were developed to allow for a larger dataset to be studied. The following 

table details the different tumour types used in this project, specifying the 

materials they were developed with and their uses in the project. 
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Table 2.3: Description of the different tumour types used in the project 

Tumour Type Materials Uses 
Tumour 
Xenografts 

H460 cell line derived from a non-
small cell lung carcinoma. 
Purchased from LGC Promochem 
(Middlesex, UK)  

To compare volume derived 
from calliper measurements 
with volume found through 
digital images using 
computational techniques. 

Virtual  Created using Autodesk Maya as 
polygons (shapes with vertices and 
edges), or non-uniform rational B-
splines (Nurbs), a type of geometry 
used to create 3D curves. The 
modes were textured with Lambert 
material. Light sources included an 
ambient light to represent the ceiling 
and a directional light to create 
shading. 

To investigate the relationship 
between pixel intensity and 
volume. To provide images of 
tumours with known volumes. 
 

Pseudo-
tumour 

Blu-Tack, Bostik, UK. 
PlayDoh, Hasbro, USA 
Plasticine, Harbutt, UK 
 

To compare volume 
measurements derived from   
calliper measurements and 3D 
scanning with volume 
calculated directly from a 
digital image of the pseudo-
tumour. 
To investigate the effect of 
pixel intensity using height. 
To provide images to increase 
the dataset of tumours. 
 

 

 

2.2 Methods 

2.2.1 Tumour Xenografts  

2.2.1.1  Establishing Tumour Xenografts 

 

 

Balb/c immunodeficient nude mice (Envigo, Loughborough, U.K.), between the 

ages of 6 and 8 weeks were used. Throughout the study, all mice were housed 

in air-conditioned rooms in facilities approved by the United Kingdom Home 

Office to meet all current regulations and standards, with mouse having access 

to food and water ad libitum. All procedures were carried out under a Project 
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Licence (PPL 40/3670) issued by the UK Home Office according to government 

legislation, following approval of the work by the local Animal Welfare Ethics 

Review Board at the University of Bradford, and in accordance with the UK 

National Cancer Research Institute Guidelines for the Welfare of Animals[127]. 

Tumour xenografts were established as follows: under brief general inhalation 

anaesthesia, 2 to 3 mm3 fragments of donor human tumour xenograft tumours 

were implanted subcutaneously in the abdominal flanks. Once tumours were 

palpable, tumours were measured frequently by callipers as described below, 

and animal bodyweight also recorded to check for any deleterious effects.  

 

As the focus of this thesis was to collect images of sample images of tumours 

that could be used for image processing. It was always the intention to ‘piggy-

back’ on ongoing studies, so that no tumours were being grown up especially for 

this purpose. Therefore images were collected from animals being used in cancer 

research studies ongoing at the Institute of Cancer Therapeutics, Bradford. 

Images were captured from several tumour types being used in their studies, 

including xenografts grown using renal (ACHN), colon (DLD-1), liver (HEP-G2), 

breast (MDA-MB-231), head and neck squamous cell (OSC-19), neuroblastoma 

(SH-SY5Y) and non-small cell lung (H460) human tumour cell lines.  

 

The H460 study was the only study where images were captured from each 

tumour over the duration of the study, and fig 2.2 shows the growth curve as 

measured by callipers. 
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Figure 2.2: H460 s.c xenograft growth curve as measured by callipers 

 

2.2.1.2  Measuring Volume with Callipers 

 

Calliper measurements were taken of the tumours using Vernier callipers. The 

maximum length (L) of the tumour and the perpendicular width (W) were 

measured. Readings were taken to the nearest 0.5mm and inputted into the 

modified ellipsoid formula[78] generating a volume in mm3. 

 

Modified ellipsoid formula: volume = ½ (L x W²) 

 

2.2.2 Virtual Tumour Models 

2.2.2.1  Model creation 

 

Virtual models were created to investigate the relationship between lighting 

intensity and volume measurements, and to determine if shading could be used 

to predict tumour volume. Virtual models (Figure 2.3) were fashioned to represent 

the variety of tumour sizes and shapes found in vivo. 
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20 models created using software Autodesk Maya to represent the variety of shapes and 

sizes found in vivo. Models have an ambient light shining on them to represent a ceiling 

light. 

 

Models were constructed with polygons, which are pre-set shapes with defined 

vertices and edges, and Nurbs, which are shapes generated with curves, using 

the software Autodesk Maya. A polygon with the pre-set shape of a sphere was 

Figure 2.3: Virtual Tumour Models 
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used to create a set of spherical tumours through increasing and decreasing the 

size of the sphere. As Nurbs are easy to manipulate, these were used to create 

abstract tumour shapes. The models were textured with Lambert[128], a type of 

material displaying a matte surface, representative of the skin of nude mice. 

 

To simulate the imaging environment of s.c. tumours, every model was exposed 

to ambient light, a central light source representative of the position of the ceiling 

light present in the theatre where the mouse tumour xenograft images were 

captured. An additional directional light was projected at 10 different angles on 

the X axis to create varying degrees of shading on the surface of the model. The 

angles, Figure 2.4, were -15, -30, -45, -60, -75, -90, -105, -120, -135 and -150. 

Rather than selecting a base model, all the angles were used in testing to 

maximise information obtained from the models. 

 

 

The virtual models were subjected to a directional light applied to the surface of the model 

at angles ranging between -015X and -150X in increments of 10. An image was captured 

for each lighting angle and this enabled the measurement of the relationship between 

pixel intensities caused by lighting angles with the model volume. 

 

2.2.2.2  Volume Determination 

 

Virtual model volume was calculated in Maya with the divergence theorem, 

through calling the function ‘computePolysetVolume’. Divergence theorem, also 

Figure 2.4: Representative virtual model showing lighting angles along the X axis 
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known as Gauss’s theorem, is a mathematical concept showing the relationship 

between the flux of a vector field through a surface and its actions inside a 

surface[129]. The divergence theorem states that change in density within a given 

space is dependent on flow into or out of the region through a boundary. As this 

algorithm only works on polygons, Nurbs were converted to polygons before the 

volume was calculated. 

 

2.2.2.3  2D Image Capture 

 

Saving a 2D image from a 3D virtual model is known as rendering. To do this, the 

models were positioned centrally on the default grid in Maya. The viewing angle 

was shifted to top view, ensuring only the top of the model could be seen, making 

it comparable to images taken of s.c. tumours and pseudo-tumours. The 

‘Rendering’ tab was opened from the menu and ‘Render current frame’ was 

selected; this displayed a 2D representation of the current view of the model. The 

image was saved by selecting ‘File’ from the menu tab and selecting ‘Save 

Image’. 

 

2.2.3 Pseudo-tumour Models 

2.2.3.1  Pseudo-tumour Model Optimisation 

 

As access to s.c. tumours was limited, pseudo-tumour models were also created 

in order to compare different methods for finding volume including calliper 

measurements, digital images and 3D scanning.  Additionally, models were 

created to investigate pixel intensity through creating models of different heights, 

and also to increase the size of the dataset of images for further analyses.  
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A variety of materials, surface colours, model colours and scanning methods 

were tested to ensure compatibility with the 3D scanner used to measure actual 

model volume. The scanner was calibrated to find the best noise threshold and 

exposure values suited to the model feature being tested to ensure maximum 

performance. Additionally, a variety of model sizes were tested to ensure the 

models would reflect the diversity found in vivo. 

 

Materials used in preliminary testing, as set out in Table 2.4  below, included Blu-

tack, Plasticine and PlayDoh. All three materials were easy to manipulate and 

fashion into tumours. However, Plasticine did not hold its shape firmly thus 

making it unsuitable, as the shape could potentially distort through handling. 

Furthermore, although PlayDoh did hold its shape firmly, over time the material 

dried out resulting in a rigid inflexible model, unrepresentative of a tumour. The 

Blu-tack was the most suitable as it was both easy to manipulate whilst holding 

its shape firmly. 

 

With regards to the colour of the pseudo-tumour, all material colours were 

scanned successfully. The suitability of the scanning surface was also an 

important factor as it had potential to interfere with the readings. Multiple surface 

colours were tested and all were successful except for black. The table itself was 

preferable as the scanning surface as the solid foundation was better for handling 

the delicate pseudo-tumour models. 
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Table 2.4: Preliminary testing for artificial model scanning 

Finding optimum conditions for creating and scanning the pseudo-tumours to ensure 

accurate and reliable scanning results 

 

Testing 
Factor 

Details Result 

Material Blu-Tack Easy to manipulate and held shape firmly. 

Plasticine Easy to manipulate but did not hold shape 
firmly. 

PlayDoh Easy to manipulate but dried out, not useful for 
prolonged use. 

Material 
colour 

Blue, pink, purple, red, 
green, blue, yellow, 
orange and white. 

All colours scanned successfully. 

Colour of 
scanning 
surface 

White, black, yellow, 
orange, green, red, blue 
and wooden table.  

Black surface was unsuccessful, other colours 
were scanned successfully but the wooden 
table was best to add and remove models 
without disturbing the model shape. 

Model 
scanning 
method 

Full - The top of the 
model was scanned, 
then turned over and the 
bottom was scanned 
separately. The two were 
then aligned. 

This did not work with the smaller tumours as 
the shape slightly changed when the model 
was turned over to scan the second view. 
Some alignment carried errors resulting in 
rough surfaces with broken edges. 

Flat - The models edges 
were gently spread onto 
a flat layer of Blu-tack to 
replicate tumour and the 
skin. 

The scanner was able to accurately represent 
the model as a point cloud but the model 
would have to be separated from the 
surrounding material for digital image 
processing thus introducing error into the 
volume measurements. 

Raised - The model was 
raised on a pinhead and 
a single scan was done. 

As the model was raised the bottom curvature 
of the model was also scanned and the bottom 
of the model was purposefully made flat so it 
can be hole filled later. This accurately 
represents the true size of the model without 
needing alignment.  

Model 
sizes 
(mm) 

25x40, 20x30, 12x20, 
10x15, 7x10, 3x4 

All sizes were scanned successfully, the 
dimensions were reproduced in the model.  

 

 

Three different methods of scanning the pseudo-tumours were tested. Firstly, the 

‘Full’ method involved scanning the entire pseudo-tumour in two sessions, first 

scanning the top before flipping it over and scanning the bottom. The two scans 

were aligned using the software PolyWorks but this introduced errors and jagged 
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edges. The next method was the ‘Flat’ method. The pseudo-tumour was carefully 

placed on a layer of Blu-tack representative of a xenograft tumour and its 

surrounding skin. Although successfully scanned, difficulty separating the 

pseudo-tumour from the surrounding material using PolyWorks resulted in the 

loss of data from the bottom and sides of the pseudo-tumour. Finally, the ‘Raised’ 

method involved raising the model on a pinhead allowing for a single view scan 

of both the top and bottom in a single scanning session. The models were 

purposefully flattened from the bottom ensuring increased accuracy when 

completing the pseudo-tumour structure using PolyWorks. Finally, multiple 

pseudo-tumour sizes, representative of the variety found in vivo, were tested and 

all were scanned successfully. 

 

2.2.3.2  Pseudo-tumour Volume Measurement 

Pseudo-tumour Models for Volume Measurements 

 

Pseudo-tumour models created to allow volume measurements were designed 

with 10 different sizes; each size had three shapes, resulting in 30 models, 

(Figure 2.5). The models, measured in mm, were sized: 3x4, 4x6, 5x5, 6x8, 7x7, 

6x11, 9x14, 11x12, 6x16, and 14x17 and fashioned as a rounded shape, a fat 

kidney bean shape and finally an abstract shape reflective of the variety found in 

tumours. The model was stabilised on a pinhead and a single view scan was 

taken.  Further details are given in section 2.2.3.2.  



 

66 
 

 Materials and Methods 

 

30 pseudo-tumour models were fashioned to represent the variety found in vivo. Each 

row has three pseudo-tumours of the same size, with the size defined on the first column. 

The first column shows a rounded shape, the second column shows a kidney bean shape 

and the final column shows an abstract shape. 

 

 

 

 

Figure 2.5: Pseudo-tumour models used for volume measurements 
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Models for Deciphering Height 

 

To investigate the relationship between height and pixel intensity, 8 uniform 

models were created at different heights (mm): 7, 10, 13, 15, 16, 23 and 25. 

These were then imaged, from the same height, both with and without flash. The 

image without flash had no additional light source whereas the image with the 

flash had an additional light source emitted from the camera at the time of taking 

the image.  

 

Pseudo-tumour Models for Imaging 

 

To increase the number of images available for processing, 180 models,  

Figure 2.6, were fashioned to represent the variety of tumours found in vivo.  Both 

Blu-Tack and white Play-Doh were used to create the pseudo-tumours. As the 

purpose of the pseudo-tumours was to increase the number of images, the Play-

Doh drying out had no negative impact and the white colour provided a closer 

match to s.c. tumours. Images of the models were captured through stabilising 

the camera using a tripod. A Vernier calliper was used to take maximum length 

and perpendicular width measurements; these were inputted into the modified 

ellipsoid formula (see section 2.2.1.2), to give a volume comparable to the s.c. 

tumour volumes found using a calliper.  
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Figure 2.6: Pseudo-Tumour models used in the image database. 

180 pseudo-tumour models created using Original Blu-Tack and white Play-Doh to build 

up the image database of images that have both digital and calliper volume 

measurements. 
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2.2.3.3  3D Scanning of pseudo-tumour models 

 

The FARO QUANTUM ARM, illustrated in Figure 2.7, is a handheld 3D scanning 

device that uses triangulation to scan an object. The handheld device has a laser 

light accompanied by a camera which can detect the position of the laser light. 

The distance between the laser light touching the object and the camera is known 

and using this information, a point cloud is plotted on the accompanying software 

(PolyWorks, Table 5). Calibration before the scanning session begins ensured 

that the points were plotted in the correct space. Figure 2.8 shows the steps for 

the scanning process.  

 

Once the scanning device was calibrated the artificial model was positioned on 

the surface and scanned.  A clean-up process in PolyWorks ensured all extra 

points which did not belong to the artificial model were removed. The polygon 

model was then created, where the plotted points were connected in the form of 

Figure 2.7: Image of 3D FARO QUANTUM ARM scanner  
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triangles. Any holes in the reconstruction were filled within PolyWorks. The 

process was automated and ensured any gaps or holes in the model would be 

covered, consistent with the model shape, ensuring accurate analysis for volume. 

For complex models the process was optimised by increasing the number of 

triangles in the polygon as well as dividing the triangles by their edge length thus 

making it easier to identify holes and fill them without deviating from the original 

structure. Figure 2.7 shows the digital image of a pseudo-tumour, with its 

corresponding 3D scan model both before and after the hole filling process took 

place.  

 

 

Once the FARO Quantum arm scanner was calibrated, the pseudo-tumour models were 

positioned and scanned. The scans were digitally cleaned and formed into polygonal 

models. Any holes found were filled before exporting the models into the software 

Autodesk Maya to find its volume, which was then compared with volume found through 

using calliper measurements and digital imaging methods. 

 

Position Model on Surface

Scan Model

Clean up

Create Polygonal Model

Hole Filling

Export into MAYA

Find Volume

Figure 2.8: Scanning Process 
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Figure 2.9: An illustration of a pseudo-tumour model and its corresponding 3D scan 

model, before and after the hole-filling process. 

The Pseudo-tumour model was scanned using the FARO Quantum arm scanner and the 

figure shows the scanned model from above, the side and below. The model was then 

subjected to the hole filling process within PolyWorks and the resultant model is shown, 

again from above, the side, and bottom view. 

 

Once the polygon model was complete, it was exported into Autodesk Maya to 

calculate the volume. The divergence theorem was used to calculate the volume 

using the command, ‘computePolysetVolume.’ See section 2.2.2.2 Volume 

Determination for further information. 

