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Abstract 

    Porous materials play an important role in creating a sustainable environment by improving 

wastewater treatment's efficacy. Porous materials, including adsorbents or ion-exchangers, 

catalysts, metal-organic frameworks, composites, carbon materials, and membranes, have 

widespread applications in treating wastewater and air pollution. This review examines recent 

developments in porous materials, focusing on their effectiveness for different wastewater 

pollutants. Specifically, they can treat a wide range of water contaminants, and many remove 

over 95% of targeted contaminants. Recent advancements include a wider range of adsorption 

options, heterogeneous catalysis, a new UV/H2O2 procedure, ion exchange, Fenton oxidation, 

membrane activities, ozonation, membrane bioreactor, electrochemical treatment, wet air 

oxidation, and a carbon capture methodology utilising various porous materials. A particular 

focus for innovative research is on developing technologies to synthesize porous materials and 

assess their performance in removing various pollutants from wastewater at varying 

experimental conditions. Porous materials can be essential in designing wastewater treatment 

systems to address the critical environmental issues of water stress and safe drinking water 

worldwide.  
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1 INTRODUCTION 

The progress of any country is contingent on the available resources, whether they are used for 

production, distribution, or consumption. Natural resources–particularly water – are being used 

at an escalating rate, creating shortages and issues of pollution that must be addressed for long-

term sustainability. Using one key natural resource, such as water, impacts other parts of the 

biosphere; thus, addressing pollution and contamination in one resource can positively impact 

other natural resource systems.  The United Nations has identified clean water and sanitation 

as one of its central Sustainable Development Goals, noting that progress toward safe, sanitary 

access to water must increase fourfold to reach the goal of universal clean water access by 

2030.1 Chemical engineering and other fields involved in manufacturing processes can play an 

important role in reducing contamination to alleviate worldwide water stress so that this goal 

can be met. Chemical engineering and related fields now emphasise enhancing substance 

treatment, manufacturing and chemical disposal processes as a part of rehabilitating water 

systems and preserving them for future generations. Such research began after Anastas et al.'s 

initial publication of “green chemistry” in 1998, bringing the field’s attention to the need to 

reduce hazardous substances in chemical processes. Therefore, emerging sustainable materials 

and related industrial developments are paramount for ensuring water resource access and 

quality over the long term. One key sustainable material, and the focus of this review, is porous 

materials.  

Porous materials’ applications can contribute to greener water management and alleviate water 

stress by reducing hazardous materials' impact on the water supply. It is advantageous as an 

adsorbent due to its large surface area, making it highly efficient for various industrial 

purposes. Different porous constituents are currently discovered and developed, categorized 

based on their leading structural materials: carbon-containing, oxygen-based, organic polymer-

based, nanoparticle-containing, ionic liquid-based, and composite material-based adsorbents. 

One key structural aspect is the material’s pores, which shape the function of the materials. 

Porosity is the most effective property of solids that affects their validation for a specific 

application. This property varies based on the synthesis method, circumstances, and their 

precursors. Materials’ porosity could be intrinsic or extrinsic, which is a unique property that 
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might predominate in several natural and synthetic materials. These are classified as organic, 

inorganic, and hybrid organic-inorganic materials, and each is characterised by different pore 

sizes. According to the International Union of Pure and Applied Chemistry (IUPAC), porosity 

is classified into three types based on diameter: 

(i) Microporosity (pore diameter < 2 nm)

(ii) Mesoporosity (pore diameter 2–50 nm)

(iii) Macroporosity (pore diameter > 50 nm2

Porous solids may have only one porosity level or more. Multi-level solids are typically known 

as hierarchically porous materials.3 The porosity of the used solid material can limit any 

application by restricting the species diffusion from/into the internal surface area and active 

sites. So far, porous materials have been synthesized to have multi-level porosity to cope with 

this problem.4 Multi-level porosity can solve this problem by interconnected micro-meso-

macropores that control highly efficient diffusion and interchange properties and exhibit great 

potential in nanotechnology, energy transformation and cell rehabilitation. These multi-level 

solids are eco-friendly because of their capability to separate CO2 from other gases via gas-

solid interactions. Thus, eco-friendly crude initiatives are applied at modest production 

conditions and linked to the most critical industries and applications. 5,6 

This present review article sheds light on porous materials' critical role in the current 

wastewater treatment techniques. It explains how they contribute to sustaining safe water 

resources. Good quality, inexpensive with large surface areas and a range of treatment 

competencies has been developed as innovations in sustainable approaches to water treatment. 

This review paper outlines the latest development in using porous materials in water treatment. 

It discusses the different feedstock-based porous materials and their applications for 

wastewater treatment in the context of sustainable development, with a specific focus on new 

porous materials that can optimize the treatment process and enhance the functionality of 

relevant wastewater treatment technologies. 
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2 WASTEWATER TREATMENT 

    Wastewater is released from different discharges to the water bodies. It can contain 

contaminants that cause severe problems to both human and aquatic life. Water can be polluted 

by various wastes such as salts, radioactive elements, heavy metals, organic pollutants, dyes, 

oil spills, and pharmaceutical wastes. Population growth and industrial expansion both raise 

water demand. This demand creates an exigence to find feasible methods for reusing polluted 

water safely.7 Different treatment technologies have been developed to remove these 

contaminants. Effective options for porous materials are in high demand for these technologies 

because, recently, it has shown enhanced contaminant segregation compared to others 

associated with acceptance capacities and selectivity due to their versatile functionality. 

Several characteristics make porous materials important for wastewater treatment. These 

aspects are summarized below in the Table 1.   
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TABLE 1  Characteristics of porous materials 

 
Characteristics of porous materials as 

 
Relevance of features in wastewater treatment 

 

 
References 

Adsorbent 
• Pore size distribution forming the porosity of the adsorbent. 
• Microporosity, mesoporosity, and microporosity forming the external 

and internal large surface area and contributing to the high adsorption 
capacity. 

• The external surface containing variable functional groups such as 
carboxyl, carbonyl, phenol, quinone, lactone, etc. 

• Chemical complexity if chemisorption occurs.  
 

 
• The adsorption performance of the adsorbent for the pollutants 

depends on the pore size distribution and the surface functional 
groups.  

• The adsorption mechanism depends on the chemical properties of the 
adsorbent surface and the pollutant’s nature. 

8 

Ion-exchanger 
 
• Pore size distribution forming the porosity of the adsorbent. 
• Microporosity, mesoporosity, and microporosity forming the external 

and internal large surface area and contributing to the high adsorption 
capacity. 

• The internal surface containing the ions or cations to be exchanged. 
• The external surface containing variable functional groups if the 

exchanger is made as composite of organic and inorganic materials. 
• Chemical complexity only if chemisorption occurs.  

 

 
 

• The exchange performance depends on the convenience of the pore 
size and porosity level of the exchanger to the size of cations of the 
metals to be removed. 

• The ion-exchange mechanism depends on the structure and surface-
chemical properties of the exchanger and the polluting metal 
properties. Therefore, engineering a convenient porous ion-exchanger 
determines the removal performance. 

8 

Catalyst 
• Pore size distribution and internal large surface area contributing to the 

high catalysis performance. 
• The catalyst porosity and shape selectivity. 
• The internal surface containing the active sites for catalysis. 

 
• High porosity and large internal surface area accommodating the active 

elements which leads to high catalysis performance. 
9 
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• Catalyst stability under harsh treatment conditions, especially for 
heterogeneous Fenton type catalysts based on porous supports such as 
zeolites, mesoporous silicas, clays, etc. 

• An extra motivation for utilizing solid Fenton catalyst is providing the 
potential stabilization of the less stable reduced Fe(II) or Cu(I) 
oxidation states by a suitable (porous) support. 

Membrane 
 
i. Membranes include adsorption and filtration such as electrospun 

membranes: 
• High porosity, specific surface area, and easy regeneration make the 

membranes talented materials for uptaking the contaminants from 
aqueous solutions. 

