
                                                                          

University of Dundee

DOCTOR OF PHILOSOPHY

Converging Biological Effects of Physical Activity on Cardiovascular Health in Ageing

S. Koh, Angela

Award date:
2024

Licence:
Copyright of the Author. All Rights Reserved

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2024

https://discovery.dundee.ac.uk/en/studentTheses/45e582ea-7768-43c6-a8ff-735ae3e3fa04


1 

Converging Biological Effects of Physical Activity on 

Cardiovascular Health in Ageing 

By Angela S. Koh, MBBS, MPH 

A thesis submitted in fulfilment of the requirement for the degree of Doctor of 

Philosophy in Medicine 

UNIVERSITY OF DUNDEE 

June 2024 



 
 

2 
 

TABLE OF CONTENTS 

LIST OF PUBLICATIONS ....................................................................................................................... 4 

DECLARATION......................................................................................................................................... 5 

ACKNOWLEDGEMENTS ....................................................................................................................... 6 

ABSTRACT ................................................................................................................................................. 8 

INTRODUCTION ..................................................................................................................................... 14 

OBJECTIVES AND RESEARCH HYPOTHESES .............................................................................. 17 

RESEARCH QUESTION #1 ................................................................................................................... 20 

PUBLICATION 1 ................................................................................................................................. 21 

Publication .................................................................................................................................... 22 

Commentary ................................................................................................................................. 37 

Cardiac function and structural changes with ageing ................................................. 33 

Overview of omics and metabolomics ........................................................................... 42 

Metabolomic implications of cardiac ageing ................................................................ 43 

PUBLICATION 2 ................................................................................................................................. 52 

Publication .................................................................................................................................... 54 

PUBLICATION 3 ................................................................................................................................. 75 

Publication .................................................................................................................................... 77 

Commentary (Publication #2 and #3) ........................................................................................ 86 

Metabolomics distinguishes older adults with cardiac ageing  ................................... 86 

Metabolic pathways specific to cardiac ageing……………………...……………. …102 

RESEARCH QUESTION #2 ................................................................................................................. 105 

PUBLICATION 4 ............................................................................................................................... 106 

Publication .................................................................................................................................. 107 

Commentary ............................................................................................................................... 115 

Physical activity, metabolomics, and cardiac ageing…………………………………………115 



 
 

3 
 

Discussion………………………………………….…………………………………..122 

Clinical implications………………………………………………………..…………123 

RESEARCH QUESTION #3 ................................................................................................................. 126 

PUBLICATION 5 ............................................................................................................................... 127 

Publication .................................................................................................................................. 128 

Commentary ............................................................................................................................... 136 

 Body mass index in older adults and cardiovascular health………………………...136 

 Waist circumference as marker of obesity in cardiac ageing………………..………144 

RESEARCH QUESTION #4 ................................................................................................................. 147 

PUBLICATION 6 ............................................................................................................................... 148 

Publication .................................................................................................................................. 149 

Commentary ............................................................................................................................... 157 

 Artificial intelligence and machine learning: methodology…………………………157 

 Machine learning for personalised medicine……………………………...…………167 

 Machine learning as a convergent tool in conjunction with metabolomics………..169 

 Clinical implications, limitations, future directions…………………………………171 

THESIS CONCLUSION ........................................................................................................................ 173 

APPENDIX .............................................................................................................................................. 177 

Citation Metrics................................................................................................................................... 177 

Timeline of the cohort and publications----------------------------------------------------------------------183 

Detailed methods--------------------------------------------------------------------------------------------------184 

REFERENCES ........................................................................................................................................ 187 

  



 
 

4 
 

LIST OF PUBLICATIONS 

 

1. Koh AS, Gao F, Leng S, Kovalik JP, Zhao X, Tan RS, Fridianto KT, Ching J, Chua SJ, Yuan JM, Koh 

WP and Zhong L. Dissecting Clinical and Metabolomics Associations of Left Atrial Phasic Function 

by Cardiac Magnetic Resonance Feature Tracking. Sci Rep. 2018;8:8138-26456. 

 

2. Gao F, Kovalik JP, Zhao X, Chow VJ, Chew H, Teo LL, Tan RS, Leng S, Ewe SH, Tan HC, Tan TY, 

Lee LS, Ching J, Keng BM, Zhong L, Koh WP and Koh AS. Exacerbation of cardiovascular ageing by 

diabetes mellitus and its associations with acyl-carnitines. Aging (Albany NY). 2021;13:14785-14805. 

 

3. Kovalik JP, Zhao X, Gao F, Leng S, Chow V, Chew H, Teo LLY, Tan RS, Ewe SH, Tan HC, Wee HN, 

Lee LS, Ching J, Keng BMH, Koh WP, Zhong L and Koh AS. Amino acid differences between diabetic 

older adults and non-diabetic older adults and their associations with cardiovascular function. J Mol 

Cell Cardiol. 2021;158:63-71. doi: 10.1016/j.yjmcc.2021.05.009.:63-71. 

 

 

4. Koh AS, Gao F, Tan RS, Zhong L, Leng S, Zhao X, Fridianto KT, Ching J, Lee SY, Keng BMH, Yeo 

TJ, Tan SY, Tan HC, Lim CT, Koh WP and Kovalik JP. Metabolomic correlates of aerobic capacity 

among elderly adults. Clin Cardiol. 2018;41:1300-1307. 

 

5. Tan YH, Lim JP, Lim WS, Gao F, Teo LLY, Ewe SH, Keng BMH, Tan RS, Koh WP and Koh AS. 

Obesity in Older Adults and Associations with Cardiovascular Structure and Function. Obes Facts. 

2022;15:336-343. 

 

6. Loh R, Yeo SY, Tan RS, Gao F and Koh AS. Explainable machine learning predictions to support 

personalised cardiology strategies. Eur Heart J Digit Health. 2022;3:49-55. 



 
 

5 
 

 

DECLARATION 

 

I hereby declare that the publications that support this thesis are original peer reviewed research derived 

from primary data. All references cited within this thesis were selected by me. I am the sole author of this 

thesis, unless otherwise stated. 

 

I also declare that the work described in this thesis was carried out by me directly in my capacity as principal 

investigator, clinician scientist and consultant cardiologist at the National Heart Centre Singapore, 

Singapore. All the publications were designed, collected, and analysed by me or my team of co-authors as 

indicated in the publications.  

 

The work took place in the Department of Cardiology, National Heart Centre Singapore. I have received 

competitive and intra-mural research grants including national grants from National Medical Research 

Council of Singapore, to perform the research work over the years. Other funders of the work are indicated 

in the publications. 

 

This PhD by publication was performed under the supervision of Professor Chim Lang and Professor Anna 

Maria Choy from the School of Medicine, University of Dundee. 

  



 
 

6 
 

ACKNOWLEDGMENTS 

 

First and foremost, I am grateful to my thesis supervisor Professor Chim Lang for supporting my application 

for this PhD. I recall how he had enthusiastically agreed to be my PhD supervisor right from the beginning. 

I was overjoyed when he accepted my PhD proposal with so much open-mindedness, encouragement, and 

trust. Inspired by how he had supported my PhD application, I was deeply motivated to complete the PhD 

thesis on time and to the best of my ability. I am also deeply grateful to Professor Anna Maria Choy for her 

kindness in sharing how the thesis can be crafted from scratch and for sharing how she had accomplished 

her PhD. 

 

As a practicing cardiologist, clinician scientist and a mother to two school going children (my son is 11 

years old while my daughter is 6 years old), this PhD is especially important and meaningful. This thesis is 

a product of unconditional support that I had received from my family including my husband and my parents 

who have been cheering me on as I worked towards the completion of this thesis over the past year.  

 

While the publications were led by me as a principal investigator of the research, I had received strong 

backing and guidance from numerous mentors in my career over the years, notably Professor Koh Woon 

Puay who mentored me on my research track when I first started in 2012 at the Duke-National University 

of Singapore, and Professor Terrance Chua, from National Heart Centre Singapore, who supported my 

lifelong career ambition to be a clinician scientist. 

 

I also thank the entire research team who have made all the publications possible over the years; my trusted 

biostatistician Gao Fei, my clinician collaborators Ru San Tan and Louis Teo, my bio-engineering and 

artificial intelligence collaborators Zhong Liang and Si Yong Yeo, my basic science collaborator Jean-Paul 

Kovalik and all my undergraduate, postgraduate, students and research fellows. 

 



 
 

7 
 

I wish to express my sincere gratitude to the staff and administration of University of Dundee School of 

Medicine, for their patience in guiding me through the paperwork and all necessary material needed to 

graduate with this degree. 

 

Finally, to all the research participants and patients for their selfless contribution to science, clinical 

coordinators and research assistants who have executed all the research studies beautifully and safely over 

the years, thank you. 

 

 

  



 
 

8 
 

ABSTRACT 

 

Background 

Physical activity has been traditionally used to maintain health, promote total well-being, and prescribed as 

part of holistic approach to disease treatments such as cardiovascular disease. In ageing adults, physical 

activity has purported benefits ranging from improvements in aerobic capacity and skeletal muscle function. 

However, ageing is frequently accompanied by other changes in the body systems such as loss of skeletal 

muscle mass, frailty, cardiorespiratory functions and dysmetabolism, which produces heterogenous effects 

of physical activity on aged adults. These heterogeneities often influence targets used to measure the 

effectiveness of exercise on health outcomes. For example, body mass index (BMI) is frequently used as a 

target of exercise regimens. However, BMI in aged adults may be reduced due to loss of skeletal muscle 

mass as part of sarcopenic processes in ageing, rendering BMI less accurate as a conventional outcome for 

exercise. Lipids profiles alone are also insufficient to address the impact of ageing on health outcomes, 

given that ageing of the cardiovascular system for instance, may march on, independent of lipid levels in 

the blood. Therefore, there is a lack of a converging marker that can be used to measure/assess the effect of 

lifestyle habits such as physical activity, commonly recommended as a longevity tool, which is suitable for 

aged adults. In the field of cardiovascular ageing, there is a critical need to identify suitable biomarkers that 

can be used as exercise targets are necessary to measure the effects of exercise on aged adults. Since ageing 

is a life course phenomenon, dynamic lifestyle factors such as physical activity, alcohol use and food intake 

can alter the course of physical ageing. Given that these dynamic factors all converge upon the human 

metabolome, metabolomics might provide a comprehensive and integrated picture of these lifelong 

environmental exposures, alongside exercise as a frequently practised intervention to alter the course of 

ageing. 
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Objective 

The principal aim of the proposed research is to examine how metabolomics may be used as measurable 

biomarkers that represents the convergence of all physiological processes that occur with ageing, which 

accounts for the effect of exercise on the sum of these processes. 

 

Research Questions 

1. Would metabolomics biomarkers identified from blood samples of older adults be associated with 

cardiovascular ageing, as defined by changes in cardiac structure and function?  

2. Would metabolomics biomarkers identified in (1) differentiate between physical activity levels, 

i.e., high versus low physical activity practices, among older adults with cardiovascular ageing? 

3. Is there a better measure of cardiovascular health outcome, compared to traditional markers such 

as body mass index? 

4. Recognising the need to incorporate multiple biological inputs, would an expansive machine 

learning (ML) approach help rank key factors that determine healthy cardiovascular health in 

ageing?  

 

Methodology 

To answer these questions, we will use data from a cohort study of older adults recruited from community 

population. The Cardiac Ageing Study (CAS) is a community-based study of middle aged to older adults 

(mean age 72±4 years) examined in 2014-2017 who did not have clinical cardiovascular disease (CVD) at 

baseline. In CAS, we characterised CV structure and function using novel cardiovascular imaging 

techniques. We found that these imaging markers defined individuals with worse structural and functional 

alterations that likely represent cardiovascular ageing. In conjunction with physical activity, skeletal 

muscle mass, dietary capture and circulating metabolites in this population, this cohort will provide the data 

to answer these research questions. Furthermore, apart from cross-sectional analytical approaches, we will 

include biomarker samples obtained at time points over longitudinal follow-up to chart changes in CV 
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longevity over time. In such an endeavour that involves multiple biological inputs, an expansive machine 

learning (ML) approach will additionally help identify key factors that determine healthy cardiovascular 

longevity. We will use machine learning techniques to analyse these multiple inputs. The automatic feature 

detection of machine learning will efficiently detect the association between the combination of 

metabolomics features, exercises and cardiac health.  

 

Prior publications that support this thesis: 

• Koh AS, Gao F, Leng S, Kovalik JP, Zhao X, Tan RS, Fridianto KT, Ching J, Chua SJ, Yuan JM, 

Koh WP and Zhong L. Dissecting Clinical and Metabolomics Associations of Left Atrial Phasic 

Function by Cardiac Magnetic Resonance Feature Tracking. Sci Rep. 2018;8:8138-26456. 

This paper integrates clinical and metabolomics signals for left atrial phasic function in older adults. 

We found that left atrial function alterations were a marker of cardiovascular ageing in older adults and 

medium and long chain acylcarnitines including amino acids such as serine, citrulline and valine were 

associated with phases of left atrial function. By integrating these clinical and metabolomics signals of 

left atrial function, metabolite signals may be useful for advancing mechanistic understanding of LA 

disease in future studies. 

 

• Gao F, Kovalik JP, Zhao X, Chow VJ, Chew H, Teo LL, Tan RS, Leng S, Ewe SH, Tan HC, Tan 

TY, Lee LS, Ching J, Keng BM, Zhong L, Koh WP and Koh AS. Exacerbation of cardiovascular 

ageing by diabetes mellitus and its associations with acyl-carnitines. Aging (Albany NY). 

2021;13:14785-14805. 

This paper highlights the work we did to define relationships between acylcarnitines and cardiovascular 

function in ageing. We found that distinct alterations in fuel oxidation pathways in short chain and long 

chain acyl-carnitines, di-carboxyl and hydroxylated acyl-carnitines. These links between fuel oxidation 

pathways in older adults were associated with impairments in myocardial relaxation and worse left atrial 

function, likely reflecting early disturbances in diastolic function.  
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• Kovalik JP, Zhao X, Gao F, Leng S, Chow V, Chew H, Teo LLY, Tan RS, Ewe SH, Tan HC, Wee 

HN, Lee LS, Ching J, Keng BMH, Koh WP, Zhong L and Koh AS. Amino acid differences 

between diabetic older adults and non-diabetic older adults and their associations with 

cardiovascular function. J Mol Cell Cardiol. 2021;158:63-71. doi: 

10.1016/j.yjmcc.2021.05.009.:63-71. 

This paper highlights the work we did to define relationships between amino acids and cardiovascular 

function in ageing. We found correlations between metabolites in the one-carbon and nitrogen handling 

pathways and ageing heart functions. These findings point to a potential role for changes in nitrogen 

handling in the pathogenesis of heart failure in older subjects. 

 

• Koh AS, Gao F, Tan RS, Zhong L, Leng S, Zhao X, Fridianto KT, Ching J, Lee SY, Keng BMH, 

Yeo TJ, Tan SY, Tan HC, Lim CT, Koh WP and Kovalik JP. Metabolomic correlates of aerobic 

capacity among elderly adults. Clin Cardiol. 2018;41:1300-1307. 

Combining echo-based and CMR-based imaging techniques to characterise cardiac ageing, this paper 

investigated metabolomics markers in relation to aerobic capacity. We found that low physical activity, 

associated with deleterious changes in cardiovascular structure and function, was distinguished by a 

metabolomic signature of wide-spectrum acylcarnitines and several amino acids. Combined cardiac and 

metabolomics phenotyping may be useful for tracking future interventions related to physical activity 

among community cohorts. 

 

• YH Tan, JP Lim, WS Lim, F Gao, LLY Teo, SH Ewe, BMH Keng, RS Tan, WP Koh, Koh AS. 

Obesity in Older Adults and Associations with Cardiovascular Structure and Function. Obesity 

Facts, 2022.  

This paper evaluated body mass index versus percentage fat mass in determining cardiovascular 

structure and function in older adults. Waist circumference, rather than body mass index, identified 



 
 

12 
 

higher prevalence of obesity. Across body mass index categories, waist circumference identified more 

adverse measurements in myocardial relaxation, aerobic capacity and left atrial structure. 

 

 

• Loh DR, Yeo SY, Tan RS, Gao F, Koh AS. Explainable Machine-Learning Predictions To 

Support Personalised Cardiology Strategies. European Heart Journal - Digital Health. 

2022;3:49-55. 

This paper tested a method in Artificial Intelligence, known as Explainable Machine Learning, to 

identify personalised factors related to cardiovascular health state among older adults. Our work showed 

that machine learning could converge heterogenous features, including metabolomics and physical 

activity and demonstrate its effects on cardiovascular health. 
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Innovations and Importance of this Proposal: 

This approach attempts to conglomerate the complexities of ageing. Some ageing studies have been cross-

sectional and thus are somewhat limited in their ability to detect causal associations between biochemical 

pathways and the effects of exercise on ageing. Pre-specified cohorts that study ageing and exercise, 

independently of traditional risk factors are necessary. Furthermore, analysis of community cohorts that 

include biomarker samples obtained at multiple time points is necessary to provide future reference targets 

for community cohorts.  

 

Now is the right time for this idea. Ageing is a global problem. By 2030, approximately 20% of the world 

population will be aged 65 years or older. There is growing awareness and practice of using exercise as a 

lifestyle intervention to reduce ill-health associated with ageing. Yet, there is hardly any measurable 

biomarker that can quantify the effect of exercise on the individual older adult at a personalised level. 

Without robust methods of measuring the effect of exercise on ageing, exercise advice is prescribed blindly, 

indiscriminately while ignoring innate differences between individuals and their corresponding responses 

to exercise. Metabolomic profiling is an important systems biology tool that measures large numbers of 

metabolites with diverse chemical properties in a quantitatively rigorous and reproducible fashion. In 

contrast to other ‘omics’ platforms, such as genomics, transcriptomics and proteomics, metabolomics 

measures the net composition of genomic, transcriptomic, and proteomic variability providing an integrated 

profile of an individual’s biological status. Thus, the metabolome provides a comprehensive picture of the 

immediate effects of exercise on the body, potentially preceding end-organ effects, exerting maximal 

preventative effect and personalised feedback to the user. 
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INTRODUCTION 

 

I. Cardiovascular Ageing 

Scale of the problem 

By 2030, approximately 20% of the world population will be aged 65 years or older1. Furthermore, the cost 

to treat cardiovascular disease will triple by that time1, 2. As a leading cause of death in older adults, 

understanding risk factors that lead toward cardiovascular disease in older adults is important3. Occurring 

in tandem with chronological ageing, cardiovascular ageing refers to cardiovascular structural and 

functional alterations which lead to the development of cardiovascular disease.  

 

Typical age-related changes such as increased stiffness occur in the central arteries, resulting in loss of 

elastic fibres and arterial stiffness4. Arterial stiffness increases afterload which influences ventriculo-arterial 

coupling and affects ventricular relaxation5. With increased stiffness and reduced left ventricular relaxation, 

the left ventricle develops diastolic dysfunction, while preserving normal systolic function6. Diastolic 

dysfunction contributes to heart failure in ageing and is associated with increased mortality. Diastolic 

dysfunction also correlates with exercise capacity in older patients with heart failure7. 

 

While the underlying pathophysiological mechanisms behind diastolic dysfunction are complex, 

impairments in mitochondrial oxidation and fuel metabolism pathways have delineated diastolic failure 

from systolic failure 8, 9. These pathways were similarly observed among ageing, asymptomatic older adults 

with impairments in myocardial relaxation and mitochondrial fuel metabolism 10, 11. Thus, metabolomics 

may be useful to delineate metabolic changes in ageing-related ventricular stiffness and may reveal 

mechanistic insights before the onset of clinical diastolic failure, common to ageing. 
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II. Physical Activity For The Preservation Of Cardiovascular Health 

 

Physical activity to achieve cardiovascular disease-free health span and maintenance of cardiovascular 

health 

Regardless of extensions in life expectancy, ageing predisposes people to developing cardiovascular disease 

which reduces health span, i.e., preserved healthy lifespan. Ageing increases biological vulnerability to 

cardiovascular events resulting in increased vulnerability with downward spirals into frailty. Data from 

centenarians suggest that cardiovascular disease-free health-span (‘cardiovascular longevity’) is possible12.  

Centenarians had more favourable biomarker profiles than non-centenarians for almost one decade prior to 

death13. Older adults who participate in higher amounts of physical activity have lower mortality risks and 

healthier cardiovascular longevity14. 

 

The role of physical activity as a primary prevention strategy against incident cardiovascular disease and 

secondary prevention strategy towards maintaining cardiovascular health is well established15-18. Physical 

activity impacts traditional risk factors such as hypertension, dyslipidaemia, and diabetes mellitus19-21.  

Specific to ageing, physical activity is the major modifiable lifestyle factor that may mitigate age-related 

deteriorations in cardiovascular health, in conjunction with age-related derangements muscle health such 

as sarcopenia and physical frailty22.  

 

Given the importance of physical activity, better understanding of the underlying biological and 

physiological processes stimulated by physical activity is warranted. Uncovering the mechanisms for the 

beneficial effects of physical activity will improve our basic understanding of disease pathophysiology, 

highlight new potential pathways for intervention and identify biomarkers to help guide exercise 

prescriptions. Current evidence points to the importance of fuel metabolism and mitochondrial oxidation 

pathways for physical activity effects on cardiovascular health23. Metabolomics, defined as the study of 

chemical processes involving metabolites within the human biological system, can serve as a useful tool to 
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guide further investigative work in these areas. Since ageing is a life course phenomenon, dynamic lifestyle 

factors such as physical activity, alcohol use and food intake can alter the course of physical ageing. Given 

that these dynamic factors all converge upon the human metabolome, metabolomics might provide a 

comprehensive and integrated picture of these lifelong environmental exposures, alongside exercise as a 

frequently practised intervention to alter the course of ageing. 
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OBJECTIVE AND RESEARCH HYPOTHESES 

 

Objective 

The principal aim of the proposed research is to examine how metabolomics may be used as measurable 

biomarkers that represents the convergence of all physiological processes that occur with ageing, which 

accounts for the effect of physical activity on the sum of these processes. 

 

Research Questions 

1. Would metabolomics biomarkers identified from blood samples of older adults be associated with 

cardiovascular ageing, as defined by changes in cardiac structure and function?  

 

Alterations in fuel-metabolism related markers in humans with ageing have been reported. The mechanism 

through which ageing-related changes such as arterial stiffness drives metabolic changes may similarly 

correlate with changes in cardiac structure and function. Identification of metabolomic profiles that is 

associated with changes in cardiac structure and function in older adults may reveal key metabolic pathways 

that lead to cardiovascular disease in ageing and allow for early identification of those at risk for progression 

towards clinical disease.  

 

 

2. Would metabolomics biomarkers identified in (1) differentiate between physical activity levels, 

i.e., high versus low physical activity practices, among older adults with cardiovascular ageing? 

 

Trials have shown that exercise leads to differences in metabolomic profiles. Physical activity increases 

energy demand across multiple tissues and stimulates acute and chronic changes in metabolic pathways. 

These changes can be detected through metabolomics analysis of serum. For instance, in the first 24 hours 

after a bout of exercise lactate, pyruvate, TCA cycle intermediates, fatty acids, acylcarnitines, and ketone 
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bodies all typically increase whereas bile acids decrease24. We therefore hypothesise that in conjunction 

with cardiovascular ageing phenotypes, metabolomics biomarkers would differentiate older adults with 

high versus low physical activity practices. 

 

 

3. Is there a better measure of cardiovascular health outcome, compared to traditional markers such 

as body mass index? 

 

While physical activity is frequently advocated to older adults, using body mass index (BMI) as a target of 

exercise outcome, may not be appropriate among older adults who may have weight changes due to sarcopenia. 

This is because sarcopenia results in reductions in body weight, leading to lower BMI values. Despite strong 

correlations between BMI and cardiovascular health, BMI may not be a suitable anthropometric target for older 

adults. We test the hypothesis by evaluating the impact of using BMI versus waist circumference in the study 

of cardiovascular function in older adults. 

 

 

4. Recognising the need to incorporate multiple biological inputs, would an expansive machine 

learning (ML) approach help rank key factors that determine healthy cardiovascular health in 

ageing?  

 

The large dimensionality of the multiple biological variables makes it challenging to analyse data directly. 