 

2.2.4 Tumour Detection 

 

This section describes the image processing and machine learning techniques 

used when attempting to detect and isolate the tumour from the rest of the image. 

All algorithms and techniques were implemented using MATLAB unless stated 
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otherwise. From the s.c. xenograft images, the following captured image was 

used for testing (representative image in Figure 2.10). If the test was successful, 

the techniques were then implemented on all images collected from the study.  

 

 

 

The following flowchart (Figure 2.11) illustrates the sequence of methodologies 

applied to the original image to isolate the mouse body from the rest of the image 

and outline the tumour boundary. Image processing techniques begin with colour 

segmentation which was used to isolate the mouse from the rest of image through 

colour differentiation. Morphological operations were applied to trim pixels at 

object boundaries and thus contribute to trimming the mouse body in order to 

centre onto the tumour. Edge detection was applied directly to the original image 

and used to determine the tumour boundary.  Noise reduction was applied to 

improve the edge detection process. Contours group image regions with similar 

pixel intensities, and so it was used to isolate the tumour from the mouse body. 

Gradients were used to find the tumour boundary as they identify pixel intensity 

and direction. Finally, a threshold was applied to the original image to limit the 

Figure 2.10: Representative primary mouse image used for image processing and 
detection  
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pixels on display. Further techniques for finding the image boundary and centroid, 

central pixel region, were used to identify and isolate the tumour. The next stage 

in tumour detection was to use machine learning techniques including cascade 

classification and convolutional neural networks (CNNs). 

 

 

Figure 2.11: Flowchart demonstrating the sequence of image processing 

methodologies applied to the original image to isolate the mouse from the rest of the 

image and identify the tumour boundary. 

 

2.2.4.1  Colour Segmentation to Isolate the Mouse from the Image 

 

In order to achieve efficient segmentation, two colour spaces were investigated, 

RGB and HSV. Where RGB represent colours in three layers (red, green and 

blue), HSV represent the colours in a conical form (hue, saturation and value).  

The first attempt at isolating the body of the mouse was using the RBG colour 

space.  After the image was uploaded, it was separated into red, green and blue 
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channels. Each channel expresses colour with intensity between 0 and 255 

where 0 is black and 255 is high intensity colour. 

 

 A threshold (a value between 0 and 255) was applied to each channel to restrict 

the pixels on show, in order to identify which pixel range was best for isolating 

the body of the mouse from the remainder of the image. The thresholds applied 

were 0, 50, 100, 150, 200 and 255. If the threshold on one channel was 

successful at displaying the mouse, the channel was combined with the 

remaining two channels that still portrayed their full pixel range. Together the 

three channels formed a binary image. A binary image is two-valued (0 and 1) 

black and white image, where the mouse is white due to the threshold applied 

and the background of the image is black, as the background pixels did not meet 

the threshold. The binary image was then applied to the original RGB image 

where only the white pixels, corresponding to the mouse, were visible.  
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Figure 2.12: Algorithm for RGB colour segmentation 

The steps taken to split a standard digital image in RGB format into the three colour 

bands to threshold them, restrict pixel range, in order to identify the pixels containing the 

mouse from the rest of the image. 

 

 

The second colour segmentation technique applied was using the HSV colour 

space, Figure 2.13. The original image was uploaded into Matlab and converted 

from its original RGB form to HSV. The image was then split into hue, saturation 

and value channels and representative histograms were created, illustrating the 

pixel intensity in each channel. The original image has three distinct parts, the 

background, the hand and the mouse. As the mouse has the smallest surface 

Upload
Image

Split into colour bands 
red, green and blue

Threshold the channels 
to create masks

identify mask that 
shows the mouse

apply mask to original 
image
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area in the image, it is expected that the mouse would have the smallest intensity 

peak in the histogram. The channel with the clearest visual representation of the 

mouse was then given a threshold dependant on the range of pixels of the 

smallest peak on the corresponding histogram, in order to isolate the body of the 

mouse from the rest of the image.  

 

If the threshold on one channel was successful at displaying the mouse, the 

channel was combined with the remaining two channels that still portrayed their 

full pixel range. Together the three channels formed a binary image. The binary 

image was then applied to the original RGB image, hence only pixels that were 

white on the binary image were on display thus displaying the mouse. If 

successful in isolating the mouse body from the remainder of the image, the 

technique was applied to a batch of xenograft images. This was done by using 

the algorithm in a for-loop. A for-loop iterates through the batch, applying the 

algorithm to each image.   
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Splitting an image by hue saturation and value to identify if the mouse pixels can be 

differentiated from the parts of the image that do not contain any mouse. 

 

 

 

Upload Original Image

Convert from RGB to  HSV

Extract Hue, Saturation and Value Images

Create Intensity Histograms

Define Thresholds for Mouse Segment

Create Hue, Saturation and Value Masks Using 
Thresholds

Combine the Three Masks to make one Mouse Mask 
(binary image); Hue mask is used for reference

Convert Mouse Mask to 8-bit Unsigned Integer

Apply  Mask to all three RGB channels in Original 
Image

Show Final Image

Figure 2.13: Algorithm for HSV colour segmentation 
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2.2.4.2  Morphology Operations to Trim the Mouse Body and Centre of the 

Tumour 

 

Morphological operations were used to centre in on the tumour by removing outer 

sections of the mouse body. Erosion, a morphological operation, trims 

boundaries on greyscale and binary images using the function ‘imerode’.  This 

technique was utilised to erode outlying features of the mouse body including 

paws and the head thus reducing information in the resultant image to aid in the 

isolation of the tumour. A structuring element was defined, a square with a width 

of 200 pixels, and used to remove pixels around the image boundaries. The 

image input must be in binary form thus the image should only display black and 

white pixels. To increase efficiency, the binary mouse mask created in the 

previous section when segmenting the image in the HSV colour space was 

eroded before it was applied to the original RGB image.   

 

2.2.4.3  Edge Detection 

 

To isolate the tumour from the body of the mouse, edge detection methods were 

evaluated. These detect differences in regions of pixel intensity, and could 

potentially determine the outline of the tumour. Images were uploaded into Matlab 

and converted from RGB into greyscale as edge detection only works on black 

and white or grey images. Next, the edge detector function was selected, and the 

method for edge detection specified. The default detector in Matlab is Sobel. 

Other edge detectors tested were Canny, Canny approximation, Laplacian of 

Gaussian, Prewitt, Roberts and Zero-crossings to ensure the optimum detection 
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method was used to find the tumour boundary. These are covered in detail in 

section 1.4.1.2. 

 

To refine the process of edge detection, a threshold was defined for the image, 

thus ensuring the detector then stays within the limits set by the threshold. To do 

this, before running the final stage of edge detection, the threshold function was 

executed; MATLAB automatically calculated the threshold of the image according 

to the method of edge detection specified. The threshold value was then set 

before the edge detector function was called ensuring the edge detector stayed 

within the limit of the thresholds. The process of edge detection was further 

refined through noise reduction. 

 

2.2.4.4  Noise Reduction 

 

Often, the quality of images is reduced due to the internal workings of a camera. 

This can cause blurring of regions thereby corrupting the image and making it 

difficult to detect an edge. Noise can be reduced in the image before the edge 

detector function is called using an adaptation of the Wiener method, through 

analysing the neighbouring pixels around each pixel. Once the image was loaded 

and converted to greyscale, the ‘wiener2’ function was called from MATLAB. This 

returned an image with noise reduction and edge detection was applied to this.  

 

2.2.4.5  Contours 

 

Another image processing technique that could potentially aid the isolation of the 

tumour from the body is through creating a contour plot of the original image. 
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Contours create paths in an image, grouping regions with consistent image 

intensity values. To find the contours, the image was uploaded into MATLAB and 

converted into greyscale. Finally, the ‘imcontour’ function was executed and the 

image was then visualised.  

 

2.2.4.6  Gradients 

 

Gradients are useful for visualising changes in pixel intensities in an image and 

therefore could detect the tumour from the mouse body as the tumour has 

increased depth in comparison to the mouse body where depth refers to the 

height of the tumour. This was achieved through finding the gradient magnitude 

and direction, the change in pixel intensity, and the direction of pixel intensity, 

respectively. The image was uploaded and converted to greyscale. The gradient 

operator was defined and the gradient function ‘imgradient’ was executed. The 

resulting images were visualised using ‘imshow’. This gave an output of two 

images, one for gradient magnitude and the second for gradient direction.  

 

2.2.4.7  Threshold Image 

 

During colour segmentation thresholds were applied to image channels to focus 

on pixels corresponding to the mouse body. In this section, thresholds are found 

from and applied directly to the original image with the aim of finding a change in 

pixel intensity around the tumour boundary which would help isolate it from the 

body of the mouse. To threshold the image, the imtool function, a function in 

Matlab which allows the user to manually scan the image and obtain its pixel 

value, was used to locate the pixel value around the boundary of the tumour. The 
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threshold was then applied to the image by ensuring only pixels within 10 pixel 

values of the tumour boundary were visible. This generated a binary black and 

white image.  

 

Image processing methods described previously, including edge detection and 

gradients, were applied to the resultant binary image. Furthermore, an attempt 

was made to locate the boundaries, a technique tracing exterior boundaries of 

regions in an image, and centroids, the central point of the region, to ultimately 

locate the tumour on the mouse body. To calculate the image boundaries, the 

‘bwboundaires’ function in MATLAB was executed. To calculate centroids in the 

image, the function ‘regionprops’ was executed and centroids were specified. The 

centroids were then plotted onto the image itself and visualised.  

 

This following section describes machine learning techniques used to detect and 

isolate the tumour from the rest of the image.   Previously, image processing was 

applied to a single image of a mouse in order to search for a specific feature, 

such as edges or contours. This section involves training the computer to detect 

tumours through inputting thousands of image. The machine learning methods 

presented are cascade classification and convolutional neural networks (CNN). 

 

2.2.4.8  Cascade Classification 

 

Cascade classification is a method of object detection that uses multiple 

cascades, or stages, to train classifiers, known as weak learners, with positive 

and negative images. The classifiers are boosted through learning with every 

cascade thus transforming the classifiers into strong learners with increased 
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predictive power. The two-step process used to perform cascade classification 

for tumour detection starts with preparing the images required, Figure 2.14. To 

facilitate the learning of the classifier, positive images, i.e. images displaying the 

tumour, and negative images, i.e. images not displaying the tumour, were used. 

 

For cascade classification to work successfully, the classifiers require processing 

of large numbers of positive and negative images. The number of images was 

increased through rotating and flipping the images captured previously and 

altering the contrast. The following Figure 2.15 shows how one positive image of 

a tumour, highlighted with a red box, was transformed to give 36 positive images.  

Figure 2.16 shows some examples of negative images. Once the dataset was 

complete, 80% of both positive and negative images were used as training data 

and 20% for testing, to ensure the detectors were working successfully. 
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The first step in using cascade classification to detect tumours is to prepare the images 

for the process. This includes positive images containing the tumour and negative 

images not containing the tumour, to teach the classifier what it should and should not 

be detecting. 

Figure 2.14:  Pre-processing cascade classification – Prepare images 
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Positive images contain the tumour. To increase the data set, original subcutaneous 

xenograft images were transformed. Each row in the image grid represents a different 

contrast level applied to the original image marked with a red box. Each column 

represents a rotation of the image. 

 

 

 

 

Figure 2.15: Sample of positive images 
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Negative images were used to teach the classifiers what not to detect. The sample of 

images contains the background of the image, including the blue glove, areas of the 

mouse body and the extremities of the mouse. 

 

The positive images designated for training were loaded into the MATLAB 

Application ‘Training Image Labeller,’ where the region of interest was marked. 

The region of interest is the area in the image which the detector must find thus 

the tumour was marked. The regions of interest for all the images were exported 

as ‘positive instances.’ The negative images were simply saved in an alternative 

folder. The next step was to train and test the classifier, Figure 2.17. The classifier 

is a SVM, a supervised learning model used for categorizing data which in this 

case is a model designed to detect tumours. 

 

The classifier was trained using an inbuilt MATLAB function, 

‘trainCascadeObjectDetector’. The function required a number of parameters to 

be defined. The name of the classifier was defined and saved in a separate XML 

document to enable the classifier to be executed in later stages. The location of 

the ‘positive instances’ file and negative images folders were added. Next, the 

‘true positive rate’ was defined; this is a number between 0 and 1 representing 

the fraction of positive images correctly classified.  A higher true positive rate 

Figure 2.16: Sample of negative images 
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means increased accuracy in the classifier identifying tumours but the process is 

more complex thus taking longer to execute.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second step in cascade classification, after preparing the images, is to complete the 

classification process. The classifier is trained with the dataset and then tested to find its 

accuracy. 

Figure 2.17: Cascade classification - classification 
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The next parameter defined was the ‘false alarm rate’, a number between 0 and 

1 representing the number of negative images incorrectly identified as tumours. 

A lower false alarm rate means increased accuracy but the process of detection 

requires more time and computational power as the classifier would keep training 

until it reached the required rate. This can be difficult to achieve with a small 

sample size. This was followed by defining the number of cascade stages as 5 

due to the low sample size and low false alarm rate for the dataset.  

 

The classifier searches for specific features within the images during its learning 

process. The three feature types are Haar-type features, histogram of oriented 

gradient (HoG), and local binary patterns (LBP). All three were tested and the 

best performing was used in further testing. With the required parameters 

defined, the ‘trainCascadeObjectDetector’ function was implemented and the 

classifier was trained.  To test the effectiveness of the classifier, it was applied to 

the test images. The classifier was executed using the XML document created in 

the previous step. It identified tumours through placing a yellow box around the 

region it believed to be a tumour and saving the resulting image in a folder.  
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Cascade classification was run multiple times to find the optimum dataset for stronger 

classification. The columns show the four versions of cascade training with the rows 

showing the images used for training and testing the classifier. The red circles were 

added to the images to aid the classifier in detecting the tumour. 

 

To ensure the classifier was trained effectively for detecting tumours in digital 

images, 4 versions of cascade classification were tested, each with different 

parameters and datasets of images. Figure 2.18 specifies the parameters used 

for each version. As a potential advancement on the learning parameters 

evaluated in this section, next, a more sophisticated form of machine learning, 

CNNs, were used to detect the tumour in the image. To increase the accuracy of 

tumour identification a more sophisticated feature learning technique was 

deployed (i.e. neural networks). 

 

2.2.4.9  Convolutional Neural Networks  

 

The CNNs used in this work are deep neural networks that are pre-trained on 

huge ImageNet dataset. The idea here is to use the filters of a pretrained 

(learned) neural network to extract image features. Hence rather than using hand 

Figure 2.18: Sample of images used for cascade classification 
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crafted classical features such as Haar, LBP and HOG we use a weights of the 

neural network to automatically interesting features from images. Actually, recent 

research has shown that off-the-shelf (pre-trained) neural networks are better 

image descriptors as compared to classical algorithms[130].   The CNNs used in 

this project to extract features that are used to train SVM classifiers to detect 

tumours were VGG-16, VGG-19 and VGG-face, created by the Oxford Visual 

Geometry Group (VGG)[126]. These were selected for use for this study, due to 

their accuracy as well as ease of application. See section 1.4.3.2 for details on 

these CNNs.  

 

The CNNs have multiple layers, and each layer extracts different features from 

the images. To ensure the layer most suited to the dataset was used, the outputs 

of multiple layers were tested including the two fully connected layers (FC7 and 

FC6), and 2 last convolution layers. The layers are described in further detail in 

section 1.4.3. As with cascade classification, both positive and negative images 

were required but it was imperative that the number of positive and negative 

images were the same for both training and testing as this is a requirement for 

using CNNS. The negative images for training and testing were identical to the 

positive image numbers.  The datasets were limited by the computational power 

available. The algorithm to use a CNN for tumour detection is presented in 3 

stages; ‘create image database’, ‘extract features’ and ‘classification’.   