• The engineered layered structure on the porous fibers offers more 
adsorption sites, special charges, and functional groups which increase 
the capacity and rate of adsorption.  
 

ii. Porous MF, UF, and MD membranes where the rejection is based on 
the size exclusion and electrostatic charge effects. 

• The pore size and porosity of the membrane for the selective portioning 
of the uncharged pollutants by size exclusion (pore sieving). But for 
ionic species, the rejection is affected by the size exclusion and 
electrostatic interactions.  

• Other surface properties including membrane surface roughness and 
surface wettability raised from the membrane’s porosity. 

 
 

• High porosity, large specific surface area, and high pore size 
uniformity, are expected to make the membranes effective materials 
for wastewater treatment. 

• Effectively promoting the separation flux. 
• The separation efficiency and antifouling of the membrane can also 

efficiently be improved through composing special wettability on the 
membrane’s surface. 

• The adsorption and pore-blocking of the membrane is the main 
reason for fouling during the treatment of dye polluted wastewaters.  

10, 11 
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Below are the most common methods that utilize porous materials for treating wastewater: 

2.1   Membrane filtration  

Research emphasis on wastewater is increasing due to the importance of removing 

contamination and reusing water. Additionally, this process is related to environmental 

concerns and contributes to a greener society. Because membrane separation techniques 

involve low costs, lesser energy consumption, clean, feasible, and flexible design systems with 

high-quality water with reduced area requirement,12 they are crucial to developing effective 

green technologies for wastewater treatment. A pressure gradient, concentration gradient, 

temperature gradient, and electrical current lead to the membrane-based separation depending 

mainly on the presence of a porous membrane (semipermeable membrane), as shown in Figure 

1. 

 

FIGURE 1 Wastewater treatment by membrane separation 

Membranes can be one of the following four major types, which are categorized based on the 

rate of treatment:  

i. microfiltration (MF) membrane with screens particles of 0.1–0.5 mm 

ii. ultrafiltration (UF) membrane with screens particles of 0.005–0.05 mm 

iii.  nanofiltration (NF) membrane with screens particles of 0.0005–0.001 mm, 
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iv.  reverse osmosis (RO) membrane with molecular size below 10 molecular weight cutoff 

(MWCO).13,14 

MF and UF are low-pressure, vacuum, immersed driven membranes; NF and RO are high-

pressure operated membranes. Usually, the treatment process includes the electrodialysis (ED) 

membrane, electrodeionization (EDI) membrane and electrodialysis reversal (EDR) membrane 

for periodic changes of the polarity as a water-softening process which are nothing but an 

electrical current-driven membrane treatment progression. Hence, selecting a proper 

membrane process is based on the blend present in the water and the domine of terminated 

effluents. For example, pressure-driven membrane techniques are used for industrial 

wastewater treatment and natural water for household and drinking needs.14 The structure of a 

membrane is crucial for its characteristics and separation process because it specifies the 

operational parameters and the implementation of the filtration process. Semi-permeability is 

the most critical property of the membranes, which permits selective passage and retention of 

the species. This property determines the membrane action based on its structure and 

succeeding characteristics like permselectivity, hydrophilicity or hydrophobicity properties.15 

Membranes can be categorized based on their structure, as shown in Figure 2. The possible 

structures are: dense, porous (symmetric or asymmetric), and composite.16 Dense 

homogeneous polymer membranes are commonly made from a solution by solvent evaporation 

or by extrusion of a melted polymer. Due to their low permeate flow, these membranes can be 

practically used when synthesized with highly absorbent polymers like silicone.16 The 

asymmetric membranes integrate the property of a high permeate resulting from a relatively 

thin selective top layer, with the underlying porous structure providing proper mechanical 

stability.17 The symmetric membranes can also be either isotropic or anisotropic. Isotropic 

membranes have uniform physical structure and composition, broadly used for microfiltration. 

Microporous isotropic membranes have relatively high permeation fluxes. When these are non-

porous, which have a much tighter cell structure preventing ease of flow, ultimately reducing 

the permeation fluxes due to their minimized application. Therefore, their application is 

minimal. Furthermore, anisotropic membranes are non-uniform membranes with different 

compositions and structures. They have a thin selective layer supported by a thick, highly 

absorbent layer. The thin-film composite membrane, which consists of a dense top layer 

covering a porous structure, was introduced as an alternative to the asymmetric membrane.17 
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The different types of membranes used in the water treatment were highly influenced by the 

materials, pore sizes and applications (Table 2). 

 

FIGURE 2 Classification of membranes based on morphology, adapted from15,16 
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TABLE 2 Classification and usability of membranes 

 
Classification 

 

 
Use in water treatment 

 

 
Effectiveness 

 

 
References 

 
Dense membrane 

 

• Most of the applications of polymeric nanofiltration 
membranes. 

• Separation of organic-water mixtures by pervaporation. 
• Dense type nanofiltration membranes are employed in 

separation (multivalent) ions from a solvent and relatively 
small organic compounds. 

• Separating salts from dye solutions. 
• The extraction of the natural products presenting in highly 

concentrated form via separation of acids from sugar 
solutions. 

• To achieve separation on a molecular scale, a 
relatively dense membrane is required. 

• The quite low permeate flow across the 
membrane because it is important to keep a 
minimal thickness to allow the mechanical 
stability for a membrane. 

18 

Composite membrane 
or 

Thin film composite 
membrane 
 

• Wide employment for wastewater reclamation 
• Desalination of brackish and sea water, 
• The purification and separation of chemical and 

biological species. 

• The most important advantage of a composite 
membrane is the possibility of optimizing the 
top layer and the support.  

• Achieving the desired permeability and 
selectivity combined with owning mechanical 
strength and excellent compression resistance 
through optimizing both the top selective layer 
and bottom porous substrate. 

• This type of membrane has a mechanical 
strength membrane arising from supporting the 
thin selective layer by a strong support layer. 

• These membranes are engineered to consist of 
two or more highly selective polymeric layers 
which being coated as a dense ultrathin layer on 
a one or more porous support layer (sublayer), 

19 
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which is often an ultrafiltration membrane 
serving as a support. This is reflected in 
presenting selective separation by a durable 
membrane. 

• Reducing the overall transport resistance. 
Isotropic membrane 

 
• Dialysis 
• Electrodialysis 
• To some degree, in microfiltration 

• The merit of having a uniform structure 
throughout the entire membrane thickness i.e. 
uniform pore size or nonporous. 

• The possibility of increasing the permeation 
rate and reducing the total resistance of the 
mass transfer through optimizing the reduction 
in membrane thickness.  

20 

Anisotropic membrane  
 

Likewise its work as an asymmetric membranes, they are 
mostly used in the pressure driven membrane processes like: 
• In reverse osmosis 
• Ultrafiltration 
• Microfiltration 

Having the same unique features of asymmetric 
membranes which are: 
• High fluxes i.e. high permeate flow per unit 

area 
• Credible mechanical stability equipping a quite 

superfine selective layer. 
• This kind of membrane provides various ranges 

of effective separation properties depending on 
the nature of the material been used for 
preparation or the pore size in the skin layer 
(top layer). This is because the skin layer 
(porous layer) is responsible for membrane 
selectivity and the resistance to the mass 
transfer. 

 

21 

Symmetric membrane This kind of membrane gathers the applications of isotropic 
and anisotropic membrane, including: 
• Reverse osmosis 
• Ultrafiltration 
• Microfiltration 

• Uniform physical structure and composition to 
provide the required selective separation and 
permeation rate. 

• If they are microporous isotropic membranes, 
they allow comparatively high fluxes relative to 
that given by nonporous (dense) membranes 

22 
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• Dialysis 
• Electrodialysis 

which have extremely limited application 
because of their low permeation fluxes. They 
showed wide applications as microfiltration 
membranes. 

• If they are anisotropic membranes, their non-
uniform porosity over the membrane area 
allows high permeablity  

Asymmetric membrane This kind of membrane with random pore sizes is widely 
applied in microfiltration separation such as employment of 
most ceramic membranes which have an asymmetrical 
membrane structure for oily water purification. 