Some dimension reduction tools such as the Principal Component Analysis (PCA), Linear Discriminant 

Analysis (LDA) are linear methods which are not appropriate for non-linear data. In this project, the 

extraction of features will be done through a combination of machine learning methods which generate a 

set of outputs from a set of inputs. These outputs will be used to evaluate top ranked factors that include 
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physical activity variables, metabolites and clinical variables that determine cardiovascular health of older 

adults.  
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Research Question #1: 

Would metabolomics biomarkers identified from blood samples of 

older adults be associated with cardiovascular ageing, as defined by 

changes in cardiac structure and function? 
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PUBLICATION #1 

 

Dissecting Clinical and Metabolomics Associations of Left Atrial Phasic Function by Cardiac 

Magnetic Resonance Feature Tracking 

 

Koh AS, Gao F, Leng S, Kovalik JP, Zhao X, Tan RS, Fridianto KT, Ching J, Chua SJ, Yuan JM, 

Koh WP and Zhong L. 

Sci Rep. 2018;8:8138-2645625. 

 

“Among community cohorts, associations between clinical and metabolite factors and complex left atrial 

(LA) phasic function assessed by cardiac magnetic resonance (CMR) feature tracking (FT) are unknown. 

Longitudinal LA strain comprising reservoir strain (εs), conduit strain (εe) and booster strain (εa) and their 

corresponding peak strain rates (SRs, SRe, SRa) will be measured using CMR FT. Targeted mass 

spectrometry will measure 83 circulating metabolites in serum. Sparse Principal Component Analysis will 

be used for data reduction. Among community adults (n = 128, 41% female) (mean age: 70.5 ± 11.6 years), 

age was significantly associated with εs (β = −0.30, p < 0.0001), εe (β = −0.3, p < 0.0001), SRs (β = 

−0.02, p < 0.0001), SRe (β = 0.04, p < 0.0001) and SRe/SRa (β = −0.01, p = 0.012). In contrast, heart 

rate was significantly associated with εa (β = 0.1, p = 0.001) and SRa (β = −0.02, p < 0.0001). Serine was 

significantly associated with εs (β = 10.1, p = 0.015), SRs (β = 0.5, p = 0.033) and Sra (β = −0.9, p = 

0.016). Citrulline was associated with εs (β = −4.0, p = 0.016), εa (β = −3.4, p = 0.002) and SRa (β = 0.4, 

p = 0.019). Valine was associated with ratio of SRe:SRa (β = −0.4, p = 0.039). Medium and long chain 

dicarboxyl carnitines were associated with εs (β = −0.6, p= 0.038). Phases of LA function were 

differentially associated with clinical and metabolite factors. Metabolite signals may be used to advance 

mechanistic understanding of LA disease in future studies.” 
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Supplementary table S1: Intra and inter observer variability for strain and strain rate  

  
Intra-observer Inter-observer 

r Mean difference ± SD COV (%) r Mean difference ± SD COV (%) 

Ɛs 0.995 -0.11 ± 0.75 2.3 0.997 -0.24 ± 0.69 2.2 

Ɛe  0.999 0.06 ± 0.25 1.6 0.991 -0.22 ± 0.69 4.6 

Ɛa  0.993 -0.06 ± 0.48 3.2 0.986 0.19 ± 0.72 4.9 

SRs 0.992 -0.01 ± 0.07 3.9 0.987 -0.03 ± 0.09 5.4 

SRe 0.996 0.01 ± 0.06 3.4 0.998 -0.01 ± 0.06 3.4 

SRa  0.995 -0.01 ± 0.07 3.6 0.997 0.04 ± 0.08 4.1 

 

 

 

Supplementary table S2: Other cardiac measurements of the cohort 

 

CMR measurements Mean (SD) 

LV mass (g) 75.0 (20.0) 

LV mass index (g/m2) 46.6 (11.1) 

LVEDV (ml) 106.7 (27.9) 

LVESV (ml) 37.1 (17.3) 

LV stroke volume (ml) 69.3 (15.7) 

LV ejection fraction (%) 65.5 (7.3) 

Echocardiogram-derived measurements  

Left atrial volume index (ml/m2) 23.6 (8.1)  

MV E peak (ms) 0.7 (0.2) 

MV A peak (ms) 0.8 (0.2) 

E/A (ratio) 0.9 (0.3) 

Mitral deceleration time (ms) 210.0 (37.0)  

PASP (mmHg) 27.6 (6.5)  

PVS (cm/s) 57.7 (11.5)  

PVD (cm/s) 47.5 (14.7)  

PVA (cm/s) 28.9 (5.2) 

Septal Sm (m/s) 0.1 (0.01)  

Septal Em (m/s) 0.1 (0.02)  

Septal Am (m/s) 0.1 (0.02)  

Lateral Sm (m/s) 0.1 (0.02) 

Lateral Em (m/s) 0.1 (0.02) 

Lateral Am (m/s) 0.1 (0.02) 

  

Left ventricle (LV); end-diastolic volume (EDV); mitral valve (MV); peak blood velocity from Doppler 

echocardiography at early filling phase (E) and at atrial contraction phase (A); PASP (pulmonary artery 

systolic pressure); pulmonary vein blood velocity at systolic phase (PVS), diastolic phase (PVD) and 

atrial reversal phase (PVA); myocardial velocity from tissue Doppler imaging at systolic phase (Sm), 

early filling phase (Em) and atrial contraction phase (Am)   
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Supplementary table S3: List of measured metabolites 

 

Short name Name 

Ala Alanine 

Arg Arginine 

Asp Aspartic acid 

Cit Citrulline 

Glu/Gln Glutamate/Glutamine 

Gly Glycine 

His Histidine 

Ile/Leu Leucine/Isoleucine 

Met Methionine 

Orn Ornithine 

Phe Phenylalanine 

Pro Proline 

Ser Serine 

Trp Tryptophan 

Tyr Tyrosine 

Val Valine 

C2 Acetyl carnitine 

C3 Propionyl carnitine 

C4 Butyryl carnitine or isobutryl carnitine 

C5:1 Tiglyl carnitine or 3-methyl crotonyl carnitine 

C5 Isovaleryl, 3-methylbutyryl carnitine , 2-Methylbutyryl, valeryl or pivaloyl 

carnitine 

C4-OH D-3-Hydroxy-butyryl carnitine, L-3-hydroxybutyryl carnitine 

C6 Hexanoyl carnitine 

C5-OH/C3-DC 3-Hydroxy-isovaleryl carnitine or malonyl carnitine 

C4-DC/C6-OH Methylmalonyl carnitine or succinyl carnitine  

C8:1 Octenoyl carnitine 

C8 Octanoyl carnitine 

C5-DC Glutaryl carnitine, ethylmalonyl carnitine 

C8:1-OH/C6:1-DC 3-Hydroxy- octenoyl carnitine or hexenedioyl carnitine 

C8-OH/C6-DC 3-hydroxy octanoyl carnitine or adipoyl carnitine, 3-methylglutaryl carnitine 

C10:3 Decatrienoyl carnitine 

C10:1 Decenoyl carnitine 

C10 Decanoyl carnitine 

C7-DC Pimeloyl carnitine, heptanedioyl carnitine 

C8:1-DC Octadecenedioyl carnitine 

C8-DC Suberoyl carnitine 

C12:2 - 
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C12:1 Dodecenoyl carnitine 

C12 Lauroyl carnitine 

C12:2-OH/C10:2-DC - 

C12:1-OH Hydroxydodecenoyl carnitine 

C12-OH/C10-DC 3-Hydroxy-dodecanoyl carnitine or sebacoyl carnitine 

C14:3 - 

C14:2 Tetradecadienoyl carnitine 

C14:1 Tetradecenoyl carnitine 

C14 Myristoyl carnitine 

C14:3-OH/C12:3-DC - 

C14:2-OH 3-Hydroxytetradecenoylcarnitine 

C14:1-OH 3-Hydroxy-tetradecenoyl carnitine 

C14-OH/C12-DC 3-Hydroxy-tetradecanoyl carnitine or dodecanedioyl carnitine 

C16:3 - 

C16:2 Hexadecadienoyl carnitine 

C16:1 Palmitoleoyl carnitine 

C16 Palmitoyl carnitine 

C16:3-OH/C14:3-DC - 

C16:2-OH 3-Hydroxyhexadecadienoyl carnitine 

C16:1-OH/C14:1-DC 3-Hydroxy-palmitoleoyl carnitine or cis-5-tetradecenedioyl carnitine 

C16-OH 3-Hydroxy-hexadecanoyl carnitine 

C18:3 Linolenyl carnitine 

C18:2 Linoleyl carnitine 

C18:1 Oleyl carnitine 

C18 Stearoyl carnitine 

C18:3-OH/C16:3-DC 3-Hydroxyl-linolenyl carnitine or  

C18:2-OH/C16:2-DC 3-Hydroxy-linoleyl carnitine or hexadecadienedioyl carnitine 

C18:1-OH/C16:1-DC 3-Hydroxy-octadecenoyl carnitine or hexadecanedioyl carnitine 

C18-OH/C16-DC 3-Hydroxy-octadecanoyl carnitine or hexadecanedioyl carnitine, thapsoyl carnitine 

C20:4 Arachidonoyl carnitine 

C20:3 Dihomogammalinolenyl carnitine 

C20:2 - 

C20:1 - 

C20 Arachidoyl carnitine, eicosanoyl carnitine 

C20:3-OH/C18:3-DC - 

C20:2-OH/C18:2-DC - 

C20:1-OH/C18:1-DC Octadecenedioyl carnitine 

C20-OH/C18-DC 3-Hydroxy-eicosanoyl carnitine or octadecanedioyl carnitine 

C22:5 - 

C22:4 - 

C22:3 - 
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C22:2 - 

C22:1 - 

C22 Docosanoyl carnitine, Behenoyl carnitine 

Free Carnitine 
 

Total Carnitine 
 

 

 

 

Supplementary table S4: Summary of amino acids 

 

Metabolites Mean (SD) μm 

Ala 495.1 (136.6) 

Arg 116.4 (27.6) 

Asp 23.2 (6.2) 

Cit 34.4 (13.9) 

Glu 93.4 (23.5) 

Gly 233.5 (49.5) 

His 77.8 (22.6) 

IleLeu 151.5 (45.6) 

Met 27.2 (10.1) 

Orn 86.2 (28.3) 

Phe 77.3 (15.7) 

Pro 255.6 (72.2) 

Ser 122.4 (24.1) 

Trp 55.1 (14.1) 

Tyr 71.8 (21.2) 

Val 246.1 (61.5) 
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Supplementary table S5: Coefficient and 95% confidence generated using linear regression on 10 PCA formed using acylcarnitines with 

left atrial function 

 

 Ɛs Ɛe Ɛa SRs SRe SRa SRe/SRa 

Factor 1 0.3 (-0.2, 0.8)  0.3 (-0.1, 0.6) 0.1 (-0.3, 0.4) 0.02 (-0.01, 0.05) -0.03 (-0.1, 0.02) -0.01 (-0.1, 0.04) 0.01 (-0.03, 0.04) 

Factor 2 -0.2 (-0.9, 0.5) -0.2 (-0.7, 0.3) -0.03 (-0.5, 0.4) 0.001 (-0.04, 0.05) 0.04 (-0.03, 0.1) 0.01 (-0.1, 0.1) 0.003 (-0.05, 0.05) 

Factor 3 -0.9 (-1.5, -0.3) -0.6 (-1.0, -0.1) -0.3 (-0.7, 0.04) -0.04 (-0.1, -0.01) 0.1 (0.02, 0.1) 0.1 (0.001, 0.1) 0.01 (-0.03, 0.05) 

Factor 4 -0.2 (-0.8, 0.5) -0.1 (-0.6, 0.3) -0.1 (-0.5, 0.3) 0.002 (-0.04, 0.04) 0.01 (-0.04, 0.1) 0.01 (-0.05, 0.07) -0.001 (-0.04, 0.04) 

Factor 5 -0.2 (-0.8, 0.4) -0.3 (-0.7, 0.1) 0.1 (-0.2, 0.5) 0.003 (-0.03, 0.04) 0.04 (-0.01, 0.1) -0.02 (-0.1, 0.03) -0.03 (-0.1, 0.01) 

Factor 6 -0.2 (-1.1, 0.7) -0.1 (-0.7, 0.5) -0.02 (-0.6, 0.5) -0.03 (-0.08, 0.03) 0.02 (-0.1, 0.1) -0.001 (-0.1, 0.1) 0.001 (-0.1, 0.1) 

Factor 7 0.3 (-0.4, 1.1) -0.03 (-0.6, 0.5) 0.3 (-0.2, 0.8) 0.02 (-0.03, 0.07) 0.01 (-0.1, 0.1) -0.05 (-0.1, 0.02) -0.02 (-0.1, 0.04) 

Factor 8 0.5 (-0.6, 1.7) 0.1 (-0.7, 0.9) 0.2 (-0.6, 0.9) 0.03 (-0.05, 0.1) -0.03 (-0.1, 0.1) -0.01 (-0.1, 0.1) 0.003 (-0.1, 0.1) 

Factor 9 -0.6 (-1.7, 0.6) 0.03 (-0.8, 0.8) -0.5 (-1.3, 0.2) 0.003 (-0.07, 0.1) -0.02 (-0.1, 0.1) 0.1 (-0.04, 0.2) 0.03 (-0.05, 0.1) 

Factor 10 0.8 (-0.1, 1.8) 0.5 (-0.2, 1.2) 0.4 (-0.2, 1.0) 0.02 (-0.04, 0.08) -0.1 (-0.1, 0.02) -0.1 (-0.1, 0.04) 0.04 (-0.03, 0.1) 

Bold indicates significance at the 5% level. 
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COMMENTARY 

 

Cardiac structural and functional changes in ageing detected by cardiac imaging 

 

Cardiovascular imaging has evolved tremendously over the last century. From detecting disease to picking 

up early preclinical stages of disease, modern imaging techniques have revolutionised the study of 

medicine26. In ageing, quantifying subtle functional cardiovascular changes through imaging is important 

in the setting of preclinical disease. In a large community study from MESA (Multi-Ethnic Study of 

Atherosclerosis), myocardial fibrosis in asymptomatic older adults was detected by T1 mapping on cardiac 

magnetic resonance imaging27. Endothelial dysfunction in the coronary circulation has also been measured 

in humans with microvascular dysfunction by positron emission tomography28, 29. Imaging tools such as 

phosphorus-31 spectroscopy for example, has depicted mitochondrial dysfunction in humans in relation to 

physical training30. Applying the use of imaging techniques to detect features of cardiac ageing when used 

in parallel with novel omics technologies will enhance discovery of biomarkers of cardiac ageing. 

 

Main findings of this study: 

a) Left atrial function alterations as a marker of cardiovascular ageing in older adults 

 

Age-related decreases in left ventricular relaxation increases left ventricular end-diastolic pressure, left 

atrial pressure and which results in increases in left atrial volume with time31. While left atrial volume may 

increase as a result of normal ageing32, previous studies have attributed left atrial enlargement and left atrial 

function to the influence of concomitant risk factors33, rather than due to the effect of age alone.  

 

Among 128 participants (mean age 70.5 ± 11.6 years; 52 women) in this study, majority of participants had 

vascular risk factors of hypertension (53.1%) and dyslipidaemia (50.0%) while some had diabetes mellitus 

(21.9%). Despite the presence of risk factors, we found that age was independently associated with left 
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atrial function, emphasizing that age plays an important role in assessment of left atrial function. 

Importantly, the participants in our study were free of prevalent cardiovascular disease, highlighting that 

left atrial function alterations is a marker of cardiovascular ageing in older adults, observed even in the 

absence of cardiovascular disease34.  

 

Based on cardiac magnetic resonance imaging, an advanced method of cardiac imaging, left atrial function 

measurements were performed. Cine cardiac magnetic resonance was performed using balanced steady 

state free precession sequence. All participants were imaged on a 3T magnetic resonance imaging system 

(Ingenia, Philips Healthcare, The Netherlands) with a dStream Torso coil (maximal number of channels 

32). BFFE end-expiratory breath hold cine images were acquired in multi-planar long-axis views (2-, 3-, 

and 4-chamber views) and a stack of parallel short-axis views to cover the left ventricle (LV) from base to 

apex. Typical parameters were as follows: TR/TE 3/1 ms; flip angle, 45°; in-plane spatial resolution, 1.0 

mm x 1.0 mm to 1.5 mm x 1.5 mm; slice thickness, 8 mm; pixel bandwidth, 1797 Hz; field of view, 300 

mm; frame rate, 30 or 40 per cardiac cycle. We developed an in-house semi-automatic algorithm to track 

the distance (L) between the left atrioventricular junction and a user-defined point at the mid posterior LA 

wall on standard CMR 2- and 4-chamber views35, 36. Both 2- and 4-chamber views were used to generate 

the average strain and strain rate results.  Longitudinal strain (𝜀) at any time point (𝑡) in the cardiac cycle 

from end-diastole (time 0) was calculated as: 𝜀(𝑡) = (𝐿(𝑡) − 𝐿0)/𝐿0. LA reservoir strain (𝜀𝑠), conduit 

strain (𝜀𝑒) and booster strain (𝜀𝑎) were calculated at 𝑡 equals left ventricular end-systole, diastasis and pre-

LA systole, respectively. To derive the peak strain rate (SR) indices, peak values of the first time derivative 

of the strain-time curve at systole, diastasis and LA contraction were measured. Strain and SR parameters 

from both 2- and 4-chamber views were averaged to obtain mean results for analysis (Figure 1).  
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Figure 1: Derivation of left atrial strain and strain rate parameters: A-B) semi-automatic algorithm to 

track the distance (L) between the left atrioventricular junction and a user-defined point at the mid posterior 

left atrial (LA) wall on standard CMR 2- and 4-chamber views. (C-D) Longitudinal strain (𝜀) at any time 

point (𝑡) in the cardiac cycle from end-diastole (time 0) was calculated as: 𝜀(𝑡) = (𝐿(𝑡) − 𝐿0)/𝐿0. LA 

reservoir strain (𝜀𝑠), conduit strain (𝜀𝑒) and booster strain (𝜀𝑎) were calculated at 𝑡 equals left ventricular 

end-systole, diastasis and pre-LA systole, respectively, and their corresponding peak strain rates (SR) 

derived. 

 

 

The left atrium is a highly dynamic chamber whose function is conventionally understood in three phases: 

reservoir, conduit, and booster. In the reservoir phase, the left atrium expands during left ventricular 

contraction and isovolumetric relaxation to receive venous return from the pulmonary circulation; in the 

conduit phase, the left atrium drains blood passively into the left ventricle; in the booster phase, the left 

atrium contracts upon stimulation by a sinus node depolarization, which contribute to 15-30% of left 

ventricular stroke volume37. 
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In our study of community adults who were free of symptomatic cardiovascular disease, left atrial reservoir, 

conduit, and booster strain and strain rates were differentially associated with age and clinical profiles. We 

investigated the association between clinical risk factors left atrial function in two steps.  

 

First, simple linear regression with left atrial function as dependent variable was performed for each of the 

left atrial function phases: reservoir, conduit, and booster function. Univariate analysis was performed and 

identified clinical risk factors that showed an association with p < 0.05. We observed univariate associations 

between clinical variables and left atrial function. Age and central pulse pressure were significant for 

reservoir strain; age, ever smoking, hypertension, diabetes, dyslipidaemia, and central systolic blood 

pressure were significant for conduit strain; heart rate was significant for booster strain. Age, body mass 

index, heart rate, central diastolic blood pressure, and central pulse pressure were significant for reservoir 

strain rate. Age, ever smoking, hypertension, diabetes, dyslipidaemia, and central systolic blood pressure 

were significant for conduit strain rate. Female gender, body mass index, heart rate and central pulse 

pressure were significant for booster strain rate. Age, ever smoked, diabetes mellitus, dyslipidaemia and 

central systolic blood pressure were significant for the ratio of conduit strain to booster strain rate. 

 

Table 2 showed multivariate linear regression analysis between significant clinical variables and left atrial 

function. In multivariate analysis, age was significantly associated with reservoir strain (β = −0.30, p < 

0.0001), conduit strain (β = −0.3, p < 0.0001), reservoir strain rate (β = −0.02, p < 0.0001), conduit strain 

rate (β = 0.04, p < 0.0001) and ratio of conduit strain to booster strain rate (β = −0.01, p = 0.012).  

 

Clinical covariates LV function Coef. (95% CI) P-value 

Age (years)  Ɛs -0.3 (-0.4, -0.2) <0.0001 

 Ɛe -0.3 (-0.4, -0.3) <0.0001 

 SRs -0.02 (-0.03, -0.01) <0.0001 

 SRe 0.04 (0.04, 0.1) <0.0001 

 SRe/SRa -0.01 (-0.02, -0.003) 0.011 

Female SRa 0.2 (-0.04, 0.5) 0.098 

Ever smoked SRe/SRa -0.2 (-0.4, 0.1) 0.14 
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Body mass index ((kg/m2) SRs -0.02 (-0.05, 0.001) 0.063 

 SRa 0.02 (-0.02, 0.1) 0.32 

Hypertension Ɛe -0.6 (-2.0, 0.9) 0.45 

 SRs -0.01 (-0.2, 0.2) 0.89 

 SRe 0.08 (-0.1, 0.2) 0.32 

Diabetes mellitus SRe/SRa -0.1 (-0.4, 0.1) 0.19 

Dyslipidaemia SRe/SRa -0.1 (-0.3, 0.1) 0.31 

Heart rate (beats per minute) Ɛs 0.1 (0.02, 0.2) 0.024 

 Ɛa 0.1 (0.1, 0.2) 0.001 

 SRs 0.01 (-0.00003, 0.01) 0.051 

 SRa -0.02 (-0.03, -0.01) <0.0001 

Central systolic blood pressure (mmHg) Ɛe -0.003 (-0.1, 0.04) 0.89 

 SRe 0.001 (-0.004, 0.01) 0.67 

 SRe/SRa -0.004 (-0.01, 0.001) 0.12 

Central diastolic blood pressure (mmHg) SRs 0.01 (-0.001, 0.01) 0.099 

Central pulse pressure (mmHg) Ɛs 0.02 (-0.1, 0.1) 0.61 

 SRs 0.002 (-0.004, 0.01) 0.59 

 SRa 0.001 (-0.01, 0.01) 0.85 

 

Table 2: Multivariate analysis of clinical covariates associated with left atrial function .Variables were 

selected based on simple linear regression with P<0.05 at univariate analysis. Univariable analysis 

results are described in the text.  

 

Overall, we found that age was independently associated with reservoir and conduit strain and strain rate, 

while hypertension, body mass index, dyslipidaemia and gender were not associated with left atrial 

function. Our real-world data obtained from a community cohort of aged adults, suggest that left atrial 

function linearly decreases with increasing age. Our observations strengthen other data from another study 

which similarly found decreases in left atrial reservoir and conduit phases with age38, extending data of 

participants from older age groups. Our work implies that future translational studies could use reservoir 

and conduit strain and strain rates as surrogate targets of the ageing heart.  
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b) Overview of omics and metabolomics 

 

Omics refers to a comprehensive analysis of biological molecules which includes genomics, 

transcriptomics, proteomics, metabolomics, and microbiome.  

 

There are two main analytical approaches used in metabolomics research: targeted and untargeted. 

Untargeted approaches involve comprehensive analysis of all the measurable analytes in a sample. The 

advantage to untargeted approaches is broad coverage of potentially important analytes and/or unbiased 

detection of biomarkers. The disadvantage to untargeted approaches includes a workflow which makes 

analysing large sample sets difficult, relative quantitation of compounds, a bias towards identifying 

compounds with high abundance and frequent inability to identify peaks of interest. Targeted approaches 

involve measuring pre-defined metabolites. Advantages to targeted approaches include use of internal 

standards which allows identification and absolute quantitation of analytes, including low abundance 

compounds as well as relatively fast workflow.  

 

Both targeted and untargeted techniques are used to identify these biological molecules. Targeted 

techniques detect pre-specified known molecules. The disadvantage of targeted metabolomics is that 

clinically important analytes can be overlooked. In contrast, untargeted techniques discover as many 

molecules as possible. Untargeted analyses are generally used for discovery of hypothesis-generating data39. 

Typically, targeted techniques are conducted to test specific hypotheses and causal pathways40.  

 

As a systems biology tool, metabolomics measures large and diverse types of metabolites of different 

chemical properties. In contrast to genes and proteins that form the genome and proteome, metabolomics 

represents the metabolome which congregates net gene and protein expression into measurable metabolites 

in the blood stream. Metabolomics profiles are also influenced by external environments41-43. Therefore, 

metabolomics provides an integrated profile of an individual’s biological status including effects from 
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external environments, which explains the saying: “the genome defines what may happen, the metabolome 

defines what has happened”44. Metabolomics quantifies small molecules that include fatty acids, amino 

acids, carbohydrates, and other molecules that comprise end products of biochemical cascades linking the 

genome, transcriptome and proteome to the phenotype. Methods that study the metabolome include gas 

chromatography coupled to mass spectrometry (GC-MS), liquid chromatography with single-stage mass 

spectrometry (LC-MS) or nuclear magnetic resonance (NMR) techniques. 