 

Create image database 

 

Stage one is to create an image database. The algorithm can be seen in the 

following Figure 2.19. For CNNs to work successfully they require large numbers 
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of images. In order to do this, the number images was increased through rotating 

and flipping the images and altering the contrast. Both xenograft and pseudo- 

tumour images were used. Positive images and negative images were prepared 

as previously described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first stage of the machine learning process was to create the image database, 

ensuring both positive and negative images were included and optimised to the right 

image size as required by the CNN. 

 

With both datasets prepared, 80% of both positive and negative images were 

kept as training data and 20% were set aside for testing to ensure the detectors 

Figure 2.19: Pre-processing CNN – create image database 
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were working successfully. Every image in the database was then resized to the 

dimensions required by CNN (see Table 3.2 for the image size required for each 

CNN). The final step in creating the image database was to subtract the mean 

image, provided by the CNN. 

 

Extract features 

 

With the images prepared, the next step was to extract features. The algorithm 

for this is shown in Figure 2.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second step in the machine learning process, after creating the image database, is 

the use a layer of the CNN to extract features form the images and save these in vectors. 

 

Figure 2.20: CNN – extract features 
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After initially loading the CNN, compiling and setting it up, the compile and setup 

arrangements were saved within the CNN, and MATLAB was used to call them. 

The next step was to load both the training data and the required layer from the 

CNN which was then used to extract the image features and create a training 

feature vector. The testing data was then loaded and using the same layer, the 

features were extracted and saved as a test feature vector. Specifically, the 

framework used throughout our experiments is MatconvNet a deep learning 

framework developed by VGG that easily integrates with MATLAB. 

 

Classification 

 

Now the features have been extracted, the next stage is to train a classifier and 

thus implement ‘machine learning’ to allow it to recognise tumours from non-

tumours through studying the positive and negative images contained in the 

training feature vector. The algorithm for this is shown in the following Figure 2.21.  

 



 

93 
 

 Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The third and final step in the machine learning process after creating the image 

database and extracting features from the images was to complete the classification. 

The classifier is trained and then predicts location of the tumours on test images. 

 

The SVM classifier was trained using the training feature vector. The next step 

was to test if the classifier has been trained successfully. To do this, the classifier 

was used to predict the location of tumours in the testing image database. Once 

the results were collected, the mean accuracy of the classifier in correctly 

identifying the tumours was calculated to give the recognition rate. To visualise 

Figure 2.21: CNN - classification 
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the location on the image that the detector identified as a tumour, a final step was 

added to the computer algorithm to put a red box around the detected area.  

 

If the detection was unsuccessful, a manual step was introduced to ensure 100% 

tumour recognition. In this case, the image was cropped to remove outlying 

features and focus on the tumour itself, a representation of this is shown in the 

following Figure 2.22. 

 

 

 

The image on the left hand side shows the original subcutaneous xenograft image used 

to test the classifier. The second image on the right hand side is a cropped version of 

the original image used if the classifier failed to correctly identify the original image. 

 

Multiple techniques from image processing to machine learning have been 

applied to detect the tumour in the image automatically. The next stage of the 

project is to use the images to find a tumour volume that is comparable to, or 

better than, calliper measurements. The following flowchart, Figure 2.23, details 

the different methodologies used starting with 2D tumour masks, where volume 

Figure 2.22: Original and cropped images used for detection by CNN 
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was calculated using length, width and mask area. Next, shape from shading 

techniques were applied where a relationship between light intensity and volume 

was investigated. Finally, machine learning techniques using pre-trained CNNs 

were used to find tumour volume. 

 

 

Figure 2.23: A flowchart showing the different methodologies used to decipher tumour 

volume from s.c. xenograft images. 

 

2.2.5 Tumour Volume – 2D Tumour Masks 

 

This section describes the methods used in calculating volume from the digital 

images by creating masks of the tumours and applying the modified ellipsoid 

formula, allowing for a direct comparison to calliper measurements. This was 

completed for both images of subcutaneous xenograft tumours and of pseudo-

tumours. Furthermore, the pseudo-tumours were scanned in 3D thus giving a 3D 

Tumour Volume

2D Tumour Masks

Calculating mask  volume 
using both length and width

Calculating mask volume 
using either length  or width

Comparing mask volume 
and area with calliper and 

3D volume

Shape from Shading

Height from pixel intensity

Virtual tumours displayed 
with different lighting angles 

Machine Learning
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volume. This allowed not only evaluation of the accuracy of volumes generated 

from the digital image masks, but also of the calliper measurements themselves. 

 

2.2.5.1  Digital Masks 

 

Digital masks of the tumours are images that contain only the tumour with all 

background removed.   These were created to isolate the pseudo-tumours and 

xenograft tumours from their surroundings in the images. This allowed for clear 

length and width measurements so the volume of the tumour could be calculated 

using the modified ellipsoid formula, thus making the measurement comparable 

to volume obtained from calliper measurements. 

 

Masks were created using ImageJ. The ImageJ software was opened, ‘File’ and 

subsequently ‘Open’ were selected from the menu bar, and the image was 

chosen from the laptop’s file directory. The tumour was zoomed onto and in some 

cases the image contrast was enhanced by 0.1% (‘Process’ in menu toolbar and 

then ‘enhance contrast’) to make the perimeter of the tumour clearer. The polygon 

tool was used to apply multiple points around the perimeter of the tumour, 

ensuring that the points corresponded with the tumour shape. When the 

perimeter was complete, ‘Analyse’ and ‘Measure’ on the menu bar were 

accessed to get the pixel number for the area selected. The mask was then 

created by selecting ‘Edit’ and ‘Clear outside’. This means only the tumour 

selected was visible and the remainder of the image turned white. The mask was 

then uploaded for analysis in MATLAB.  The same process was repeated for 

images of all tumours and models. The original image and its mask can be seen 

in Figure 2.24. 
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Original image of tumour xenograft is shown on the left, the mask generated is shown 

on the right. A red circle is placed around the tumour area in the original image. 

 

2.2.5.2  Calculating Mask Volume using both length & width 

 

Figure 2.25 highlights the steps taken in MATLAB to find the volume using the 

modified ellipsoid formula from the tumour masks. The masks were located in the 

file directory where they were stored and they were converted to binary black and 

white images, allowing for image processing. The maximum length and width of 

the mask were calculated through the function ‘regionprops’ in MATLAB which 

fitted an ellipsoid around the mask shape and then found the major axis length, 

and the minor axis length perpendicular to this. Once the length and width were 

found, they were converted from pixels to mm. These measurements were 

inputted into the modified ellipsoid formula to find volume.  

 

Figure 2.24: Digital mask of xenograft tumour 
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This figure shows the process of calculating the volume from the masks using the 

modified ellipsoid formula. The loop iterates through all the masks applying the volume 

onto each image. 

 

2.2.5.3  Calculating Mask Volume Using Either Length or Width 

 

The modified ellipsoid formula uses both length and width measurements to 

generate a volume. Volumes were generated using only the length measurement 

and using only the width measurement to test if both length and width parameters 

are essential for calculation. The algorithm, shown in Figure 2.26 followed the 

Figure 2.25: Mask volume using the modified ellipsoid formula 
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same steps as the previous algorithm, Figure 2.25, to find the mask volume 

except that the function which calculates the volume is changed depending on 

which measurement is being used. Length and width were calculated using the 

same method, ‘regionprops’ in MATLAB. 

 

Figure 2.26: Algorithm: Mask volume using only length and width in modified ellipsoid 

formula 

The process in finding the volume of the digital masks using either the length or width 

measurement is presented. The algorithm iterates through the masks contained in the 

directory to find the volume of each image. 
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2.2.5.4  Finding Mask Area 

 

When the masks were created, the area in terms of the number of pixels of the 

mask created were recorded in Excel. The area was also checked using both 

ImageJ and MATLAB and both returned identical values; the algorithm is shown 

in Figure 2.27. 

 

 

 

 

 

 

 

 

 

Algorithm illustrated the two methods used to find the mask area in pixels, using ImageJ 

and MATLAB. 

 

2.2.5.5  Comparing Mask Volume and Area with Calliper and 3D volume 

 

Once the volume measurements for the 2D tumour masks obtained from digital 

images had been calculated, these were then compared to calliper volume and 

volume obtained from 3D scanning. This was done to evaluate the ability of the 

Mask Area

ImageJ MATLAB
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Mask
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Measure

Record 
results
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Convert to 
binary Images

Compute 
area

Figure 2.27: Algorithm- mask area  
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algorithm to compete with the existing gold standard, callipers. Mask area was 

also used to find a relationship between the area of the mask and the volume. 

This was achieved through using statistics. 

 

The paired t-test was used to test if the two variables in question had means 

significantly different from each other. This test was chosen as all of the variables 

arise from the same group of tumours and so can be paired with each other. The 

paired t-test works by accepting or rejecting a null hypothesis at difference levels 

of significance. The null hypothesis states that there is no difference in the means 

of the two variables and so there is no significant difference between the data 

groups.  

 

The test was run in MATLAB using the following command:  

 

[h,p] = ttest (dataset1, dataset2); 

 

The outputs of the test are h and p where h represents the hypothesis test results. 

When h=1, the null hypothesis is rejected and if h=0, the null hypothesis is 

accepted. Additionally, p provides the P value, ranging between 0 and 1.  

 

 

Furthermore, the correlation co-efficient was found to establish if the variables 

had a strong or weak linear relationship, this is also known as Pearson’s r. The 

statistic outputs a number between -1 and 1 showing the strength and direction 

of the relationship. -1 represents a negative relationship whereas 1 represents a 

positive influence. The purpose is to check if one variable influences another, this 
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is known as covariance and Pearson’s r is worked out by dividing the covariance 

of the samples by the product of their standard deviations. 

 

This test was run in MATLAB using the following command:  

 

[R, P] = corrcoef (dataset1, dataset2) 

 

R is the correlation coefficient and P tests the hypothesis of no correlation; a value 

less than 0.05 indicates a significant difference between the two variable data 

sets. An alternative method for deciphering tumour volume through using light   

intensity was also used in these studies. This is known as shape from shading. 

 

2.2.6 Tumour Volume - Shape from Shading 

 

Principles of shape from shading were investigated to establish a relationship 

between shading and volume. In an attempt to establish a relationship between 

pixel intensity and depth, artificial models of different height were created and 

imaged from the same height with and without a fixed light source in order to 

detect any changes in the pixel intensity. Therefore, models with increased height 

were closer to the source of the light thus receiving increased light intensity. Next, 

a relationship between the spread of pixels and volume was investigated by 

creating virtual models with different angles of lighting, to see if any of the 

resulting features correlated with volume. 
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2.2.6.1  Depth from Pixel Intensity 

 

As previously described, 8 artificial models were created at different depths. 

These were then imaged, from the same height, both with and without flash. The 

flash is a light on the camera itself and by using it, a light source was directed at 

the model. To find the maximum pixel intensity of the image, the image was 

uploaded into MATLAB and the ‘max’ value was found. To establish if there was 

a relationship between the maximum pixel value and the depth of the model, a 

correlation co-efficient was calculated. This was done using MATLAB by calling 

the correlation function, ‘corrcoef’.  

 

2.2.6.2  Virtual Tumours displayed with different lighting angles 

 

As previously described, virtual models were created with known volumes and 

different lighting angles, allowing for multiple features regarding pixel intensity to 

be extracted from images of the models and regressed with volume. If there is a 

positive relationship, the shading on an image can be used to predict volume. 

The volumes of the models were found with the software Autodesk Maya through 

using the divergence theorem, as previously described (2.2.2.2 Volume 

Determination). 

 

As the 2D images of the virtual models were created in Maya, the background of 

every model was created black. The model was extracted from the image with 

MATLAB by only showing pixels that were not black. Features were then 

extracted by calling the required statistical function in MATLAB. The features 

extracted were pixel intensity in the form of histograms (distribution of data), and 
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also skewness (asymmetry in data distribution), kurtosis (measure of the peaks 

in data distribution) and histograms of gradients. Model perimeter and area in 

pixels were also extracted.  

 

Once the required feature was extracted, it was regressed with volume using 

multiple regression analysis. Multiple regression is a statistical method where the 

relationship between two or more variables is analysed. Regression was used to 

train a vector, which acts as a tester or predictor, using both datasets between 

which we are trying to find a relationship. Y is the observed response (volume) 

and X is the predictor. One value was then removed from each dataset. It was 

used to test the predictor this approach is known as leave-one-out cross 

validation. 

 

Features from the two datasets acted as predictors, these were then use to 

perform regression as stated above. Subsequently, the volume (response 

variable) of held-out data (i.e. data not used in the training) is computed using the 

coefficients of the trained regressor. The new volume was then compared to the 

original (ground truth) value, given by,  

 

𝑎𝑎𝑎𝑎𝑎𝑎(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

 

In order to estimate the prediction accuracy the absolute error computed using 

equation above is averaged over all the test samples – this is known as the mean 

absolute error. 

 

1
𝑛𝑛
�𝑎𝑎𝑎𝑎𝑎𝑎(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 
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Furthermore, to ensure the relationship between pixel intensity and various 

statistical methods could be fully evaluated, principal component analysis (PCA) 

was also used. PCA is a statistical technique used to remove correlation that exist 

with data, it also helps to reduce the dimension of the dataset. Firstly, the principal 

component was determined from the dataset. This type of analysis breaks down 

the data set into paired Eigenvectors and Eigenvalues, where the Eigenvector is 

the direction and the Eigenvalue represents the variance in the data in that 

particular direction. Therefore, the Eigenvector/s with the highest Eigenvalue/s 

is/are the principal component/s of the data set. This allowed the removal of any 

unnecessary variables within the dataset with insignificant Eigenvalues, thus 

providing a more focused output of the dominant dimensions within the dataset. 

 

Where the methods described focus only on pixel intensity and the effects of an 

external light source, the volume was subsequently determined through using 

machine learning, where multiple features could be evaluated. 

 

2.2.7 Tumour Volume – Machine Learning 

 

In an attempt to find volume from a 2D image, machine learning was used. CNN 

VGG-Face was selected, using layer 34 to extract features from the labelled 

tumour images. Machine learning algorithms (1.create image database, 2.extract 

features and 3.classification) were previously presented in section 2.2.5.2 

Convolutional Neural Networks, and were used to detect tumours from images. 

The difference to the machine learning algorithms used here is that negative 

images were not required, and instead of classification, regression was used to 
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determine tumour volume.  The three steps involved in the machine learning 

process were: create image database, extract features and regression as 

detailed below. 

 

2.2.7.1  Create image database 

 

When creating the image database, only positive images of tumours with known 

volume are required. Xenograft and pseudo-tumour images were used. To bulk 

up the dataset, the number of images was increased through rotating and flipping 

the images and altering the contrast, as shown in Figure 2.15. 

 

Once the images were created, each image was labelled with its corresponding 

volume. To do this, an Excel document was created with the correct volume listed 

next to the name of the tumour. This information was then imported into MATLAB. 

Next, a loop was created so the script went through each individual image and 

found the volume value corresponding to the name of the image and thereby 

labelled the image with its volume. The images were then resized to fit the 

requirements of the CNN; the image size required for VGG-FACE is 244 x 244. 

As can be seen in Figure 2.28 the final step in preparing the image database was 

to subtract the mean image provided by the CNN from the images.  
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The first step in the machine learning process is to create the image database. Only 

positive images with tumours are required and must be labelled with their corresponding 

value to enable the classifier to find a connection between the two. 