• Allowing reasonable permeating flux when 
compared to symmetric membranes because 
the flux determining top layer of the 
asymmetric membrane can be very thin. 

• The high possibility of enhancing the 
separation properties of the membrane by 
changing the preparation parameters of 
specifically the thin top layer. 

23 
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Currently, most available membranes are asymmetric. Various techniques are applied to 

synthesize the thin-film composites, which include a slightly complex procedure with 

numerous steps to control the materials' pore size.16,17 Currently, these membranes are 

synthesized from different polymers, commonly using the “phase-inversion” method to 

fabricate asymmetric structures. Therefore, this method is significantly utilized to produce 

polymeric membranes helpful in treating various pollutants in wastewater. However, several 

techniques such as interfacial polymerization, track–etching, stretching, and electrospinning 

other than phase inversion are also applied in the industry to fabricate the membranes.16 With 

due respect, the gas separation industry favours polymeric membranes due to their more 

straightforward fabrication methods and lower costs. Its main drawback was lower stability in 

organic solvents above 200°C temperature. However, the membranes were fabricated using 

poly(oxindolebiphenylylene) included higher thermal stability up to 500 °C in its oxidative 

environment.24 Also, the glassy polymers showed the enhanced capability to separate gases 

like carbon dioxide and hydrogen at higher temperatures (250 °C). As well as VTEC polyimide 

films remain robust and bendable after numerous thermal runs up to 400 °C.25 Consequently, 

membranes synthesized by applying inorganic materials are required higher temperatures for 

operation.  They can be prepared from microporous ceramics, alumina, metals, zeolites, and 

carbon. Also, they can be made from dense metals, such as palladium, which permit the 

selective diffusion of tiny molecules like helium and hydrogen.17 These different types of 

membranes are commercially used for wastewater treatment. Current studies are being 

conducted to evaluate their relative performances. Membranes containing both the polymeric 

texture and inorganic materials are called mixed matrix membranes (MMM). MMMs are 

membranes that combine the merits of polymeric membranes and inorganic materials. A 

critical value is metal oxides, which effectively reject pollutants from wastewater.26 Various 

inorganic additives have been included in the synthesized MMM for wastewater to upgrade the 

overall membrane operation, i.e. improved permeation, fouling resistance and separation 

capabilities.  

Wastewater frequently contains dyes, particularly from an area with textile or cosmetic 

processing plants. Removing dyes from wastewater is critical because many organic dyes are 

highly toxic and carcinogenic and pose significant health risks.27 Deploying inorganic 

coagulants is one approach to removing dyes from wastewater. However, it generally requires 

high chemical dosages of the coagulant and produces large quantities of sludge; thus, this 
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process is high-risk, high-cost, and environmentally uncertain. Different approaches to using 

porous materials within dye-related wastewater treatment can offer better outcomes. Removing 

dyes from water can be achieved using different types of membranes. For example, Alsalhy et 

al.28 used ZnO nanoparticles (0.025-0.03 wt.%) added to a casting solution of poly(phenyl 

sulfone) (PPSU). The membrane's porosity was changed by creating a layer of finger-like pores 

nearby the support layer and spongelike pores close to the layer adjacent to the membrane’s 

top surface. As a result, it enhanced the fabricated membrane's porosity, which typically 

influenced the pure water’s hydrophilicity and permeability, crucial for dye separation from 

aqueous solutions. Another approach by Ghadhban et al.29 involved preparing a membrane by 

blending 19.2% PPSU and 0.8% polyethersulfone (PES), which could increase average 

roughness and porosity. It also improved pure water’s permeability by 25% by reducing the 

contact angle. It can potentially remove dye (Drupel Black NT) to 96.62% from a feed solution 

with a dye concentration of 50%. The UF MMM’s capability might be enhanced to remove 

dyes (acid black and rose Bengal) by incorporating graphene oxide nanoparticles (GO-NPs) in 

a casting solution with PES. Typically, the GO-NPs are imposed to change the fabricated 

MMM’s structural morphology by altering their porosity, reducing the contact angle and 

increasing the flux, indirectly enhancing the dye's rejection and antifouling properties and 

improving long-term operation from 14 to 26 days.30 

Dye-contaminated water has also been studied with inorganic membranes. For 

example, considered the ceramic-supported carbon membrane bioreactors and GO membrane 

bioreactors were applied to remove azo dye mixtures containing tri azo direct blue 71 dye, 

diazo reactive black 5 dye, and monoazo acid orange 7 dye from the aqueous solution. Also, 

these membranes were used to remove other dyes that do not belong to the azo family, such as 

ethylene blue dye and Rhodamine B dye, from aqueous solutions. The conductive property of 

the GO membrane surface resulted in a more efficient and higher color removal of all dye 

solutions than ceramic-supported carbon membrane bioreactors at a wide range of feed 

concentrations and permeated flux.31 Other researchers32 fabricated a continuous compact 

membrane bioreactor consisting of ceramic-supported GO membrane (CSGoM). They used it 

for anaerobic bio-decolourization of diazo reactive black 5, monoazo acid orange 7, and triazo 

direct blue 71 from aqueous solutions. The biodecolorization for all azo dye solutions was 

steady irrespective of the feed concentration at low permeate flux. While at higher permeate 

flux and feed concentration, the decolorization marginally decreased to 93% for monoazo 
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solution, 85% for diazo solution, and 81% for triazo solution. Overall, it is clear that removing 

dyes using polymeric membranes was more efficient than inorganic membranes in terms of the 

dye's rejection percentage. Still, its performance is relatively weak in acidic, polluted media. 

Another key polymer option for wastewater treatment is hyper-cross-linked porous 

polymers (HCPs). HCP porous materials are biodegradable, and they have a high surface area. 

These HCPs are effective for removing dye as well as organic and inorganic contaminants, 

toxic metal ions, and nutrients.33 The benefits of HCPs include a wide array of surface areas 

and energy efficiency options, particularly when a continuous flow synthesis is used.34 

Therefore, selecting a suitable additive to the polymeric material is essential because it 

improves dyes' separation performance from aqueous solutions. Similarly, the surface nature 

of the fabricated membrane determines its function in removing specified ions and salts from 

water. Hence, altering the used precursors in fabrication could change the membrane’s 

porosity, hydrophilicity, and surface charge. For example, PES was used to fabricate micellar-

enhanced UF (MEUF) for studying the removal of Cd2+, Cu2+, Pb2+, and Zn2+ ions from 

wastewater in the presence of sodium dodecyl sulfate (SDS) as an anionic surfactant at a wide 

pH range of 1-12.35 PES is the most used polymer because studies show that moderated 

hydrophilic polymers in fabrication membranes effectively remove heavy metals. Accordingly, 

PES was utilized by Hadi et al.13 to fabricate three hollow fibre membranes with different levels 

of PES content and investigate its influence on the morphological structure of the produced 

membrane as well as the removal performance of toxic metal ions (Cd2+ and Pb2+ ions 

individually). The higher PES content membrane had a smaller pore size, narrow pore size 

distribution, and larger thickness. This membrane gave the maximum rejection of Cd2+ ions 

(78%) and Pb2+ ions (99%) from a single solution containing 10 ppm of metal ions and pH of 

6.5 for Cd2+ ions and 6 for Pb2+ ions. Also, the membrane with high PES content performed 

better in the removal process than the other fabricated membranes when they were used to 

removed2+ ions, Co2+ ions, and Pb2+ ions from binary and ternary aqueous solutions.36 Adding 

hydrophilic porous inorganic to organic membranes can enhance the produced membranes' 

structural properties, and it is another approach to removing heavy metal ions. Improving these 

structural properties positively impacts wastewater filtration. Zeolites with a low silica-to-

alumina ratio can be excellent inorganic membrane additives to remove heavy metal ions. 