 

c) Metabolomics implications of left atrial ageing in older adults 

 

While there may be many biomarkers for detecting risk of cardiovascular disease, there are relatively fewer 

investigations into biomarkers for detecting risk of cardiac ageing. As ageing is a complex physiological 

and pathological process, the integrated depiction of an individual’s biological status that metabolomics 

can provide is a useful method for understanding mechanisms of ageing. 

 

We used targeted metabolomics profiling for this work. Current evidence points to the importance of fuel 

metabolism and mitochondrial oxidation pathways for cardiovascular disease, hence we studied panels of 

acylcarnitine and putative amino acids involved in these pathways. 

 

Antecubital venous blood samples (20–30 ml) were taken from consenting participants in the morning. 

After collection, the blood samples were immediately placed on ice for transportation and were processed 

within 6 h to obtain serum samples, which were subsequently stored at −80 °C. Serum metabolomic 

profiling analysis was performed in the Duke-NUS Metabolomics Facility. Thawed serum samples (100 

μl) were spiked with 20 μl deuterium-labelled amino acid/acyl-carnitine mixture and diluted with 800 μl 

methanol. After centrifugation of the mixture at 17,000 g for 5 mins at 20 °C, the supernatant fraction was 

collected and divided into two parts: one (100 μl) for acylcarnitine analysis and one (10 μl) of each extracted 

serum sample. Amino acids were separated using a C8 column (Rapid Resolution HT, 4.5 × 50 mm, 1.8 



 
 

44 
 

μm, Zorbax SB-C8) on an Agilent 1290 Infinity LC system (Agilent Technologies, CA, USA) coupled with 

quadrupole-ion trap mass spectrometer (QTRAP 5500, AB Sciex, DC, USA). Mobile phase A (10/90 

Water/Acetonitrile) and Mobile phase B (90/10 Water/ Acetonitrile), both containing 10 mM of 

Ammonium formate, were used for chromatography separation. Acylcarnitine measurements were made 

using flow injection tandem mass spectrometry on the Agilent 6430 Triple Quadrupole LC/MS system 

(Agilent Technologies, CA, USA). The sample analysis was carried out at 0.4 ml/min of 80/20 

Methanol/water as mobile phase, and injection of 4 μL of sample. Data acquisition and analysis were 

performed on Agilent Mass Hunter Workstation B.06.00 Software.  

 

We analysed 83 metabolites comprising 65 acyl-carnitine metabolites, 16 amino acid metabolites and 2 

carnitine metabolites. Metabolites with >25% of values below the lower limit of quantification were 

excluded from analysis (only C10:2 was excluded, hence a total of 83 metabolites were analysed in the final 

sample). We normalised the distributions of all metabolites by a logarithmic transformation. We identified 

amino acids associated with LA function, respectively, in 3 ways. Firstly, simple linear regression with LA 

function as a dependent variable was used respectively to determine the significance of the individual amino 

acids. Secondly, multivariate linear regression was conducted for each amino acids with p < 0.05 in 

univariate analysis adjusting for significant clinical risk factors identified. Thirdly, multivariate linear 

regression was conducted including all amino acids that show an association with p < 0.05 with LA function 

in the multivariate analysis adjusting for clinical confounders. To identify metabolites correlations (65 acyl-

carnitine metabolites and 2 carnitine metabolites) and reduce the dimensionality of correlated metabolites, 

we performed sparse principal component analysis (SPCA), which used a penalised matrix 

decomposition45. Compared to the regular principal component analysis that suffers from the fact of a dense 

loading matrix from all variables, SPCA is capable of producing sparse loadings which makes it more 

biologically interpretable. Specifically, we set the orthogonality constraint on each component and the 

number of components to be 10. Description of each component and the proportion of variance-accounted 

is shown in Table 4. 
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Factors Description 

 

Components Proportion of 

variance 

accounted 

1 Medium and long-chain 

carnitines 

C8, C8-DC, C12:1, C12, C12-OH/C10-DC, C14:2, 

C14:1, C14, C16:3, C16:2, C16:1, C18:1 

11 

2 Short chain 

dicarboxyl/hydroxyl 

carnitines 

C3, C4, C5:1, C5, C4-OH, C6, C5OHC3DC, 

C4DCC6OH, C5DC, C81OHC61DC, C8OHC6DC, 

C103, C81DC, C8-DC 

6.3 

3 Medium and long chain 

dicarboxyl/hydroxyl 

carnitines 

C81OHC61DC, C122OHC102DC, C121OH,  

C142OH, C141OH, C163OHC143DC, C162OH 

C183OHC163DC, C182OHC162DC, C201, C20, 

C202OHC182DC, C201OHC181DC,  

C20OHC18DC, C221 

7.2 

4 Long chain carnitines C16, C183, C182, C181, C18, C204, C203, C202, 

C201, C202OHC182DC, C225, C224 

C223 

6.0 

5 Medium and long chain 

dicarboxyl/hydroxyl 

carnitines 

C4OH, C8OHC6DC, C8DC, C12OHC10DC,  

C141OH, C14OHC12DC, C162OH, C161OHC141DC, 

C16OH, C181OHC161DC,  

C18OHC16DC, C20, C201OHC181DC, 

C20OHC18DC 

7.4 

6 Wide spectrum carnitines 

including odd short chain 

carnitines 

C2, C3, C51, C5, C5OHC3DC, C101, C7DC, C121, 

C12, C14, C142OH, C163, C162OH, C16OH, C183, 

C182, C18, C183OHC163DC, C182OHC162DC, 

C204, C203, C202, C201, C203OHC183DC, C225, 

C223, C222, C22, Free Carnitine, Total Carnitine 

3.8 

7 Wide spectrum carnitines 

including ketone-derived 

carnitine 

C2, C4OH, C6, C81, C5DC, C81OHC61DC, C103, 

C101, C10, C81DC, C122, C143, C142, C14, 

C142OH, C14OHC12DC, C162, C161, C16, C162OH, 

C161OHC141DC, C183, C182, C183OHC163DC, 

C18OHC16DC, C204, C202,  

C201OHC181DC, C224, C222, C22 

4.5 

8 Wide spectrum carnitines 

including odd short chain 

carnitines 

C3, C51, C4DCC6OH, C5DC, C81OHC61DC, 

C8OHC6DC, C7DC, C81DC, C8DC, C122,  

C121, C12OHC10DC, C14OHC12DC, C16, 

C16OH, C183OHC163DC, C18OHC16DC, C204, 

C201, C20OHC18DC, C224, C223, C222, C221, Free 

Carnitine, Total Carnitine 

2.2 

9 Wide spectrum carnitines 

including ketone-derived 

carnitine 

C2, C51, C4OH, C6, C5OHC3DC, C81OHC61DC, 

C101, C81DC, C12, C122OHC102DC, C121OH, C14, 

C142OH, C14OHC12DC, C162, C183, C182, C181,  

C183OHC163DC, C182OHC162DC, 

C181OHC161DC, C18OHC16DC, C204, C203, 

C201OHC181DC, C20OHC18DC, C225, Free 

Carnitine, Total Carnitine 

2.3 

10 Medium and long chain 

carnitines 

C10, C143, C142, C14, C143OHC123DC, 

C142OH, C163, C16, C181, C18, C182OHC162DC, 

C204, C203, C201, C20, C221, C22 

2.3 

Table 4. Factors identified by sparse principal component analysis and the associated individual 

components, description and variance. 
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To assess the association between the 10 SPCA factors and LA function, we first performed simple linear 

regression with LA function as dependent variable, respectively. Further, for each SPCA factor, we 

performed multivariable linear regression adjusting for significant clinical confounders identified. All 

statistical analyses were performed using STATA 13 (College Station, Texas, USA), while the SPCA and 

correlation matrix heatmap showing pairwise Pearson correlations (r) between amino acids and LA function 

were performed by R. For all analysis, a two-tailed P value of <0.05 was considered significant. 

 

Correlations for the 16 amino acids were assessed using the Pearson correlation analysis (Figure 2). We 

observed that serine was significantly correlated with all LA function except the ratio SRe/SRa (r ranges 

from −0.36 to 0.32; all p < 0.05) whilst arginine, histidine, ornithine, tryptophan and tyrosine were not 

correlated with any LA function. 
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Figure 2. Correlation matrix heatmap. Heat map of correlations between amino acids and outcomes 

individually. The correlations increased from purple to red.  Significant correlations are coloured while 

non-significant correlations are colourless. 

 

 

Table 3 shows multivariate analysis between individual amino acids and corresponding left atrial functions, 

adjusting for prior clinical covariates. Higher serine was significantly associated with higher reservoir strain 

(β = 10.1; 95% CI 2.0, 18.2; p = 0.015), reservoir strain rate (β = 0.5; 95% CI 0.04, 1.0; p = 0.033) and 

booster strain rate (β = −0.9; 95% CI −1.7, −0.2; p = 0.016). Higher citrulline was associated with lower 

reservoir strain (β = −4.0; 95% CI −7.2, −0.7; p = 0.016), booster strain (β = −3.4; 95% CI −5.5, −1.2; p = 



 
 

48 
 

0.002) and booster strain rate (β = 0.4; 95% CI 0.1, 0.7; p = 0.019). Higher valine was associated with lower 

ratio of conduit strain rate to booster strain rate (β = −0.4; 95% CI −0.7, −0.02; p = 0.039).  

Amino acids LV function Coeff (95% CI) P-value 

Ala Ɛa 0.2 (-4.3, 4.7) 0.93 

 SRs 0.1 (-0.3, 0.5) 0.57 

 SRe/SRa -0.3 (-0.7, 0.04) 0.081 

Arg - - - 

Asp - - - 

Cit Ɛs -4.0 (-7.2, -0.7) 0.016 

 Ɛa -3.4 (-5.5, -1.2) 0.002 

 SRa 0.4 (0.1, 0.7) 0.019 

Glu - - - 

Gly Ɛs 1.5 (-5.5, 8.6) 0.67 

 Ɛa 2.1 (-2.3, 6.6) 0.35 

 SRa -0.1 (-0.8, 0.6) 0.76 

His - - - 

IleLeu SRa 0.1 (-0.5, 0.8) -0.68 

    

Met Ɛa 0.7 (-2.1, 3.5) 0.63 

 SRa -0.1 (-0.5, 0.4) 0.78 

Orn - - - 

Phe Ɛs 5.1 (-1.8, 12.0) 0.14 

 Ɛa 3.8 (-0.9, 8.6) 0.11 

 SRa -0.6 (-1.3, 0.2) 0.13 

Pro Ɛs 0.2 (-5.7, 6.1) 0.95 

 Ɛa 0.1 (-3.9, 4.2) 0.95 

 SRs 0.2 (-0.1, 0.6) 0.20 

 SRa -0.2 (-0.8, 0.4) 0.56 

Ser Ɛs 10.1 (2.0, 18.2) 0.015 

 Ɛa 4.5 (-0.8, 9.8) 0.098 

 SRs 0.5 (0.04, 1.0) 0.033 

 SRa -0.9 (-1.7, -0.2) 0.016 

Trp - - - 

Tyr - - - 

Val SRe/SRa -0.4 (-0.7, -0.02) 0.039 

 

Table 3. Multivariable model for association between individual amino acids and left atrial function. (1) 

The association of amino acids with LA function was first assessed using simple linear regression, 

individually. (2) For each amino acids with p<0.05 in univariate analysis, multivariate linear regression 

was further conducted adjusting for clinical confounders. (3) Finally multivariate linear regression was 

conducted including all amino acids that show an association with p<0.05 in the multivariable analysis 

(2). 
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After adjustments for significant clinical covariates Factor 3 (medium and long-chain dicarboxyl/hydroxyl 

acyl-carnitines) was only associated with reservoir strain (εs) (β = −0.6, p = 0.038) (Supplementary Table 

S5). 

 Ɛs Ɛe Ɛa SRs SRe SRa SRe/SRa 

Factor 1 0.3 (-0.2, 0.8)  0.3 (-0.1, 

0.6) 

0.1 (-0.3, 

0.4) 

0.02 (-0.01, 

0.05) 

-0.03 (-0.1, 

0.02) 

-0.01 (-0.1, 

0.04) 

0.01 (-0.03, 

0.04) 

Factor 2 -0.1 (-0.8, 

0.6) 

-0.2 (-0.6, 

0.3) 

-0.03 (-0.5, 

0.4) 

0.003 (-0.04, 

0.05) 

0.03 (-0.03, 

0.1) 

0.02 (-0.05, 

0.1) 

0.01 (-0.04, 

0.1) 

Factor 3 -0.8 (-1.4, -

0.2) 

-0.5 (-0.9, -

0.1) 

-0.3 (-0.7, 

0.04) 

-0.04 (-0.1, -

0.01) 

0.1 (0.01, 

0.1) 

0.1 (0.002, 

0.1) 

0.01 (-0.03, 

0.1) 

Factor 4 -0.1 (-0.7, 

0.6) 

-0.1 (-0.5, 

0.4) 

-0.1 (-0.5, 

0.3) 

0.004 (-0.04, 

0.04) 

0.01 (-0.05, 

0.1) 

0.01 (-0.05, 

0.1) 

0.002 (-

0.04, 0.05) 

Factor 5 -0.2 (-0.8, 

0.4) 

-0.3 (-0.7, 

0.1) 

0.1 (-0.2, 

0.5) 

0.003 (-0.03, 

0.04) 

0.04 (-0.01, 

0.1) 

-0.02 (-0.1, 

0.03) 

-0.03 (-0.1, 

0.01) 

Factor 6 -0.3 (-1.1, 

0.6) 

-0.2 (-0.8, 

0.4) 

-0.02 (-0.6, 

0.5) 

-0.03 (-0.08, 

0.02) 

0.03 (-0.05, 

0.1) 

-0.002 (-0.1, 

0.1) 

-0.002 (-

0.1, 0.1) 

Factor 7 0.3 (-0.5, 1.0) -0.1 (-0.6, 

0.4) 

0.3 (-0.2, 

0.8) 

0.02 (-0.03, 

0.07) 

0.02 (-0.05, 

0.1) 

-0.05 (-0.1, 

0.02) 

-0.02 (-0.1, 

0.03) 

Factor 8 0.5 (-0.7, 1.7) 0.1 (-0.7, 

0.9) 

0.2 (-0.6, 

0.9) 

0.02 (-0.05, 

0.1) 

-0.03 (-0.1, 

0.1) 

-0.01 (-0.1, 

0.1) 

0.002 (-0.1, 

0.1) 

Factor 9 -0.03 (-1.1, 

1.2) 

0.7 (-0.1, 

1.5) 

-0.5 (-1.3, 

0.2) 

0.02 (-0.1, 

0.1) 

-0.1 (-0.2, 

0.03) 

0.1 (-0.03, 

0.2) 

0.06 (-0.02, 

0.1) 

Factor 

10 

0.8 (-0.2, 1.8) 0.5 (-0.2, 

1.2) 

0.4 (-0.2, 

1.0) 

0.02 (-0.05, 

0.1) 

-0.1 (-0.1, 

0.02) 

-0.1 (-0.1, 

0.04) 

0.04 (-0.03, 

0.1) 

Supplementary table S5: Coefficient and 95% confidence generated using linear regression on 10 PCA 

formed using acylcarnitines with left atrial function . Bold indicates significance at the 5% level. 

 

Among the specific phases of left atrial function, serine was associated with reservoir function and booster 

strain rate, citrulline was associated with reservoir, booster and booster strain rate and valine was associated 

with ratio of conduit strain rate to booster strain rate. A combination of medium to long chain dicarboxyl 

acylcarnitines were associated with reservoir strain. Our findings are further strengthened by adjustments 

for clinical variables, known to influence these phases of left atrial function.  

 

Acyl-carnitines reflect upon mitochondrial fuel metabolism and changes in the pattern of individual acyl-

carnitine species may reflect both global alterations in mitochondrial function as well as specific changes 

in patterns of fuel use. Alteration in long-chain acyl carnitines have previously been detected in 
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symptomatic stroke46. The findings underscore important associations between mitochondrial pathways and 

cardiovascular disease.  

 

On the other hand, the dicarboxyl and hydroxyl acyl-carnitines are a specific class of acyl-carnitines 

generated via omega and alpha-oxidation. Changes in the dicarboxyl- and hydroxyl-carnitines thus may 

reflect alterations in pathways spanning the endoplasmic reticulum (ER)47, the peroxisome and 

mitochondria48, 49. Our study identifies a unique association between a combination of medium and long 

chain dicarboxyl carnitines and LA reservoir function. This finding highlights potential links between ER, 

peroxisomal and mitochondrial function and left atrial reservoir function. 

 

The patterns between left atrial function and circulating amino acids observed in our study are novel. Serine 

is a glucogenic amino acid which can also contribute to the biosynthesis of nucleotides as well as the 

ceramides, important signalling intermediates which have been linked to the development of cardiovascular 

disease50. Our novel data demonstrates an association between circulating levels of serine with left atrial 

function preceding clinically manifest atrial disease. This observation is in line with the emerging 

recognition of serine-related molecules in atrial-related function51-54. Our quantitative metabolomics 

approach suggests that circulating levels of serine are significantly associated with larger magnitude (i.e., 

beneficial) of left atrial reservoir strain and strain rate. Future studies may use circulating profiles of serine 

to further investigate associations from a phase of pre-disease, atrial remodelling to clinical atrial 

dysfunction and disease. 

 

Citrulline was associated with reservoir strain and booster strain rate. Citrulline contributes to the urea 

cycle, a mitochondrial-based pathway which has been reported to be involved in CVD55. Citrulline is a 

major component of the nitric oxide pathway, which may be important in atrial dysfunction56. We also 

found that valine was associated with ratio of conduit strain rate to booster strain rate. Valine is a branched-
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chain amino acid and changes in the branched-chain amino acids have been linked to cardiovascular 

disease57 and altered mitochondrial function58.  

 

Overall, our work highlights the potential importance of mitochondrial fuel metabolism changes in the 

pathogenesis of altered atrial function among older adults. 

 

I am the principal investigator of the study. My contribution to this work includes obtaining grant funding 

for this work, setting up the study protocol, recruitment of research participants, obtaining ethical approval, 

data analyses, manuscript writing and manuscript review. 
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PUBLICATION #2  

 

Gao F, Kovalik JP, Zhao X, Chow VJ, Chew H, Teo LL, Tan RS, Leng S, Ewe SH, Tan HC, Tan TY, 

Lee LS, Ching J, Keng BM, Zhong L, Koh WP and Koh AS.  

 

Exacerbation of cardiovascular ageing by diabetes mellitus and its associations with acyl-carnitines.  

Aging (Albany NY). 2021;13:14785-1480559. 

 

“Objective: To demonstrate differences in cardiovascular structure and function between diabetic and non-

diabetic older adults. To investigate associations between acyl-carnitines and cardiovascular function as 

indexed by imaging measurements. Methods: A community-based cohort of older adults without 

cardiovascular disease underwent current cardiovascular imaging and metabolomics acyl-carnitines 

profiling based on current and archived sera obtained fifteen years prior to examination. Results: A total 

of 933 participants (women 56%, n=521) with a mean age 63±13 years were studied. Old diabetics 

compared to old non-diabetics had lower myocardial relaxation (0.8±0.2 vs 0.9±0.3, p=0.0039); lower left 

atrial conduit strain (12±4.3 vs 14±4.1, p=0.045), lower left atrial conduit strain rate (-1.2±0.4 vs -1.3±0.5, 

p=0.042) and lower ratio of left atrial conduit strain to left atrial booster strain (0.5±0.2 vs 0.7±0.3, 

p=0.0029). Higher levels of archived short chain acyl-carnitine were associated with present-day 

impairments in myocardial relaxation (C5:1; OR 1.03, p=0.011), worse left atrial conduit strain function 

(C5:1; OR 1.03, p=0.037). Increases in hydroxylated acylcarnitines were associated with worse left atrial 

conduit strain [(C4-OH; OR 1.05, p=0.0017), (C16:2-OH; OR 1.18, p=0.037)]. Current, archived and 

changes in long chain acyl-carnitines were associated with cardiovascular functions [(C16; OR 1.02, 

p=0.002), (C20:3; OR 1.01, p=0.014), (C14:3; OR 1.12, p=0.033), (C18:1; OR 1.01, p=0.018), (C18:2; 

OR 1.01, p=0.028), (C20:4; OR 1.10, p=0.038)] (all p<0.05). Conclusion: Older diabetic adults had 

significant impairments in left ventricular myocardial relaxation and left atrial strain, compared to older 
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non-diabetic adults. Short chain and long chain, di-carboxyl and hydroxylated acyl-carnitines were 

associated with these cardiovascular functional differences.” 
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PUBLICATION #3 

Kovalik JP, Zhao X, Gao F, Leng S, Chow V, Chew H, Teo LLY, Tan RS, Ewe SH, Tan HC, Wee 

HN, Lee LS, Ching J, Keng BMH, Koh WP, Zhong L and Koh AS.  

 

Amino acid differences between diabetic older adults and non-diabetic older adults and their 

associations with cardiovascular function.  

J Mol Cell Cardiol. 2021;158:63-7160. 

 

 “Background: Ageing and insulin resistant states such as diabetes mellitus frequently coexist and increase 

the risk of cardiovascular disease development among older adults. Here we investigate metabolic 

differences in amino acid profiles between ageing and diabetes mellitus, and their associations with 

cardiovascular function. Methods: In a group of community older adults we performed echocardiography, 

cardiac magnetic resonance imaging as well as cross sectional and longitudinal metabolomics profiling 

based on current and archived sera obtained fifteen years prior to examination. Results: We studied a total 

of 515 participants (women 50%, n = 255) with a mean age 73 (SD = 4.3) years. Diabetics had higher 

alanine (562 vs 448, p < 0.0001), higher glutamate (107 vs 95, p = 0.016), higher proline (264 vs 231, p = 

0.008) and lower arginine (107 vs 117, p = 0.043), lower citrulline (30 vs 38, p = 0.006) levels (μM) 

compared to non-diabetics. Over time, changes in amino acid profiles differentiated diabetic older adults 

from non-diabetic older adults, with greater accumulation of alanine (p = 0.002), proline (p = 0.008) and 

(non-significant) trend towards greater accumulation of glycine (p = 0.057) among the older diabetics 

compared to the older non-diabetics. However, independent of diabetes status, amino acids were associated 

with cardiovascular functions in ageing, [archived valine (p = 0.011), leucine (p = 0.011), archived 

isoleucine (p = 0.0006), archived serine (p = 0.008), archived glycine (p = 0.006) methionine (p = 0.003)] 

which were associated with impairments in E/A ratio. Conclusion: Markers of branched chain amino acids 

and one -carbon metabolism pathways were associated with changes in cardiovascular function in older 

adults regardless of diabetes status. However, nitrogen handling pathways were specifically altered among 



 
 

76 
 

older adults with diabetes. These findings broaden our understanding into specific amino acid pathways 

that may be altered between diabetic and non-diabetic older adults, and their relevance to cardiovascular 

function in ageing.” 
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COMMENTARY (PUBLICATIONS #2 AND #3) 

 

Main findings of both publications #2 and #3: 

 

a) Metabolomics differentiated older adults with ageing and older adults with diabetes 

mellitus 

 

Both ageing and diabetes mellitus are risk factors that contribute to cardiovascular diseases in older adults. 

The sera of both ageing and diabetes exist in the same circulatory milieu but individual or superimposed 

effects of either are poorly characterised. Metabolomics, however, has the potential to map out joint or 

disparate metabolic pathways. This is supported by emerging studies that have used metabolomics to 

understand diabetes, insulin resistance and cardiovascular ageing46, 61-64. The clinical implication of ageing 

with or without diabetes is significant, as there may be differences in cardiovascular phenotype, and 

treatment. In older adults, age-associated decreases in left ventricular volumes, increases in left ventricular 

mass index and deteriorations in diastolic function frequently accompany heart failure in ageing65.   

 

Our work in these studies differentiated cardiovascular characteristics of older adults with and without 

diabetes. All participants were examined and interviewed on one study visit by trained study coordinators. 

Participants completed a standardised questionnaire that included medical history and coronary risk factors. 