 

2.2.7.2  Extract features 

 

Once the image database was complete, the next step was to extract features, 

as shown in Figure 2.29. The CNN and image database were loaded and the 

layer of the CNN to be used, 34, was specified. Layer 34 corresponds to the fully 

connected layer FC7 in VGG-16 and VGG-Face models. The features were then 

extracted using layer 34, resulting in a feature vector consisting of X, the features, 

and Y, the corresponding volumes. As a form of data preprocessing step, the Y 

Figure 2.28: Algorithm 1 for machine learning to find volume showing how to create the 
image database 
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covariable is rescaled by divided by 1000 to convert the volume from millimetres 

to centimetres.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second step in the machine learning process after creating the image database is 

to extract features from the images using the layer in the CNN. 

 

 

 

Figure 2.29: Algorithm 2 to find volume with machine learning is to extract features to find 
volume 
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2.2.7.3  Regression 

 

Finally, partial least squares regression (PLS) was used to find a relationship 

between the features extracted from the images and their volumes. It was applied 

to the data in order to determine the linear relationship between the dependent 

variable (Y) and a set of predictor variables (Xs). PLS regression is a statistical 

technique which combines features from principal component analysis and 

multiple regression. In a nutshell it removes correlation between data samples 

and further performs regression. 

 

In this model the prediction functions used are represented by factors extracted 

from the “Y’XX’Y” matrix. From this matrix, the total number of prediction functions 

which can be extracted will typically exceed the maximum number of Y and X 

variables available, unlike other multivariate methods. PLS regression works by 

extracting the latent factors which explain the covariance between the 

independent and dependent variables as much as possible. Then the regression 

step predicts the values of dependent variables using the decomposition of the 

independent variables. This allows this type of regression model to be applied to 

datasets in which there are far fewer observations than predictor variables and 

can be used as an exploratory tool to select suitable predictor variables to identify 

any potential outliers before classical linear regression models are applied.  

 

To evaluate the performance of the regression model i.e. its volume prediction 

accuracy, two cross validation techniques (leave-one-out, and k-folds) were 

employed. During cross validation, the computed mean absolute error (MAE) 

indicates the prediction accuracy, an MAE that is close to 0 indicates good 
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performance and a value close to infinity signifies poor prediction. Since the MAE 

computed during cross validation is parametric evaluation technique, a non-

parametric evaluation method was also used in order to fully investigate the 

prediction accuracy. Here, the non-parametric testing tool used was kolmogorov 

smirnov’s (KS) two sample test. KS test was performed to compare the predicted 

volume with the actual volume and this outputs a KS stat which describes the 

largest distance between the predicted and actual volumes. Furthermore the p-

value returned by the KS test indicates whether the two samples were drawn from 

the same distribution or not. Ideally a good prediction accuracy is assumed when 

the two KS test signifies that the ground truth and predicted volumes come from 

the same distribution. 

 

This section described the materials and methods used for tumour detection and 

tumour volume to facilitate achievement of the aims and objectives and answer 

the research question; can a non-invasive system replace the calliper? In the next 

section, Results, the findings from the experiments are presented. 
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3. Results 

 

The results are sub-divided sequentially into 2 sections. In the first section, the 

results relating to detecting and isolating the tumour are presented, whilst in the 

second section the measurement of tumour volume is reported. 

 

3.1 Tumour Detection – Image Processing 

 

In this section the results of applying imaging processing techniques to digital 

images of nude mice with s.c. tumours to detect the tumour are presented. The 

two step process comprises of isolating the region of the image containing the 

mouse, and then identifying the tumour.  Techniques applied include colour 

segmentation, edge detection, noise reduction, contours, gradients and applying 

a threshold to the image, and these are presented in the sequence they were 

executed. The initial steps of this work were executed on a sample image, and 

once successful, were applied to the dataset of s.c. tumour images. 

 

3.1.1 Colour Segmentation 

 

The first step towards detecting the tumour was to look to exploit any colour 

differentiation between the mouse and the remainder of the image. The image 

was captured in the RGB format and thus was segmented in the RGB colour 

space. The image was split into red, green and blue channels resulting in three 

binary images displaying pixels on a scale between 0 and 255, Figure 3.1.  
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Figure 3.1: Original image split into red, green and blue channels, displayed at 

different pixel threshold levels to isolate the mouse from the remainder of the image. 

 

The original red, green and blue channel images are shown in the first row, with a black 

arrow indicating the location of the tumour. Threshold level 255 and 200 show no image 

features, level 150 shows both mouse and hand. At level 100, whilst the blue image 

successfully isolates the mouse from the image, the red and green images fail to do so. 

Level 50 shows a weak mouse outline and level 0 shows no image features. 
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Multiple pixel thresholds were applied to the binary images to identify the pixels 

responsible for displaying the mouse. Higher threshold levels of 255 and 200 

showed no image features. At level 150 the hand and mouse are visible as one 

feature, indiscernible from one another. Level 100 successfully displayed pixels 

responsible for the mouse. Decreasing the threshold level further was ineffective 

as level 50 weakly highlights the right hand side of the mouse body outline and 

level 0 displays no image features. 

 

Whilst at level 100 the mouse outline is discernible, the red and green binary 

images are unsuitable as the body of the mouse is corrupted with contaminating 

pixels. Additionally, the red image would require further segmentation to remove 

the hand from the image. The blue binary image successfully displays the mouse 

in isolation and is void of corruption. Therefore, this image was applied to the 

original image as a mouse mask. Hence, only the pixels in the original image that 

correspond to the white pixels in the mask would be displayed thus ensuring that 

only the mouse is seen, Figure 3.2.  

 

Although the resulting image successfully isolates the mouse from the hand and 

background of the image, blue remnants of the hand remain along the right hand 

side of the mouse body. To remove the blue hand whilst maintaining the integrity 

of the mouse body, the blue channel image was subjected to a tighter threshold 

selection between 85 and 110, Figure 3.3. Increasing the threshold resulted in a 

larger area of blue hand being visible. Decreasing the threshold reduced the 

visibility of the blue hand but compromised the mouse body as pixels along the 

right hand side of the mouse body were disrupted. 
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The mouse mask was applied to each layer of the original image, restricting the pixels 

on display. This resulted in an image where the mouse is clearly isolated but blue 

remnants of the hand are also visible down the right hand side of the mouse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Increasing threshold levels increased the amount of blue glove visible. Decreasing 

threshold levels reduces the amount of blue glove visible but introduced corruption in the 

mouse, specifically the right hand side of the mouse body. 

Figure 3.2: Applying the blue binary image mouse mask to the original image to isolate 
the mouse.  

Figure 3.3: Blue mask thresholds between 85 and 110 applied to the original 
image to remove the blue glove from the image 



 

115 
 

 Results 

The RGB model was unsuccessful in isolating the mouse body from the image 

therefore HSV colour segmentation was used. As the image was captured in RGB 

format, it was converted to the HSV colour space and split into hue, saturation 

and value channel binary images. Intensity histograms were created to visualise 

the distribution of pixels and pixel intensity, Figure 3.4. 

 

Figure 3.4: HSV colour channels and corresponding pixel intensity histograms 

Hue, saturation and value binary images are displayed with corresponding histograms. 

Saturation and value images offer no distinction between the hand and the mouse, with 

no defined peaks in the histograms. The hue image shows clear contrast between the 

mouse, hand and image background with three defined peaks in the histogram. The peak 

between 0 – 0.1 hue values represents the mouse and thus has been successful in 

identifying the mouse in the image. 

 

The saturation and value images were unsuccessful in isolating the mouse from 

the image as there is minimal colour differentiation between the hand and the 

mouse. In the hue image, there is clear contrast between the mouse, the hand 

and the background. Furthermore, there are three clear peaks in the hue intensity 

histogram, representative of the mouse, hand and image background. The 

smallest peak, between 0 and 0.1, can be attributed to the mouse as it has the 
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smallest surface area. A threshold of pixels between 0 and 0.1 was applied to the 

hue image, resulting in a hue mask showing the mouse body.  The hue mask was 

applied to each layer of the original image, Figure 3.5. This method was 

successful in isolating the mouse from the image.  

 

 

Figure 3.5: The hue mouse mask was applied to the original image resulting in the 

mouse being isolated from the image. 

The hue mouse mask was added to each layer of the original RGB image thus the only 

pixels visible on the final image corresponded to the white pixels from the hue mask. The 

resulting image shows the successful isolation of the mouse from the remainder of the 

image. 

 

Following the successful isolation of the mouse from the sample image, this 

method was applied toevery xenograft image collected from the study to ensure 

the results were reproducible. As Figure 3.6 shows, the method was inconsistent 

in isolating the mouse in its entirety and it often corrupted the tumour itself.  
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The hue mask, highlighting pixels corresponding to the mouse, was applied to the 

original xenograft images and this figure shows a sample of the results. The mouse body 

is corrupted in all the images including corruption of the tumour itself thus hsv 

segmentation was unsuccessful in isolating the mouse from the image. 

 

3.1.1.1  Morphological Operation - Erosion 

 

As it is difficult to differentiate between the tumour and the surrounding mouse 

body, erosion was used remove pixels along the outer boundary of the mouse 

where there was a significant difference in contrast than between the mouse body 

and the tumour thus increasing the focus on the tumour itself. Erosion, a method 

to remove pixels from object boundaries, was implemented on the hue mask 

generated in the previous section and the resultant image was applied to the 

original sample image of the mouse, Figure 3.7. 

 

Figure 3.6: Sample of images with hue mask applied showing the inconsistency in 
isolating the mouse outline for each image  
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A is the modified hue mask  with B showing the effect of applying erosion on A. C is the 

mouse mask created using A, and D is the effect of erosion on C. Erosion was successful 

in removing the outer boundary of the mouse body thus improving the process of 

isolating the tumour from the mouse body. 

 

Evidently, erosion occurred on the outlying features of the mouse including the 

tail, limbs, head and the outer flank of the mouse body. The tumour and its 

surrounding area have not been compromised and instead, the tumour has 

increased in prominence in comparison to the mouse in its entirety. The eroded 

mouse image (D) was used in further testing, beginning with edge detection. 

 

 

 

 

 

Figure 3.7: Effects of applying erosion on the hue mask and isolated mouse image 
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3.1.2 Edge Detection 

 

Taking advantage of the reduced features in the eroded mouse image, Sobel 

edge detection was applied to highlight changes in pixel intensity at the interface 

between the tumour and the surrounding mouse body, Figure 3.8. The Sobel 

method defines an edge at the point where the image gradient is at maximum 

intensity. This method was unsuccessful in finding the tumour boundary and it 

was only able to detect the outline of the mouse body, Figure 3.8.   

 

 

 

 

 

 

 

 

 

 

 

 

Edge detection on the eroded image highlights the outline of the eroded mouse and does 

not identify the tumour boundary and thus is unsuccessful in isolating the tumour. 

 

As the mouse image was modified through colour segmentation and erosion, this 

resulted in reduced information in the image. To rectify this, multiple edge 

detection techniques in addition to Sobel were applied to the original unmodified 

Figure 3.8: Right hand side image shows result of edge detection on eroded mouse 
mask image on left hand side.  
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image containing the subcutaneous xenograft tumour, Figure 3.9. None of these 

edge detectors were successful in outlining the tumour. 

 

Figure sections a, b and c show the results for the Sobel, Prewitt and Roberts 

edge detectors, respectively. A weak and broken edge, representative of the 

mouse outline, is visible and there is no indication of a tumour outline. Figure 

sections d, e and f, show the results for the canny, laplacian of Gaussian and 

zerocross edge detectors, respectively. Although the hand and mouse can be 

deciphered, there is no clear edge. Instead, multiple edges have been 

consistently detected across the mouse and image background resulting in a 

disrupted image.  

 

Figure 3.9: Edge detection applied on the original mouse image to identify the tumour 

boundary. 

Various edge detectors applied on the image; a) Sobel b) Prewitt c) Roberts d) Canny e) 

Laplacian of Gaussian f) Zerocross. All edge detectors were unsuccessful in identifying 

the tumour boundary. 
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To improve upon the edge detection results seen in Figure 3.9, thresholds were 

applied to the image, ensuring the edge detectors would only identify edges within 

the threshold limits, Figure 3.10. Applying a threshold was unsuccessful in 

improving the edge detection or the quality of the resulting image. 

 

Various edge detectors applied on the image; a) Sobel b) Prewitt c) Roberts d) Canny e) 

Laplacian of Gaussian f) Zerocross. All edge detectors were unsuccessful in identifying 

the tumour boundary. 

 

Edge detection on the original image has thus far been unsuccessful. To focus 

on the tumour boundary edges, background information, including the hand and 

mouse limbs, was removed by cropping the image to only display the tumour and 

its surroundings. Multiple methods of edge detection were applied on the cropped 

Figure 3.10: Edge detection with a threshold applied on original mouse image to 
identify the tumour boundary. 
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image, Figure 3.11. Similar to previous findings, there were no defined edges 

corresponding to the tumour outline.  

 

 

Figure 3.11: Edge detection on the mouse flank showing the tumour and its 

surroundings was unsuccessful in detecting the tumour boundary 

Various edge detectors applied on the image; a) Sobel b) Prewitt c) Roberts d) canny e) 

Laplacian of Gaussian f) Zerocross. All edge detectors were unsuccessful in identifying 

the tumour boundary. 

 

To refine the process further, the image was subjected to noise removal using 

the Wiener method. Noise, disruptions in image edges caused at the time of 

image capture, can sabotage the edge detection methods. Noise was removed 

from the flank of the mouse before the Sobel edge detection technique was 

applied, Figure 3.12. Removing the noise had no effect on the edge detectors 

and the result remained unsuccessful in identifying the tumour boundary. 

Therefore, the next step was to try to find contours in the image which would 

permit isolation of the tumour from the mouse body. 
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Figure a) shows the image of the tumour on which edge detection was carried out; b) 

shows the result of edge detection using the Sobel method on the image from a and c) 

shows the result of the edge detector after noise removal using the Wiener method. 

 

3.1.3 Contours 

 

Where edge detection identifies changes in image intensity in local or 

neighbouring pixels, contours identify boundaries within groups of pixels. The 

following Figure 3.13 shows two xenograft images with their corresponding 

contour maps. The first contour map of a spherical tumour imperfectly outlines 

the tumour and the second contour map, of a multi-lobed tumour, has a partial 

tumour boundary outline. Although partial differentiation between the tumour and 

mouse boundary was achieved, tumours are highly irregular and as illustrated, 

this method is inconsistent for irregular tumour shapes. Furthermore, the mice on 

the contour maps have differing colour profiles, with the first mouse 

predominantly blue and the second mouse a mix of green and blue thus 

highlighting the inconsistency of features between images in the study.  

Figure 3.12: Noise reduction on image of tumour 



 

124 
 

 Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contour maps were created to identify the tumour from the mouse body. Although 

the first image with a spherical tumour shows an imperfect tumour boundary and the 

second image with a multi-lobed tumour shows a partial tumour boundary, the method 

is inconsistent in distinguish between the tumour and the flank for irregular tumour 

shapes. 

 

3.1.4 Gradients 

 

As contours were ineffective in isolating the tumour from the mouse body, the 

next logical step was to look at gradients since these allow evaluation of the 

magnitude and direction of pixels to identify boundaries. This method was used 

to isolate the tumour from the mouse body. As seen in Figure 3.14, this method 

was unsuccessful. The tumour and the mouse itself are not observable and the 

only image feature visible was a weak outline of the hand. Therefore, this 

technique was not useful for extracting information from the images. The next 

Figure 3.13:  Xenograft images with their contour maps  
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step to isolate the tumour was to apply a threshold onto the sample image to 

ensure the tumour would be detected.  

 

 

Figure 3.14: Gradient magnitude and gradient direction applied  to the sample image. 

Gradient magnitude is shown on the left and gradient direction is on the right. Both 

images show a very weak boundary for the hand and mouse body with no indication of 

the tumour body thus this method was unsuccessful. 

 

3.1.5 Threshold Image 

 

Where previous techniques focussed on finding the tumour boundary in the 

original image, the following section focused on manually finding pixel intensity 

at the tumour boundary and using it to threshold the image. 

