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Fluorescence imaging of dynamical processes in live cells often results in a low signal-to-noise ratio. We
present a novel feature-preserving non-local means approach to denoise such images to improve feature
recovery and particle detection. The commonly used non-local means filter is not optimal for noisy bio-
logical images containing small features of interest because image noise prevents accurate determination
of the correct coefficients for averaging, leading to over-smoothing and other artifacts. Our adaptive
method addresses this problem by constructing a particle feature probability image, which is based on
Haar-like feature extraction. The particle probability image is then used to improve the estimation of
the correct coefficients for averaging. We show that this filter achieves higher peak signal-to-noise ratio
in denoised images and has a greater capability in identifying weak particles when applied to synthetic
data. We have applied this approach to live-cell images resulting in enhanced detection of end-binding-
protein 1 foci on dynamically extending microtubules in photo-sensitive Drosophila tissues. We show
that our feature-preserving non-local means filter can reduce the threshold of imaging conditions
required to obtain meaningful data.

� 2010 Elsevier Inc. Open access under CC BY license.
1. Introduction

Fluorescence live-cell imaging is commonly used to study intra-
cellular molecular dynamics (Stephens and Allan, 2003), but only
relatively recently has the full quantitative value of such data been
commonly exploited (Jaqaman et al., 2008; Meijering et al., 2006).
In live cell microscopic imaging there is always a compromise be-
tween image quality and cell viability. Excitation of fluorescent
probes causes photo-bleaching and photo-toxicity, which limit
the light intensity and exposure times that can be used. The
requirement to image fast and in multiple dimensions to capture
dynamic intracellular events also constrains illumination and
exposure regimes and requires fast camera readout. This in turn re-
sults in low signal-to-noise ratio (SNR) fluorescence images with
mixed Poisson–Gaussian noise (Stephens and Allan, 2003; Jaqaman
et al., 2008; Meijering et al., 2006). Under such circumstances,
denoising techniques become a critical tool to improve quantita-
tive analysis of these images in order to understand dynamic intra-
cellular processes and their underlying mechanisms (Jaqaman
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@hw.ac.uk (Z. Qiu), a.h.green
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et al., 2008; Meijering et al., 2006; Sbalzarini and Koumoutsakos,
2005; Genovesio et al., 2006).

Mean filtering of adjacent pixels is one of the simplest tools for
reducing noise contamination, but suffers from the disadvantage
that resolution is reduced. A more intelligent approach to noise
removal is to make use of the redundancy in images arising from
repeated patterns and average only similar pixels. A popular imple-
mentation of this idea is the non-local means (NLM) filter (Buades
et al., 2005; Buades et al., 2008), which estimates the coefficients
for averaging (the extent to which pixel values may be averaged to-
gether) by comparing the similarity of patches of pixels. The NLM fil-
ter belongs to a class of filters known as feature-preserving filters. In
addition to the NLM filter and its recently improved versions (Brox
et al., 2008; Mahmoudi and Sapiro, 2005; Tasdizen, 2008; Yang
and Clausi, 2009; Kervrann and Boulanger, 2008; Boulanger et al.,
2008; Boulanger et al., 2010) the bilateral filter (Tomasi and Mandu-
chi, 1998; Jiang et al., 2003; Pantelic et al., 2006) is also based on fea-
ture preservation. All of these methods attempt to identify features
to be preserved while eliminating the noise by averaging.

In contrast to the feature-preserving approach, the alternative,
edge-preserving approach, uses local information in images,
namely the gradient of pixel gray values, to preserve the edges that
bound image features. The partial differential equation and varia-
tional methods belong to this category (Perona and Malik, 1990;
Rudin et al., 1992; Frangakis and Hegerl, 2001; Chan et al., 2001).
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In live cell fluorescence imaging, objects of interest are often small
particles with limited pixel resolutions so that their edges are
poorly defined and their detection can be easily compromised by
noise (Meijering et al., 2006; Boulanger et al., 2008). Edge-preserv-
ing algorithms based on local gradient information may not, there-
fore, be robust in identifying the boundaries of small particle
features to permit successful denoising of such images. On the
other hand, a particle-like feature corresponds to a (small) local-
ized area of high value pixels on average (Jaqaman et al., 2008;
Sbalzarini and Koumoutsakos, 2005; Genovesio et al., 2006). This
feature can be adopted to assist in noise reduction in feature-pre-
serving approaches.