Sinus rhythm status was ascertained by resting electrocardiogram. Clinical data were obtained on the same 

day as assessment of echocardiography and serum collection. Echocardiography was performed using 

ALOKA α10 with a 3.5 MHz probe. In each subject, standard echocardiography, which included 2-D, M-

mode, pulse Doppler and tissue Doppler imaging, was performed in the standard parasternal and apical 

(apical 4-chamber, apical 2-chamber and apical long) views, and three cardiac cycles were recorded. E/A 

ratio was computed as a ratio of peak velocity flow in early diastole E (m/s) to peak velocity flow in late 

diastole by atrial contraction A (m/s). Cine cardiac magnetic resonance (CMR) scans were performed using 
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balanced fast field echo sequence (BFFE). All subjects were imaged on a 3T magnetic resonance imaging 

system (Ingenia, Philips Healthcare, The Netherlands) with a dStream Torso coil (maximal number of 

channels 32). Dedicated Qstrain software (version 2.0, Medis) was used in deriving LV and RV longitudinal 

strain66. We developed an in-house semi-automatic algorithm to track the distance (L) between the left 

atrioventricular junction and a user-defined point at the mid posterior LA wall on standard CMR 2- and 4-

chamber views. 

 

There were non-diabetics (n=399) and diabetic (n=116) as shown in Table 2. Compared to the younger 

group, participants in the overall older group had larger left ventricular wall thickness, left ventricular mass, 

left atria size and volume, and poorer left diastolic function such as lower ratio of peak velocity flow in 

early diastole to peak velocity flow in late diastole. Left ventricular and left atria sizes and structures were 

similar in non-diabetic and diabetic subgroups. However, older adults with diabetes had lower E/A ratio 

(0.8±0.2 vs 0.9±0.3, p=0.0039). Lower left atrial functions were observed among older adults with diabetes 

compared to older adults without diabetes . Older adults with diabetes  had lower left atrial conduit strain 

(12±4.3% vs 14±4.1%, unadjusted p=0.045), lower LA conduit strain rate (-1.2±0.4 s-1 vs -1.3±0.5 s-1, 

unadjusted p=0.042) and lower ratio of LA conduit strain to LA booster strain (0.5±0.2 vs 0.7±0.3, adjusted 

p=0.0029). Pulmonary artery systolic pressure was higher among older adults without diabetes , compared 

to older adults with diabetes (28±7.0 vs 25±6.9 mmHg, p=0.001) (Table 2). 
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Echocardiography measurements 

Older adults 

without 

diabetes 

(n=399) 

Older 

adults with 

diabetes 

(n=116) 

Univariate  

p-value 

 

~Adjuste

d P-value  

Interventricular septum thickness at end diastole (IVSD) (cm) 0.80 (0.1) 0.81 (0.2) 0.52 - 

Interventricular septum thickness at end systole (IVSS) (cm) 1.3 (0.2) 1.2 (0.2) 0.76 - 

Left ventricular internal diameter end diastole (LVIDD) (cm) 4.4 (0.6) 4.3 (0.6) 0.12 - 

Left ventricular internal diameter end systole (LVIDS) (cm) 2.5 (0.5) 2.4 (0.5) 0.41 - 

Left ventricular posterior wall end diastole (LVPWD) (cm) 0.76 (0.1) 0.77 (0.1) 0.16 - 

Left ventricular posterior wall end systole (LVPWS) (cm) 1.4 (0.2) 1.5 (0.2) 0.28 - 

Left ventricular outflow tract (LVOT) (cm) 2.1 (0.2) 2.0 (0.2) 0.26 - 

Aortic diameter (AO) (cm) 3.0 (0.4) 3.1 (0.4) 0.084 - 

Left atrium (LA) (cm) 3.6 (0.6) 3.7 (0.6) 0.55 - 

Left ventricular ejection fraction (LVEF) (%) 74 (7.7) 73 (9.2) 0.11 - 

Left ventricular fractional shortening (LVFS) (%) 44 (7.4) 42 (7.8) 0.12 - 

Left ventricular mass (grams) 120 (49) 116 (40) 0.41 - 

Left ventricular mass index (grams/m2) 74 (27) 70 (22) 0.14 - 

Left atrial volume (ml) 35 (13) 36 (14) 0.45 - 

Left atrial volume index (ml/m2) 21 (7.7) 22 (8.2) 0.90 - 

Isovolumic relaxation time (IVRT) (ms) 103 (18) 103 (20) 0.98 - 

Peak velocity flow in early diastole E (MV E peak) (m/s) 0.71 (0.2) 0.70 (0.2) 0.51 - 

Peak velocity flow in late diastole by atrial contraction A 

(MV A peak) (m/s) 

0.81 (0.2) 0.87 (0.2) 0.005 0.15 

Ratio of MV E peak velocity: MV A peak velocity 0.91 (0.3) 0.82 (0.2) 0.003 0.039 

Mitral valve flow deceleration time (MV DT) (ms) 213 (40) 222 (42) 0.034 0.23 

Right atrial pressure (mmHg) 5.0 (1.3) 4.7 (1.7) 0.36 - 

Pulmonary artery systolic pressure (PASP) (mmHg) 28 (7.0) 25 (6.9) 0.005 0.001 

Peak systolic septal mitral annular velocity (Septal S′) (m/s) 0.078 (0.02) 0.077 (0.01) 0.38 - 

Peak early diastolic septal mitral annular velocity (Septal E’) 

(m/s) 

0.074 (0.02) 0.067 (0.02) 0.0003 0.021 

Septal mitral annular velocity during atrial contraction 

(Septal A’) (m/s) 

0.14 (0.6) 0.11 (0.02) 0.60 - 

Peak systolic lateral mitral annular velocity (m/s) 0.10 (0.03) 0.10 (0.03) 0.10 - 

Peak early diastolic lateral mitral annular velocity (m/s) 0.094 (0.02) 0.088 (0.02) 0.019 0.094 

Lateral mitral annular velocity during atrial contraction (m/s) 0.12 (0.03) 0.13 (0.02) 0.51 - 

Ratio of Peak velocity flow in early diastole E (MV E peak) 

velocity to Peak early diastolic septal mitral annular velocity 

(Septal E’) 

10 (3.3) 11 (3.1) 0.022 0.34 

     

CMR measurements (n=187) (n=51)   

LV global longitudinal strain (LVGLS) (%) -21 (2.9) -21 (2.9) 0.28 - 

LV global circumferential strain (LVGCS) (%) -22 (3.8) -23 (3.1) 0.21 - 

LV global radial strain (LVGRS) (%) 104 (25.1) 104 (19.5) 0.98 - 

Right ventricular global longitudinal strain (RVGLS) (%) -31 (5.4) -31 (5.5) 0.84 - 

LA reservoir strain (ɛs) (%) 31 (6.9) 31 (6.2) 0.98 - 

LA conduit strain (ɛe) (%) 14 (4.1) 12 (4.3) 0.045 0.28 

LA booster strain (ɛa) (%) 17 (4.7) 18 (3.9) 0.065 - 

Reservoir strain rate (SRs) (1/s) 1.5 (0.5) 1.5 (0.4) 0.92 - 

Conduit strain rate (SRe) (1/s) -1.3 (0.5) -1.2 (0.4) 0.042 0.30 
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Booster strain rate (SRa) (1/s) -2.2 (0.7) -2.3 (0.6) 0.19 - 

Ratio of SRe/SRa 0.66 (0.3) 0.55 (0.2) 0.006 0.029 

LAvolumemin (ml) 31 (12.6) 27 (10.1) 0.044 0.016 

LAvolumemax (ml) 64 (18) 57 (17) 0.017 0.006 

LA ejection fraction (%) 52 (8.9) 52 (7.2) 0.92 - 
 

Table 2: Cardiovascular characteristics of older adults without diabetes vs older adults with diabetes. ~ 

adjusted for female, BMI, CV rf>2 

 

 

Next, we investigated the association between acylcarnitines and cardiac function.  

 

Acylcarnitines are intermediates of fatty acids and branched-chain amino acid metabolism. Acylcarnitines 

are essential for beta-oxidation and energy  metabolism67. They act as carriers to transport long chain fatty 

acids into mitochondria for beta-oxidation to provide energy for cellular metabolism68. Reductions in 

mitochondrial bioenergetics is an important hallmark of ageing69. Therefore, abnormal acylcarnitine levels 

are biomarkers of mitochondrial dysfunction which have been used to study age-related conditions such as 

frailty70 and Alzheimer’s disease71, in addition to type 2 diabetes mellitus72. Acylcarnitines may be 

biologically classified based on their subspecies after catabolic metabolism, consisting of very long chain 

(C≥24), long chain (C12-22), medium chain (C8-10), short chain (C2-6), or short chain di-carboxyl and 

hydroxylated species (-DC, -OH)73. 

 

Blood samples were collected simultaneously with cardiovascular imaging acquisition. After collection, 

the blood samples were immediately placed on ice for transportation and were processed within 6 hours to 

obtain serum samples. Serum metabolomic profiling analysis for acyl-carnitines was performed in a 

dedicated metabolomics facility. A pooled quality control (QC) sample was prepared by mixing equal 

amounts (10μl) of each extracted serum sample. For acyl-carnitines, serum samples (50μl) were spiked with 

10μl deuterium-labelled acyl-carnitine mixture and diluted with 400µl methanol. Data acquisition and 

analysis were performed on an Agilent MassHunter Workstation B.06.00 Software. 
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To identify acylcarnitines profiles and reduce the dimensionality of correlated metabolites, we performed 

sparse principal component analysis (SPCA) using a penalised matrix decomposition. In SPCA, we 

normalised the distributions of all metabolites by a logarithmic transformation. We assessed the component 

metabolites within the significant PCA factors, between diabetic and non-diabetic using student t-test. For 

those that show an association with p<0.05, we further performed multivariable linear regression adjusted 

for clinical covariates; female, body mass index and risk factors (dyslipidaemia, hypertension, smoking). 

To determine the association between serum metabolomic acyl-carnitine measures to cardiac function, 

univariate Cox regression was performed on baseline and change in metabolite levels. Further multivariate 

regression model was performed on metabolites that show an association with p<0.05 with cardiac function 

in univariate analysis adjusted for clinical covariates; female, body mass index body mass index, diabetes 

mellitus and risk factors (dyslipidaemia, hypertension, smoking). All statistical analyses were performed 

using STATA 15 (College Station, Texas, USA), while the SPCA were performed by R. For all analysis, a 

two-tailed P value of <0.05 was considered significant. 
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Factors Description 

 

Components Percentage  of 

variance 

accounted 

1 Medium and long-chain carnitines C8, C121, C12, C12OHC10DC, C142, C141, 

C14, C163, C162, C161, C181 

11 

2 Short- and medium- chain dicarboxyl/ 

hydroxyl carnitines 

C3, C4, C5, C4OH, C5OHC3DC, C4DCC6OH, 

C5DC, C81OHC61DC, C8OHC6DC, C102, 

C81DC, C8DC 

6.9 

3 long chain dicarboxyl/hydroxyl carnitines C122OHC102DC, C121OH, C142OH, C141OH, 

C183OHC163DC, C182OHC162DC, C201, 

C20, C202OHC182DC, C201OHC181DC, 

C20OHC18DC, C221 

6.8 

4 Long chain carnitines C16, C183, C182, C181, C18, C204, C203, 

C202, C201, C20, C202OHC182DC, C225, 

C224 

6.4 

5 Medium and long chain 

dicarboxyl/hydroxyl carnitines 

C4, C4OH, C8DC, C12OHC10DC, C141OH, 

C14OHC12DC, C163OHC143DC, C162OH, 

C161OHC141DC, C16OH, C181OHC161DC, 

C18OHC16DC, C203OHC183DC, 

C201OHC181DC 

7.7 

6 Wide spectrum carnitines including odd 

short chain carnitines 

C3, C4, C51, C5, C81OHC61DC, C102, C101, 

C12OHC10DC, C143, C14OHC12DC, 

C163OHC143DC, C161OHC141DC, C16OH, 

C183, C18, C181OHC161DC, C18OHC16DC, 

C204, C203OHC183DC, C201OHC181DC, 

C225, C222, C221 

3.1 

7 Wide spectrum carnitines including odd 

short chain carnitines 

C2, C4OH, C6, C81, C103, C102, C101, C10, 

C122, C122OHC102DC, C121OH, C143, C142, 

C14, C141OH, C162, C161, C16, C162OH, 

C182, C182OHC162DC, C18OHC16DC, C202, 

C20, C203OHC183DC, C225, C224, C222, C22 

4.3 

8 Wide spectrum carnitines including odd 

short chain carnitines 

C3, C4, C5, C4OH, C4DCC6OH, C5DC, 

C81OHC61DC, C8OHC6DC, C7DC, C8DC, 

C122, C122OHC102DC, C16OH, C183, 

C203OHC183DC, C202OHC182DC 

2.3 

9 Wide spectrum carnitines  C101, C81DC, C12OHC10DC, C141OH, 

C162OH, C16OH, C183, C183OHC163DC, 

C182OHC162DC, C18OHC16DC, C20, 

C203OHC183DC,  

C201OHC181DC, C20OHC18DC, C223, C221 

2.5 

10 Medium and long chain carnitines C102, C10, C12, C121OH, C143, C14, 

C143OHC123DC, C163, C16, C182, C18, C204, 

C203, C201, C20, C221, C22 

2.3 

Supplementary Table 2: Factors identified by sparse principal component analysis and the associated 

individual components, description and variance. 
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Based on adjusted linear regression analyses, long chain acylcarnitines (Factor 4), short chain acyl-

carnitines as well as di-carboxyl and hydroxylated acyl-carnitines (Factor 5 and 6) differentiated older 

adults without diabetes from older adults with diabetes. For long chain acylcarnitine subspecies, participants 

with diabetes had lower C18:2 (58.4 vs 67.4, p=0.020), C20:4 (4.2 vs 4.9, p=0.013), C20:3 (4.3 vs 5.3, 

p=0.002) and C20:2 (3.9 vs 4.4, p=0.037)], compared to participants without diabetes. In terms of short 

chain acyl-carnitines and di-carboxyl and hydroxylated acyl-carnitines, the participants with diabetes had 

higher C4-OH (25.1 vs 13.0, p<0.0001), C14-OH/C12-DC and C18-OHC/16-DC (6.2 vs 4.5, p=0.020)] 

compared to participants without diabetes. 

Acyl-carnitines  Non-Diabetic 

(n=154) 

Diabetic 

(n=53) 

p-value  

 

Adjusted Coef. 

(95% CI)* 

Adjusted P-value* 

PCA factors      

X1 0.05 (2.7) -0.1 (2.7) 0.68 - - 

X2 0.06 (2.0) -0.2 (2.6) 0.48 - - 

X3 -0.04 (2.2) 0.1 (1.8) 0.61 - - 

X4 -0.2 (2.1) 0.7 (1.9) 0.0080 1.0 (0.3, 1.7) 0.008 

X5 -0.4 (2.0) 1.1 (2.6) <0.0001 1.3 (0.6, 2.0) <0.0001 

X6 0.2 (1.1) -0.5 (2.2) 0.004 -0.6 (-1.1, -0.2) 0.009 

X7 -0.04 (1.7) 0.1 (1.9) 0.60 - - 

X8 -0.01 (1.2) 0.04 (1.3) 0.77 - - 

X9 0.08 (1.4) -0.2 (1.2) 0.17 - - 

X10 0.03 (1.4) -0.1 (1.4) 0.58 - - 

      

Short chain      

C3 543 (180) 553 (201) 0.71 - - 

C4 338 (144) 345 (174) 0.77 - - 

C4-OH 13.0 (8.0) 25.1 (16.8) <0.0001 11.0 (7.5, 14.4) <0.0001 

C5 95.9 (36.0) 96.5 (39.8) 0.91 - - 

C5:1 15.8 (5.4) 16.5 (7.3) 0.47 - - 

      

Medium chain      

C10:1 85.3 (55.8) 86.0 (79.4) 0.95 - - 

C10:2 13.1 (9.4) 15.1 (11.1) 0.24 - - 

C12-OH/C10-DC 2.1 (1.1) 2.5 (1.2) 0.012 0.3 (-0.06, 0.7) 0.10 

C8:1-OH/C6:1-DC 27.8 (14.1) 28.4 (16.2) 0.81 - - 

C8-DC 23.3 (13.4) 26.6 (13.2) 0.12 - - 

    - - 

Long chain      

C14:1-OH 10.6 (6.0) 11.7 (4.6) 0.22 - - 

C14:3 4.4 (2.6) 4.2 (2.5) 0.61 - - 

C14-OH/C12-DC 5.9 (3.0) 8.5 (4.6) <0.0001 2.1 (1.0, 3.2) <0.0001 

C16 106 (26.0) 102 (29.3) 0.31 - - 
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C16:1-OH/C14:1-DC 4.8 (1.9) 5.4 (2.4) 0.055 - - 

C16:2-OH 4.3 (1.8) 4.9 (2.0) 0.040 0.4 (-0.2, 1.0) 0.17 

C16:3-OH/C14:3-DC 1.3 (0.9) 1.4 (0.9) 0.36 - - 

C16-OH 5.5 (2.7) 7.3 (3.4) 0.0001 1.6 (0.6, 2.5) 0.001 

C18 38.7 (9.8) 37.3 (8.5) 0.37 - - 

C18:1 116 (33.6) 109 (28.0) 0.15 - - 

C18:1-OH/C16:1-DC 3.8 (1.9) 4.9 (2.9) 0.0007 0.9 (0.1, 1.6) 0.019 

C18:2 67.4 (20.3) 58.4 (16.2) 0.004 -7.7 (-14.2, -1.2) 0.020 

C18:3 5.2 (2.1) 4.6 (2.4) 0.13 - - 

C18-OH/C16-DC 4.5 (3.2) 6.2 (3.1) 0.012 1.3 (0.2, 2.3) 0.020 

C20 5.3 (1.8) 5.0 (1.3) 0.36 - - 

C20:1 6.9 (2.5) 6.7 (2.2) 0.49 - - 

C20:1-OH/C18:1-DC 7.2 (4.1) 8.0 (3.5) 0.23 - - 

C20:2 4.4 (1.5) 3.9 (1.2) 0.033 -0.5 (-1.0, -0.03) 0.037 

C20:2-OH/C18:2-DC 2.2 (1.3) 2.0 (1.0) 0.37 - - 

C20:3 5.3 (2.4) 4.3 (1.7) 0.005 -1.2 (-1.9, -0.5) 0.002 

C20:3-OH/C18:3-DC 1.2 (0.7) 1.3 (0.8) 0.20 - - 

C20:4 4.9 (2.0) 4.2 (1.7) 0.035 -0.8 (-1.5, -0.2) 0.013 

C22:1 3.1 (2.0) 2.8 (1.6) 0.54 - - 

C22:2 0.8 (1.2) 0.7 (0.4) 0.45 - - 

C22:4 1.1 (0.7) 1.1 (0.6) 0.80 - - 

C22:5 1.8 (0.8) 1.6 (0.9) 0.16 - - 

Table 3: Acyl-carnitine Factors and significant components: Comparisons between older adults 

without diabetes vs older adults with diabetes. *Adjusted for female, BMI, CV rf>2 

 

We next examined the relationship between current serum acyl-carnitine profiles and CV structure and 

function in older study subjects. Higher di-carboxyl acyl-carnitines were associated with higher risks of 

impairments in E/A ratio (C12-OH/C10-DC, p=0.018); C18-OH/C16-DC, p=0.038). Similarly, higher di-

carboxyl acyl-carnitines were also associated with worse LA conduit strain function (C12-OH/C10-DC, 

p=0.008); C14-OH/C12-DC, p=0.025); C16:3-OH/C14:3-DC, p=0.018). The short-chain acyl-carnitines 

and hydroxylated acyl-carnitines were associated with worse LA conduit strain function (C4-OH, 

p=0.0024); C5, p=0.024). Higher long chain acyl-carnitines were associated with higher risks of 

impairments in E/A ratio (C16, p=0.002); C18:1, p=0.046). (Table 4).  

 

Longitudinal associations between baseline acylcarnitines, delta change in acylcarnitine levels, and cardiac 

function were further analysed. Higher levels of baseline long chain acylcarnitines were associated with 

impairments in left ventricular relaxation (C20:3, p=0.014) (Figure 1A). Delta increases in long chain 
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acylcarnitine were also associated with worse left atrial conduit strain function (C14:3, p=0.033); C18:1, 

p=0.018); C18:2, p=0.028); C18:3, p=0.019); C20:4, p=0.038); C22:5, p=0.043) (Figure 1D). Higher levels 

of baseline short chain acylcarnitine were associated with larger hazards impairments in left ventricular 

relaxation (C5:1, p=0.011) as well as with worse left atrial conduit strain function (C5:1, p=0.037) (Figure 

1A). Higher levels of di-carboxylated acyl-carnitines were associated with worse LA conduit strain function 

(C16:3-OH/C14:3-DC, p=0.019) (Figure 1C). Increases in hydroxylated acyl-carnitines were also 

associated with worse LA conduit strain function (C4-OH, p=0.017); C16:2-OH, p=0.037) (Figure 1D). 

 

 

Figure 1: Acyl-carnitines and cardiovascular function 

1a) Archived Acyl-carnitine and impaired myocardial relaxation 

Blue circles and lines represent unadjusted hazard ratios (HR) for one-unit increase in archived acyl-

carnitine and its 95% confidence interval (95%CI) on impaired myocardial relaxation.   
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1b) Change in Acyl-carnitine and impaired myocardial relaxation 

Blue circles and lines represent unadjusted odds ratios (OR) for one-unit increase in archived acyl-

carnitine and its 95% confidence interval (95%CI) on impaired myocardial relaxation.   

 

1c) Archived Acyl-carnitine and impaired left atrial conduit strain 

Blue circles and lines represent unadjusted hazard ratios (HR) for one-unit increase in archived 

acylcarnitine and its 95% confidence interval (95%CI) on impaired myocardial relaxation.   
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1d) Change in Acyl-carnitine and impaired left atrial conduit strain 

Blue circles and lines represent unadjusted odds ratios (OR) for one-unit increase in archived acyl-

carnitine and its 95% confidence interval (95%CI) on impaired myocardial relaxation.   

 

Amino acids 

Biologically, the heart is a muscular organ with unique amino acid requirements such that interactions 

between pathways such as branched chain amino acids, one-carbon and nitrogen disposal pathways may be 

relevant to both ageing- and diabetes mellitus- related cardiovascular dysfunction. We hypothesised that 

amino acid profiles would further unravel metabolic signatures of ageing-related cardiovascular 

dysfunction. 

 

Thawed serum samples (50 μl) were spiked with 10 μl deuterium-labelled amino acid mixture and diluted 

with 400 μl methanol. After centrifugation of the mixture at 17,000g for 5 mins at 4 ◦C, the supernatant 

fraction was collected (10 μl) for amino acid analysis. A pooled quality control (QC) sample was prepared 

by mixing equal amounts (10 μl) of each extracted serum sample. Extraction and measurement of amino 

acid panels (quantified in units of μM) were performed. The methanol extracts were derivatised with 3 M 
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Hydrochloric acid in butanol (Sigma Aldrich, USA) for amino acid analysis and diluted in water for analysis 

in LC-MS. For amino acid analysis, a C18 column (Phenomenex, 100 × 2.1 mm, 1.6 μm, Luna® Omega) 

on an Agilent 1290 Infinity LC system (AgilentTechnologies, CA, USA) coupled with quadrupole-ion trap 

mass spectrometer (QTRAP 5500, AB Sciex, DC, USA) were used. Mobile phase A (Water) and Mobile 

phase B (Acetonitrile) both containing 0.1% Formic acid were used for chromatography separation. The 

LC run was performed at a flow rate of 0.4 mL/min with initial gradient of 2% B for 0.8 min, then increased 

to 15% B in 0.1 min, 20% B in 5.7 min, 50% B in 0.5 min, 70% B in 0.5 min, followed by re-equilibration 

of the column to the initial run condition (2% B) for 0.9 min. All compounds were ionised in positive mode 

using electrospray ionization. The chromatograms were integrated using MultiQuant™ 3.0.3 software (AB 

Sciex, DC, USA). 

 

Based on adjusted linear regression,  alanine, arginine, citrulline, glutamate and proline differentiated older 

participants without diabetes. In the presence of ageing, alanine, glutamate, proline were lower while 

arginine and citrulline were higher, compared to older adults with diabetes (Table 2). 

Amino acids 

(µM) 

Non-DM (n=154) DM (n=53) p-value  

 

Adjusted Coef. 