 

The pixel intensity at the tumour boundary of the cropped RGB image produced 

through colour segmentation and erosion techniques (Figure 3.7) was used due 

to the reduced information in the image, thus ensuring the tumour boundary 

would be detected. The threshold value for the xenograft image shown in Figure 

3.15 (a) was 70 and applying this as a threshold produced the image in Figure 

3.15 (b). Although the tumour boundary has been roughly outlined, the boundary 
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extends down the flank and also captures the area surrounding the tumour thus 

rendering the tumour boundary itself indiscernible. 

 

Figure (a) showing the original cropped image from which the threshold was found from 

the tumour outline and (B) shows the result of using the threshold on the image. Although 

applying the threshold shows the tumour outline, the outline extends into the flank of the 

body thus the method is unreliable.  
 

Multiple image processing procedures were then performed on the threshold 

image to identify the tumour boundary from the mouse body. The procedures 

included, edge detection, finding boundaries and finding centroids as described 

in methods section 2.2.4.7, Figure 3.16. Using edge detection and boundaries 

produced an incomplete and corrupted outline of the tumour, showing no 

consistency. Although the majority of centroids, represented with blue markers, 

Figure 3.15: Original image with corresponding threshold image 
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were based in the centre of the tumour, there were outlying centroids situated 

around the mouse of the body including the edge of the image indicating that this 

is not a reliable method to use for detecting the tumour.  

 

Figure (a) showing the original threshold image; (b) edge detection; (c) boundaries and 

(d) centroids (represented as blue stars). All three techniques were unsuccessful as the 

edges and boundaries imperfectly delineated the tumour outline but also included large 

areas of the flank that would need further segmentation. The majority of centroids were 

located in the tumour but there were numerous outliers on the edge of the mouse body 

indicating the unreliability of this method. 
 

The image processing methods described thus far have been unsuccessful in 

locating the tumour in the original image displaying the nude mouse with a 

subcutaneous xenograft tumour.  This indicates that the image does not contain 

the required information that can be exploited or extracted using these 

techniques, and thus other techniques were evaluated, focusing on machine 

learning. Where image processing focusses on specific features within a single 

Figure 3.16: Threshold image with image processing techniques 
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image such as the colour profile or the edges, machine learning involves 

extracting multiple features from multiple images, and thus it was thought that this 

may give a better chance of tumour detection given the heterogeneity of the 

samples and limited differential in features between tumour and background.   

 

3.2 Tumour Detection – Machine Learning 

 

Machine learning methods were used to train classifiers with a view to 

differentiate tumours from non-tumours and therefore detect tumours in digital 

images of nude mice with subcutaneous xenograft tumours. Results obtained 

through cascade classification and pre-trained CNNs (methods described in 

Chapter 2.2.5) are presented below. 

 

3.2.1 Cascade Classification 

 

Cascade classification was used to train a classifier to identify a tumour from a 

non-tumour through learning in multiple stages. Training was achieved through 

positive and negative images showing tumour and non-tumour components, 

respectively. Table 3.1 shows the dataset of images used for training and testing.  

 

Finally, the classifier identified tumour regions on test images by enclosing the 

region it identified as tumour in a yellow box. Four versions of the test were 

executed.  
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Table 3.1: Experiments ran using cascade classification for tumour detection 

Each version of cascade classification had multiple sub-tests to allow the testing of 

different parameters including the feature type, true positive rate and false alarm rate. 

The difference in Tests 2, 3 and 4 are the training and testing images. *The feature type 

that performed the best in version one was used in subsequent version. 

 

Test Sub-
test 

Feature 
type 

True Positive 
Rate 

False Alarm 
Rate 

Number of 
Cascade stages 

1 1 Haar 0.7 0.2 5 
2 Haar 0.9 0.4 5 
3 Haar 0.995 0.5 5 
4 HOG 0.7 0.2 5 
5 HOG 0.9 0.4 5 
6 HOG 0.995 0.5 5 
7 LBP 0.7 0.2 5 
8 LBP 0.9 0.4 5 
9 LBP 0.995 0.5 5 

2 1 * 0.7 0.2 5 
2 * 0.9 0.4 5 
3 * 0.995 0.5 5 

3 1 * 0.7 0.2 5 
2 * 0.9 0.4 5 
3 * 0.995 0.5 5 

4 1 * 0.7 0.2 5 
2 * 0.9 0.4 5 
3 * 0.995 0.5 5 

 

3.2.1.1  Version 1 

 

The first version of cascade classification tested HOG, Haar and LBP feature 

types, Figure 3.17. Each feature type was tested three different times using 

different parameters to find the most successful combination in detecting 

tumours, details of which are specified in Table 3.1. The classifier was both 

trained and tested with the original xenograft images. Evidently, all three feature 

types had multiple negative classifications, Figure 3.17. LBP proved to be an 

ineffective method to identify the tumour due to the large volume of negative 

classifications concentrated around non-tumour components in the image, 
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particularly the image background. Both HOG and Haar were able to identify 

tumours albeit the classification also included 98-100% false classifications which 

varied from image to image.  

 

The rows show the three feature types tested, Haar, HOG and LBP. The columns 

represent the different tests run. Test run 1, 2 and 3 had a true positive rate of 0.7, 0.9 

and 0.995, respectively, and a false alarm rate of 0.2, 0.4 and 0.5, respectively. All tests 

had 5 cascade stages. The classifier identifies the tumour by drawing a yellow box over 

the region.  Evidently, all three feature types were unsuccessful in detecting the tumour 

but Haar features were the better of the three as test runs 1 and 2 both have a yellow 

box identifying the tumour. 
 

Where the first version of classification included training and testing on the 

original xenograft images, the next three versions used a variety of cropped 

images, Figure 3.18.  

 

Figure 3.17: Cascade classification detection results to locate the tumour in the 
sample image 
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3.2.1.2  Version 2 

 

The second version of classification was conducted on cropped images, Figure 

3.18. The images were cropped to focus on the mouse body and the image 

background was transformed to black to reduce the information in the image.  

Haar features were extracted and as previously, the test was executed three 

times with different parameters, as specified in Table 3.1. Although the tumour 

was correctly identified in experiments 2 and 3, numerous negative classifications 

indicated the process required further refinement.  

Version 2 of the classification was trained and tested on the cropped image with a black 

background, Test run 1, 2 and 3 had a true positive rate of 0.7, 0.9 and 0.995, 

respectively, and a false alarm rate of 0.2, 0.4 and 0.5, respectively. All tests had 5 

cascade stages. Version 2 was successful in detecting the tumour in experiments 2 and 

3 but there were multiple negative classifications. 

 

3.2.1.3  Version 3 

 

In the third version of testing, the cropped image from the previous version of 

testing was supplemented with a red circle enclosing the tumour. These images 

were used for both training and testing the classifier. Figure 3.19 shows 

Figure 3.18: Version 2 of cascade classification testing to identify the tumour on 

the cropped image through enclosing the tumour in a yellow box. 
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successful classification for experiments 2 and 3. Furthermore, the instances of 

negative classifications decreased from the previous version of testing.  

 

 

 

 

 

 

 

 

Version 3 was trained and tested on the cropped image with a red circle highlighting the 

tumour. Test run 1, 2 and 3 had a true positive rate of 0.7, 0.9 and 0.995, respectively, 

and a false alarm rate of 0.2, 0.4 and 0.5, respectively. All tests had 5 cascade stages. 

Version 3 successfully detected all 3 tumours with reduced negative classifications as 

compared to version 2 but the method requires the observer to add a red circle to the 

image which is not feasible to replace callipers. 

 

3.2.1.4  Version 4 

 

As this project aims to replace callipers using digital methods with minimal 

observer input, the final cascade classification test involved training the detectors 

with the red circle image as used in the previous version, but testing was 

completed using cropped images without the red circle. The process was 

executed three times using different parameters as specified in Table 3.1. 

Although the tumour was successfully detected in all three experiments, Figure 

3.20, the number of negative classifications question the reliability and accuracy 

of the process. Therefore the next step was to test a more sophisticated method 

of machine learning, using convolutional neural networks. 

 

Figure 3.19: Version 3 of cascade classification testing to identify the 

tumour on the cropped image through enclosing the tumour in a yellow box. 
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Version 4 was trained on the cropped image with the red circle but tested on the cropped 

image without a red circle. Test run 1, 2 and 3 had a true positive rate of 0.7, 0.9 and 

0.995, respectively, and a false alarm rate of 0.2, 0.4 and 0.5, respectively. All tests had 

5 cascade stages. Finally Version 4 successfully identified the three tumours but again 

there were negative classifications and the area enclosed by the yellow box contained 

the mouse body and thus would require further processing. Thus cascade classification 

was unsuccessful in isolating the tumour from the image. 
 

3.2.2 Convolutional Neural Networks 

 

This project aims to use digital imaging to replace callipers in deciphering 

subcutaneous xenograft tumour volume through calculating a 3D volume from a 

2D image. The first step in achieving this goal is to detect the tumour in the image. 

Previous methods of image processing and cascade classification proved to be 

unsuccessful and so CNNS were utilised to achieve the goal. The CNNs used in 

this project to train classifiers to detect tumours were VGG-16, VGG-19 and VGG-

face. The CNNs have multiple layers, and each layer extracts different features 

from the images. To ensure the layer most suited to the dataset was used, 

multiple layers were tested including the fully connected layers, before and after 

applying relu activation, Table 3.2. 

 

Figure 3.20: Version 4 of cascade classification testing to identify the 

tumour on the cropped image through enclosing the tumour in a yellow box. 
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Table 3.2: Convolutional neural networks tested in this project for tumour detection 

Three versions of CNN testing and multiple layers were extracted to find the optimum 

CNN for detecting tumours. The mean image size is provided by and is a requirement of 

the CNN. 

 

 

Table 3.3: Datasets used to train convolutional neural network 

Three datasets were used to train the classifiers. Dataset A contained only xenograft 

tumour images whereas B and C had the addition of pseudo-tumour images. Varying 

number of images were also tested, with the number limited by computational power. 

 

Dataset Images used Total 
positive 
images 

Positive 
training 
images 

Positive 
testing 
images 

A Xenograft 5000 4000 1000 
B Pseudo-tumour and 

Xenograft 
6000 4800 1200 

C Pseudo-tumour and 
Xenograft 

7000 5600 2800 

 

Three CNNs were tested with multiple layer extractions, Table 3.2. The process 

is described in Chapter 2.2.5.2. VGG-16, VGG-19 and VGG-Face were trained 

and tested with dataset A which consisted of 5000 Xenograft images. With a 

recognition rate of 1 representing 100% successful image detection, VGG-Face 

was the closest to this with the most successful layer, FC7-before-relu, yielding 

Test CNN Mean Image size Layers extracted 

1 VGG-16 224x224 FC7-after-relu 
FC7-before-relu 
FC6-after-relu 

2 VGG-19 224x224 FC7-after-relu 
FC7-before-relu 
FC6-after-relu 

3 VGG-Face 224x224 FC8 
FC7-after-relu 
FC7-before-relu 
FC6-after-relu 
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a rate of 0.924. VGG-16 and VGG-19 were not as successful with the best rates 

of 0.899 with FC7-after-relu and 0.896 with FC7-before-relu, respectively. 

 

To achieve an improved recognition rate, VGG-Face was trained with larger 

datasets B and C which consisted of both xenograft and pseudo-tumour images 

with 6000 and 7000 images respectively.  Using FC7-before-relu for extraction, 

datasets B and C achieved recognition rates of 0.980 and 0.989, respectively. 

Therefore, the classifier trained with dataset C was the most successful.  

 

Table 3.4: Using CNNs to detect tumours 

CNNs VGG-16. VGG-19 and VGG-Face were tested on dataset A, 5000 xenograft 

images and multiple layers were extracted. Fc7-before-relu extracted from CNN VGG-

Face had the best recognition rate of 0.924 and so was further tested on larger datasets 

B and C consisting of xenograft and pseudo-tumour images with 6000 and 7000 images, 

respectively. Dataset C yielded the highest recognition rate of 0.989 and so was the most 

successful in identifying tumours. 

 

CNN Dataset used Layer extracted Recognition rate 

VGG-16 A FC7-after-relu 0.899 
 A Fc7-before-relu 0.898 
 A FC6-after-relu 0.895 
VGG-19 A FC7-after-relu7 0.882 
 A Fc7-before-relu 0.896 
 A FC6-after-relu 0.891 
VGG-Face A FC8 0.907 
 A FC7-after-relu 0.904 
 A Fc7-before-relu 0.924 
 A FC6-after-relu 0.921 
VGG-Face B FC7-before-relu 0.980 
 C Fc7-before-relu 0.989 

 

To test if these results could translate to identifying the tumour on a digital image, 

the classifier was applied to cropped versions of the original xenograft images 

thus removing the background information from the image and centring on the 
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mouse body. The classifier enclosed the region it identified as a tumour within a 

red box. A sample of the resulting images shows 6 positive classifications of 

tumours and 2 negative classifications, Figure 3.21. 

 

 

Figure 3.21: Detection results using classifier trained with VGG-Face with layer FC7-

before-relu extracted. 

A classifier with a recognition rate of 0.989 was applied to original xenograft images and 

a red box was placed around the area identified as a tumour. The classifier was trained 

with 7000 images consisting of tumour and pseudo-tumour images using CNN VGG-

Face with layer FC7-before-relu extracted. A sample of images show 6 positive tumour 

classifications and 2 negative classifications. 
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To achieve a 100% recognition rate, a semi-automatic step was introduced.  

Negatively classified images were cropped to only show the flank of the body, 

removing all outlying information. The classifier was then reapplied giving positive 

classifications,   and the detection was repeated; results are shown in the 

following Figure 3.22.  This technique was successful in achieving a 100% 

recognition rate. Additionally, it is evident that the tumour has not been completely 

segmented, as the tumour has been identified with a square which does not 

match the tumour shape. This identification method will be taken into 

consideration when techniques to calculate tumour volume are applied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On images with failed detection, the image was cropped to focus onto the mouse body 

and reduce the information in the image. Tumour detection was then repeated, with the 

area identified as tumour enclosed in a red box. This method was successful in 

identifying the tumour. 

Figure 3.22: Crop image and repeat detection for 100% classification 
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This section on tumour detection showed the progression of techniques utilised 

to identify a tumour on a 2D digital image, as summarised in Table 3.5. From 

image processing techniques, including colour segmentation and edge detection, 

to machine learning using cascade classification and CNNs. Ultimately, the CNN 

VGG-face with layer FC7-before-relu successfully identified the tumour in the 

original s.c. xenograft images.  The next step in achieving the aim to reproduce 

calliper volume measurements with digital imaging through finding a 3D volume 

from a 2D image is to find the volume itself.  
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Table 3.5: Tumour detection summary table  

Method Comments 
Colour 
Segmentation 

Using RGB colour-space was unsuccessful 
HSV colour-space was successful in isolating the mouse on 
the sample image but was unsuccessful on the full dataset of 
xenograft images. 

Morphological 
Operation  
Erosion 

Erosion was applied to the mouse mask created using colour 
segmentation and successfully removed the outlying features 
of the mouse including the tail, head and limbs. The resulting 
mask was used for edge detection and threshold imaging but 
the tumour boundary could not be identified. 

Edge 
Detection 

Edge detection was applied on the cropped image resulting 
from erosion in the previous step but only the mouse outline 
was visible. Edge detection was then applied to the original 
sample image using Sobel. Prewitt, Roberts, Canny, 
Laplaacian of Gaussian and Zerocross detectors, both with 
and without a threshold. All detectors were unsuccessful in 
identifying any mouse features. The process was repeated 
on a cropped image focussed on the tumour and the 
surrounding body and again this yielded no results. Noise 
reduction techniques were applied to enable clear edges but 
this had no effect. 