Abdullah et al.37 removed 97% chromium ions using a membrane containing 0.8% NaY zeolite 

and 15% PES from a solution containing 150 ppm of chromium ion at a pH of 6 and trans-
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membrane pressure of 1 bar. Similarly, 90.2% removal of 137Cs from actual nuclear liquid 

waste was achieved by applying a PES membrane prepared with 0.15% NaY at pH 7.5,38 likely 

using 0.9% NaX zeolite in 20%wt. A modified PES UF membrane yielded the highest rejection 

of Pb2+ ions (97%). This rejection figure was obtained by creating a new porous structure within 

the MMM’s texture, increasing the porosity, and reducing the contact angle of the prepared 

MMMs.39 These studies showed that using the same polymer but changing the additive or the 

concentration of the additive and the polymer can produce a membrane that can be used for 

different functions. For example, a cellulose triacetate (CTA) membrane was applied in the 

forward osmosis (FO) process to treat industrial wastewater resulting from the tanning plant 

containing Cr3-, SO4
2-, Cl-, NO3

-, and Na+.40 FO using PPSU NF fibres was also applied to 

desalinate saline water.41 The PPSU amount and fabrication conditions affected the porosity 

and thickness of the produced fibres, which were reflected during desalination in a highly 

concentrated NaCl solution. Increasing the amounts of PPSU reduced the specific reverse flux 

of salt. 

Even when the treatment method changes, the polymeric membranes and MMMs have proven 

their performance in eliminating ions and complex salts from water. Another desalination case 

involved using ZSM-22 nano additives embedded PES membranes texture to desalinate 

modelled brackish water made of MgCl2 and NaCl. Adding high porous ZSM-22 nano 

additives to the membrane mixture improved the membrane permeability and anti-fouling 

properties.42 The poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) flat sheet 

membranes by phase inversion were used for membrane distillation (MD). The findings 

showed that the high polymer concentration (15 wt.%) sharply reduced the permeation and salt 

rejection by decreasing surface pore size and increasing membrane thickness. Also, adding 

lithium chloride to the casting solution positively impacted the membrane’s porosity and pore 

size. Still, it negatively impacted the membrane’s mechanical properties.43 Therefore, the 

successful removal of salts and ions can be achieved by optimizing the most critical factors 

affecting the porosity: the internal structure and the surface charge of the prepared membrane. 

Inorganic membranes have also been applied in treating effluents containing salts. The ceramic 

tubular MF membrane consisting of alumina (70%), yttria (5%), and zirconia (25%) were used 

for the simultaneous removal of humic acids, different heavy metals and high NaCl 

concentrations.44 The difficulty here is that heavy metal ions at high salinity levels sharply 

increased the retention of humic acids. However, it was slightly affected by the trans-membrane 
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pressure. Similarly, a tubular ceramic made of a layer of TiO2 coating porous alumina support 

(0.9 nm TiO2 NF membrane) as a model NF membrane was used to understand the rejection 

mechanism of several negatively charged salts.45 The rejection mechanism of these solid 

porous membranes is highly dependent on the Donnan effect based on the charge density and 

electrostatic interactions between ionic solutes. Finally, that positively alters the matrix’s fixed 

electric charges and could work with negatively and positively charged membranes.  

As the pollutant water is an admixture of various organic and inorganic species, the separation 

by membrane technology has also been developed to remove organic pollutants. For example, 

polyvinyl chloride/functionalised multi-walled carbon nanotube (PVC/F-MWCNT) 

membranes and PVC/GO membranes were improved to enhance their capability to remove 

chemical oxygen demand (COD) from actual petroleum wastewater. The membranes 

fabricated with 0.12 wt% of GO and F-MWCNT showed improved porosity, tensile strength, 

and contact angle. The PVC/F-MWCNTs membrane achieved a higher COD rejection of 

88.9%.46 Also, the antifouling property of a PPSU flat sheet membrane was improved by 

embedding it with tungsten oxide and graphene oxide (GO-WO2.89) and it showed high 

permeation flux when it tested in the removal of bovine serum albumin (BSA) from water.47 

Therefore, these improvements to the GO-WO2.89 membranes improve the pure water 

permeability and contaminants removal. Moreover, organic compound elimination using a 

modified electro membrane bioreactor (EMBR) fabricated with the sponge-like property of the 

MWCNTs was found to perform better than a nanotube-coated sponge–MBR (NSMBR).48 

Conclusively, the porosity and the pore's shape change according to the type and concentration 

of the polymer and the concentration and nature of the additive. Turning the pore shape to 

figure-like, primarily by adding the oxides in some way, increases the hydrophilicity, and the 

correspondent permeates flux. Also, an addition to the casting solution to prepare an MMM or 

co-polymer membrane will create new functions which can influence the pollutants' retention 

and reduce the resultant membrane's antifouling property. Therefore, any alteration in the 

membrane’s precursors will impact the outcome of a process wherein a porous membrane is 

used and thus influence the wastewater treatment holistically. Unlike solid inorganic 

membranes, utilising polymeric membranes becomes inconvenient when applications must 

work at elevated temperatures and under harsh conditions. Such conditions require reasonable 

mechanical and thermal stability. Solid inorganic membranes provide the necessary stability 

because of the advantages of resisting extreme chemical cleanup, higher temperature and 
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corrosion resistance, long life, and autoclavable. Several inorganic membranes which vary in 

type and porosity have been evaluated,17 such as asymmetric microporous α-alumina tubes 

whose inside surface contains 40–100 Å pores. The outside surface contains 100,000 Å pores. 

Other oxides or polymerization–pyrolysis products may contain microporous glass tubes and 

pores. Silica hollow fibres have 3–5 Å pores. Porous glass, ceramic, or polymeric materials are 

coated by a dense, thin film (only a few μm thick) of palladium metal. Others, like pyrolyzed 

carbon, sintered the metal and zirconia on sintered carbon. They are classified as membranes 

with excellent pores, i.e. less than 10 Å, and thus satisfactory for gas mixture separation. In 

contrast, membranes with larger pores (i.e. larger than 50 Å) are necessary to separate solid 

particles from aqueous solutions consisting of small molecules or large molecules. Some of 

these inorganic membranes have met various applications, treating effluents containing 

undissolved matter, oil and different organics. For example, oily wastewater treatment was 

studied using a ceramic MF membrane in a dead-end filtration system. This membrane 

achieved a maximum oil rejection of 99.7% and a reduced permeate flux of 17.2 l/m2.h at an 

oil feed concentration of 1200 mg/L.49 Comparable fluxes and separation factors with a trade-

off between separation and high flux were achieved using zeolite membranes. These are 

prepared from A zeolite, mordenite, and clinoptilolite and implemented to separate ethanol 

dehydration, cyclohexane, and phenol removal from water.50 Zeolite membranes are preferable 

to other solid inorganic membranes due to their outstanding molecular sieve property. They 

allow selective separation rather than the retention of molecules on the porous barrier. 

Therefore, selecting the most suitable membrane for a given wastewater situation is 

complicated. The optimal selection depends not only on the nature of the pollutant(s) but also 

on the porosity and other membrane properties, such as the fabrication of materials, preparation 

method, and the separation process. Wastewater treatment is a dynamic process, and so is the 

selection of porous materials.  

2.2 Adsorption 

Adsorption is one facet of wastewater treatment for which porous materials are particularly 

relevant. Adsorption is a process of phase transfer in which chemical species enrich a solid 

surface from a fluid phase.51 Adsorption is essential in wastewater treatment because of its 

high-quality treated outputs, flexibility in operation and design, and possible process 

reversibility.52 These characteristics mean that adsorbents can be regenerated via an appropriate 

desorption method;53 thus, adsorption is environmentally friendly. Adsorption in wastewater 
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treatment uses solid surfaces (adsorbents) to uptake ions or molecules (adsorbate) from a 

solution. The solid surfaces interact with species in the adjacent aqueous phase via the active 

rich likely heterogeneous sites because of their specific electronic and spatial characteristics. 

Figure 3 shows a typical schematic diagram of the adsorption process. 