(95%CI)* 

Adjusted P 

value* 

Alanine 448 (111) 562 (145) <0.0001 107 (66.6, 148) <0.0001 

Arginine 117 (29.6) 107 (27.3) 0.034 -10.0 (-19.7, -0.3) 0.043 

Aspartate 21.3 (6.1) 21.8 (6.3) 0.57 - - 

Citrulline 38.2 (12.5) 30.3 (21.3) 0.001 -7.2 (-12.3, -2.0) 0.006 

Glutamate 95.1 (22.7) 107 (27.3) 0.002 9.4 (1.8-17.0) 0.016 

Glycine 227 (55.4) 235 (49.9) 0.36 - - 

Histidine 79.7 (22.1) 78.8 (15.5) 0.79 - - 

Leucine 120 (36.7) 135 (43.8) 0.14 - - 

Ileleucine 121 (55.9) 120 (49.6) 0.93 - - 

Methionine 26.0 (9.2) 26.0 (10.4) 0.98 - - 

Ornithine 93.2 (39.4) 80.1 (20.8) 0.022 -10.2 (-22.2, 1.7) 0.093 

Phenylalanine 77.9 (17.2) 74.5 (12.9) 0.19 - - 

Proline 231 (56.9) 264 (97.3) 0.003 31.6 (8.2, 55.0) 0.008 

Serine 119 (25.3) 119 (25.5) 0.93 - - 

Tryptophan 54.8 (14.2) 50.2 (14.0) 0.039 -4.0 (-8.7, 0.8) 0.10 

Tyrosine 72.5 (21.2) 67.4 (20.7) 0.14 - - 

Valine 247 (61.8) 248 (61.2) 0.97 - - 

Table 2: Amino acids: Comparisons between Older adults without diabetes vs Older adults with 

diabetes (Current sample). *Adjusted for female, BMI, CV rf>2 
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Computing the metabolites’ longitudinal change over 15-year period (Fig. 1) further differentiated older 

adults without diabetes with older adults with diabetes. Over time, there was lower accumulation of alanine 

(OR 1.004, 95%CI 1.002–1.007, p = 0.002), proline (OR 1.01, 95%CI 1.002–1.01, p = 0.008) and (non-

significant) trend towards lower accumulation of glycine (OR 1.0, 95%CI 0.9998–1.01, p = 0.057) among 

the older adults without diabetes compared to the older adults with diabetes. Increases in citrulline levels 

were more pronounced among the older adults without diabetes compared to the older adults with diabetes 

(OR 0.96, 95%CI 0.9–0.99, p = 0.005). Future interaction analyses that study changes in metabolites with 

time between the groups would strengthen these observations. 

  

 

Figure 1: Longitudinal trends in amino acid profiles differentiated diabetic older adults with or without 

diabetes.  
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We next examined if these amino acid differences between older diabetics and older non-diabetics were 

associated with their CV differences.  

 

Lower current levels of arginine were associated with impairments in E/A ratio (HR 0.98, 95%CI 0.97–

0.99, p = 0.002) (Table 3). Higher levels of alanine (HR 1.003, 95%CI 1.001–1.004, p = 0.001) and higher 

levels of glycine (HR 1.004, 95%CI 1.001–1.006, p = 0.006) were associated with higher risks of 

impairments in E/A ratio (Table 4).  

 

Importantly, we found a range of amino acids that were found to be associated with CV functions present 

in older adults, independent of diabetes status. Longitudinal increases in valine (OR 1.0, 95%CI 0.99–1.0, 

p = 0.021) over time (Table 3) and higher levels of valine (HR 1.004, 95%CI 1.001–1.007, p = 0.011) 

(Table 4) were associated with impairments in E/A ratio. We observed similar associations in other 

members of the branched chain amino acids, such as leucine and isoleucine. Higher levels of leucine (HR 

1.01, 95%CI 1.002–1.02, p = 0.011) and isoleucine (HR 1.01, 95%CI 1.003–1.02, p = 0.0006) were 

associated with impairments in E/A ratio (Table 4). Higher levels of serine (HR 1.008, 95%CI 1.002–1.01, 

p = 0.008) and glycine (HR 1.004, 95%CI 1.001–1.006, p = 0.006) were associated with impairments in 

E/A ratio (Table 4). For methionine, lower levels of methionine (OR 0.97, 95%CI 0.94–1.0, p = 0.039) 

(Table 3) were associated with impairments with E/A ratio. Higher levels of phenylalanine (HR 1.01, 

95%CI 1.002–1.02, p = 0.015), tryptophan (HR 1.02, 95%CI 1.003–1.03, p = 0.016), and tyrosine (HR 

1.02, 95%CI 1.01–1.03, p < 0.0001) were associated with higher risks of impairments in E/A ratio in old 

age (Table 4).  
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Table 3: Association between current metabolites and CV function 

i) Outcome: E/A<=0.9 

Current 

metabolites 

Events/total OR (95% CI) p-value Adjusted OR 

(95%)* 

Adjusted p-

value* 

Alanine 142/207 1.002 (0.999, 1.004) 0.17 - - 

Arginine 142/207 0.98 (0.97, 0.99) 0.001 0.98 (0.97, 0.99) 0.002 

Aspartate 142/207 0.95 (0.90, 0.99) 0.024 0.94 (0.90, 0.99) 0.020 

Citrulline 142/207 0.98 (0.97, 1.003) 0.10 - - 

Glutamate 142/207 1.005 (0.99, 1.02) 0.39 - - 

Glycine 142/207 0.995 (0.99, 1.00003) 0.051 - - 

Histidine 142/207 0.996 (0.98, 1.01) 0.56 - - 

Leucine 53/82 0.99 (0.98, 1.002) 0.11 - - 

Ileleucine 142/207 0.998 (0.99, 1.004) 0.55 - - 

Methionine 142/207 0.97 (0.94, 0.997) 0.034 0.97 (0.94, 

0.998) 

0.039 

Ornithine 142/207 0.999 (0.99, 1.01) 0.90 - - 

Phenylalanine 142/207 0.99 (0.97, 1.01) 0.37 - - 

Proline 142/207 1.001 (0.997, 1.01) 0.50 - - 

Serine 142/207 0.998 (0.99, 1.01) 0.80 - - 

Tryptophan 142/207 0.98 (0.96, 1.001) 0.059 - - 

Tyrosine 142/207 0.99 (0.98, 1.01) 0.46 - - 

Valine 142/207 0.99 (0.99, 0.9998) 0.043 0.99 (0.99, 

0.9995) 

0.032 

*Adjusted for diabetes mellitus, female, BMI, CV rf>2 

 

Table 4: Association between archived metabolites and CV function 

i) Outcome: E/A<=0.9 

Archived 

metabolites 

Events/total HR (95% CI) p-value Adjusted  

HR (95%)* 

Adjusted p-

value* 

Alanine 124/180 1.002 (1.001, 

1.003) 

0.003 1.003 (1.001, 1.004) 0.001 

Arginine 94/140 1.0001 (0.99, 1.01) 0.98 - - 

Aspartate 124/180 1.03 (1.02, 1.05) <0.0001 1.04 (1.02, 1.05) <0.0001 

Citrulline 124/180 0.998 (0.98, 1.01) 0.77 - - 

Glutamate 124/180 1.004 (0.9995, 

1.01) 

0.078 - - 

Glycine 124/180 1.003 (1.0001, 

1.01) 

0.041 1.004 (1.001, 1.01) 0.006 

Histidine 124/180 1.002 (0.99, 1.01) 0.79 - - 

Leucine 40/61 1.01 (1.002, 1.02) 0.010 1.01 (1.002, 1.02) 0.011 

Ileleucine 124/180 1.01 (1.004, 1.02) 0.003 1.01 (1.003, 1.02) 0.006 

Methionine 124/180 1.04 (1.01, 1.06) 0.004 1.04 (1.01, 1.07) 0.003 

Ornithine 124/180 1.001 (0.997, 1.01) 0.58 - - 
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Phenylalanine 124/180 1.01 (1.002, 1.02) 0.013 1.01 (1.002, 1.02) 0.015 

Proline 124/180 1.002 (0.999, 1.01) 0.15 - - 

Serine 124/180 1.006 (1.001, 1.01) 0.024 1.008 (1.002, 1.01) 0.008 

Tryptophan 124/180 1.01 (1.001, 1.03) 0.028 1.02 (1.003, 1.03) 0.016 

Tyrosine 124/180 1.01 (1.005, 1.02) 0.002 1.02 (1.01, 1.03) <0.0001 

Valine 124/180 1.004 (1.001, 1.01) 0.005 1.004 (1.001, 1.01) 0.011 

*Adjusted for diabetes mellitus, female, BMI, CV rf>2 
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b) Specific metabolic pathway of relevance to cardiovascular ageing 

 

Distinct alterations in fuel oxidation pathways in short chain and long chain acyl-carnitines, di-carboxyl 

and hydroxylated acyl-carnitines 

 

For the first time, we report links between fuel oxidation pathways in older adults to changes in their 

cardiovascular function with ageing. Higher levels of long chain acylcarnitines were associated with 

impairments in myocardial relaxation and worse left atrial function, likely reflecting early disturbances in 

diastolic function.  

 

For years, long chain acylcarnitines have been linked across the clinical spectrum of heart failure, from 

heart failure with reduced ejection fraction (HFrEF), to heart failure with preserved ejection fraction 

(HFpEF), to non-heart failure (HF) controls: long chain acyl-carnitine levels have been observed to be 

greater in  HFrEF than HFpEF, both of which were greater than non-HF controls74.  

 

Our observations now directly link long chain acyl-carnitines to imaging markers of diastolic function, a 

pathophysiological disturbance that predominates across the clinical heart failure spectrum. In addition, 

levels of long chain acyl-carnitines obtained at baseline and also longitudinally, were associated with these 

cardiovascular functions. We further observed that interval increase in long chain acyl-carnitines predicted 

abnormalities in myocardial relaxation and left atrial conduit strain. 

 

The short chain, hydroxylated- and dicarboxyl- acyl-carnitines are fuel intermediates which are generated 

by the process of alpha- and omega oxidation75, 76. Short chain, hydroxylated- and dicarboxyl- acyl-

carnitines were specifically higher among older adults with diabetes, highlighting the importance of fuel 

oxidation pathways in the pathogenesis of diabetes, a connection which has been well described77. These 
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pathways may also represent important treatment targets to ameliorate impact of diabetes on cardiovascular 

outcomes in older adults.  

 

Amino acids correlate to specific metabolic pathways: one-carbon pathways and nitrogen handling 

pathways 

 

Serine, glycine and methionine contribute towards many distinct pathways but may be mapped to one-

carbon metabolism (Fig. 2). Serine is a non-essential amino acid that is produced by the serine biosynthesis 

pathway, from a branch of glycolysis that can be converted into glycine, providing carbon units for one-

carbon metabolism. Recent observations have linked deficiencies in the one-carbon metabolic pathway to 

heart failure in both animal models and in human patients78-80. Our data reveals a correlation between these 

metabolites involved in one-carbon pathway and ageing heart functions among a sample of community-

based participants. Our work concurs with another cohort of older women and men which had also observed 

long term changes in serine as an ageing-associated metabolite that is independent from chronological age81. 

 

In contrast, older adults with diabetes had increased levels of alanine, glutamine, proline with decreased 

levels of arginine and citrulline. These amino acids are involved in nitrogen handling pathways. These 

amino acids contribute to body nitrogen handling via inter-tissue nitrogen transfer (alanine) or urea cycle 

(arginine) (Fig. 2) and have been implicated in HFpEF 74, 82. Other studies of heart failure have found 

associations with nitrogen pathways83, 84. Finally, a longitudinal study of normal ageing has shown arginine 

and ornithine declining in subjects as they age74. These findings point to a potential role for changes in 

nitrogen handling in the pathogenesis of heart failure in older subjects, among diabetics. 
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Figure 2. Overview of nitrogen handling and one carbon metabolism pathways. Nitrogen handling: 

Nitrogen is funnelled into glutamine via transamination reactions involving various amino acids, the 

glucose-alanine cycle and catabolism of amino acids such as proline and histidine. Glutamine and 

aspartate contribute nitrogen to the urea cycle. One carbon metabolism: Folic acid accepts one carbon 

groups from various sources. One carbon groups are transferred from folic acid to purine, serine and 

vitamin B12. Vitamin B12 transfers methyl groups to homocysteine to ‘re-charge’ methionine. S-

adenosylmethionine transfers methyl groups to various targets including DNA, choline the methylamines 

(i.e. betaine, sarcosine), creatine and epinephrine.  

 

 

Overall, we observe associations between the various amino acids levels with measurements of 

cardiovascular function associated with left ventricular relaxation. These left ventricle defects in ageing 

may represent upstream changes that precede clinical heart failure in older adults. 

 

I am the principal investigator of the study. My contribution to publications #2 and #3 includes obtaining 

grant funding for this work, setting up the study protocol, recruitment of research participants, obtaining 

ethical approval, data analyses, and manuscript review. 
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Research Question #2: 

Would metabolomics biomarkers identified in (1) differentiate 

between physical activity levels, i.e., high versus low physical activity 

practices, among older adults with cardiovascular ageing? 
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PUBLICATION #4 

 

Koh AS, Gao F, Tan RS, Zhong L, Leng S, Zhao X, Fridianto KT, Ching J, Lee SY, Keng BMH, Yeo 

TJ, Tan SY, Tan HC, Lim CT, Koh WP and Kovalik JP.  

 

Metabolomic correlates of aerobic capacity among elderly adults. Clin Cardiol. 2018;41:1300-130785. 

 

“Background: Aerobic capacity is a powerful predictor of cardiovascular disease and all-cause mortality, 

and it declines with advancing age. Hypothesis: Since physical activity alters body metabolism, metabolism 

markers will likely differ between subjects with high vs low aerobic capacities. 

Methods: Community-based participants without physician-diagnosed heart disease, stroke or cancer 

underwent same-day multimodal assessment of cardiovascular function (by echocardiography and 

magnetic resonance feature tracking of left atrium) and aerobic capacity by peak oxygen uptake (VO2) 

metrics. Associations between VO2 and cardiovascular and metabolomics profiles were studied in adjusted 

models including standard covariates. Results: We studied 141 participants, of whom 82 (58.2%) had low 

VO2, while 59 (41.8%) had high VO2. Compared to participants with high VO2, participants with low VO2 

had more adverse cardiovascular parameters, such as lower ratio of peak velocity flow in early diastole to 

peak velocity flow in late diastole by atrial contraction of >0.8 (76% vs 35%, adjusted odd ratio [OR] = 

4.1, 95% confidence interval [CI] [1.7-9.5], P = 0.001) and lower left atrial conduit strain (11.3±4.0 vs 

15.6±6.1%, adjusted OR = 1.1, 95% CI [1.002-1.3], P = 0.045). High VO2 was associated with lower 

accumulation of wide-spectrum acyl-carnitines (OR = 0.6, 95% CI [0.4-0.9], P = 0.013), alanine (OR = 

0.1, 95% CI [0.01-0.9], P = 0.044) and glutamine /glutamate (OR = 0.1, 95% CI [0.01-0.5], P = 0.007), 

compared to low VO2. Conclusion: Elderly adults with low VO2 have adverse cardiovascular and 

metabolic parameters compared to their counterparts with high VO2. Combined cardiac and metabolomics 

phenotyping may be a promising tool to provide insights into physiological states, useful for tracking future 

interventions related to physical activity among community cohorts.” 
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COMMENTARY 

 

Main findings of this study: 

a) Low physical activity was associated with deleterious changes in cardiovascular structure and 

function 

b) Metabolomics differentiated older adults with high versus low physical activity capacities 

c) Wide-spectrum acylcarnitines and several amino acids produced a convergent signal of 

impairments in cardiovascular structure associated with low physical activity capacity 

 

This study was designed to characterise the metabolic profile of older adults at different levels of physical 

activity capacities, studied in relation to their cardiovascular profiles obtained by detailed cardiovascular 

assessment. 

 

Community-based older adults without physician-diagnosed heart disease, stroke or cancer underwent 

same-day multimodal assessment of cardiovascular function (by echocardiography and magnetic resonance 

feature tracking of left atrium) and aerobic capacity by peak oxygen uptake (VO2) metrics. Associations 

between VO2 and cardiovascular and metabolomics profiles were studied in adjusted models including 

standard covariates. 

 

Based on a simple physical activity questionnaire, a validated nonexercise prediction model was used to 

estimate peak oxygen uptake, VO2 milliliter/kg/minute (ml/kg/min)86, 87. This simple physical activity 

questionnaire consisted of age, gender, height, weight, estimated maximum heart rate, frequency of 

exercise, length of time for each workout, intensity of each workout, waistline diameter, and resting heart 

rate.  
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We first examined bivariable association of subject clinical characteristics, physical activity, cardiac 

function, and left atrial function with high VO2. High VO2 was defined as a VO2 > 37 (ml/kg/min) for 

men or VO2 > 29 (ml/kg/min) for women as mean VO2 was 37 (ml/kg/min) for men and 29 (ml/kg/min) 

for women in our cohort. Univariate logistic regression assessed a total of 83 metabolites (65 acylcarnitine 

metabolites, 16 amino acid metabolites, and 2 carnitine metabolites). Metabolites with >25% of values 

below the lower limit of quantification were excluded from analysis (only C102 was excluded, hence a total 

of 83 metabolites were analysed in the final sample). We normalised the distributions of all metabolites by 

logarithmic transformation. We reduced the dimensionality of correlated metabolites (65 acyl-carnitine 

metabolites and 2 carnitine metabolites) using sparse principal component analysis (SPCA). The association 

of each SPCA factors with high VO2 were analysed. Multivariable logistic regression was used to assess 

the role of amino acid metabolites and SPCA factors that show an association with P < 0.05 with high VO2 

in univariate analysis controlling for significant clinical characteristics (age, body mass index [BMI], and 

diabetes). 

 

We studied a total of 141 participants, of whom 82 (58.2%) had low VO2, while 59 (41.8%) had high VO2. 

Compared to participants with high VO2, participants with low VO2 were older (mean age 73.8±3.6 vs 

66.1±15.7 years, P < 0.0001), had a higher BMI (mean BMI 24.5±3.0 vs 22.1±2.8, P < 0.0001), and a trend 

toward higher likelihood of diabetes mellitus (29.3% vs 15.3%, P = 0.053). In addition, participants with 

low VO2 were more likely to report doing low intensity exercise (“take it easy”) (96.3% vs 81.4%) as 

opposed to higher intensity exercise (“heavy breath and sweat”) (3.7% vs 18.6%) (P = 0.003) (Table 1). 
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 VO2 low 

(n=82) 

VO2 high 

(n=59) 

Total 

(n=141) 

p-value 

Age (year) 73.8 (3.6) 66.1 (15.7) 70.6 (11.2) <0.0001 

Female  36 (43.9%) 23 (39.0%) 59 (41.8%) 0.56 

Ever smoker  20 (24.4%) 10 (17.0%) 30 (21.3%) 0.29 

Body mass index (kg/m2) 24.5 (3.0) 22.1 (2.8) 23.5 (3.1) <0.0001 

Hypertension 50 (61.0%) 27 (45.8%) 77 (54.6%) 0.073 

Diabetes mellitus 24 (29.3%) 9 (15.3%) 33 (23.4%) 0.053 

Dyslipidaemia 46 (56.1%) 25 (42.4%) 71 (50.4%) 0.11 

Heart rate (beats per minute) 75.8 (13.2)  70.3 (11.0) 73.5 (12.5) 0.010 

Central systolic blood pressure 

(mmHg) + 

141.6 (17.6) 136.0 (17.9) 139.3 (17.9) 0.066 

Central diastolic blood pressure 

(mmHg) + 

76.7 (10.1) 76.2 (11.7) 76.5 (10.7) 0.79 

Central mean arterial pressure 

(mmHg) + 

103.0 (12.1) 100.4 (11.5) 102.0 (11.9) 0.20 

Central pulse pressure (mmHg) + 64.9 (16.2) 59.8 (18.5) 62.8 (17.3) 0.083 

     

Physical activity     

Frequency    0.48 

  Inactive 15 (18.3%) 9 (15.3%) 24 (17.0%)  

  Once a week 1 (1.2%) 3 (5.1%) 4 (2.8%)  

  2 to 3 times a week 10 (12.2%) 5 (8.5%) 15 (10.6%)  

  Almost everyday 56 (68.3%) 42 (71.2%) 98 (69.5%)  

Intensity    0.003 

  Take it easy 79 (96.3%) 48 (81.4%) 127 (90.1%)  

  Heavy breath and sweat 3 (3.7%) 11 (18.6%) 14 (9.9%)  

Duration    0.73 

  <15 min 20 (24.4%) 14 (23.7%) 34 (24.1%)  

  16 to<30min 24 (29.3%) 14 (23.7%) 38 (27.0%)  

  30 to 60 min 17 (20.7%) 11 (18.6%) 28 (19.9%)  

  >1 hour 21 (25.6%) 20 (33.9) 41 (29.1)  

Table 1: Baseline clinical characteristics, and physical activity data 

 

Compared to participants with high VO2, participants with low VO2 had more adverse cardiovascular 

parameters, such as lower ratio of peak velocity flow in early diastole to peak velocity flow in late diastole 

by atrial contraction of >0.8 (76% vs 35%, adjusted odd ratio [OR] = 4.1, 95% confidence interval [CI]: 

[1.7-9.5], P = 0.001) and lower LA conduit strain (11.3±4.0 vs 15.6±6.1, adjusted OR = 1.1, 95% CI: [1.002-

1.3], P = 0.045) (Table 2). 
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 VO2 low 

(n=82) 

VO2 high 

(n=59)  

Total 

(n=141) 

p-value *Adjusted 

OR  

Adjusted 

p-value 

Interventricular septum 

thickness at end diastole 

(IVSd) (cm) 

0.86 (0.18) 0.81 (0.13) 0.84 (0.16) 0.096   

Interventricular septum 

thickness at end systole (IVSs) 

(cm) 

1.30 (0.26) 1.17 (0.24) 1.24 (0.26) 0.0040 0.3 (0.1-

1.8) 

0.20 

Left ventricular internal 

diameter end diastole 

(LVIDd) (cm) 

4.50 (0.64) 4.33 (0.74) 4.42 (0.69) 0.17   

Left ventricular internal 

diameter end systole (LVIDs) 

(cm) 

2.52 (0.50) 2.53 (0.44) 2.52 (0.47) 0.92   

Left ventricular posterior wall 

end diastole (LVPWd) (cm) 

0.80 (0.14) 0.74 (0.09) 0.77 (0.12) 0.0097 0.1 (0.003-

5.2) 

0.28 

Left ventricular posterior wall 

end systole (LVPWs)(cm) 

1.45 (0.24) 1.37 (0.28) 1.41 (0.26) 0.087   

Left ventricular outflow tract 

(LVOT) (cm) 

2.07 (0.16) 2.05 (0.17) 2.06 (0.16) 0.64   

Aortic diameter (Ao) (cm) 3.14 (0.46) 3.04 (0.49) 3.09 (0.47) 0.23   

Left atrium (LA) (cm) 3.81 (0.52) 3.50 (0.55) 3.68 (0.56) 0.0015 0.8 (0.3-

2.1) 

0.71 

Left ventricular ejection 

fraction (LVEF) (%) 

74.44 (7.08) 73.64 

(7.63) 

74.10 

(7.30) 

0.53   

Left ventricular fractional 

shortening (LV FS) (%) 

43.80 (6.32) 42.97 

(6.48) 

43.45 

(6.38) 

0.47   

Left ventricular mass index 

(LVMI) (grams/m2) 

83.72 

(27.27) 

75.20 

(18.89) 

80.12 

(24.38) 

0.051   

Ratio of Peak velocity flow in 

early diastole E (MV E Peak) 

(m/s) to Peak velocity flow in 

late diastole by atrial 

contraction A (MV A Peak) 

(m/s) (E/A Ratio)>0.8 

28 (35.0%) 45 (76.3%) 73 (52.5%) <0.0001 4.1 (1.7-

9.5) 

0.001 

Deceleration time (DT) (m/s) 210.54 

(38.69) 

205.25 

(36.68) 

208.30 

(37.81) 

0.42   

Pulmonary artery systolic 

pressure (PASP) (mmHg) 

27.27 (6.47) 27.06 

(6.61) 

27.18 

(6.50) 

0.86   

Pulmonary vein systolic 

velocity (PV-S) (cm/s) 

57.22 

(11.50) 

58.48 

(11.55) 

57.76 

(11.49) 

0.54   

Pulmonary vein diastolic 

velocity (PV-D ) (cm/s) 

47.07 

(15.45) 

49.02 

(12.76) 

47.90 

(14.34) 

0.45   

Pulmonary vein flow at atrial 

contraction (PV-Ar) (ms) 

92.41 

(16.63) 

92.42 

(16.04) 

92.41 

(16.32) 

1.00   

Mitral inflow duration at 

atrial contraction  (MV A 

duration) (ms) 

118.45 

(18.88) 

113.63 

(16.75) 

116.40 

(18.10) 

0.13   
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Left atrial function       

 Reservoir strain (𝛆𝐬) % 29.9 (7.8) 32.8 (7.6) 31.1 (7.8) 0.036 1.0 (0.9-

1.1) 

0.90 

 Conduit strain (𝛆𝐞) % 11.3 (4.0) 15.6 (6.1) 13.2 (5.5) <0.0001 1.1 (1.002-

1.3) 

0.045 

 Booster strain (𝛆𝐚) % 16.9 (5.6) 16.3 (3.9) 16.6 (5.0) 0.46   

 Reservoir strain rate (SRs) (s-

1) 

1.5 (0.5) 1.6 (0.5) 1.6 (0.5) 0.060   

 Conduit strain rate (SRe) (s-1) -1.2 (0.5) -1.7 (0.8) -1.4 (0.7) <0.0001 0.6 (0.2-

1.6) 

0.30 

 Booster strain rate (SRa) (s-1) -2.2 (0.8) -2.2 (0.6) -2.2 (0.7) 0.92   

 SRe/SRa 0.6 (0.6) 0.8 (0.4) 0.7 (0.5) 0.14   

Table 2: Cardiac Functions by echocardiogram and left atrial function by CMR *Age, BMI, and 

diabetes were adjusted. 