Contours Contours were applied to a spherical tumour and a multi-
lobed tumour, revealing an imperfect tumour boundary and 
partial tumour boundary, respectively. This method is 
inconsistent and would not be applicable to irregular tumour 
shapes. 

Gradients Unsuccessful, only a weak outline of the observer’s hand was 
visible with no indication of the mouse or any of its features. 

Threshold 
Image 

The pixel intensity at the tumour boundary of the cropped 
image created using erosion was determined and used to 
threshold the image. The resulting image had an imperfect 
boundary spreading into the mouse body and down the 
mouse flank. Edge detection, finding boundaries and finding 
centroid but all were unsuccessful in recognising the tumour 
boundary. 

Cascade 
Classification 

Haar, HOG and LBP feature types were tested where Haar 
features were most successful in identifying the tumour albeit 
with multiple negative classifications. Further testing on 
cropped versions on the sample image with reduced 
information again identified the tumour but with multiple 
negative classifications thus rendering this an unreliable 
method of tumour detection. 

Convolutional 
Neural 
Networks 

VGG-Face, VGG-16 and VGG-19 were tested for tumour 
detection and VGG-Face with layer FC7-before-relu had the 
highest recognition rate. When tested on larger datasets, the 
classifier trained with VGG-Face layer FC7-before-relu had a 
recognition rate of 0.9886. To achieve a 100% recognition 
rate, the xenograft image was cropped and the classifier was 
executed again which successfully identified the tumour. 
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3.3 Tumour Volume – Image Processing 

 

This section shows the initial attempts made to determine tumour volume from a 

2D digital image. As previously described, masks of the xenograft tumours were 

generated from the original xenograft images and the volume was found using 

the modified ellipsoid formula. These are then compared to the volume found 

through calliper measurements, and the 3D volume, found using 3D scanning, to 

evaluate the accuracy of both methods.   

 

3.3.1 Using Linear Measurements to Determine Tumour Volume 

 

Calliper tumour volume is calculated by taking length and width measurements 

which are then fed into the modified ellipsoid formula. First attempts at image 

processing of real tumour data involved making masks of digital images of the 

tumour to allow length and width measurements, as for callipers. This enabled a 

direct comparison of the modified ellipsoid formula for both callipers and the 

masks. Looking at Figure 3.23, there is a positive correlation (0.789) between 

calliper and mask volume data collected from s.c. xenograft tumours with the 

relationship weakening as the tumour size increases. At lower volumes under 

400mm3 there is a strong correlation (0.868), but with volumes over 600mm3 the 

correlation drops to 0.081. It is not sufficient to conclude that mask volume 

calculated with the modified ellipsoid formula can replace calliper measurements. 

Using the same digital masks, different methods were used to find volume. These 

included using only length and width measurements as well as the mask area 

and are described in the following sections. 
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Graph showing the relationship between calliper and mask volume, both calculated using 

the modified ellipsoid formula. There is a significant positive correlation (0.789) between 

calliper and mask volume data collected from subcutaneous xenograft tumours with the 

relationship weakening as the tumour size increases. 

 

3.3.2 Mask Volume Created With Length and Width 

 

The modified ellipsoid formula involves using both length and width. The formula 

was adapted further to include either only length or only width measurements. 

The purpose of this was to see if fewer parameters could be used to replicate the 

calliper measurements and to see the effects only considering one measurement 

would have on the image processing data. Figure 3.24 shows that mask volume 

Figure 3.23: Relationship between calliper and mask volumes found using the modified 
ellipsoid formula. 
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created using length has a positive correlation with the original mask volume 

(0.872) but has a poorer relationship with the calliper volume (0.760).  

 

Mask volume created using width has a very strong relationship with original 

mask volume (0.978) showing that the original mask volume could be created 

using just one parameter but the relationship with the calliper (0.730) is weaker 

than the calliper relationship with the original mask volume (0.789). The length 

and width need to be evaluated further to note the difference between callipers 

and mask measurements.  
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Figure 3.24: Mask volume created with length Vs original mask volume and calliper 

volume 

Graphs to show the relationships between the mask volumes created using only length, 

and the original mask and calliper volume. Length has a positive correlation with the 

original mask volume (0.872) but has a poorer relationship with the calliper volume 

(0.760). 
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Figure 3.25: Mask volume created with width Vs original mask volume and calliper 

volume 

Minor length has a very strong relationship with original mask volume (0.978) showing 

that the original mask volume could be created using just one parameter but the 

relationship with the calliper (0.730) is weaker than the calliper relationship with the 

original mask volume (0.789). 
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3.3.3 Length and Width comparison between mask and calliper 

 

Looking at length and width more closely facilitates the understanding of the 

difference between mask and calliper volume data. The formula to calculate 

volume is the same for both, the modified ellipsoid formula, but the 

measurements inputted are different. The mask length has a strong correlation 

with calliper length (0.833) and there is a weaker relationship between the mask 

width and the calliper width (0.750). The 45° lines in the graphs (Figure 3.26) are 

not regression lines to fit the data, instead they demonstrate what an absolute 

linear relationship between the parameters would look like. It can be seen the 

calliper is overestimating the length in width in comparison to the length and width 

found from the mask. The discrepancies between length and width for both 

callipers and mask show that other techniques should be explored to calculate 

volume from the masks instead of the using modified ellipsoid formula.  
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Figure 3.26:  Comparing length and width for mask and calliper measurements 

Graphs to show the relationship between length and width determined in the mask 

compared to calliper measurements. The mask length has a strong correlation with 

calliper length (0.833) and there is a weaker relationship between the mask width and 

the calliper width (0.750). 
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3.3.4 Mask Volume Represented by Mask Area 

 

The mask area, i.e. number of pixels in the mask image, was seen to have a 

positive relationship with calliper volume (0.838), as can be seen in Figure 3.27. 

A much stronger relationship was noted with mask volume (0.976), determined 

through finding length and width and inputting these into the modified ellipsoid 

formula.  Thus showing how the mask volume could be readily recreated without 

having to use the modified ellipsoid formula. Therefore, features such as the area 

of the tumour could be exploited to obtain volume information that is not specific 

to ellipsoids.  
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Figure 3.27: Mask area compared to mask and calliper volume 

Graphs to show the relationships between mask areas, with calliper and mask volume. 

The mask area was seen to have a positive relationship with calliper volume (0.838). A 

stronger relationship was noted with mask volume (0.976). 
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Calculations so far have been based around the modified ellipsoid formula. In 

order to gain further insight, pseudo-tumour models of known volume were 

constructed and then compared to the volumes generated from mask and 

callipers.  

 

3.3.5 Pseudo-tumour Model Volume 

 

Pseudo-tumour models were created to allow 3D measurements to be taken, as 

well as calliper measurements and 2D masks from digital images. These 

measurements could then be compared to the calliper measurements and digital 

image processing enabling the evaluation of the accuracy of these methods in 

predicting true volume, as calculated through 3D scanning. The pseudo-tumour 

models were made in both regular and irregular shapes to mimic tumours. 

 

Figure 3.28 shows that there is a high correlation (0.952) between calliper 

measurements and mask volumes obtained from the pseudo-tumour models.  

Although both have a high correlation, the calliper volume is closer to the true 

volume for the artificial model (0.981), as the mask volume has a weaker 

correlation (0.929). The models were constructed to mimic tumour xenografts. 

Calliper measurements of the artificial models were not consistent for all three 

shape types with a stronger correlation for the abstract shape and a weaker 

correlation for the kidney bean shape, showing that the modified ellipsoid formula 

can’t predict true volume for a range of different tumours. 
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Graphs to show the relationship between pseudo-tumour volumes determined through 

2D masks, 3D scanning and callipers. There is a high correlation (0.952) between calliper 

measurements and mask volumes obtained from the pseudo-tumour models.  Although 

both have a high correlation, the calliper volume is closer to the true volume for the 

artificial model (0.981), as the mask volume has a weaker correlation (0.929). 

 

Ultimately, the modified ellipsoid formula is a poor predictor of true volume for 2D 

measurements in both callipers and masks. In further work, the modified ellipsoid 

formula can be replaced and 2D to 3D conversion algorithms can be applied to 

the digital images to calculate volume which can be checked against the true 

volume found from 3D imaging. Therefore, the next step to determine volume 

was by using shape from shading. 

 

 

Figure 3.28: Pseudo tumour volumes from 2D masks, 3D scanning and callipers 
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3.4 Tumour Volume – Shape from Shading 

 

In an attempt to establish a relationship between pixel intensity and depth, 

artificial models of different height were created and imaged from the same height 

both with and without a fixed light source in order to detect any changes in the 

pixel intensity. Next, a relationship between the spread of pixels and volume was 

investigated through creating virtual models with different angles of lighting. 

 

3.4.1 Depth and Pixel Intensity 

 

Images were captured of artificial models, with the depth varying between 7 and 

23mm, from a fixed position both with and without a light source, in the form of a 

flash. Evidently, as seen from Figure 3.29, there is minimal correlation between 

pixel intensity and height (0.114). Pixel intensity remained consistent as the 

model depth increased whilst there was no flash. However, when flash was 

added, the pixel intensity became highly varied and did not follow a pattern of 

increase or decrease, which would suggest that addition of a light source is 

unlikely to assist in determining tumour depth in this instance. This is discussed 

further in the discussion section (see page 177). 
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Figure 3.29: Depth vs pixel intensity 

Graph to show the relationship between the depth of a model and its pixel intensity.  

There is minimal change in pixel intensity for models imaged with no flash. However, 

when subjected to flash, the pixel intensity varies and does not follow a pattern as is 

demonstrated by the low correlation coefficient (0.114). 

 

3.4.2 Virtual tumours and different lighting angles 

 

Virtual models resembling tumours, of different shapes and sizes, were created 

and different lighting angles were applied to create varying degrees of shading 

(Figure 2.1).  The purpose of this was to determine the tumour volume by finding 

a relationship between shading and the volume. The pixel intensity information of 

the model was exported as a histogram and multiple regression analysis and PCA 

was conducted with volume. Figure 3.30 shows the results, both with and without 

offset. Offset is the point where the regression line hits the y axis. With offset 
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means the regression algorithm isn’t forced to go through origin whereas without 

offset, the line is assumed to pass through origin. With offset can give better 

results at times as the line is not forced to go through the origin. The ideal range 

for this project is to have an error as close to 0 as possible.  

 

Although error without offset was less than the error with offset, the high errors 

found from regressing pixel intensity with volume suggested no relationship 

between the two variables, Figure 3.30.  

 

Figure 3.30: Pixel intensity vs. volume 

Graph to show the relationship between pixel intensity and volume. The first graph shows 

the overall error using Multiple and PCA regression. The errors without offset are 298.05 

and 277.12 for multiple and PCA regression, respectively. Errors with offset are 312.3 

and 313.7 for multiple and PCA regression, respectively.  

 

Multiple light angles were applied to the models to create shading, and multiple 

regression was used to find the error for each light angle separately (Figure 3.31). 

Although the errors vary between 414.86 (-90 X axis) and 1593.4 (-30 X axis), 
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they are still very high and therefore there is a poor relationship between the 

effect of the angle of lighting on pixel intensity and the volume of the model. 

 

 

 

Figure 3.31: Effect of lighting angle on determining tumour volume 

Graph to show the error for lighting angles varying between 15 and 150 with volume. 

The error varies from 414 to 1593.4 and therefore, there is a poor relationship between 

the lighting angle and volume. 

 

Furthermore, as the virtual tumour models were fashioned in a variety of shapes 

and sizes, the error was found for each individual shape to investigate if exposing 

a light source onto certain shapes gives an indication of the volume.   The results 

can be seen in Figure 3.32. Although shape 4 had the best error, the error was 

over 500 and therefore clearly showed that there was no relationship between 

the shapes on pixel intensity vs. volume. 
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Figure 3.32: Effect of shape on determining tumour volume 

Graph showing high errors when finding a relationship between shape and volume. 

 

 

The results show that using shape from shading principles to find tumour volume 

has been unsuccessful.  Where this technique focussed on the differences in 

pixel intensity on the model created from an external light source, next, machine 

learning is used where it extracts multiple features from the models in order to 

find a relationship with the volume.  

 

3.5 Tumour Volume – Machine Learning 

 

The ultimate aim of this project is replace callipers with a digital imaging system 

in deciphering the 3D volume of s.c. tumours from a 2D image. With previous 

methods of image processing and shape from shading failing to replicate volume 

measurements found using callipers, a CNN was tested. The pre-trained CNN 

VGG-Face trained classifiers with tumour images and their corresponding 

volumes, using layer FC7-before-relu to extract features. 
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Figure 3.32 shows the datasets used to train the classifiers, specifying image type   

and the number of images in each dataset.  Pseudo-tumour images, both 

exclusively and in combination with xenograft images, yielded the largest errors 

of 0.7970 and 0.5465, respectively. Training the classifier with only xenograft 

images significantly reduced the error to 0.1135 and using an increased number 

of images reduced the error further to 0.1081 Furthermore, using an increased 

number of xenograft images. Due to limited computational power and datasets 

this was the best error that could be achieved, and this could be improved with 

more extensive capabilities in both. 

 

 

Figure 3.33: Error seen when finding volume for different datasets used to train 
classifiers. 

Starting from the left, the data sets were trained with 3400, 6892, 2977 and 3499 images, 

respectively. Using exclusively tumour images obtained from xenografts reduced the 

error. 
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The trained classifier was then tested on the original xenograft images. The real 

volume was plotted with the estimated volume obtained from the callipers, Figure 

3.34. The graph indicates a positive correlation between both real and estimated 

volume.  The null hypothesis is accepted at 5% significance level, this says that 

the two samples statistically come from the same distribution. The test returned 

3 values: h, p and kstat. H is a 1 or a 0, p is the probability, and kstat is the 

distance between the graphs. The h was 0 and the p value is 0.031 making the 

null hypothesis accepted. The kstat was 0.1 showing the close proximity between 

the two graphs. 

 

Graph showing the relationship between the real volume and the estimated volume 

provided by callipers. P value of 0.031 indicates both volumes are from the same 

distribution and a kstat value of 0.109 show their close proximity. 

  

Figure 3.34: Real Vs estimated tumour volume 
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4. Discussion 

 

Motivated by the inadequacies of the industry standard use of callipers to 

measure tumour growth in s.c. tumour transplantation models, this project aimed 

to replace the methodology with non-invasive digital imaging. These 

inadequacies include physically squeezing the tumour, yielding highly subjective 

results with poor accuracy and reproducibility. Furthermore, by only using 2D 

measurements to work out a 3D volume there is no differentiation between a flat 

shaped tumour and a tumour growing outwards.  Through capturing 2D digital 

images and calculating the 3D volume measurement directly from the image, 

physical contact on the tumour was removed thus providing 3Rs refinement 

benefit to the mice. Furthermore, determining tumour volume through executing 

computer algorithms instead of the biased opinion of the person carrying out the 

calliper reading reduced subjectivity resulting in increased reproducibility and 

accuracy.  

 

Current research applying digital imaging to tumour detection and measurement 

is focused on melanoma detection in which the boundary between skin and 

tumour is evident and easily identifiable due to the high contrast in colour. For 

example, Pereira et al enhanced their algorithm for melanoma classification using 

features found on the tumour border[131]. Whereas early research focussed on 

image processing methods to detect melanomas, the limitations of this have now 

been recognised and current research explores advanced computer algorithms. 

Johansen et al[132] use hyperspectral imaging to enhance the information 

obtained from standard RGB images. RGB images capture information on 3 



 

159 
 

 Discussion 

bands, red green and blue whereas hyperspectral images capture hundreds of 

bands.  