 

FIGURE 3 The concept of adsorption, adapted from51 

Any change in the liquid phase properties, such as pH, temperature, and concentration, causes 

adsorbed species to be released from the adsorbent surface back into the liquid phase in a 

reversible process known as desorption. Because adsorption is a surface process, the surface 

area of adsorbents is the most important factor in determining the quality of the adsorbents and 

adsorption. Their porosity determines the surface area of the adsorbents because pore walls 

create the internal surface area. The pore walls form large interior surfaces because of the 

porosity of the adsorbent. The surface areas for the engineered adsorbents are in the range of 

102-103 m2/g as they are typically highly porous materials. The external surface is usually less 

than 1 m2/g.51,54 The typical microporous adsorbents such as silica gel, activated carbon, 

alumina, and zeolites were mentioned. Thus, several effectively designed adsorbents have 

favourable properties such as hydrophilicity, hydrophobicity, pore size, and surface area. These 

natural and as-prepared adsorbents are widely used in treating wastewater contaminated with 

different ions, dyes, organic compounds, and pharmaceuticals.55,56 

There is a significant body of research on removing harmful ions from water using different 

adsorbents. Overall, this research shows that designed adsorbents have advantages over natural 

adsorbents. The removal of Cr3+ from tannery effluent was investigated by Rahman et al.57,58 

whereas Cr6+ ions from aqueous solutions were studied using Ulva compressa L. biosorbent59 

and Stipa tenacissima L. biosorbent60 in a batch system. Ulva compressa L. achieved an 

elimination rate of 96%. However, only 90% was recorded using Stipa tenacissima L. 

biosorbent at optimum conditions. Also, the removal of Cr6+ ions from aqueous solutions was 
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conducted using a designed mesoporous powdered-activated carbon prepared from Peganum 

harmala seeds. The removal efficiency of Cr6+ ions reached 99% due to the high specific 

surface area of the designed adsorbent (442.986 m2/g).61 In addition, other designed adsorbents 

were used for metal ions adsorption,62–67 also with chitosan/Fe3+ hydroxide to remove Nd ions 

from aqueous solutions68 or non-crystal hydrated calcium silicate gel for Pb2+ ions removal 

from an aqueous solution. The latter achieved a removal efficacy of about 90% due to its 

moderate surface area of 128 m2/g.69 All the present studies with the designed adsorbents 

suggested and confirmed higher removal efficiency, even with a tiny dose, than the natural 

adsorbent, which generally required larger amounts with a lesser removal percentage. Different 

adsorbents can efficiently remove dyes, antibiotics, and organic compounds from aqueous 

solutions.55, 70–76 One option for efficient removal is magnetic nanocomposite adsorbents. A 

FeNi3@SiO2@CuS adsorbent prepared for the adsorption of methylene blue dye from the 

aqueous solution achieved a maximum removal efficiency of 85.21%.77 Similarly, a carbon 

cross-linked Y zeolite nanocrystals composite was fabricated with a surface area of 176.44 

m2/g and a pore volume of 0.0573 cm3/g to be used for the removal of methyl violet dye from 

aqueous solutions; and it attained high removal efficiency at normal temperature and pH.78 

Other low-cost adsorbent options are those prepared from waste precursors. Polyvinyl alcohol-

glutaraldehyde cross-linked hydrogel beads are a low-cost adsorbent used to absorb Congo red 

dye from model industrial effluent.79 Likewise, cellulose microfibers prepared from the 

recycled newspaper were used to remove basic textile dye BY28 from aqueous solutions.80 

During the adsorbent synthesis to remove a specific dye, the focus was on creating the 

functional group that attracted the pollutant on the adsorbent surface. Notably, the dye class is 

one of the important keys to adsorption. This is because the dyes of different classes (acidic 

dyes, basic dyes etc.) have different natures, which influence the interference of their molecules 

with the adsorption layer. 

Furthermore, engineered adsorbents have been widely used in the studies of removing 

pharmaceuticals from aqueous solutions by adsorption, and such adsorbents are highly 

effective. For example, a mesoporous pumice-derived silica aerogel was applied with a specific 

surface area of 407 m2/g for ibuprofen adsorption from an aqueous medium.81 Another 

magnetic PAC@Fe3O4-MN nanoparticle with a surface area of 594.5 m2/g was used for the 

adsorption of ciprofloxacin from an aqueous medium.82 Mesoporous-activated carbon 

formulated from Azolla filiculoides fern was utilized to remove ampicillin from pharmaceutical 
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wastewater with maximum efficiency of 96.84%.83 The adsorption of ciprofloxacin from an 

aqueous solution was conducted using an amine-functionalized MCM–41 mesoporous silica 

nanoparticle, which included a specific surface area of 524 m2/g, and reached 99.25% removal 

proficiency.84 Ciprofloxacin was also efficiently adsorbed from aqueous solutions using a 

hierarchically porous composite from ZSM-5 zeolite nanocrystal-coated carbon with a specific 

surface area of 739 m²/g.85 A biochar prepared from the fibre residue of palm oil with a surface 

area of 835.3 m2/g was used for the adsorption of cephalexin from aqueous solutions.86 A 

comparison among these studies shows that treating wastewater polluted with pharmaceuticals 

can be efficiently performed using engineered adsorbents with a removal percentage above 

96%. To achieve this effectiveness, the key factors controlling the process are the surface 

charge, porosity, and, thus, the surface area of the adsorbents. Adsorption has also been applied 

to treat water polluted with other organic compounds such as organic acids, phenol, etc. For 

instant, humic acid was removed by adsorption using barberry stem powder and carbonized 

barberry stem (ash).87 Phenol was removed from aqueous solutions by adsorption using 

agricultural waste (Ceratophyllum demersum L.) with a removal efficiency of 94.7%.88 Also, 

the engineered adsorbent mesoporous MWCNT coated with CoFe2O4 nanoparticles 

(MWCNTs/CoFe2O4) was used for the adsorption of bisphenol A from wastewater with a 

removal efficiency of 99%.89 These approaches were as effective with organic compounds as 

the pharmaceutical contaminants, showing that they can be multifunctional.  

Multiple aspects of the porous materials must be accounted for when incorporating 

different adsorbents to remove harmful materials from contaminated water. Cost and efficacy 

are two significant factors to consider. Bio-adsorbents derived from natural waste can be 

effective though they have removal rates at the lower end of the acceptable range; their 

advantage is cost-effectiveness.  On the other hand, the engineered adsorbents provide a very 

high removal efficacy. Still, they are expensive to create and use in wastewater treatment.   

 

2.3 Ion-exchange 

 
Ion exchange is the frequently used separation and purification technique for polypeptides, 

proteins, polynucleotides, nucleic acids, other charged biomolecules, and metal cations. The 

ion exchange method is still the backbone for numerous food, chemical, pharmaceutical, 

petrochemical, power industries and water reuse processes. The ion exchange method is 

advantageous because of its high capacity, simplicity, controllability, widespread applicability, 
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and high resolving power. The success of this technology requires understanding the basic 

principles of ion-exchange and suitable applications for a specific-treated feed. The capacity 

of ion-exchange materials can limit the key parameters of ion-exchange, as well as the nature, 

forms and functions of ion-exchangers, ions/cations to be separated, pH and temperatures of 

the solutions containing the ions/cations.53,90 The working principle of ion exchange depends 

on exchanging ions in the insoluble porous solid material (ion-exchanger) with ions in the 

liquid phase. The ion-exchanger contains mobile cations or anions in fixed ion-exchange sites 

that exchange with a stoichiometric number of the same charge ions when interacting with 

aqueous solutions. Ion exchangers can also be cation or amphoteric ion exchangers, which 

exchange anions and cations together.91–95  Figure 4 shows a schematic diagram of the principle 

of ion-exchange work. 

 

FIGURE 4 Ion-exchange on both cationic and ionic exchangers 

Ion-exchange technology has been extensively used to remove different pollutants from 

wastewater, such as heavy metals.96 Ion-exchangers can be either natural or synthetic solid 

resin. Also, they can be either natural or synthetic zeolite with a low silica-to-alumina ratio. 