 

SPCA identified 10 acyl-carnitine factors clustering in biologically related groupings (Table 3). Univariate 

association between each of the 10 SPCA factors and risk of high VO2 is shown in Table 4. Factor 2, Factor 

5, and Factor 8 showed significant negative association with high V02. However, after adjustment for 

significant clinical covariates such as age, BMI and diabetes, only Factor 8 remained predictive for high 

V02 (OR = 0.6, 95% CI: [0.4-0.9], P = 0.013).  

 

Factors Description 

 

Components Proportion of 

variance 

accounted 

1 Medium and long-

chain carnitines 

C8, C8-DC, C12:1, C12, C12-OH/C10-DC, 

C14:2, C14:1, C14, C16:3, C16:2, C16:1, C18:1 

0.11 

2 Short chain 

dicarboxyl/hydroxyl 

carnitines 

C3, C4, C5:1, C5, C4-OH, C6, C5OHC3DC, 

C4DCC6OH, C5DC, C81OHC61DC, 

C8OHC6DC, C103, C81DC, C8-DC 

0.063 

3 Medium and long 

chain 

dicarboxyl/hydroxyl 

carnitines 

C81OHC61DC, C122OHC102DC, C121OH,  

C142OH, C141OH, C163OHC143DC, C162OH 

C183OHC163DC, C182OHC162DC, C201, 

C20, C202OHC182DC, C201OHC181DC,  

C20OHC18DC, C221 

0.072 

4 Long chain 

carnitines 

C16, C183, C182, C181, C18, C204, C203, 

C202, C201, C202OHC182DC, C225, C224 

C223 

0.060 

5 Medium and long 

chain 

dicarboxyl/hydroxyl 

carnitines 

C4OH, C8OHC6DC, C8DC, C12OHC10DC,  

C141OH, C14OHC12DC, C162OH, 

C161OHC141DC, C16OH, C181OHC161DC,  

C18OHC16DC, C20, C201OHC181DC, 

C20OHC18DC 

0.074 

6 Wide spectrum 

carnitines including 

C2, C3, C51, C5, C5OHC3DC, C101, C7DC, 

C121, C12, C14, C142OH, C163, C162OH, 

0.038 
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odd short chain 

carnitines 

C16OH, C183, C182, C18, C183OHC163DC, 

C182OHC162DC, C204, C203, C202, C201, 

C203OHC183DC, C225, C223, C222, C22, Free 

Carnitine, Total Carnitine 

7 Wide spectrum 

carnitines including 

ketone-derived 

carnitine 

C2, C4OH, C6, C81, C5DC, C81OHC61DC, 

C103, C101, C10, C81DC, C122, C143, C142, 

C14, C142OH, C14OHC12DC, C162, C161, 

C16, C162OH, C161OHC141DC, C183, C182, 

C183OHC163DC, C18OHC16DC, C204, C202,  

C201OHC181DC, C224, C222, C22 

0.045 

8 Wide spectrum 

carnitines including 

odd short chain 

carnitines 

C3, C51, C4DCC6OH, C5DC, C81OHC61DC, 

C8OHC6DC, C7DC, C81DC, C8DC, C122,  

C121, C12OHC10DC, C14OHC12DC, C16, 

C16OH, C183OHC163DC, C18OHC16DC, 

C204, C201, C20OHC18DC, C224, C223, 

C222, C221, Free Carnitine, Total Carnitine 

0.022 

9 Wide spectrum 

carnitines including 

ketone-derived 

carnitine 

C2, C51, C4OH, C6, C5OHC3DC, 

C81OHC61DC, C101, C81DC, C12, 

C122OHC102DC, C121OH, C14, C142OH, 

C14OHC12DC, C162, C183, C182, C181,  

C183OHC163DC, C182OHC162DC, 

C181OHC161DC, C18OHC16DC, C204, C203, 

C201OHC181DC, C20OHC18DC, C225, Free 

Carnitine, Total Carnitine 

0.023 

10 Medium and long 

chain carnitines 

C10, C143, C142, C14, C143OHC123DC, 

C142OH, C163, C16, C181, C18, 

C182OHC162DC, C204, C203, C201, C20, 

C221, C22 

0.023 

Table 3. Factors identified by sparse principal component analysis and the associated individual 

components, description and variance. 
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Univariate associations between amino acids and risk of high VO2 were significant for alanine, 

glutamine/glutamate, glycine, and ornithine (Table 4). Multivariate analysis adjusting for significant 

clinical covariates showed only alanine (OR = 0.1, 95% CI: [0.01-0.9], P = 0.044) and 

glutamine/glutamate (OR = 0.1, 95% CI: [0.01-0.5], P = 0.007) were independent predictors for high 

V02. 

 

 

 

 VO2 low VO2 high  Total OR (95% CI) p-value *Adjusted 

OR  

p-value 

Acylcarnitines         

Factor 1 -0.1 (2.7) 0.1 (2.7) 0 (2.7) 1.0 (0.9-1.2) 0.69   

Factor 2 0.3 (2.2) -0.4 (1.8) 0 (2.0) 0.8 (0.7-1.0) 0.030 0.9 (0.8-1.2) 0.55 

Factor 3 -0.01 (2.1) 0.02 (2.4) 0 (2.2) 1.0 (0.9-1.2) 0.94   

Factor 4 -0.04 (2.2) 0.05 (1.9) 0 (2.1) 1.0 (0.9-1.2) 0.81   

Factor 5 0.3 (2.4) -0.5 (2.1) 0 (2.3) 0.8 (0.7-1.0) 0.038 0.9 (0.7-1.1) 0.21 

Factor 6 0.2 (1.5) -0.2 (1.7) 0 (1.6) 0.9 (0.7-1.1) 0.22   

Factor 7 -0.1 (1.8) 0.1 (1.8) 0 (1.8) 1.1 (0.9-1.3) 0.56   

Factor 8 0.2 (1.0) -0.3 (1.4) 0 (1.2) 0.7 (0.5-1.0) 0.035 0.6 (0.4-0.9) 0.013 

Factor 9 -0.1 (1.5) 0.2 (1.0) 0 (1.3) 1.2 (0.9-1.6) 0.25   

Factor 10 0.05 (1.4) -0.1 (1.2) 0 (1.3) 0.9 (0.7-1.2) 0.61   

Amino acids        

Ala 6.2 (0.3) 6.1 (0.2) 6.2 (0.2) 0.1 (0.03-0.7) 0.018 0.1 (0.01-

0.9) 

0.044 

Arg 4.7 (0.2) 4.8 (0.2) 4.7 (0.2) 2.1 (0.5-9.0) 0.34   

Asp 3.1 (0.3) 3.1 (0.3) 3.1 (0.3) 0.5 (0.2-1.8) 0.31   

Cit 3.4 (0.4) 3.5 (0.4) 3.5 (0.4) 1.8 (0.8-4.1) 0.14   

Glu 4.6 (0.2) 4.4 (0.2) 4.5 (0.2) 0.03 (0.005-0.1) <0.0001 0.1 (0.01-

0.5) 

0.0070 

Gly 5.4 (0.2) 5.5 (0.2) 5.4 (0.2) 10.8 (1.8-62.9) 0.0080 5.8 (0.7-

46.5) 

0.099 

His 4.3 (0.2) 4.3 (0.2) 4.3 (0.2) 1.8 (0.4-8.2) 0.46   

IleLeu 5.0 (0.3) 4.9 (0.3) 5.0 (0.3) 0.6 (0.2-2.1) 0.47   

Met 3.2 (0.4) 3.2 (0.4) 3.2 (0.4) 1.3 (0.5-3.3) 0.52   

Orn 4.5 (0.3) 4.4 (0.3) 4.4 (0.3) 0.3 (0.1-1.0) 0.049 0.4 (0.1-1.8) 0.24 

Phe 4.3 (0.2) 4.3 (0.2) 4.3 (0.2) 0.4 (0.1-2.4) 0.32   

Pro 5.5 (0.2) 5.5 (0.2) 5.5 (0.2) 0.3 (0.1-1.1) 0.069   

Ser 4.8 (0.2) 4.8 (0.2) 4.8 (0.2) 1.0 (0.2-5.3) 0.96   

Trp 3.9 (0.2) 4.0 (0.3) 4.0 (0.3) 3.3 (0.8-13.2) 0.098   

Tyr 4.3 (0.3) 4.2 (0.3) 4.2 (0.3) 0.4 (0.1-1.2) 0.085   

Val 5.5 (0.3) 5.4 (0.3) 5.5 (0.3) 0.7 (0.2-2.5) 0.63   

Table 4: Differences in metabolomic patterns *Age, BMI and diabetes were adjusted. 
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Discussion 

In this study, we found significant differences in a wide spectrum of acyl-carnitine species including 

short-chain dicarboxyl-carnitines as well as long-chain acyl-carnitines. The long-chain acyl-carnitines 

are derived from oxidation of fatty acid fuel. Elevations in long-chain acylcarnitines have been 

previously associated with impaired mitochondrial fuel metabolism and obesity associated-insulin 

resistance88. The negative association of long-chain acyl-carnitines with peak oxygen uptake fits with 

the notion that decreased VO2 is linked to diminished mitochondrial oxidative capacity and risk for 

metabolic disease. The study also demonstrated a negative association between short-chain dicarboxyl-

carnitines, VO2 and various measures of cardiac function. 

 

Previous studies have linked accumulation of dicarboxyl-carnitines and increased risk of recurrent 

cardiovascular events55. We observed a negative association between glutamine/glutamate and alanine 

with high VO2 in our study. Low alanine has previously been linked to higher levels of physical 

activity89. Both alanine and glutamine/glutamate serve as anaplerotic substrates, which can directly feed 

into the tricarboxylic acid (TCA) cycle. Lower levels of these amino acids may be indicative of higher 

TCA cycle turnover and increased overall mitochondrial activity, which is associated with increased 

exercise90. 

 

The convergence of this metabolomics signature that is associated with exercise levels in older adults  

may imply that older adults with higher physical activity levels have increased TCA cycle activity which 

leads to increased inflow of carbon fuel into mitochondrial pathways. This results in reduced 

accumulation of long-chain fatty acids due to higher fuel oxidation rates and reduced build-up of 

anaplerotic substrates such as glutamine/glutamate and alanine due to higher anaplerorosis (Figure 1). 

Therefore, our study provides potential mechanistic evidence as to how increasing peak oxygen uptake, 

through physical activity for instance, reduces cardiovascular risk by reducing long-chain fatty acids, 

glutamate/glutamine and alanine. 
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Figure 1: High peak oxygen uptake (VO2) may be associated with increased tricarboxylic acid cycle 

activity (1). This leads to increased in-flow of carbon fuel into mitochondrial pathways (2). A 

consequence of this could include reduced accumulation of long chain fatty acid co-enzyme A/carnitine 

fuel as a result of higher fuel oxidation rates (3) and reduced build-up of (4a) glutamine/glutamate and 

(4b) alanine due to higher anaplerorosis. 

 

 

Implications of our findings 

Low aerobic capacity is a strong predictor of cardiovascular disease (CVD) and all-cause mortality91 

while increases in aerobic capacity are associated with increased survival92. Among aged populations, 

poor aerobic capacity indicates closer proximity to future declines in cardiovascular and other health 

indices93, 94. Physical activity is associated with many physiologic changes including increased aerobic 

capacity and alterations in fuel metabolism. Animal and human model studies of heart and skeletal 

muscle responses to physical activity point to changes in the patterns of fuel use and mitochondrial 

oxidation as key components of a healthy adaptation.  

 

Our results concur with these changes that include increased TCA cycle activity24 and better 

coordination between fuel processing and TCA cycle activity95 in the metabolome of older adults with 

exercise. This contrasts with studies of ageing-related frailty which have observed accumulation of fatty 
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acid fuel intermediates96, mismatch between fuel supply and TCA cycle, reduced TCA cycle activity95 

and greater reliance on non-oxidative glucose metabolism.  

 

Fatty acid oxidation, electron transport and TCA cycle genes are all up regulated by physical activity. 

These changes are distinct from the metabolic changes associated with heart failure which include 

pathophysiologic remodelling, reduced fatty acid and mitochondrial fuel oxidation and increased 

reliance on glucose97.   The TCA cycle is known to be upregulated when there is a high demand for 

ATP. Increased energy demand stimulates regulatory enzymes of the cycle such as isocitrate 

dehydrogenase and alpha-ketoglutarate dehydrogenase. It has also been shown in recent studies that 

there is a rise in the level of TCA cycle intermediates just after an acute bout of physical activity24. 

Certain amino acids such as alanine and glutamine/glutamate can serve as metabolic fuels by feeding 

into the TCA cycle.  The process by which amino acids are fed into the TCA cycle is known as 

‘anaplerosis’ (or ‘filling of mitochondria’). 

 

The importance of matching of carbon fuel inflow and TCA cycle activity has been replicated in a study 

that examined metabolic changes in the heart in response to heart failure or physical activity95.  In heart 

failure there was an elevation of lactate and acylcarnitines with a reduction in TCA cycle intermediates. 

In contrast, exercised hearts showed decreases in both acylcarnitines as well as TCA cycle 

intermediates. The former result suggests accumulation of carbon fuel which is not able to be cleared 

by a slowing TCA cycle. The latter suggests increased consumption of carbon fuel because of higher 

TCA cycle activity. These findings highlight a role for increased activity of the TCA cycle brought 

about by sustained aerobic training, thereby improving VO2 levels and linking TCA cycle activity to 

cardiorespiratory fitness. 

 

Another emerging concept is the importance of metabolic flexibility. Healthy hearts are able to switch 

fuel use patterns in response to available supply and immediate energy demand98. Reduced metabolic 

flexibility is associated with pathologic changes and this can be reversed with exercise interventions99. 



125 

 

125 
 

Future work that involves dynamic testing of heart and whole-body fuel use may be an important 

component of assessing cardiovascular health and response to exercise interventions. The use of 

metabolomics to assess these responses may represent new frontiers in this field. 

 

Finally, this study is limited by lack of data on the association between physical activity, metabolomics, 

and  skeletal muscle. Skeletal muscle health requires preserved mitochondrial function and energetics 

while physical activity prevents ageing-related muscle atrophy100. Furthermore, older adults who are 

frail or pre-frail benefit from physical activity which improves their cardiorespiratory fitness, muscle 

strength, function, and quality of life101-103. Studies that have investigated metabolism and physical 

training have observed changes in genes that normalised towards a younger transcriptomic signature 

with better mitochondrial function104. Therefore, future investigations into muscle metabolism would 

be important for understanding age-related changes related to physical activity and metabolomics. 

 

I am the principal investigator of the study. My contribution includes obtaining grant funding for this 

work, setting up the study protocol, recruitment of research participants, obtaining ethical approval, 

data analyses, and manuscript writing. 
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Research Question #3: 

Is there a better measure of cardiovascular health outcome, 

compared to traditional markers such as body mass index? 
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PUBLICATION #5 

 

Tan YH, Lim JP, Lim WS, Gao F, Teo LLY, Ewe SH, Keng BMH, Tan RS, Koh WP and Koh 

AS 

 

Obesity in Older Adults and Associations with Cardiovascular Structure and Function.  

Obes Facts. 2022;15:336-343105. 

 

“Introduction: Body mass index (BMI), despite being widely used as a marker of obesity, fails to fully 

capture cardiovascular risks as it is an insufficient biomarker of abdominal adiposity, unlike waist 

circumference (WC). We aimed to characterise associations between BMI and WC with cardiovascular 

structure and function in older adults. Methods: Among an observational cohort study of a community 

of older adults,  transthoracic echocardiography determined cardiovascular structure and function, 

while aerobic capacity was determined by peak oxygen uptake (VO2) metrics. The cut-offs for obesity 

were 27.5kg/m2 for BMI, and >90cm for males and >80cm for females for WC. Results: 970 older 

adults without cardiovascular disease [mean age 73±4 years, 432 (44%) males], 124 (12.8%) were 

obese by BMI definition while 347 (35.7%) were obese by WC definition. Inter-definitional agreement 

was fair (Cohen’s κ=0.345). Unlike BMI definition, participants defined as obese by WC were more 

likely to be women (65% vs 50%, p<.001), older (65±11 vs 63±14 years, p=.007), and had lower 

handgrip strength (24±0.6 vs 26±0.4 kg, p=0.022). Across BMI categories, high WC was associated 

with more impaired myocardial relaxation (E/A), and VO2 measurements (all p<0.05). Among those 

with low BMI, high WC was associated with larger left atrial volumes (p=0.003). WC, but not BMI, 

was independently associated with E/A (β=-0.114, SE -0.114 ± 0.024, p<0.001) in regression analysis. 

Conclusion: Waist circumference identified higher prevalence of obesity, possibly related to central 

adiposity. Across BMI categories, waist circumference identified more adverse measurements in 

myocardial relaxation, aerobic capacity and left atrial structure.” 
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Commentary: 

1. Body mass index is an imperfect metric of cardiovascular health measurement for older 

adults 

 

We undertook this work because the traditional anthropometric metric of cardiovascular health, body 

mass index (BMI) is imperfect for older adults. The limited ability of BMI to identify obesity among 

older adults have been previously appreciated106. At extremes of age and weight, BMI has limited 

utility107, 108. Apart from age, older adults have fluctuating body weights, related to ageing or 

accumulation of systemic illnesses109, 110.  

  

Furthermore, numerous physiological changes in muscle, fat and bone occurs during ageing. A key 

geriatric syndrome that occurs with ageing is sarcopenia, which is the progressive and generalised loss 

of muscle mass and function with advancing age111. With progressive ageing, skeletal muscle fibre size 

and number decreases linearly at a rate of 3-5% per decade, accelerating up to 30-40% after the fifth 

decade of life112. Sarcopenia leads to poor muscle strength, aerobic capacity, and adverse outcomes such 

as falls, disability, reductions in quality of life, and higher mortality113, 114. 

 

Therefore, body weight among older adults reflects a combination of overall health status and processes 

of ageing-induced weight loss, such as sarcopenia. This may inadvertently be reflected as lower relative 

risks associated with body mass index definition of obesity among older adults, compared to the effect 

of BMI on younger adults115, 116. The assessment of obesity based on BMI in older adults may 

inadequately identify older adults at risk of obesity-related cardiovascular disease. Given the 

cardiometabolic effects of obesity on cardiovascular risks, waist circumference (WC) on the other hand, 

may enhance assessments of obesity among older adults. As a marker of central adiposity, measurement 

of WC is not influenced by limb sarcopenia, which is relevant among older adults with age-related 

sarcopenia. In addition, older adults with obesity have been recognised as a distinct metabolic 

phenotype (compared to older adults without obesity) that is associated with higher risks of 
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cardiovascular disease117. Hypothetically, WC may have added value in identifying older adults with 

more adverse phenotypic alterations in cardiovascular structure and function, compared to BMI.  

 

In this study, we compared how WC differed from BMI in characterizing cardiovascular structure and 

function in older adults without cardiovascular disease. Subjects were prospectively recruited from the 

local community and consisted of men and women who had no self-reported history of physician-

diagnosed cardiovascular disease (such as coronary heart disease, atrial fibrillation), stroke, or cancer. 

All participants were examined and interviewed on one study visit by trained study coordinators. 

Participants completed a standardised questionnaire that included medical history and coronary risk 

factors. Hypertension was defined by current use of antihypertensive drugs or physician-diagnosed 

hypertension. Diabetes mellitus was defined by the current use of antidiabetic agents or physician-

diagnosed diabetes mellitus. Dyslipidaemia was defined by the current use of lipid-lowering agents or 

physician-diagnosed dyslipidaemia. Smoking history was defined as ever smokers (former or current 

smokers) or never smokers. BMI was calculated as weight in kilograms divided by the square of height 

in meters. Sinus rhythm status was ascertained by resting electrocardiogram. 

 

Clinical data were obtained on the same day as assessment of echocardiography. WC was obtained 2.5 

cm above the umbilicus, an anatomical landmark associated with abdominal fat mass measured by dual-

energy X-ray absorptiometry118. We compared two definitions of obesity, namely: (a) BMI cutoff of 

27.5 kg/m2 as recommended by the World Health Organization for Asian populations119 and (b) WC 

cut-offs of >90 cm for males and >80 cm for females, as recommended by the International Diabetes 

Federation Consensus Worldwide Definition of the Metabolic Syndrome120. Handgrip strength was 

measured from each participant using the Takei hand grip dynamometer (Model TKK5401 Grip D) and 

following standard protocols. Participants were instructed to stand upright with their arms let down 

naturally. The handgrip dynamometer was held with the indicator facing outwards, and the grip width 

was adjusted so that the second joint of the pointing finger made a right angle at the dynamometer. 

Participants were then instructed to clasp the grip with full force. Measurements obtained were recorded 

to the nearest 0.1 kg. Two trials were performed for each hand, starting with the right hand. Only the 
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highest value obtained from each hand was used. Overall handgrip strength was calculated as the mean 

of the maximum lefthand and right-hand grip strength measurements.  

 

Echocardiography was performed using ALOKA α10 with a 3.5- MHz probe. In each subject, standard 

echocardiography, which included 2-D, M-mode, pulse Doppler and tissue Doppler imaging, was 

performed in the standard parasternal and apical (apical 4-chamber, apical 2-chamber, and apical long) 

views, and three cardiac cycles were recorded. Left ventricular ejection fraction, left atrial (LA) volume, 

and LA volume index (LAVI) were measured. The trans-mitral flow E and A waves with the sample 

volume position at the tip of the mitral valve leaflets from the apical 4-chamber view were recorded by 

Doppler echocardiography. Myocardial relaxation (E/A) ratio was computed as a ratio of peak velocity 

flow in early diastole E (MV E) (m/s) to peak velocity flow in late diastole by atrial contraction A (MV 

A) (m/s). Pulsed wave tissue Doppler imaging was performed with the sample volume at the septal and 

lateral annulus from the apical 4-chamber view. The frame rate was between 80 and 100 frames per 

second. The tissue velocity patterns were recorded and expressed as E’, and A’. All measurements were 

measured by the same operator and the measurements were averaged over three cardiac cycles and 

adjusted by the RR interval. The specific cardiovascular function of interest in this cohort of older adults 

was E/A properties, for which impairments in E/A, would suggest adverse myocardial ageing121. E/A 

was defined by ratio of peak velocity flow in MV E to peak velocity flow in late diastole by MV A, also 

referred to as the E/A ratio. MV E refers to the peak velocity of blood flow during early diastole from 

the left atrium into the left ventricle, where blood flows passively into the left ventricle during 

relaxation. MV A refers to the peak velocity of blood flow into the left ventricle in late diastole due to 

contraction of the left atrium. The echocardiography readers were blinded to the obesity status of the 

participants.  

 

We used a validated non-exercise prediction model comprising of physical activity questionnaire to 

estimate peak oxygen uptake (VO2) millilitre/kilogram/minute (mL/kg/min)86, also previously used in 

this cohort85. 
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Clinical characteristics are presented as means and standard deviations for continuous data and 

frequency and percentage for categorical data. We determined agreement between BMI and WC 

definitions using Cohen’s kappa. We compared demographics, clinical characteristics, and 

echocardiographic characteristics between non-obese and obese subjects based on either BMI or WC 

definitions. The student’s t test was used for continuous data and the χ2 test was used for categorical 

data. Multiple linear regression analysis was subsequently performed to ascertain the relationship of 

cardiovascular structure and function to BMI and WC definitions, respectively. Variability of 

cardiovascular structure and function across BMI group and WC group were displayed in the error bar 

charts with standard error. All statistical analyses were performed using STATA 15 (College Station, 

TX, USA). For all analyses, a two-tailed p value of <0.05 was considered statistically significant. 

 

Among 970 participants, 124 (12.8%) were defined as obese by the BMI definition, while 347 (35.7%) 

were defined as obese by the WC definition (Table 1). Inter-definitional agreement was fair between 

BMI and WC (Cohen’s κ = 0.345). 