 

In this thesis, the lack of colour differentiation between the tumour and 

surrounding body in the nude mice used in these studies was challenging and 

resulted in the application of sequential methodologies ranging from image 

processing to machine learning to attempt to differentiate between the two. Nude 

mice were used in this thesis as the challenges in differentiating the tumour from 

the surrounding skin in hairy mice would be increased due to the overlying fur 

causing further disruption of the contour of the tumour thus increasing the 

difficulty of extracting tumour measurements. Initial work using 2D digital images 

of tumour xenografts were found to be insufficient to evaluate sophisticated 

methodologies on their own.  

 

To investigate shape of shading principles and to satisfy the number of images 

required for machine learning methods for training a convolutional neural 

network, more images were required. Therefore, this data was augmented by 

virtual and pseudo-tumour models. Simple image processing methods such as 

edge detection were unable to initially identify the tumour or extract a volume 

from the 2D images. However, machine learning techniques using pretrained 

convolutional networks proved successful in both detecting the tumour and 

calculating its volume. This novel work has offered an inexpensive and simple 

replacement to callipers through eliminating the need to physically make contact 

with the tumours to obtain tumour measurements.  

 



 

160 
 

 Discussion 

To satisfy the aims of this thesis to provide a non-invasive digital imaging system 

as an alternative to calliper measurements to obtain tumour volume 

measurements, the primary form of data collection involved capturing 2D digital 

images of s.c. tumours. Although this thesis focuses on s.c. xenografts in nude 

hairless mice, in future work the methods would be applied to other s.c. 

xenografts including those in immunodeficient hairy nice (e.g. SCID mice) or s,c 

allografts in immunocompetent hairy mice. To achieve 3Rs refinement benefits 

by replacing callipers and therefore reducing animal handling, when capturing 

digital images, it was vital to remove physical contact on the tumour whilst 

ensuring images were consistent and reproducible.  Although the tunnelling 

handling method was used in this study to cause less anxiety to the mouse, there 

is still an element of stress as the animal is restrained and moved from its 

environment in order to be imaged. Therefore, a home-cage detection method 

would be most beneficial by offering increased refinement benefits to the mouse 

as this method would eliminate any handling as images would be captured within 

the cage itself.   

 

Fixing the camera on a copy stand and marking the surgical table at a 

predetermined location, clearly highlighting where the mouse would be held, 

enabled the observer to focus on ensuring the tumour could be seen from the 

camera screen. Digital images of squash balls, a regular fixed shape of known 

dimensions, were taken at the start and end of every session for image calibration 

to ensure the mouse would be placed in the correct position under the camera. 

Data used in this study focussed on the number and pattern of pixels in the 2D 

digital image captured. Although the copy stand and squash ball were in fixed 

position, the distance between the two was not included as a measurement of 
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length or breadth. This method eliminates any physical contact with the tumour 

as well as reducing observer variation due to fewer decisions the observer must 

make in comparison to the number of decisions made when taking calliper 

measurements. With calliper measurements the observer must hold the mouse 

and determine the longest length of the tumour and its perpendicular width whilst 

judging how much to squeeze the tumour, thus resulting in a higher number of 

decisions and higher rates of observer variation. 

 

In regards to the image itself, the background of the image was purposefully kept 

neutral to ensure a smooth transition with minimal barriers for different labs when 

replicating the image format and adopting this method instead of using standard 

calliper measurements.  The blue colour of the glove contrasted to the nude 

mouse, this was advantageous as it allowed for clear differentiation between the 

two objects in the images. One of the aims of this work is to detect the tumour 

and one of the first methods attempted to achieve this was colour segmentation, 

thus taking advantage of the different colour profiles found in the image. The 

challenge was to find a colour threshold separating the tumour from the 

surrounding nude mouse body, which proved difficult as both had the same colour 

profile.  

 

Image processing techniques used to detect the tumour in the digital image 

included isolated methods as well as sequential methods including colour 

segmentation, edge detection, contours, gradients and threshold. Ultimately all 

were unsuccessful primarily due to the lack of colour differentiation between the 

tumour and surrounding mouse skin. This project relied on commonly used image 

processing algorithms to extract information regarding the tumour boundary itself 
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or to pre-process the image to make the boundary clearer or pave the way for 

other techniques to differentiate the boundary.  

 

Colour segmentation has been highly successful in detecting skin melanomas 

and is often used for diagnostic purposes. However, the use of colour 

segmentation has not been limited to melanomas and has been used in various 

applications, including identifying white blood cells in peripheral blood and bone 

marrow images for the diagnosis of leukaemia. When looking for published 

models relevant to this work, studies on facial recognition were useful    as the 

majority of facial recognition systems use Caucasian males which share similar 

colour-spaces to that of the nude mice used in this study.  Both RGB and HSV 

colour spaces have commonly been used in this field and so were used in this 

project[133]. 

 

Colour segmentation in both RGB and HSV colour spaces were ultimately 

unsuccessful. The lack of colour differentiation between the tumour and 

surrounding skin meant that even if a threshold was found, other areas of the 

mouse body and tumour itself became corrupted as they share the same colour 

profile. There was also a discrepancy of the colour profile of the different mice in 

the same study which meant the segmentation methods which focussed on 

specific pixel thresholds were not applicable to every mouse in the study.  

 

As colour segmentation was unsuccessful at identifying thresholds, edge 

detection methods were tested and yielded no positive results. Tested methods 

included Sobel. Prewitt, Roberts, Canny, Laplaacian of Gaussian and Zerocross 

detectors. Edge detection was applied in combination with pre-processing steps 
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including noise reduction methods to reduce the information in the images as well 

as morphological operations to erode and eliminate outlying mouse features. 

 

Contour maps were created of the sample images in attempt to group pixels of a 

similar colour profile together. Contours were applied to a spherical tumour and 

a multi-lobed tumour, revealing an imperfect tumour boundary and partial tumour 

boundary, respectively. This method is inconsistent and would not be applicable 

to irregular tumour shapes. Gradient methods were applied to the sample image 

to visualise any patterns or associations between the pixels and this again gave 

no results, indicating the uniformity of pixels in the results.  

 

As commonly used methods were unsuccessful, the next step was for manual 

intervention. The pixel value at the tumour boundary of the cropped image 

created using erosion was determined and used to threshold the image. The 

resulting image had an imperfect boundary spreading into the mouse body and 

down the mouse flank clearly highlighting that the colour of the tumour boundary 

is also present in the mouse body. The border around the tumour was thick and 

therefore and not showing a singular boundary line, boundaries and centroids 

were applied to the threshold image to extract more information but they were 

unsuccessful.  

 

Using these image processing methods both in isolation and in combinations 

were unable to detect the tumour due to the lack of colour differentiation. Other 

strategies have been reported for detection of tumours such as Lattoofi et al[134] 

and Sengupta et al[135].  
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Lattoofi et al used as combination of image processing techniques to identify 

melanoma skin lesions, producing an algorithm with 93% accuracy[134]. 

Morphological operations and thresholding were used as preprocessing steps 

before the ABCD rule was applied. A represents asymmetry where the image 

was split in half and if both sides were identical, the lesion is classified as benign. 

Next is B for border, where benign lesions have smooth borders and melanomas 

have irregularities. C is for the colour variations present in melanomas as D is for 

dermoscopic structure such as the diameter as melanomas grow faster than 

benign lesions and therefore have larger diameters. Each factor is scored and 

combined to give a total dermatoscopy score, which a score higher than 5.45 

giving a melanoma classification.  

 

Melanomas already have a set of rules which can classify them, such as irregular 

border, asymmetrical and colour variation, and then image processing techniques 

are found to satisfy the rules. This work has no rules and needs to find identifying 

features in order to capitalise on them. The techniques Lattoofi implemented rely 

on high visibility of the tumour and the ability to detect border, colour and 

shape[134]. This is in contrast with this thesis which needs techniques that don’t 

rely on these image processing features due to lack of visibility and a lack of 

colour differentiation which renders the image processing techniques 

unsuccessful in identifying the tumour from the surrounding mouse skin.  

 

Sengupta et al used image processing techniques to improve edge detection of 

the skin lesions neurofibromatosis and nodular melanoma using multiple pre-

processing steps and Ant Colony Optimisation (ACO)[135]. ACO is a method 

inspired by the behaviour of ants, specifically the communication between them 



 

165 
 

 Discussion 

where ants release pheromones to signal information to other ants. The pre-

processing steps used by Sengupta included converting the image from RGB to 

grayscale, enhancing the contrast of the image using 1% of the high and low pixel 

intensities in the image and median filtering, where every pixel is compared to its 

neighbouring pixels and given the median value. Next, the edge detectors Sobel, 

Prewitt and Canny were applied to give the edges of the skin lesions, as an edge 

map, and ACO was used to enhance the edges found.  

 

The first stage of ACO was initialisation comprised of transforming the edge maps 

into a matrix and split into 8-pixel grids known as cliques. Next is the pixel 

transition phase where the ants are able to move along their 8 pixel clique, looking 

for changes in pixel intensity. The third step is pheromone updating, ensuring 

pixels the ants have moved locally within their clique and globally, which looks at 

total ant movement.  The process is repeated multiple times. Stop criteria halts 

the ant movement if it touches a pixel path covered by a neighbouring ant and 

once all pixels have been covered, the process will stop.  

 

When reviewing the results of this paper, it is evident that the skin lesion already 

has a colour differentiation between the lesion and the surrounding skin[135]. The 

pre-processing steps as well as edge detection and ACO were successful as the 

colour differentiation already existed and these techniques enhanced the 

differences thus allowing clearer edges. The difficulty in this thesis is the lack of 

colour differentiation, there is no base for image processing techniques to find 

and enhance as there is no change in pixel intensity at the tumour boundary. The 

resulting images from thresholding and the contour maps in this thesis clearly 

indicate that the tumour boundary is not defined. Although ACO had a positive 
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impact on the edge maps found by Sengupta[135], it wouldn’t work in this 

research as the edge maps created on the sample images were unsuccessful in 

locating any tumour features. 

 

Unlike this study, in these studies colour differentiation facilitates tumour 

detection, therefore other disciplines need to be studied to see if a viable solution 

to the differentiation issue is available. An area where there is poor differentiation 

is in the assessment of cracks in concrete. Mohan et al published a critical review 

allowing a broader view of the industry and the challenges faced as well as 

solutions to overcome these[136].   

 

Cracks in concrete are warning signs of the possible failure of the structure and 

so it is important to be able to identify and quantify the damage early[136]. Early 

methods involved manual inspection which was reliant on the expertise and 

experience of the observer and so automated methods were developed to reduce 

bias and increase efficiency and reproducibility. Mohan published a critical review 

of crack detection methods based on image processing[136]. Although the paper 

covers various image types including infrared, ultrasonic and laser imaging, to 

name but a few, the focus for the purposes of this thesis was on digital imaging 

processing to translate the techniques and methods for tumour detection.  

 

Interestingly, many of the techniques used in crack detection digital image 

processing are similar to those applied in skin lesion detection, such as 

morphological approach, median filtering, threshold method and centroid 

method[136]. This highlighted the simplicity of image processing methods as a 

colour differentiation must be present for these techniques to be successful. 
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A study by Liu used image processing techniques to identify bugholes[137]. 

Bugholes are imperfections in the surface of concrete resulting from trapped air 

or water thus resulting in an unsatisfactory appearance. Automated processes 

provide efficiency in identifying and quantifying the bugholes and Liu 2017 used 

image processing techniques to detect bugholes and therefore grade the quality 

of the surface of the concrete. The paper firstly converted the images from RGB 

to grayscale to allow investigation of the tone of the bugholes by looking at 

surface reflectivity. Bugholes have decreased reflectivity in comparison to normal 

concrete and therefore this was a distinguishing factor[137]. 

 

Next, Liu enhanced the contrast of the image, specifically grey linear 

enhancement, to increase the difference in pixel intensity between bugholes and 

the normal concrete surface[137]. The image was then segmented by pixel 

intensity, with the results showing a two value histogram representing both 

bugholes and normal concrete. The results were inconclusive as it was difficult to 

find a single threshold and so an automated thresholding method was applied, 

the OTSU method. This method iterates through all threshold values, analysing 

the spread of pixels at each threshold. This method was found to be successful 

in comparison to edge detection methods[137].  

 

When analysing the images of bugholes, it is clear to observe their location as 

they are darker in colour in comparison to normal concrete. This paper works on 

increasing this difference in pixel intensity to allow detection to be easier and 

were able to do so as there was a distinguishable difference present. The 

challenge this thesis faced  was the lack of distinguishable features as a clear 
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tumour boundary could not even be found due to the tumour and surrounding 

skin having the same pixel intensity. Edge detection did provide positive results 

for Liu but also gave false positives whereas the OTSU method yielded a higher 

accuracy and therefore was chosen for the detection of bugholes[137]. Edge 

detection did not give any accurate results in this thesis and so enhancement of 

contrast would have little effect as the tumour boundaries were incomplete in 

terms of differences in pixel intensities between the tumour and the surrounding 

skin.  

 

Another discipline using image processing for object detection is agriculture. The 

uses of agriculture range from feeding the population to providing materials for 

textiles as well as medicines, hence it is vital to identify pests and disease on crop 

plant leaves. These defects are visible by eye and are usually detected by trained 

experts[138]. However this is expensive and impractical, especially due to the 

dwindling workforce.  Furthermore, trained experts can be specialists in specific 

areas and therefore have difficulty recognising anomalies for non-native pests 

and diseases. Ngugi 2021 presents a review highlighting the uses of computing 

algorithms for automatic disease and pest detection, thus reducing the need for 

trained observers[138].  Initially, RGB images were utilised as RGB cameras are 

readily available, easy to operate as well as cost effective. As well as using image 

processing, machine learning methods are highly utilised in this field due to 

accuracy in extracting image features facilitating better detection. As was the 

case with bugholes and previous research discussed, the object being detected 

has a colour differentiation from its surroundings whereas the challenge this 

thesis faces is a lack of colour differentiation. 
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As image processing methods were evidently not sufficient to satisfy the aims of 

this thesis due to the lack of colour differentiation between the tumour and its 

surrounding skin, and there do not appear to be solutions to this, even from other 

disciplines, the next step was to introduce machine learning methods as a way to 

detect the tumour from the 2D digital images. 

 

Cascade classification in this thesis applied three commonly used object 

detection methods[139],  Haar, HOG and LBP feature type classifiers. Whilst 

these classifiers started as object detectors in facial recognition, and are still 

highly used in face recognition (Adeshina 2021[140]), they are now commonly 

used across various disciplines such as vehicle classification (Sanjana 

2021[141]), and detection of kidney abnormalities (Kaur 2020).    

 

Haar features use pattern recognition to classify an object allowing for the 

detection of structures regardless of the scale, illumination or colouring of the 

image or object. It consists of grey and white rectangles, focussing on pixel 

intensity, which are placed around common features of the object. In facial 

recognition, common features are the eyes, nose, cheeks, these are attributes 

belonging to the object being detected. Haar features can determine that the nose 

area is brighter than the eyes, thus aiding the detection process[140].  

 

LBP is a texture descriptor where local changes in pixel intensity show edges and 

points and can be combined globally to show patterns. Ahonen used LBP in facial 

recognition and found that different features of the face were weighted differently, 

such as the eyes, nose and mouth thus allowing them to be distinguished from 

each other[142].  
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HOG use gradients vectors for object classification, this looks at the direction of 

gradients and edges in an image to identify shapes. This is useful in detecting 

silhouettes and contours[143]. As well established detectors, Haar, HOG and 

LBP have easy to use frameworks customisable for the given task. They are often 

utilised in combination with a variety of methodology, for example, HOG is often 

combined with SVM to provide powerful facial recognition[144].  

 

In this thesis, Haar features were most successful in identifying the tumour albeit 

with multiple negative classifications. Further testing on cropped versions on the 

sample image with reduced information again identified the tumour but with 

multiple negative classifications thus rendering this an unreliable method of 

tumour detection.  