Natural organic ion exchangers are of limited use because they often make exchanges in an 

acid solution. This means that their exchanging groups are ionized under acidic conditions. In 

contrast, the weaker carboxylic and phenolic groups are not ionized. Also, they change the 

colour of the treated solutions, and their features are hard to reproduce because controlling the 

treatment they are given is difficult. Natural inorganic ion-exchangers such as clays and natural 

zeolites are often used for backfilling or isolating radioactive waste disposal sites due to their 

ion-exchange properties, easy workability, and low permeability.97–102 However, this type 

cannot generally work for column operation as their physical properties limit the flow through 
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the bed. However, synthetic organic and inorganic ion-exchangers are preferred because they 

have superior physical and chemical stability. Also, they are produced using a controlled 

method. Therefore, they have well-distributed functional groups, more uniform particle size 

and cross-linking degree.103 In contrast to the above options, zeolites are the most used ion-

exchanger in the field of wastewater treatment among all types because of their unique porous 

structure, favourable surface area, availability of mobile cations in their structure, and chemical 

and mechanical stability.104 Zeolites are microporous crystalline aluminosilicates with a three 

dimensions open framework structure consisting of [SiO4]4- and [AlO4]5- tetrahedra in their 

pores and channels.105 Zeolites have been used in different forms to remove heavy metal ions 

from water by ion-exchange. The purely synthesized zeolites were used in numerous studies 

dealing with heavy metal removal with high removal percentage.106 For example, 4A zeolite 

was used to remove Pb2+ and Ni2+ ions from aqueous solutions by ion-exchange. Also, the 

removal of Ni2+ ions from aqueous solutions was studied using the synthesized NaX zeolite 

and NaY zeolite in a batch system, and 99% removal was achieved.107 Similarly, NaX zeolite 

and NaY zeolite were prepared from waste aluminium foil as an alumina source and used to 

remove Cd2+, Cu2+ and Hg2+ ions from aqueous solutions.108 

Moreover, another trend has emerged in synthesising microporous zeolitic ion-exchangers. It 

aims to synthesise them as hierarchically porous structures to perform better in ion-exchange 

and wastewater treatment applications. In this case, zeolites will be distributed over another 

inert porous support or the structure of the microporous zeolite itself but need to be modified 

to attain different porosity levels. For example, a hierarchically porous NaX zeolite/date stones 

carbon and a NaX zeolite/diatomite were applied for Mn2+ removal by ion-exchange.109 Also, 

a 4A zeolite/carbon composite was prepared via hydrothermal treatment and applied to remove 

Fe3+ ions and Ni2+ ions from aqueous solutions by ion-exchange.110 In addition, nanosized 4A 

zeolite/hazelnut shells and nanosized 4A zeolite/cherry stones were prepared by modifying the 

carbon surface with a diallyl dimethyl ammonium chloride (PDDA) solution. The resultant ion-

exchange composites were examined in removing Cu2+ ions from aqueous solutions.111 A 

comparison between conducting the ion-exchange using pure zeolite and the hierarchically 

porous ion-exchangers demonstrates that zeolite performed better during ion-exchange with 

large capacity when it was used as a composite with other porous support. The large ion-

exchange capacity was obtained due to the reduction of mass transfer resistance for the 

diffusion of the ions. 
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The same results were obtained when the hierarchically porous ion-exchangers were used for 

radioactive ions removal from aqueous solutions. For example, nanosized natural 

clinoptilolite/date stones carbon was prepared by conditioning the carbon using diallyl 

dimethyl ammonium chloride solution. The resultant ion-exchange composite was applied to 

remove Cs2+ ions from aqueous solutions.112 Also, natural clinoptilolite/date stones carbon and 

synthesized clinoptilolite/date stones carbon were used to remove Sr2+ ions from aqueous 

solutions.113 Furthermore, hierarchically porous 4A zeolite/almond shells carbon and 4A 

zeolite/walnut shells carbon were prepared by a hydrothermal treatment to remove Co2+ ions 

from aqueous solutions.114 Choosing the proper ion-exchanger to deduct a specified pollutant 

must be optimized because the ion-exchange process is influenced by the nature of the 

pollutant, solution pH, solution temperature, and other factors, alongside the features of the ion 

exchanger itself. This is because the solution pH greatly influences the structure of the ion-

exchangers and, thus, their performance. Moreover, the solution temperature affects the 

hydration radius of the cations or ions to diffuse through the ion-exchanger pores. 

 

2.4 Catalytic oxidation 

 
Catalytic oxidation is a group of wastewater treatment technologies belonging to advanced 

oxidation processes. It depends, in the first place, on the presence of a catalyst, no matter the 

source of the oxidant. As part of advanced oxidation processes, catalytic oxidation uses 

hydroxyl radicals or sulfate radicals as the eventual reactive oxidizing agent to remediate the 

organic contaminants in wastewater. Also, they are highly active and novel ways to increase 

the speed of the oxidation process. Advanced oxidation process includes catalytic wet peroxide 

oxidation, electrochemical oxidation, supercritical water oxidation, gamma-ray, X-ray and 

electron beam-based processes, microwave/hydrogen peroxide, sonolysis, photocatalysis, 

ozone-based processes, ferrioxalate-mediated processes, Fenton and photo-Fenton processes, 

UV-hydrogen peroxide processes.115–117 The processes that use porous solid catalysts are 

catalytic wet air oxidation, catalytic wet peroxide oxidation, photocatalysis oxidation either 

solar photocatalysis or UV photocatalysis, heterogeneous catalytic wet hydrogen peroxide 

oxidation, sonophotocatalytic oxidation, heterogeneous catalytic ozonation, and sonocatalysis. 

Transition metal oxides coated on porous supports are well-known active catalysts in such 

catalytic reactions. The CuO catalyst supported by Al2O3 and SiO2 is an example of such a 

catalyst. It was used to remove by catalytic wet air oxidation in a trickle bed reactor.118,119 
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These catalysts are favoured because of their rigidity and strength during the catalytic reactions 

rendering a low pH medium. Similarly, a heterogeneous catalyst (PVP2-Cu(II) catalyst) was 

used to oxidise phenol with hydrogen peroxide in a batch reactor. It converted 64% phenol, 

which is considered a promising outcome for phenol oxidation under harsh conditions.120 The 

magnetic Fe3O4 particles were another promising option of catalysts used for the catalysis of 

ozonation of drugs (sulfamethoxazole) by the ozone oxidation power. This catalyst's magnetic 

property encourages its function in catalysis even if it is not the core of the whole process.121 

Activated carbon has been extensively used for the catalytic oxidation of the pollutants in 

wastewater due to its large specific surface area and relatively low cost when prepared from an 

abundant precursor. For example, activated carbon was used to catalyse diethyl phthalate 

oxidation ozonation and Fenton-like oxidative removal of phenol from aqueous solutions.122,123 

Also, in other studies, the activated carbon-supported the active part of a catalyst used in the 

catalytic oxidation of the pollutant. For example, phenol's catalytic wet peroxide oxidation-

aqueous solutions use zero-valent iron-supported modified activated carbon catalysts.124,125 

Obtaining a high oxidation rate in these reactions was attributed to the large surface area offered 

by activated carbon. Despite this large surface area, its oxygenated groups on the surface could 

play an essential role in adsorption. Thermal treatment at higher temperatures reduced the 

oxygenated surface groups. Hence, activated carbon collapses and increases pore sizes, 

decreasing its adsorption capacity. Other combinations of active compounds were also used as 

porous catalysts for the oxidative removal of the organic compounds, including drugs and dyes, 

using different oxidants. For instance, sludge carbon/TiO2 nanocomposites were used as 

heterogeneous catalysts for bisphenol A removal by catalytic ozonation and catalytic wet air 

oxidation.126 For dye oxidation, MWCNT was applied for the catalytic oxidation of methyl 

orange dye in aqueous solutions.127 Also, GO loaded with TiO2, Fe3O4, and TiO2/Fe3O4 as 

heterogeneous catalysts in the ozonation process to remove ibuprofen from aqueous 

solutions.128 

Moreover, the porous catalysts have been involved in catalytic oxidation induced by sonication 

or irradiation to remove pharmaceuticals in wastewater. For example, cobalt ferrite 

nanocomposite loaded onto graphene was used as a sonophotocatalyst for the degradation of 

diazinon,129 heterogeneous modified sodium vermiculite iron-rich clay was used for electro-

Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton oxidation treatment process 
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for removal of diazo dye from aqueous solutions.130 Additionally, silver oxide anchored on Y 

zeolite (Ag2O@Y Zeo) was used for the removal of Ranitidine as a contaminant of emerging 

concern by simultaneous adsorption-photodegradation induced via simulated sunlight 

irradiation.131 Nickel ferrite/chitosan/Bi3+ oxyiodide nanocomposite was used for the removal 

of metronidazole from aqueous solutions by photocatalytic oxidation using simulated 

sunlight,132 MWCNT loaded with CuNiFe2O4 nanoparticles was used for the removal of 

ampicillin from aqueous solutions using photocatalytic oxidation,133 and FeNi3@SiO2@ZnO 

magnetic nanocomposite was used for the removal of tamoxifen from aqueous solutions by 

photocatalytic oxidation. 134,135 When treating water polluted by different dyes, the presence of 

a suitable porous catalyst in the oxidative treatment was influential using other oxidants, mainly 

when the treatment process is induced by irradiation and sonication sources. In this area, TiO2 

nanoparticles/GO nanocomposite achieved 100% removal of orange 7 dye in the 

sonophotocatalytic oxidation using UV light. 136 Also, TiO2–zeolite Y was used for the 

photooxidation process of methyl orange dye in water.137 MWCNT loaded with CoFe2O4 

nanoparticles was managed for the sonophotocatalytic oxidation process to remove acid blue 

113 dye from aqueous solutions.138 Likewise, the catalytic oxidation of other organic pollutants 

in the presence of a solid porous catalyst is vital to proceed with the oxidation induced by 

photoirradiation and sonication. For example, core/shell magnetic zinc oxy-sulfide 

nanocomposite coated with sulfonated polyindole is used for photocatalytic H2 production. 

Bisphenol A degradation,139 FeNi3@SiO2@TiO2 nanoparticles were applied to photocatalytic 

oxidation of the humic acid in aqueous solutions.140 Psphotungstic acid-based magnetic 

nanocomposite was employed for photocatalytic bacterial inactivation of pathogenic E. Coli 

bacterium.141 The common idea of the studies mentioned above is the presence of a sustainable 

porous catalyst provides the required area for a particular reaction. It has a regenerable property 

since the presence of the oxidant, sonication, and irradiation to eliminate the pollutants are 

valueless unless there is a proper catalyst.  

2.5 Electrochemical reactions 

In wastewater treatment, an electrochemical reaction is a branch of advanced oxidation 

reactions that necessitates the presence of electrodes in the reactor. All methods in the previous 

section can be used for this branch of reactions as long as they are coupled with electrodes. The 

advantage of such a reaction is the in situ production of at least one of the required chemicals 

for the oxidation process, such as the Fenton reaction, for example, in an electrochemical 
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reactor.142 Herein, this article will deal only with applying electrochemical reactions involving 

a porous media, catalyst, or electrode. Several approaches to electrochemical reactions for 

wastewater treatment have been studied. For the electrochemical production of H2O2, single-

atom Pt on titanium carbide and titanium nitride nanoparticles catalysts were prepared. The 

support was suitable for conducting the surface reaction and as single-atom anchoring sites.143 

Another example was a single-atom catalyst made of platinum supported on titanium nitride 

nanoparticles for hydrogen peroxide production in the electrochemical oxygen reduction of 

formic acid and methanol.144 Also, a high H2O2-producing capacity metal-carbon composite 

doped with Fe and N was used in an electro-Fenton system to oxidise phenol in aqueous 

solutions.145 The magnetic porous catalyst was another promising choice for catalysts used in 

electrochemical reactions. The mesoporous magnetite Fe3O4 nanoparticles catalyst was cast-

off to treat a real washing machine effluent using four electrochemical advanced oxidation 

processes, namely catalytic electro-Fenton and catalytic electro-Fenton in the absence and 

presence of peroxymonosulfate to generate both hydroxyl and sulfate radicals.146 A well-

designed compact porous Cu-Zn alloy having a macroscopic interconnected porosity was used 

as cathodes for the cathodic reduction of nitrate.147 Chalcopyrite as a sustainable catalyst was 

applied to remove cephalexin from aqueous solutions by a heterogeneous Fenton-based 

electrochemical oxidation process and heterogeneous photoelectro-Fenton with UVA light.148 

Another trend in the electrochemical reaction is to raise the generation of highly reactive 

hydroxyl radicals by fabricating porous electrodes or meshes on which the redox reactions 

occur. As an example of increasing the production rate of the highly reactive hydroxyl radicals 

(H2O2), a hierarchically porous carbon catalyst (used as a catalytic electrode) was used for the 

degradation of triethylamine, n-hexadecene, 2,6-di-tert-butyl-4-methylphenol, dibutyl 

phthalate, and atrazine by electro-Fenton.149 Also, mesoporous ZnO/CuO nanocomposite 

cathodes were applied to remove the methylene blue at galvanostatic conditions by a Fenton-

like reaction.150 Moreover, Cu-Zn-TiO2 microporous nanotube array polymetallic 

nanoelectrode was prepared for the electrochemical removal of nitrate.151 Similarly, Ti/SnO2-

Sb2O3/α, β-PbO2 electrode was used for the electrochemical oxidation of 

methylisothiazolinone.152 Moreover, bifunctional electrocatalytic filter anodes were examined 

for the simultaneous removal of particulate contaminants and refractory dissolved organic from 

natural wastewater.153  
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Utilizing electrochemical membranes has been applied in the oxidative degradation of 

pollutants in wastewater. Such porous reactive membranes provide in situ generation of the 

reactive radicles with selective retention of molecules. In some applications, they eliminate the 

need for catalysts. Porous titanium suboxide and Pd-Cu doped Ti4O7 (Pd-Cu/Ti4O7) reactive 

electrochemical membranes were used for the electrochemical oxidation of antibiotic 

sulfamethoxazole with adding no catalyst.154 Also, the bismuth-doped tin oxide-deposited 

reactive electrochemical membranes were utilized to oxidise atrazine, clothianidin, and 

terephthalic in agricultural water. The synthesized reactive electrochemical membranes had 

high removal efficiency (complete mineralization) for atrazine, clothianidin, and terephthalic 

acid at 3.5 V/SHE because of improving the OH● production.155 Other similar interventions 

have been tested as well. For example, the electrocatalytic reduction of NO3 was conducted 

using porous reactive electrochemical membranes in the form of Pd-Cu/reactive 

electrochemical membrane and Pd-In/reactive electrochemical membrane.156 Likewise, the 

nanostructured TiO2 meshes were used to degrade carbamazepine in real secondary wastewater 

effluent by electrochemical photocatalytic oxidation.157 Therefore, providing a surface with an 

appropriate porosity to eliminate pollutants from wastewater successfully is the key to efficient 

and cost-effective electrochemical reactions. Successfully, a three-dimensional 

electrochemical system was introduced to the AOP by electrochemical reactions, which 

remarkably decreased the applied voltage and effectively eliminated the organic contaminants 

present in low ionic strength wastewaters. This system comprised a composite wire mesh anode 

containing blue TiO2 nanotubes covered by SnO2-Sb2O3, a proton exchange membrane, and a 

stainless-steel wire mesh cathode. A reduction of 75.7% of the applied voltage and 73% of 

electrical efficiency per log order for 0.001 M Na2SO4 was obtained by using this 3-D 

system.158 Therefore, when using an electrochemical oxidation reaction, it is necessary to find 

porous catalysts, electrodes, and membranes whose properties support the high formation of 

the reactive radicles degrading the pollutants in low voltage usage conditions. This effective, 

synthesized media is sustainable and can be regenerable, making the pollutants treatment 

process feasible. 