 

Definition Number of subjects, n (%) 
 

Non-obese Obese 

Body Mass Index 

≥27.5kg/m2 

846 (87.2%) 124 (12.8%) 

Waist circumference 

    >90cm in males  

    >80cm in females 

623 (64.3%)  347 (35.7%)  

Table 1: Prevalence of Obesity based on Body mass index versus Waist circumference 

 

Based on both definitions of BMI and WC, hypertension (54% vs. 33%; p < 0.001 and 44% vs. 31%; p 

< 0.001) and diabetes mellitus (29% vs. 13%; p < 0.001 and 20% vs. 13%; p = 0.001) were more 

prevalent among those defined as obese (Table 2). However, WC identified more women (65% vs. 

50%; p < 0.001), older participants (65 ± 11 vs. 63 ± 14 years; p = 0.007) and dyslipidaemia (46% vs. 

34%; p < 0.001) participants as obese. Systolic blood pressure was also significantly higher (140 ± 21 

vs. 135 ± 24 mm Hg; p = 0.002) in obese versus nonobese participants defined by WC. Based on BMI, 
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gender, age, dyslipidaemia, and systolic blood pressure were not significantly different between obese 

and nonobese participants. Participants defined as obese by WC definition had lower hand grip strength 

(24.2 vs. 25.9, p = 0.022) compared to nonobese. On the other hand, participants defined as obese by 

BMI definition had similar hand grip strength (26.4 vs 25.2, p=0.26) compared to non-obese. 

Participants defined as obese by either WC or BMI definitions, had lower peak oxygen uptake, 

compared to non-obese participants. (Table 2). 

 

Variable Body mass index ≥27.5 kg/m2 
Waist circumference >90cm in males, 

>80cm in females 

 
Non-obese 

(n=846) 
Obese (n=124) p-value 

Non-obese (n= 

624) 

Obese 

(n=347) 
p-value 

Demographics       

     Age, years 63.6 ± 13.0 62.6 ± 12.3 0.404 62.7 ± 13.7 65.0 ± 11.2 0.007 

     Male, n (%) 
374  

(44.2%) 

58  

(46.8%) 
0.591 

312  

(50.0%) 

120  

(34.6%) 
<0.001 

Co-morbidities, 

n (%) 
      

     Ever smoked 
100  

(13.2%) 

16 

 (15.5%) 
0.521 

78  

(14.3%) 

38  

(12.1%) 
0.352 

     Hypertension 
280  

(33.1%) 

67  

(54.0%) 
<0.001 

196  

(31.4%) 
151 (43.5%) <0.001 

     

Dyslipidaemia 

312  

(36.9%) 

57  

(46.0%) 
0.052 

212  

(34.0%) 
158 (45.5%) <0.001 

     Diabetes 

mellitus 

111 

(13.1%) 

36 

(29.0%) 
<0.001 

78 

(12.5%) 

70 

(20.2%) 
0.001 

Blood pressure 

and pulse 
      

     Systolic 

blood pressure, 

mmHg 

137 ± 24 140 ± 17 0.114 135 ± 24 140 ± 21 0.002 

     Diastolic 

blood pressure, 

mmHg 

74 ± 12 78 ± 13 <0.001 74 ± 11 76 ± 13 0.004 

     Pulse, beats 

per minute 
71 ± 12 73 ± 12 0.207 72 ± 12 71 ± 12 0.229 

Physical 

function: 

Handgrip 

strength, kg 

25 ± 0.4 

 

26± 1 

 

0.263 26±0.4 24±0.6 0.0218 

Peak oxygen 

uptake, 

ml/kg/min (V02) 

36±0.2 32±0.6 <0.0001 38±0.2 31±0.3 <0.0001 

Table 2: Baseline characteristics based on different definitions of obesity 
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Cardiovascular structure and function based on obesity definitions 

 

In general, participants who were defined by both BMI and WC as obese had larger left ventricular 

dimensions.  Participants who were defined by BMI as obese had significantly lower E/A ratio 

compared to those who were not obese (1.13 ± 0.46 vs 0.98 ± 0.35; P<0.001). Similarly, participants 

who were defined by WC as obese had significantly lower E/A ratio compared to those who were not 

obese (1.17 ± 0.49 vs 1.00 ± 0.37; P<0.001). (Table 3). Left atrial size was also significantly larger in 

obese individuals in both the BMI group (3.94 ± 0.53 vs 3.50 ± 0.55; P<0.001) and WC group (3.73 ± 

0.58 vs 3.46 ± 0.54; P<0.001). The left atrial volume index (LAVI) was also found to be significantly 

higher in obese individuals in both the BMI (22.3 ± 7.90 vs 20.5 ± 7.43; P=0.020) and WC (22.1 ± 8.3 

vs 20.0 ± 6.9; P<0.001) groups. Left ventricular ejection fraction percentage was over 70% and not 

significantly different in both obese and non-obese for both BMI (72.6 ± 8.3 vs 71.1 ± 9.7; P=0.074) 

and WC (72.4 ± 8.4 vs 72.3 ± 8.7; P=0.935) (Table 3). 

 

Body mass index definition 

 

 Non-obese Obese  

 
Mean ± SD 

95% conf. 

interval 
Mean ± SD 

95% conf. 

interval 
p-value 

Left atrial diameter, cm 3.50 ± 0.55 3.46-3.53 3.94 ± 0.53 3.84-4.04 <0.001 

Left atrial volume 

index (ml/m2) 
20.5 ± 7.43 20.0-21.1 22.3 ± 7.90 20.8-23.8 0.020 

Left ventricular 

ejection fraction 

(LVEF) (%) 

72.6 ± 8.3 72.0-73.1 71.1 ± 9.7 69.3-72.8 0.074 

Peak velocity flow in 

early diastole E (MV E 

peak), m/s 

0.74 ± 0.17 0.73-0.75 0.73 ± 0.18 0.70-0.76 0.591 

Peak velocity flow in 

late diastole by atrial 

contraction A (MV A 

peak), m/s 

0.72 ± 0.21 0.71-0.73 0.78 ± 0.19 0.75-0.82 0.003 

Ratio MV E peak: MV 

A peak 
1.13 ± 0.46 1.09-1.16 0.98 ± 0.35 0.91-1.04 <0.001 

Waist circumference definition 

 Non-obese Obese  

 Mean ± SD 
95% conf. 

interval 
Mean ± SD 

95% conf. 

interval 
p-value 
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Left atrial diameter, cm 3.46 ± 0.54 3.42-3.50 3.73 ± 0.58 3.66-3.79 <0.001 

Left atrial volume 

index (ml/m2) 
20.0 ± 6.9 19.5-20.6 22.1 ± 8.3 21.1-23.0 <0.001 

Left ventricular 

ejection fraction 

(LVEF) (%) 

72.4 ± 8.4 71.7-73.0 72.3 ± 8.7 71.4-73.3 0.935 

Peak velocity flow in 

early diastole E (MV E 

peak), m/s 

0.74 ± 0.17 0.73-0.76 0.73 ± 0.17 0.71-0.75 0.279 

Peak velocity flow in 

late diastole by atrial 

contraction A (MV A 

peak), m/s 

0.70 ± 0.21 0.68-0.72 0.77 ± 0.19 0.75-0.79 <0.001 

Ratio MV E peak: MV 

A peak (E/A) 
1.17 ± 0.49 1.13-1.21 1.00 ± 0.37 0.96-1.04 <0.001 

Table 3: Key echocardiographic characteristics 

 

However, across high or low BMI categories, high WC was associated with more adverse mean E/A 

and V02 measurements. (Figure 1a, 1b). Among those low BMI, high WC was associated with more 

adverse mean LAVI (Figure 1c). 

 

 

Figure 1a,b,c: Distribution of myocardial relaxation (E/A), aerobic capacity (VO2) and left atrial 

volume index (LAVI) based on BMI and WC. 
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Multivariable linear regression analysis was performed in BMI and WC groups to assess association of 

the E/A ratio with obesity status after adjustment for significant co-variates (Table 4). Adjusted R2 value 

was 13.9% and 45.5% for BMI and WC groups, respectively. When adjusted for hypertension and 

diabetes mellitus, BMI was not associated with cardiovascular function. In contrast, WC was associated 

with E/A (β=-0.114, SE -0.114 ± 0.024, p<0.001), independent of age and diabetes mellitus. With each 

one-centimetre increase in WC, E/A ratio declined by 0.114.  

 

 

 Obesity based on body mass index Obesity based on waist circumference 

Variables 
Adjuste

d R2 

Standard 

coefficien

t (β) 

Std. 

Error 

p-

value 

Adjuste

d R2 

Standard 

coefficien

t (β) 

Std. 

Error 

p-

value 

Hypertension 0.139 -0.288 

-0.288 

± 

0.031 

<0.001 0.455 -0.036 

-0.036 

± 

0.028 

0.198 

Diabetes 

mellitus 
 -0.156 

-0.156 

± 

0.042 

<0.001  -0.032 

-0.032 

± 

0.034 

0.035 

Body mass 

index, kg/m2 
 -0.059 

-0.059 

± 

0.043 

0.168     

Waist 

circumference, 

cm 

     -0.114 

-0.114 

± 

0.024 

<0.001 

Dyslipidaemia      -0.032 
-0.032 

±0.027 
0.230 

Age, years      -0.021 

-0.021 

± 

0.0001 

<0.001 

Female      0.037 

0.037 

± 

0.023 

0.107 

Table 4: Multivariate regression model for E/A ratio 
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2) Waist circumference, rather than body mass index, better characterises the impact of obesity 

on cardiac ageing 

 

WC identified higher prevalence of obesity, possibly related to central adiposity. Across BMI 

categories, WC identified more adverse measurements in myocardial relaxation, aerobic capacity and 

left atrial structure. 

 

The prevalence of obesity was higher at 35.7% based on WC, and only 12.8% based on BMI. 

Comparing between definitions of BMI versus WC, WC identified the presence of obesity in adults 

who were older in age, whereas BMI did not differentiate between adults with older age. Although both 

definitions are intrinsically different, and are not interchangeable, these prevalence rates highlight the 

importance of using appropriate definitions of obesity, particularly among older adults with aged 

biology. 

 

Although both definitions identified more adverse alterations in cardiovascular structure and function, 

only WC was independently associated with impaired myocardial relaxation. Importantly, even within 

non-obese BMI category, high WC was associated with impairments in myocardial relaxation, aerobic 

capacity and left atrial structure. 

 

The limited ability of BMI to identify obesity among older adults have been previously appreciated106.  

At extremes of age and weight, BMI has limited utility. Apart from age, older adults have fluctuating 

body weights, related to ageing or accumulation of systemic illnesses107. We observed that those defined 

as obese by WC had lower hand grip strength, a possible reflection of concomitant muscle sarcopenia. 

Our findings concur with studies that have found associations between abdominal adiposity and poorer 

physical outcomes in sarcopenic adults122. This adds to the body of evidence that shows inverse 

associations between muscle strength and adiposity-related obesity markers, particularly among older 

adults123, 124.  
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Our findings are novel because they depict distinct associations between WC and cardiovascular 

structure and function among older adults. WC was linearly associated with impairments in myocardial 

function, namely myocardial relaxation (E/A), a common early manifestation of myocardial ageing. 

Left atrial size was larger among the obese, a well-recognised risk factor for atrial fibrillation 

development125. While cardiometabolic complications of central adiposity are well established in 

current literature126, 127, our data provide a clue as to how obesity contributes to cardiovascular 

dysfunctions that may herald the onset and lead towards cardiovascular disease development.  

 

The obesity-related risks of cardiovascular disease are well-established128, 129. While our cross-sectional 

study precludes causal inferences, the alterations in myocardial relaxation and left atrial structure, point 

to specific key alterations in the cardiovascular system that are commonly involved in obesity-related 

heart failure and ageing, such as heart failure with preserved ejection fraction or atrial fibrillation among 

older adults. Importantly, we observed adverse alterations in myocardial relaxation, left atrial structure 

and aerobic capacity, among those with non-obese BMI but defined as obese by WC.  

 

3) Obesity defined by waist circumference as a marker of cardiometabolic risk 

 

Our observations are supported by recent studies that also reported metabolic abnormalities among 

individuals deemed to have normal BMI108. In a small study, women with normal BMI and high body 

fat percentage had lower resting metabolic rate and oxygen consumption, when compared to women 

with normal BMI and no excess in body fat percentage130. In a clinical study of heart failure patients, 

lean-fat patients with high waist to hip ratio and low BMI, had the worst outcomes at one-year for heart 

failure hospitalization or mortality131. These observations should prompt intense efforts to address the 

early subclinical risks of atrial or ventricular dysfunction in older adults defined as obese by waist 

circumference but lean by BMI.  

 

In our earlier study, metabolites associated with poorer cardiorespiratory function in ageing were 

independent of the effect of body mass index.  
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 VO2 low VO2 high  Total OR (95% 

CI) 

p-value *Adjuste

d OR  

p-value 

Amino 

acids 

       

Ala 6.2 (0.3) 6.1 (0.2) 6.2 (0.2) 0.1 (0.03-

0.7) 

0.018 0.1 (0.01-

0.9) 

0.044 

Arg 4.7 (0.2) 4.8 (0.2) 4.7 (0.2) 2.1 (0.5-

9.0) 

0.34   

Asp 3.1 (0.3) 3.1 (0.3) 3.1 (0.3) 0.5 (0.2-

1.8) 

0.31   

Cit 3.4 (0.4) 3.5 (0.4) 3.5 (0.4) 1.8 (0.8-

4.1) 

0.14   

Glu 4.6 (0.2) 4.4 (0.2) 4.5 (0.2) 0.03 

(0.005-

0.1) 

<0.0001 0.1 (0.01-

0.5) 

0.0070 

Gly 5.4 (0.2) 5.5 (0.2) 5.4 (0.2) 10.8 (1.8-

62.9) 

0.0080 5.8 (0.7-

46.5) 

0.099 

His 4.3 (0.2) 4.3 (0.2) 4.3 (0.2) 1.8 (0.4-

8.2) 

0.46   

IleLeu 5.0 (0.3) 4.9 (0.3) 5.0 (0.3) 0.6 (0.2-

2.1) 

0.47   

Met 3.2 (0.4) 3.2 (0.4) 3.2 (0.4) 1.3 (0.5-

3.3) 

0.52   

Orn 4.5 (0.3) 4.4 (0.3) 4.4 (0.3) 0.3 (0.1-

1.0) 

0.049 0.4 (0.1-

1.8) 

0.24 

Phe 4.3 (0.2) 4.3 (0.2) 4.3 (0.2) 0.4 (0.1-

2.4) 

0.32   

Pro 5.5 (0.2) 5.5 (0.2) 5.5 (0.2) 0.3 (0.1-

1.1) 

0.069   

Ser 4.8 (0.2) 4.8 (0.2) 4.8 (0.2) 1.0 (0.2-

5.3) 

0.96   

Trp 3.9 (0.2) 4.0 (0.3) 4.0 (0.3) 3.3 (0.8-

13.2) 

0.098   

Tyr 4.3 (0.3) 4.2 (0.3) 4.2 (0.3) 0.4 (0.1-

1.2) 

0.085   

Val 5.5 (0.3) 5.4 (0.3) 5.5 (0.3) 0.7 (0.2-

2.5) 

0.63   

Table 4: Metabolomic patterns associated with peak oxygen capacity, independent of BMI *Age, 

BMI and diabetes were adjusted. 

 

 

In a separate cohort that had investigated associations between waist circumference and metabolic 

profiles, visceral adiposity was significantly associated with amino acids such as glutamate, glycine, 

methionine, isoleucine and proline132. These metabolites were similarly observed in our cohort (Table 

4), associated with poorer peak oxygen uptake in older adults. 
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I am the principal investigator of the study. My contribution includes obtaining grant funding for this 

work, setting up the study protocol, recruitment of research participants, obtaining ethical approval, 

data analyses, and manuscript review. 
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RESEARCH QUESTION #4: 

Recognising the need to incorporate multiple biological inputs, 

would an expansive machine learning (ML) approach help rank 

key factors that determine healthy cardiovascular health in 

ageing? 
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PUBLICATION #6 

 

Loh DR, Yeo SY, Tan RS, Gao F, Koh AS.  

 

Explainable Machine-Learning Predictions To Support Personalised Cardiology Strategies. Eur 

Heart J Digit Health. 2022;3:49-55 

 

“Aims: A widely practiced intervention to modify cardiac health, the effect of physical activity on older 

adults is likely heterogeneous. While machine learning (ML) models that combine various systemic 

signals may aid in predictive modelling, the inability to rationalise predictions at a patient personalised 

level is a major shortcoming in the current field of ML. Methods and Results: We applied a novel 

methodology, Shapley Additive Explanations (SHAP), on a dataset of older adults n = 86 (mean age 

72±4 years) whose physical activity levels were studied alongside changes in their left ventricular (LV) 

structure. SHAP was tested to provide intelligible visualization on the magnitude of the impact of the 

features in their physical activity levels on their LV structure. As proof of concept, using repeated K-

cross validation on the train set (n = 68), we found the Random Forest Regressor with the most optimal 

hyperparameters, which achieved the lowest mean squared error. With the trained model, we evaluated 

its performance by reporting its mean absolute error and plotting the correlation on the test set (n = 

18). Based on collective force plot, individually numbered patients are indicated on the horizontal axis, 

and each bandwidth implies the magnitude (i.e., effect) of physical parameters (higher in red; lower in 

blue) towards prediction of their LV structure. Conclusions: As a tool that identified specific features 

in physical activity that predicted cardiac structure on a per patient level, our findings support a role 

for explainable ML to be incorporated into personalised cardiology strategies.”  
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Commentary: 

1) Use of machine learning as a tool to identify personalised physical activity factors of 

impact to cardiovascular health of older adults  

 

This paper tested a method in Artificial Intelligence, known as Explainable Machine Learning, to 

identify personalised factors related to cardiovascular health state among older adults. Currently, 

multiple groups are working on developing machine learning techniques for cardiovascular disease133-

135. Backed by power in large datasets present in population-based healthcare, there is immense potential 

for machine learning to influence healthcare goals of interest to large population sets. The field of 

physical activity is a prime example, where strategies personalised to individuals will likely have 

widespread healthcare impact. Physical activity has an important role in modulating the impact of 

population ageing on cardiovascular disease as well as ageing-related declines in muscle mass and 

overall function136. However, there is wide interindividual variation in responses to physical activity137.  

 

As physical activity is a major modifiable lifestyle factor that can mitigate ageing related changes in 

cardiovascular function in conjunction to sarcopenia and frailty, focusing work from machine learning 

to personalise physical activity strategies is likely impactful. 

 

In this work, we applied machine learning methodology on a dataset of older adults whose physical 

activity levels were studied in conjunction with changes in their left ventricular (LV) structure. We 

hypothesise that intelligent visualization of physical factors of greatest impact on LV structure by the 

machine learning approach, would identify unique features on a per patient level. 
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Materials and Methods 

Study Population 

We studied data from a random pilot sample of human subjects recruited from the Cardiac Ageing 

Study (CAS)138, a prospective study initiated in 2014 that examines characteristics and determinants of 

cardiovascular function in elderly adults. The current study sample consisted of men and women who 

participated in the baseline CAS 2014-2017 examination who had no self-reported history of physician-

diagnosed cardiovascular disease (such as coronary heart disease, atrial fibrillation), stroke or cancer. 

Written informed consent was obtained from participants upon enrolment. The SingHealth Centralised 

Institutional Review Board (CIRC/2014/628/C) had approved the study protocol. 

  

Subjects underwent transthoracic echocardiography. Briefly, echocardiography was performed using 

ALOKA α10 with a 3.5 MHz probe. In each subject, standard echocardiography, which included 2-D, 

M-mode, pulse Doppler and tissue Doppler imaging, was performed in the standard parasternal and 

apical (apical 4-chamber, apical 2-chamber and apical long) views, and three cardiac cycles were 

recorded. Left ventricular ejection fraction (LVEF) and left ventricular (LV) mass were measured. From 

the parasternal long-axis view, left ventricle (LV) dimensions were assessed and LV mass was 

calculated using the Devereux’s formula 139. All measurements were measured by the same operator, 

and the measurements were averaged over three cardiac cycles and adjusted by the RR interval. 

 

Machine Learning 

Data pre-processing  

Categorical variables are converted into numerical form. Rows with missing data are removed. 

 

Model Evaluation Metric 

We performed ROC curve analysis and used mean cross-validated ROC AUC as the main metric for 

model evaluation. 

 

Comparison of classifiers 
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The Random Forest Classifier (RF) is used. Initial comparisons are performed without model tuning, 

optimisation, and feature selection. Using the Repeated Stratified K-Fold Cross Validation strategy, we 

assessed the performance of models in predicting cardiac outcome.  

 

Reproducibility 

Wherever possible, we set all ‘random_state’ = 1. This ensure that the results from each cross-validation 

splits and tree-based models are reproducible using the same random state.  

 

With the collected data, the participants’ physical functional parameters were identified and grouped 

together as features (Supplementary: Appendix A). They were then used to predict the target variable, 

LV mass. The dataset was randomly divided, with 80% used for training (n = 68) and 20% used for 

testing (n = 18). Missing feature data were also replaced with mean values. 

Feature Name Description 

SMM Skeletal Muscle Mass 

BFM Body Fat Mass 

PBF Percentage Body Fat 

WHR Waist hip ratio 

Fitness score Fitness score 

BMR Basal Metabolic Rate 

Lean LA Arm mass 

Lean T Trunk mass 

ALM Appendicular lean mass 

Appendix A: Relevant Physical Functional Parameters of the Participants 

 

The Random Forest (RF) is a machine learning technique based on a collection of decision trees140. 

Given our small dataset,  RF is a suitable choice of model because it can handle large numbers of 

variables with relatively small numbers of observations141. The random forest does this by including 

many trees, in which each tree is generated for a portion of the data which is randomly sampled with 

replacement. Each tree generates an output, and the random forest inference is determined according to 

the aggregate of the output from the different trees. The ability of the RF to deal with a non-linear 

boundary and the combination of outputs from multiple trees allows the technique to give an accurate 

output140. 
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In our approach, we used grid search and four-fold cross validation on the train set to find the optimal 

RF Regressor, which had the lowest mean validation mean squared error. The final tuned parameters 

were listed in Supplementary Table 1. With the trained model, we evaluated its performance by 

reporting its mean absolute error and plotting the correlation on the test set. 

 

Parameter Value 

n_estimators (# of trees) 5 

max_depth 2 

min_samples_split 3 

min_samples_leaf 1 

Table 1: RF Regressor fine-tuned parameters 

 

Using SHAP to Interpret Model 

SHAP was used as a unified framework to interpret model predictions. Specifically, we used Tree 

SHAP, a variant of SHAP to provide explanations for the individual predictions made by RF. We 

created waterfall and individual force plots, where each feature value was visualised as a force that 

either increases or decreases the base value. Shapley values were aggregated to provide global 

importance. 

 

Results 

We used RF regression to analyse the dataset and complemented it with SHAP to interpret the output. 

The objective is to rank variables by local and global importance, for determining LV structure, among 

a cohort of community older adults involved in physical activity.  

 

The baseline clinical characteristics and cardiovascular measurement of the study population is 

described in Table 1. 

 

 Study Population (n = 86) 

Clinical covariates 

Age, years 

Female sex (%) 

Weight, kg 

Systolic blood pressure, mm Hg 

 

72 (4.2) 

43 (50) 

59.6 (10.7) 

150 (37.1) 
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Diastolic blood pressure, mmHg 

Pulse, beats per minute 

73 (10.7) 

74 (13.0) 

Physical functional parameters  

Skeletal muscle mass, kg 22.0 (4.6) 

Body fat mass, kg 19.3 (6.8) 

Percentage body fat, % 31.4 (8.0) 

Waist-hip-ratio 0.9 (0.06) 

Fitness score 66.2 (9.2) 

Basal metabolic rate, kcal 1255 (167.2) 

Arm mass, kg 2.0 (.5) 

Trunk mass, kg 18.3 (3.4) 

Appendicular lean mass, kg 16.4 (3.8) 

Cardiac measurements by echocardiography  

Interventricular septum thickness at 

end diastole (IVSD) (cm) 

0.8 (0.1) 

Interventricular septum thickness at 

end systole (IVSS) (cm) 

1.2 (0.2) 

Left ventricular internal diameter end 

diastole (LVIDD) (cm) 

4.4 (0.5) 

Left ventricular internal diameter end 

systole (LVIDS) (cm) 

2.4 (0.5) 

Left ventricular posterior wall end 

diastole (LVPWD) (cm) 

0.8 (0.1) 

Left ventricular posterior wall end 

systole (LVPWS) (cm) 

1.4 (0.2) 

Left ventricular outflow tract (LVOT) 

(cm) 

2.1 (0.3) 

Aortic Diameter (AO), cm 3.0 (0.5) 

Left atrium (LA) (cm) 3.6 (0.6) 

Left ventricular ejection fraction 

(LVEF) (%) 

75 (7.3) 

Left ventricular fractional shortening 

(LVFS) (%) 

44 (6.8) 

Left ventricular mass, g 119 (42.7) 

Left atrial volume, ml 36 (12) 

Peak velocity flow in early diastole E 

(MV E peak), m/s 

0.6 (0.1) 

Peak velocity flow in late diastole by 

atrial contraction A (MV A peak), m/s 

0.8 (0.2) 

Ratio MV E peak: MV A peak 0.9 (0.3) 

Mitral valve flow deceleration time 

(MV DT) (ms) 

200 (31) 

Pulmonary artery systolic pressure 

(PASP) (mmHg) 

27 (6.4) 

 

Table 1: Baseline clinical characteristics and cardiovascular measurements of the study 

population. Standard deviations are in parentheses. 