 

Li 2017 used Haar classifier for facial recognition but combined this with three 

weaker classifiers to boost detection results[145]. The three weaker classifiers 

focused on different features of the face. Translating these findings in terms of 

this thesis, instead of focussing on classifiers to identify the tumour, classifiers 

could be trained on all features of the mouse including the head and limbs thus 

allowing these features to be eliminated. Looking at the results of cascade 

classification on the sample images, it wasn’t a case of a mouse limbs being 

mistaken for tumours, as cascade classification was also run on cropped images 

that did not include any limbs or features outside the flank of the mouse, and still 

gave false positives. Therefore, this is not a viable method to improve cascade 

classification for tumour detection.  
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In this thesis, pretrained convolutional neural networks VGG-Face, VGG-16 and 

VGG-19 were tested for tumour detection and VGG-Face with layer Relu6 had 

the highest recognition rate and therefore were the most successful in detecting 

the tumour boundary. When tested on larger datasets, the classifier trained with 

VGG-Face layer Relu6 had a recognition rate of 0.9886. To achieve a 100% 

recognition rate, the image which did not have the tumour correctly identified was 

cropped and the classifier was executed again which successfully identified the 

tumour. The cropping of the image does not introduce an element of observer 

bias as the cropped image is not exclusively of the tumour, it also includes the 

immediate surrounding mouse body and so the observer does not need to 

attempt to decipher the tumour boundary. Only images with false detection need 

to be cropped, with a 99% recognition rate, this leaves 1% of images which may 

require intervention. Whilst a significantly high tumour detection rate without 

requiring user intervention was achieved with this method, it has to be 

remembered that the competing calliper technology offers a 100% detection rate 

for the tumour outline, and therefore further optimisation needs to be considered.  

 

Where this thesis focussed on image processing and machine learning as two 

separate entities, Khan 2019 combined the two thus optimising the process[146]. 

This study achieved classification accuracy rates ranging between 85-96.5% 

through implementing a hybrid model incorporating both segmentation and 

classification[146]. This work allowed Khan to go beyond classifying skin lesions 

as melanoma to differentiating between benign and malignant melanomas. The 

image processing techniques initially applied to the image of the melanoma 

include contrast enhancement, weighted Gaussian and median filtering. The 

resulting image was segmented in the YCbCr colour space and a threshold was 
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applied resulting in a binary image. The next step was to extract features for 

classification, using a DCNN-9 model which is based on VGG and AlexNet 

models[146].  

 

In this thesis. Images of tumours and pseudo-tumours were used to train the CNN 

classifiers. Contrast was altered on images to give a larger sample size of images 

but no attempts were made to segment the images initially as the image 

processing methodology applied initially was unsuccessful. To include processed 

images in the sample of images used to train the classifier, they would have to 

be included in place of an image of a whole tumour as the maximum number of 

images used to train a classifier was restricted.  The biggest limiting factor for 

CNN in this thesis was the lack of computational power thus the classifier could 

only be trained on a maximum number of images. This work was able to identify 

99% of tumour boundaries (0.989 recognition rate), even though the classifiers 

were trained on a limited number of images. It is highly probable that with 

increased computational power and a larger sample of images, the recognition 

rate could improve further.  

 

With a high recognition rate, and a method to increase this to 100%, the first aim 

of this thesis to detect the tumour was satisfied and the next aim of this thesis 

was to calculate tumour volume. With the first thesis aim to detect the tumour 

boundaries achieved, the next aim was to automate calculation of tumour volume.   

As reviewed in the introduction section, calculation of tumour volume from 2D 

calliper measurements has several issues in terms of accuracy and 

reproducibility. This is why the gold standard formula provided by Tomayko finds 

ellipsoidal volume without needing the height measurement. 
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Feldman 2009 looked at the relationship between length, width and height in an 

attempt to improve on the current gold standard and found (3 x height2) to have 

similar results to (length x width). They provided an alternative formula to the 

current gold standard, reducing the overall error from 10% to 4%. Although this 

work potentially reduces the error found using the standard methods, it still 

requires calliper measurements. The work reduced observer variation by 

ensuring one observer carried out all measurements but this is not feasible in real 

life scenarios. Furthermore, this study transplanted tumours on the leg instead of 

the mouse flank, therefore there was minimal interference from surrounding skin. 

Again, this is not feasible in real life scenarios and growing tumours on a leg for 

longer studies would be detrimental to the health of the mouse as this would affect 

mobility.  

 

In the first attempt to determine tumour volume in this thesis using computing and 

bypassing callipers, the maximum length of the tumour and perpendicular width 

of tumours were automatically determined by a computer algorithm thus removing 

physical contact on the tumour as well as observer bias. The computer algorithm 

processed a mask of the tumour, which was obtained through manual separation 

of the tumour from the remainder of the digital image at the tumour boundary as 

decided by the observer, and found the longest length of pixels to represent the 

maximum length and its perpendicular width.  The modified ellipsoid formula was 

used to determine the tumour volume thus enabling a direct comparison of results 

obtained from using digital and calliper methods. A positive correlation (0.789) 

was found between tumour volume determined from digital methods and 

callipers. Smaller volumes under 400mm3 had a strong correlation (0.868) but as 
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volume increased the ability to correlate was lost as volumes above 600m3 had 

a weak correlation (0.081). 

 

Looking singularly at length and width measurements, length obtained from both 

digital and calliper methods had a higher correlation of 0.833 whereas width had 

a lower correlation 0.750 thus suggesting that observers operating callipers were 

better at determining the maximum length of a tumour in comparison to its 

perpendicular width. As it is a manual process for the observer, determining a 

perpendicular value whilst holding a moving animal explains the weakness in the 

width measurement. Interestingly, comparing the area of the digital tumour mask 

with the calliper volume and digital volume gave correlations of 0.838 and 0.976, 

respectively. The results show a relationship between the number of pixels in the 

tumour mask and the tumour volume, suggesting that the volume obtained by 

callipers could be reproduced by studying the area of the tumour and thus 

avoiding length and width measurements.  

 

These results were found through comparing volumes found from digital masks 

of the tumour with volumes found from callipers. As discussed in the introduction 

chapter, callipers are themselves flawed. To gain more insight into the reliability 

of using masks as well as callipers, pseudo-tumours were constructed to enable 

testing calliper measurements, mask measurements and a third measurement of 

volume found from 3D scanning, believed to be closer to true volume.   

 

Calliper volume and mask volume from the pseudo-tumours had a high 

correlation of 0.952. Calliper had a very high correlation of (0.952) with 3D volume 

and masks had a lower (0.929) correlation. The methodology to use mask volume 
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has been unsuccessful in superseding volume results found from callipers. 

However, taking images and calliper measurements of a pseudo-tumour 

constructed with blu-tack is far removed from reality. For the pseudo-tumours, it 

was easy to take calliper measurements as the tumours were not sitting 

subcutaneously on a moving animal, and therefore there was no pressure of time 

and a surgical environment. Furthermore, as the pseudo-tumours were 

constructed from blu-tack, applying callipers with too much strength would cut 

into the model and reveal a dent, and so it was easy to judge when to stop 

squeezing, which would not have been as easy on a moving animal. 

 

Additionally, one of the flaws of callipers is the observer variability. This digital 

method of obtaining longitudinal measurements removes observer bias in the 

maximum length and width measurement but these measurements are derived 

from a digital mask created by an observer.  

 

When assessing MRI scans, the observer must take two-dimensional 

measurements to define the area on the MRI showing tumour lesions. As with 

calliper measurements, this introduces inaccuracies and are not always reliable. 

Kickingereder 2019 automated this process using artificial neural networks, 

teaching the software to find the tumour area without any observer 

involvement[147]. The observers manually created masks of the MRI images, 

delineating the lesions on the image and removing all interfering background 

information and used these to train the artificial neural network.  

 

Kickingereder found that he reliability values of the software and standard 

practice were 87% and 51%, respectively. This highlights that the masks were 
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successful at training the neural network. The study ensured reliability of their 

masks by ensuring all masks were created by experienced radiologists and then 

checked again by an experienced neuroradiologist[147].   

 

Although the same observer created all of the masks in this thesis, this method 

is not realistic for future lab work involving multiple observers who may not be 

familiar with the tumours. This has potential to introduce error as the observer 

must visually find the tumour volume and extract the mask accordingly. Evidently, 

this method is flawed and perhaps too simple to contribute towards determining 

tumour volume from a 2D digital image. The next method to find tumour volume 

was shape from shading, where the link between pixel intensity and depth was 

investigated. 

 

Ciaccio[123] used shape from shading to capture images of the small intestine 

focusing on detection of protruding areas in order to diagnose coeliac disease. 

The study found a direct relationship between reflectance map and image 

brightness. Brighter pixels were closer to the camera in comparison to darker 

pixels which were further way, giving an indication of depth. This work 

incorporated shade from shading methods through finding a link between pixel 

intensity and pseudo-tumour height. It was expected that a taller tumour with 

greater depth have a higher pixel intensity in comparison to a shorter tumour with 

decreased depth. Seven pseudo-tumours were imaged both with and without 

using the built-in flash light source on the camera. Those without flash had no 

external light source and the pixel intensity remained almost linear and consistent 

as the pseudo-tumour height increased indicating no relationship between pixel 

intensity and model depth. Adding flash resulted in varying pixel intensity, with 
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the pixel intensity dropping between 10 and 15mm and then increasing between 

15-25mm models.  

 

To obtain more concise results, virtual tumours were constructed. These allowed 

the applications of a variety of different light angles and tumour shapes whilst 

removing human error as the process was computerised. Pixel intensity was then 

investigated against the volume of the tumour itself instead of its height. Pixel 

intensity and volume were regressed together. The ideal error would be 0, and 

the errors found were very high using both PCA and multiple regression methods, 

within the range of 277 – 299 without offset, and within the range of 312 – 314 

with offset. Furthermore, Figure 3.30 in this thesis clearly shows that increasing 

volume measurements caused a big increase in the error found.  

 

Evidently, this work found no connection between pixel intensity and depth. 

Looking at the sample of images of s.c. tumours used in this thesis, earlier work 

for tumour detection highlighted that the images had no distinguishable features 

and so image processing techniques performed poorly. To find tumour volume, 

neither longitudinal measurements nor the addition of a light source to use shape 

from shading principles were individually successful in determining the tumour. 

This indicates the lack of colour differentiation and change in pixel intensity at the 

tumour boundary in 2D digital images.   

 

A paper by Delgado-San Martin 2019 presents a method to obtain tumour 

measurements from an image with a 3D scanning technique, BioVolumeTM 

(Fuel3D, Oxford, UK; www.fuel3d.com) incorporating both digital and infrared 

imaging[148]. The BioVolume device contains two RGB cameras, three white 

http://www.fuel3d.com/
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light flashes and an infrared camera. Each image capture contains six RGB 

images and one infrared image. The RGB images are reconstructed on a surface 

while the infrared image, which indicates the regions containing tumour due to 

poor vascularisation, is mapped onto the surface. As the work in this thesis has 

shown, digital images are unable to provide accurate segmentation results and 

so this study purposed the thermal image for segmentation to ensure only the 

tumour was mapped onto the 3D reconstruction. Instead of using the gold 

standard modified ellipsoid formula, the study used the spheroid volume to 

compare tumour volumes obtained through BioVolume and callipers and also 

used BioVolume to determine a cylindrical volume.  

 

When comparing length and width measurements obtained from both BioVolume 

and calliper measurements, the BioVolume measurements were within 3mm of 

calliper measurements in 88.86% and 90.99% of measurements, respectively. 

Furthermore, there was a high correlation between tumour volume 

measurements found via callipers and BioVolume although BioVolume estimated 

lower volumes than the callipers overall. Interestingly, using the spheroid formula 

for volume, BioVolume had lower rates of inter-operator variability but when the 

cylindrical volume was determined, BioVolume had similar rates of inter-operator 

variability to the callipers. When capturing BioVolume measurements, the back 

of the mouse is held up to the BioVolume device for imaging purposes. The 

position the mouse is held in may vary between observers.  

 

Although this paper found a high correlation between their method to calculate 

tumour volume, BioVolume, and calliper volume, the work is only successful if 

their specific equipment is purchased and utilised, deviating away from the 
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principle of using low-cost standard imaging equipment as aimed for in this thesis. 

Furthermore, the mouse must be held against the equipment which negatively 

impacts the mice as they are not only being removed from their environment, they 

are also held alongside a machine they are unfamiliar with which can be stressful. 

   

The aim of this thesis was to both detect the tumour and determine tumour 

volume from a 2D image, thus allowing a cheap and efficient method to improve 

accuracy in comparison to calliper measurements whilst providing refinement 

benefits for the mouse. With previous methods of image processing and shape 

from shading failing, machine learning methods were used to teach classifiers to 

find an association between the xenograft images and their corresponding 

volume measurements. Multiple datasets were used to find a classifier with the 

smallest error.  

 

When using machine learning in tumour detection, it was found that combining 

pseudo tumour images with xenograft images improved tumour recognition rates. 

Whereas when training classifiers for volume measurements, using pseudo-

tumour measurements caused much higher errors than using xenografts 

themselves. Therefore, the number of xenograft images we had access to 

became a limiting factor. Two datasets consisted of only xenograft images, one 

with 2977 images and another with 3499 images, giving errors of 0.1135 and 

0.1081 respectively. The biggest limiting factor for CNN in this thesis was the lack 

of computational power thus the classifier could only train on a maximum number 

of images. An increased number of xenograft images would have resulted in a 

reduced error. 
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Finally, the classifier was tested on original xenograft images, and the real volume 

was plotted with estimated volume obtained from the callipers. It was found that 

the two samples came from the same distribution and therefore there was no 

significant difference between the two. This work has successfully found tumour 

volume measurements using 2D digital images. Although this provides 

refinement benefits to the mice as it avoids the squeezing of the tumour by the 

callipers, the mouse must still be held in order to capture images of the tumour 

and the angling of the mouse could introduce bias. The next step in this work 

would be to a home cage set up for the mouse where images could be captured 

from within the cage, eliminating the need for the mouse to be held. This would 

also ensure the mouse would stay in its own environment and not suffer the stress 

of being transferred out of the cage into a surgical room setup.   

 

4.1 Conclusion & next steps 

 

This thesis set out to replace calliper use for tumour measurement with a non-

invasive programming solution applied to 2D digital images, to not only eliminate 

the inaccuracies found with callipers, but to reduce physical contact with the 

tumour, thus offering refinement benefits to the mouse. This would also be a 

relatively cheap methodology which could be adopted routinely in most animal 

facilities and require no specialist training. Commercially available approaches 

which carry out similar measurements have become available since this work 

began, e.g. BioVolume[148] which uses a combination of digital imaging and 

infrared, but this requires expensive machinery and increases animal handling.  
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This novel work has successfully achieved this. The attempts at using image 

processing techniques to find the tumour boundary quickly indicated that the 

biggest challenge in this work was a lack of colour differentiation between the 

tumour and surrounding mouse body. Research was consulted from edge 

detection in melanomas to cracks in concrete and pests in agriculture but none 

offered a solution to solve this challenge, and thus a different approach, machine 

learning, was taken. 

 

Machine learning methods were utilised and pre-trained convolutional neural 

networks were able to decipher a tumour volume from a digital image with 99% 

accuracy and a semi-automatic step was introduced to achieve a 100% accuracy 

level. There is a clear pathway for future work as this work was limited by 

computational power. A larger dataset would increase accuracy levels further.  

 

Furthermore, although this work removes physical contact on the tumour, it still 

requires animal handling. Therefore the next refinement to progressing this work 

would be that instead of having to restrain the mouse to capture its image, 

cameras would be placed around the home cage so the mouse could remain in 

its own environment. Either multiple images could be captured from multiple 

angles, or a video could be captured where the mouse and the tumour would be 

tracked, and the tumour subsequently measured. The initial groundwork 

achieved through this thesis will facilitate further development to progress 

towards these key refinements in experimental tumour graft measurement.   
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