2.6 Hybrid treatment technology 

Hybrid treatment technology involves coupling two treatment methods to effectively remove a 

specific pollutant or simultaneously remove several contaminants in the same effluent. For 

example, membrane technologies can be combined with electrochemical advanced oxidation 
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processes (EAOPs) for wastewater treatment. Similarly, ion exchange or adsorption can be 

coupled with membrane technologies. In this case, the properties of the membranes or the other 

media together determine the possible application(s). The electrical conductivity of a 

membrane is significant if the filtration is coupled with electro-catalysis, photoelectro-

catalysis, electro-chemical anodic oxidation, and electro-Fenton.159 In sections 2.4 and 2.5, 

some examples were given about implementing such methods for removing some pollutants 

from water to explain the essential roles of catalysts and membranes as porous media. Some 

new trends in using these porous media in hybrid technologies are explored herein. 

An example of using a porous media in catalytic pollutant oxidation coupled with 

photoelectron-effect is the hierarchically nanostructured ZnO/Ag composite photoelectrodes. 

This hybrid combination was utilized for the methyl orange dye’s photoelectrocatalysis 

oxidation with 100% degradation.160 In this case, the synthesized composite served as a catalyst 

and an electrode in the dye treatment process. Similarly, thin-film mats of porous electrospun 

fibres of TiO2 have been applied as porous media for coupling absorption-photocatalytic 

degradation to remove methylene blue from water.161 Also, in successive adsorption and 

photocatalytic degradation, FeNi3@SiO2@ZnO nanoparticles were also enhanced for 

penicillin removal from aqueous solutions.162 These produced nanoparticles worked as an 

efficient porous media holding dual functions: adsorption and catalysis. Capacitive membrane 

deionization (MCDI) is an inexpensive method for brackish water desalination that involves 

reversible electrosorption involved with high surface area and porous electrodes paired; with 

an ion-exchange membrane. This is a clear example of hybrid treatment technology, which 

couples the treatment with ion-exchange and membrane separation. For such a process, 

sulfonated pentablock copolymer (sPBC) could be used as a cation-exchanger coating a 

membrane for brackish water desalination.163 The advantages of hybrid treatment technologies 

are that they can treat multiple contaminants simultaneously. Still, because many types of 

wastewaters involve multiple pollutants, hybrid treatment technologies are essential to the 

porous materials landscape. Different pollutants or contaminants in the water aim to remove 

using porous materials. Highly effective metal ions or waste-related toxic pollutants are 

required to remove from the water (Table 3) because the heavy metal in wastewater 

significantly threatens human health if untreated appropriately. It persists as an uphill task from 

the biological and environmental standpoint because of its dangerous consequences on health 

and the environment. It looks like activated carbon exhibits higher cost-effectiveness for utmost 
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heavy metals. Cyclodextrin-based porous polymer, Zeolite A, birch bark, cork, glass wool, 

polyurethane foam and graphene oxide was also used for removal purposes. However, novel 

materials still demonstrate potential as future adsorbents because of their distinctive physical 

and chemical characteristics that could attain a higher adsorption capacity for water treatment.  

3 CONCLUSIONS AND FUTURE PERSPECTIVES 

Porous materials play an important role in effective wastewater treatment and thus contribute 

to conserving and repairing water resources. A wide range of porous materials have been 

evaluated through research to determine their effectiveness for individual pollutants. Some 

porous materials, particularly hybrid ones, have been explored in effluents with multiple 

contaminants. Because wastewater from industrial and household use is often contaminated 

with more than one type of pollutant, further exploration of how porous materials perform in 

situations with multiple contaminants will be advantageous. It can accelerate their applicability 

to real-world use. New porous materials have led to advances in the production of 

environmentally-friendly wastewater treatment. Porous materials can be made from various 

organic or inorganic sources, such as powder, pellets and membranes, in different structures 

and forms. Porous materials can be utilized significantly for treating wastewater contaminated 

with organic pollutants, heavy metals, drugs and antibiotics, oil and dyes. The key aspects were 

discussed when selecting the appropriate porous material for a given application.  

There are technical and more significant challenges to using porous materials in wastewater 

treatment. However, all wastewater treatment advances face social, cultural, and economic 

challenges, particularly where water sources are shared among nations with differing financial 

priorities and variable attention to environmental concerns. Economic considerations also 

apply in developing countries. Around 4.2% of wastewater is treated effectively, whereas, in 

high-income countries, 74% is treated. Further, wastewater treatment plants in developing 

countries often operate below capacity. There is a lack of access to compelling technologies, 

including porous materials and the infrastructure necessary to put innovative technologies into 

use in developing countries, meaning that wastewater continues to cause significant harm to 

human and environmental health. Research on wastewater technologies should also consider 

how they can be adapted for contexts of limited resources, in addition to the current assumption 

that they will be used in an optimal wastewater treatment infrastructure. Overall, porous 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polyurethane-foam
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materials can contribute to adequate wastewater treatment and improve water safety for human 

consumption and sustainable environmental management. 
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TABLE 3 The applications of porous materials for removing pollutants from water.  

Porous materials as 
adsorbent Pollutant 

 
% Removal 

Capacity 
 

 
References 

 

Amorphous porous SiO2 Oil 100 164 
Carbon-based poly porous 
materials 

Heavy metals like Pb, Cd, Cr, Cu, As, Nitrogen and 
phosphorus __ 165 

Crystalline porous SiO2 Congo red 99.8 164 

Lime mud 

Pb2+ 96 

166 

Cd2+ --- 
  
Zn2+ 99 
Cu2+ 28 
Cr6+ 93 
Ni2+ --- 

Activated carbon 

Dichloromethane 98.3 

167 

1,1,2-Trichloroethane 86.3 
Carbon tetrachloride 99 
Tetrachloroethylene 91.6 
Hexachlorobenzene 95.1 
Trichloroethylene 94.7 
Amoxicillin 93 168 
Ranitidine hydrochloride 99.16 169 

Paraquat  13 

170 Cu2+ 16 
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Carbamazepine 84 

Tetracycline 36 

Bisphenol A 96 

2,4-Dichlorophenol 86 

Cyclodextrin-based 
porous polymer 

Bisphenol A 80 
170 

2,4-Dichlorophenol 72 

Pillar[n]arene-based porous 
polymers, n=5  

Paraquat 97 

170 

Cu2+ 88 

Carbamazepine 90 

Tetracycline 66 

Bisphenol A 96 

2,4-Dichlorophenol 82 

Pillar[n]arene-based porous 
polymers, n=6  

Paraquat 96 
170 

Cu2+ 93 
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Carbamazepine 96 

Tetracycline 76 

Bisphenol A 98 

2,4-Dichlorophenol 79 

Digested raw bark 

Pb2+ 96 

166 

Cd2+ --- 

  

Zn2+ 99 

Cu2+ 28 

Cr6+ 93 

Ni2+ --- 

SBA-15 Methylene Blue  99.1 
171 

Safranine T  83.6 
172 

Zeolite A  
Pb2+ 99.9 

166 
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Cd2+ 99.9 

Zn2+ 99.8 

Cu2+ 99.9 

Cr6+ --- 

Ni2+ 99.8 

MCM–41 Methylene Blue 94 
173 

Yellow dye 92 
174 

Crystal violet 98 
175 

Zeolite A  

Pb2+ 99.9 

166 

Cd2+ 99.9 

Zn2+ 99.8 

Cu2+ 99.9 

Cr6+ --- 

Ni2+ 99.8 
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Birch bark Petroleum derivatives 60–85.3  

176 

n–alkanes  92–98  

Cork Petroleum derivatives 60–80.2  

n–alkanes  90.3–95.2 

Glass wool Petroleum derivatives 72.3–87.1  

n–alkanes  94.7–97.1  

Polyurethane foam Petroleum derivatives 75.3–80.7  

n–alkanes  85.4–95.7 

Waste rubber tire 

Pb2+ 96 

166 

Cd2+ --- 

Zn2+ --- 

Cu2+ 99.9 

Cr6+ --- 

Ni2+ 87 
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Graphene oxide  Safranine dye 97.78 
177 

Graphene oxide nanoplatelets Ibuprofen 98.17 178 
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