 

Based on the test set (Figure 1), there is an observed correlation between the predicted and actual values 

with R2 value of 0.67. Both curves follow each other closely and an acceptable mean absolute error of 
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18.917 (less than one standard deviation of 47.704 for the test set distribution). This implies that our 

RF model is moderately accurate at predicting the LV mass. 

 

Figure 1: Line plots comparing the true and predicted LV mass by the RF Regressor on the test set. 

Based on the train set (Figure 2), BMR was the most important feature in determining the LV structure 

due to its greatest average impact on the model output, as indicated by the mean absolute SHAP values.  
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Figure 2: Bar plot consisting of features sorted by their importance, which is measured as the mean 

absolute SHAP values, within the train set.  

 

Other features such as ALM were found to be less important as their mean SHAP values were zero. As 

a more informative alternative, Figure 3 describes the relationship between the features and their global 

impact based on the computed SHAP values for each instance. For example, higher BMR contributed 

to a larger LV mass, showing positive correlation. This is because a high BMR feature value (in red) 

maps to a higher positive SHAP value, which is equivalent to the positive change in value from the 

expected LV mass prediction for that observation. On the other hand, a low BMR feature value (in blue) 

generally maps to a lower SHAP value that falls within the left distribution, where most of them 

correspond to a negative contribution to the expected output. 

 

 

Figure 3: Summary plot describing the relationship between the value of the feature and the impact 

on the prediction within the train set. Only the top 7 features were displayed.  
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Based on the test set (Figure 4), the SHAP TreeExplainer visually provides local interpretability to a 

model’s prediction for an individual patient in two related flavours. Figure 4A can be thought of as the 

decomposed version of Figure 4B, detailing the model’s decision in a sequential manner. This is because 

each of the feature contribution can be independently calculated using SHAP values and then summed 

up to give the final prediction. For example, when predicting the LV mass for patient #6, a BMR feature 

value of 1516 contributed a corresponding SHAP value of 13.04, resulting in a final predicted LV mass 

of 132. It can also be observed that the effect of BMR for this patient outweighs other weaker positive 

factors (e.g., Lean T and Lean LA) and negative factors (e.g., SMM and BFM). 

 

 

 

Figure 4: SHAP provides explainability to the predicted LV mass of the black box RF Regressor for 

patient #6 in the form of waterfall plot (A) and individual force plot (B).  
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Individual force plots can also be combined to produce stacked SHAP explanations, which can be 

arranged according to their original ordering (Figure 5) or clustering similarity (Supplementary Figure 

A). Based on the test set, Figure 5 resembles the line plot for the predicted values in Figure 1, where the 

vertical axis describes the predicted LV mass by the RF Regressor while the horizontal axis shows the 

original patient ordering. Each band width implies the magnitude (i.e., effect) of physical parameters 

(higher in red; lower in blue) towards prediction of their LV structure. Again, using patient #6 as an 

example, BMR was observed to be the single predominant positive factor on LV mass, outweighing 

other weaker positive factors and negative factors. In contrast, LV mass in patient #11 was predicted 

jointly by several positive factors (e.g., SMM, BMR, Lean T). This suggests that intervening on these 

prominent physical functional parameters (in red) would more likely improve the cardiac health state 

of patient #11, as opposed to patient #6 who has less deterministic parameters. 

 

 

 

Figure 5: Collective force plot for test set based on original patient ordering. The plot has been 

superimposed to show the impact of the physical functional parameters for patients #6 and #11. 
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A heatmap plot with the same clustering order, yielding the same curve can also be presented 

(Supplementary Figure A). In both figures, clinicians can see that the patients #6, #8 and #12 were 

grouped as similar instances (renamed as instances 1, 2 and 3 respectively) due to their comparable 

features after clustering. The clinicians can therefore infer that these patients in the same subgroup can 

be characterised as having similarly high BMR as the main contributor to their poor cardiac outcome, 

which also suggests activities that can lower their BMR may be effective for this group of patients. 

 

 

 

Supplementary Figure A: Using hierarchical agglomerative clustering to order instances within the 

test set by explanation similarity, presented in the form of a (A) Collective Force Plot and (B) 

Heatmap Plot. 
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2) Use of machine learning for ‘Interpretation’ in personalised medicine: a new frontier 

 

In this exploratory work, we demonstrated the utility of SHAP to enhance interpretation of factors 

associated with physical activity and cardiac structure.  

 

In contrast to vast volumes of work performed on optimizing model accuracy133-135, machine learning 

work on model interpretability is scarce. However, our work adds to recent work by a handful of others 

who recognise the value of SHAP for model interpretation. In the field of cardiology, Lu et al142 used 

XGBoost regression in conjunction with SHAP analyses to identify heart failure clinical subtypes based 

on electronic health records. Their model utilised structured data from electronic health records to aid 

clinicians in detecting heart failure stages but did not include other clinical information. In our work, 

we studied clinical parameters in conjunction with patient-specific LV structure and determined the 

relative importance of patient specific factors. The use of transthoracic echocardiogram143 as an imaging 

test of choice for LV assessment, is an added novelty of our work. Similarly, another recent study used 

SHAP approach to depict electrocardiographic features associated with left ventricular geometry144. 

Taken together, innovative solutions that combine clinical parameters with detailed cardiovascular 

imaging may represent novel approaches for machine learning interpretation. 

 

The existing gaps in machine learning work that are geared towards visual interpretation present fresh 

opportunities for this field. In a large review comprising of 103 cohorts and over 3 million individuals145, 

most studies in machine learning only reported the best performing models and evaluation metrics that 

were suited to their own dataset. While these methods should continue to form the backbone of ML 

work, stronger emphasis on interpretability could further enhance clinical applications. The clinicians 

also may be able to better corroborate findings across different studies despite the technical 

heterogeneity (e.g., hyperparameter selection, data partitioning). In this study, we showed that the RF 

regression model performed well in predicting the LV mass using a set of physical functional 

parameters, and further demonstrated the use of SHAP as a visualization tool to provide informative 

plots based on explanations that justify the model’s decision.  
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As a unified framework for interpreting model predictions, SHAP is associated with three key desirable 

properties, namely local accuracy, missingness and consistency146. These properties make SHAP a 

superior method over other attribution methods such as Local Interpretable Model-Agnostic 

Explanations (LIME)147. On a local level, individual force plot and waterfall plot can be created for 

every instance, where each feature value can be visualised as a force that either increases or decreases 

the base value (i.e., the average of all predictions). Furthermore, all the individual force plots can also 

be stacked horizontally to produce a collective force plot and placed side by side according to clustering 

similarity, allowing clinicians to easily identify groups of similar instances. 

 

As an extension, Shapley values can also be aggregated to provide global interpretability. Global 

importance can be calculated by summing the absolute Shapley values per feature across the data as a 

way of quantifying the marginal contribution of each predictor towards the target variable. By sorting 

the features in decreasing order of importance, the feature importance plot allows clinicians to visualise 

the most important features that require more attention. It is critical to point out that the implementation 

of SHAP, which is based on the magnitude of feature attributions, is different from the permutation 

feature importance, which is based on the decrease in model performance.  

 

SHAP also offers summary plot, which may be more informative as it combines feature importance 

with feature effects as well as shows the relationship between the value of a feature and its impact on 

the prediction from a more global perspective. Finally, a heatmap can also be plotted, which allows for 

data in two dimensions. The variable feature importance is sorted in descending order along the vertical 

axis and uses hot-to-cold scheme to reflect the features’ contributions towards the predictions for the 

instances that lie on the horizontal axis. 

 

The potential impact of local explanations for ML models is profound. The incorporation of an 

explainability tool like SHAP into clinical workflow is especially important in overcoming the 

resistance of adopting such black box models due to the perils of blindly trusting their outputs at face 
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value. Understanding why these algorithms make certain predictions is just as crucial as their accuracy 

because it facilitates transparency and can assist the clinicians to make more informed decisions. The 

upshot of this implementation is that patient outcomes may improve. Further research in this area is 

needed.  

 

3) Machine learning to converge heterogenous features, including metabolomics and 

physical activity and its effects on cardiovascular health 

 

We used machine learning to study multidomain features. The model identified key physical functional 

parameters that identified cardiac function (E/A ratio) at the individual patient level. The data―clinical 

data, medical images, biological factors, physical function data, socioeconomic data, etc.―were used 

to train the model using AI methods that included pre-processing of each cross-validation fold, 

identification and aggregation of significant features, and optimization of each feature set with scaling. 

Extracted feature sets were input to derive optimal pipelines to yield a final tuned model (Figure A) 

 

 

 

Figure A: Machine Learning Approach to Conglomerate Multiple Datasets for cardiovascular 

ageing 
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In total, 226 features across 6 feature sets. Subsequently, the model extracted top 30 features (body size, 

multiple timepoint acyl carnitines, amino acids, natriuretic peptides and hemodynamics) across all 

cross-validation splits, increasing ROC AUC to 0.791. Elimination of lowest ranked features resulted 

on ROC peaking to 0.825 (top features: body size, multiple timepoint acylcarnitines). Tree-based 

pipeline optimization model tuning improved final AUC to 0.875. 

 

 

 

Figure B: Top ranked features among older adults predictive of cardiac ageing indicates high 

importance of acylcarnitines (denoted as C14:2, C8, C22:2, C20:1) in addition to conventional 

factors such as physical fitness score.  
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Clinical Implications of this machine learning approach 

 

Machine learning conglomerates multidomain feature sets to predict cardiovascular health states and 

may be used to follow age- and inter-related factors. Identified significant features may elucidate 

modifiable risks or prioritise candidate therapeutic targets. 

 

Our approach builds upon those performed by existing studies of applied machine learning in 

metabolomics and cardiovascular disease, where machine learning techniques have been used to 

conglomerate large health datasets. For instance, random forest feature importance have been used to 

identify both weight gain148 and heart failure biomarkers149 from  metabolomics and clinical data. 

Similar techniques have been applied to both create a predictive model through evaluation of ROC AUC 

using an ensemble of machine learning models to identify predictors of cardiovascular disease using 

random forest feature importance150.  

 

Limitations 

 

Our exploratory work may be limited by a small dataset. However, the goal of this exploration was to 

determine suitable machine learning methods to present data in clinically useful ways, rather than on 

model accuracy. In the area of interpretability, we have confined our results to using SHAP 

methodology. We acknowledge that there may be other methodology for interpretability, such as 

LIME151, counterfactual fairness152 and justification narratives153 that are available in the wider artificial 

intelligence field. However, in our task which requires the measurement of feature importance for the 

clinicians to interpret, SHAP stands out as the only additive feature attribution method that satisfies the 

two key properties of consistency and accuracy146. 

 

While there are no specific guidelines on minimum sample sizes in machine learning, the consensus is 

that the more features there are, the greater the sample size should be154. The smaller the sample size, 

the higher the resulting variance which will be further exacerbated by greater number of features. The 
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consequence is overfitting models that might have overestimated scores, which perform poorly in real-

world scenarios. For investigations that involve multiple domains such as ageing, and lifestyle factors 

such as physical activity, this may be evident from high variance seen in the ROC curves. 

 

The field also recognises that ethical issues may arise with AI-driven medical judgements. Patients may 

find it challenging to understand how they work, and physicians may find it difficult to accept and 

confirm recommendations made by AI. Patients and physicians may subconsciously lose some of their 

autonomy in treatment decision-making. While AI systems may produce precise predictions, 

understanding the reasoning behind the treatment recommendations is essential for making an educated 

choice, and establishing comprehensible and transparent AI algorithms are important steps. While AI 

algorithms may make treatment suggestions, physicians must still be ultimately responsible for making 

medical decisions in alignment with patient preferences and informed consent. 

 

Future directions 

 

Artificial intelligence has great capacity to include many diverse concepts in clinical research that has 

evaded traditional statistical methods of analysis. Softer clinical characteristics, such as ethnicity, 

socioeconomic status, and healthcare financing systems, could be included in future AI models to derive 

more relevant real-world interpretations. Clinical studies may also benefit from having more liberal 

inclusion criteria and better recruitment prospects with a broader-based analysis method using AI. Using 

AI permits the inclusion of more extensive datasets and more variables to examine complex 

intervariable interactions and feature weightage without dropping data. Extending this application by 

embedding AI algorithms in live datasets or registries to perform dynamic real-time analysis adaptive 

to changes in global trends or novel therapies may be next steps. 

 

I am the principal investigator of the study. My contribution includes obtaining grant funding for this 

work, setting up the study protocol, recruitment of research participants, obtaining ethical approval, 

data analyses, and manuscript review. 
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THESIS CONCLUSION 

 

Ageing-related changes in cardiac structure and function are linked to physical activity. Our work has 

observed relationships between physical activity and fatty oxidation pathways, linked to aerobic 

capacity155 and mitochondrial fuel metabolism pathways. These findings suggest metabolic 

underpinnings between physical activity and cardiovascular health in ageing. 

 

Given the importance of physical activity as an essential modifiable lifestyle factor in mitigating ageing-

related cardiovascular risk, a better understanding of the effect of physical activity on underlying 

cellular metabolic processes has improved our understanding of disease pathophysiology and highlights 

new potential targets for disease prevention. We acknowledge that our work has focused on leisure time 

physical activity rather than exercise training. While our findings may not be easily extrapolated to 

more extreme forms of exercise training, leisure time physical activity is prognostically related to major 

adverse cardiac events156, and thus relevant to population-based cohort studies. 

 

Much work remains ahead of us. There are limitations within omics technology such as metabolomics 

that the field should be cognisant of.  

 

First, observed effect changes are sensitive to cohort sizes and prevalence of disease in the studied 

population. Therefore, magnitude of associations between metabolites and cardiac risks may not be 

generalisable to other cohorts. However, broadly speaking, interpretation may be extrapolated to similar 

cohorts based upon context, such as community versus hospital cohorts. Our work reflect data from 

community cohorts and would reflect general population across the life course of ageing.  

 

Secondly, sex dimorphisms in the serum metabolome have been observed. Interpretations of 

metabolomics and cardiac data need to be considered in future larger studies to account for sex 

dimorphisms in the serum metabolome157, 158. However, studies have shown that age and female sex are 
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associated with greater ventricular stiffness in community adults without cardiovascular disease. Thus, 

our findings are relevant to real-world scenarios 159, 160.  

 

Thirdly, dietary, and other lifestyle factors pertinent to metabolomic perturbations were not adjusted. 

No restrictions on diet and the fasting state of blood tests were not specified in this real-world 

investigation of older adults 10. While diet and exercise levels may affect metabolites in the blood 161, 

fasting has not been a major source of variability in most metabolites although acylcarnitines may 

demonstrate some variability based on fasting status 162, 163. For future studies, correlations between 

hexoses and essential amino acids with markers of mitochondrial metabolism may provide insights into 

the nutritional status of participants 164.  

 

Fourth, using targeted metabolomic profiling allowed for quantifying absolute metabolite 

concentrations but resulted in a limited breadth of analysis. However, targeted profiling allowed us to 

demonstrate a quantifiable extent in relation to cardiovascular endpoints. Although these metabolites 

represent a small portion of the human metabolome, they report on critical pathways for cellular 

metabolism.  

 

Fifth, skeletal muscle mass, a relevant variable of interest in ageing studies 165 was not investigated in 

these studies. Circulating long chain acylcarnitines and alanine levels may help track changes in 

metabolic pathways common to cardiac and skeletal muscle. Future studies that include biomarkers, 

such as muscle mass-derived cystatin C or nitric oxide-mediated epithelial signalling citrate/arginine 

ratio, may provide further mechanistic insights 166, 167.  

 

Sixth, these data are observational in nature and preclude causal inferences. Proper randomised control 

trials are necessary to provide robust evidence for the role of physical activity in altering metabolomics, 

in addition to how these changes will impact cardiovascular health in ageing.  
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Seventh, we did not collect data on endothelial function of the participants. We recognise the importance 

of endothelial function in population-based studies of cardiovascular health. 

 

Despite these limitations, our findings deepen our understanding of the mechanistic effects of physical 

activity on cardiovascular health in ageing. Further studies with larger cohorts or longer follow-ups may 

better depict the clinical impact of these mechanisms and could include multiple-omics techniques that 

combine genomics, transcriptomics, and proteomics. 

 

With regards to artificial intelligence, it has transformed the way data aids in medical diagnosis and 

delivery of medical care. Healthcare is rapidly evolving, and the strength of artificial intelligence lies 

in its capacity to rapidly analyse numerous patient traits and large volumes of data to deliver 

personalised medicine. In treatment decision-making, artificial intelligence methods may suggest 

customised interventions by comparing each patient with instances like their own, and identify subtle 

patterns not readily seen using conventional methods, while providing patient-centred care accounting 

for each person's particular requirements and traits. Previously, physicians had made treatment 

recommendations guided by their own knowledge, clinical guidelines, and experiences, in discussion 

with patient's preferences. However, the complexity of contemporary healthcare and rapidly growing 

collection of medical data, including omics, has led to a need for more sophisticated decision-making 

tools.  

 

Overall, the omics explosion represented in this thesis via metabolomics will require concomitant deep 

analysis alongside numerous patient traits and lifestyle habits such as physical activity. By drawing in 

upon all these complexities, artificial intelligence represents a new tool to provide recommendations 

customised to individual patient profiles, maximizing the chances of favourable outcomes in complex 

life course like ageing, in contrast to a one-size-fits-all strategy faced commonly in clinical guidance.  
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Future Directions 

The role of the metabolome in cardiovascular health prediction and risk stratification would be 

expanded in the future, to include pre-specified analyses in specific patient subsets such as between 

women versus men. More rigorous evaluation of the observed metabolic signals could also be 

performed within prospective randomised trial settings, including response of the metabolome to 

cardiac treatments or interventions. Interrogation of the metabolome in relation to more diverse lifestyle 

factors such as diet and microbiome would also be useful. 
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DETAILED METHODS 

 

We used data from a cohort study of older adults recruited from community population. The Cardiac 

Ageing Study (CAS) was a community-based study of middle aged to older adults (mean age 72±4 

years) examined in 2014-2017 who did not have clinical cardiovascular disease (CVD) at baseline. In 

CAS, we characterised CV structure and function using novel cardiovascular imaging techniques such 

as magnetic resonance imaging and echocardiography. We used imaging markers to define individuals 

with worse structural and functional alterations that likely represent cardiovascular ageing. In 

conjunction with physical activity and circulating metabolites in this population, we performed cross-

sectional analyses.  

 

Cardiac Magnetic Resonance Imaging 

Cine cardiac magnetic resonance was performed using balanced steady state free precession sequence. 

All participants were imaged on a 3T magnetic resonance imaging system (Ingenia, Philips Healthcare, 

The Netherlands) with a dStream Torso coil (maximal number of channels 32). BFFE end-expiratory 

breath hold cine images were acquired in multi-planar long-axis views (2-, 3-, and 4-chamber views) 

and a stack of parallel short-axis views to cover the left ventricle (LV) from base to apex. Typical 

parameters were as follows: TR/TE 3/1 ms; flip angle, 45°; in-plane spatial resolution, 1.0 mm x 1.0 

mm to 1.5 mm x 1.5 mm; slice thickness, 8 mm; pixel bandwidth, 1797 Hz; field of view, 300 mm; 

frame rate, 30 or 40 per cardiac cycle. We developed an in-house semi-automatic algorithm to track the 

distance (L) between the left atrioventricular junction and a user-defined point at the mid posterior LA 

wall on standard CMR 2- and 4-chamber views35, 36. Both 2- and 4-chamber views were used to generate 

the average strain and strain rate results.  Longitudinal strain (𝜀) at any time point (𝑡) in the cardiac 

cycle from end-diastole (time 0) was calculated as: 𝜀(𝑡) = (𝐿(𝑡) − 𝐿0)/𝐿0. LA reservoir strain (𝜀𝑠), 

conduit strain (𝜀𝑒) and booster strain (𝜀𝑎) were calculated at 𝑡 equals left ventricular end-systole, 

diastasis and pre-LA systole, respectively. To derive the peak strain rate (SR) indices, peak values of 

the first time derivative of the strain-time curve at systole, diastasis and LA contraction were measured. 
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Strain and SR parameters from both 2- and 4-chamber views were averaged to obtain mean results for 

analysis 

 

Echocardiography 

Echocardiography was performed using ALOKA α10 with a 3.5- MHz probe. In each subject, standard 

echocardiography, which included 2-D, M-mode, pulse Doppler and tissue Doppler imaging, was 

performed in the standard parasternal and apical (apical 4-chamber, apical 2-chamber, and apical long) 

views, and three cardiac cycles were recorded. Left ventricular ejection fraction, left atrial (LA) volume, 

and LA volume index (LAVI) were measured. The trans-mitral flow E and A waves with the sample 

volume position at the tip of the mitral valve leaflets from the apical 4-chamber view were recorded by 

Doppler echocardiography. Myocardial relaxation (E/A) ratio was computed as a ratio of peak velocity 

flow in early diastole E (MV E) (m/s) to peak velocity flow in late diastole by atrial contraction A (MV 

A) (m/s). Pulsed wave tissue Doppler imaging was performed with the sample volume at the septal and 

lateral annulus from the apical 4-chamber view. The frame rate was between 80 and 100 frames per 

second. The tissue velocity patterns were recorded and expressed as E’, and A’. All measurements were 

measured by the same operator and the measurements were averaged over three cardiac cycles and 

adjusted by the RR interval. The specific cardiovascular function of interest in this cohort of older adults 

was E/A properties, for which impairments in E/A, would suggest adverse myocardial ageing121. E/A 

was defined by ratio of peak velocity flow in MV E to peak velocity flow in late diastole by MV A, also 

referred to as the E/A ratio. MV E refers to the peak velocity of blood flow during early diastole from 

the left atrium into the left ventricle, where blood flows passively into the left ventricle during 

relaxation. MV A refers to the peak velocity of blood flow into the left ventricle in late diastole due to 

contraction of the left atrium.  

 

Metabolomics Profiling 

We used targeted metabolomics profiling for this work. Antecubital venous blood samples (20–30 ml) 

were taken from consenting participants in the morning. After collection, the blood samples were 

immediately placed on ice for transportation and were processed within 6 h to obtain serum samples, 
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which were subsequently stored at −80 °C. Serum metabolomic profiling analysis was performed in the 

Duke-NUS Metabolomics Facility. Thawed serum samples (100 μl) were spiked with 20 μl deuterium-

labelled amino acid/acyl-carnitine mixture and diluted with 800 μl methanol. After centrifugation of the 

mixture at 17,000 g for 5 mins at 20 °C, the supernatant fraction was collected and divided into two 

parts: one (100 μl) for acylcarnitine analysis and one (10 μl) of each extracted serum sample. Amino 

acids were separated using a C8 column (Rapid Resolution HT, 4.5 × 50 mm, 1.8 μm, Zorbax SB-C8) 

on an Agilent 1290 Infinity LC system (Agilent Technologies, CA, USA) coupled with quadrupole-ion 

trap mass spectrometer (QTRAP 5500, AB Sciex, DC, USA). Mobile phase A (10/90 

Water/Acetonitrile) and Mobile phase B (90/10 Water/ Acetonitrile), both containing 10 mM of 

Ammonium formate, were used for chromatography separation. Acylcarnitine measurements were 

made using flow injection tandem mass spectrometry on the Agilent 6430 Triple Quadrupole LC/MS 

system (Agilent Technologies, CA, USA). The sample analysis was carried out at 0.4 ml/min of 80/20 

Methanol/water as mobile phase, and injection of 4 μL of sample. Data acquisition and analysis were 

performed on Agilent Mass Hunter Workstation B.06.00 Software.  
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