Recent improvements to the NLM filter have focused on more
accurate and faster computing of the Euclidean distances (intensity
differences) between neighborhoods, used to estimate the coeffi-
cients for averaging (Brox et al., 2008; Mahmoudi and Sapiro,
2005; Tasdizen, 2008; Yang and Clausi, 2009). The patch-based fil-
ter (PBF) (Kervrann and Boulanger, 2008; Boulanger et al., 2008;
Boulanger et al., 2010; Carlton et al., in press) is a state-of-the-
art development of the non-local means filter in which the sizes
of the searching windows are adaptively selected, so achieving a
better balance between the accuracy of the point-wise estimator
and stochastic error at each spatial position. It has demonstrated
a great capability for restoration of natural images with minimal
a priori knowledge.

In this paper, we extend the NLM approach by employing an
additional new and robust non-local statistic measurement to de-
noise low SNR fluorescence live-cell images. Our work is motivated
by the observation that denoising algorithms based solely on the
Euclidean distance measurement of pixel gray values (as in the
existing non-local means approaches) may lead to poor feature
preservation when they are applied to low SNR images containing
weak particle-like objects. In our newly proposed method we
adaptively apply the NLM filter to preserve these weak features
using an additional term for the probability that a given pixel be-
longs to a particle. We show that our proposed feature-preserving
method achieves an improved balance between feature enhance-
ment and background smoothing. Moreover, it requires no precise
information about noise distribution and is computationally effi-
cient. In our experiments we establish that the method can achieve
a higher peak signal-to-noise ratio (PSNR) and higher sensitivity to
pick out true particles than several commonly used algorithms
when applied to both synthetic and real fluorescence live-cell
images. We first present the method underlying the new feature-
preserving non-local means (FP-NLM) approach, including the con-
struction of the particle probability images from original grayscale
images. Tests of the FP-NLM filter are then carried out on synthetic
data, sub-resolution bead images and live-cell images. Conclusions
and remarks are presented at the end of the paper.
Fig. 1. Three Haar-like features used to classify each pixel into two classes. (A) Hs
1;

(B) Hs
2; (C) Hs

3, where s is the scale. For a central pixel i, Uk=1–3 and Vk=1–3 are the
corresponding particle and background areas, respectively.
2. Method

Visually, an important manifestation of a particle-like feature
(particle) in live cells is a locally concentrated cluster of pixels with
relatively higher gray values compared to their immediate sur-
roundings. Our idea is to find a new non-local statistic method that
can enhance such particle-like features in images that suffer from
severe noise contamination and employ it for image processing. To
achieve this goal, we have mapped an original grayscale image to a
feature image that describes particle probability by novel use of
(non-local) Haar-like features (Viola and Jones, 2004), which have
proven very effective in human face detection algorithms. The im-
age mapping is carried out in the following steps. First, the Haar-
like feature calculation is made for each pixel. This calculation
effectively determines the maximum contrast between a (scalable)
small area centered at this pixel and the area of its immediate sur-
roundings (Fig. 1A–C). A simple threshold is then applied to this
value to classify the pixel into two classes, ‘likely belonging to a
particle’ or ‘background’. A ‘particle probability’ at each pixel is
then computed as the ratio of the number of pixels that likely be-
long to a particle and are also spatially connected, to the total num-
ber of pixels in a small region centered at the pixel. An adaptive
non-local means filter is proposed which makes use of the new
particle probability image and includes two Gaussian weighted
Euclidean distance measurements: the first measures the similar-
ity of pixel gray values between two neighborhoods in the original
grayscale image (as in non-local means filter), whereas the second
quantifies the similarity in particle probability between the same
neighborhood. Since the latter measurement is capable of greatly
enhancing the particles that are barely visible in the former, the
proposed adaptive non-local means filter is intended to preserve
weak particle-like objects when it is used to denoise low SNR fluo-
rescent live-cell images.

2.1. Haar-like features

Haar-like features were first introduced to detect the human
face. In the original work by Viola and Jones (2004), a very large
set of simple rectangular features based on Haar functions (or
wavelets) (Gonzalez and Woods, 2002) were constructed to mea-
sure the contrast between the facial features and their immediate
surrounding areas, i.e., the difference between the average pixel
gray value of the feature versus its neighborhood. In fluorescence
live-cell images a particle has, on average, higher pixel gray values
than its immediate surroundings (background), even in the case of
poor SNR and contrast. We therefore use three simple Haar-like
features Hs

k (k = 1, 2, 3) to detect particles in living cells, where
the index s denotes the scales (size) of the features. As depicted
in Fig. 1, for a given scale the shaded (particle) areas have different
shapes or orientations and are surrounded by the white (back-
ground) areas within a square Haar window. The features are mea-
sured by:

HkðiÞ ¼ max
s
ðHs

kðiÞÞ �max
s
fMUk

ði; sÞ �MVk
ði; sÞg ð1Þ

where MUk
and MVk

are respectively the means of the pixel values in
the shaded area, Uk, and in the white area, Vk, within the Haar win-
dows centered at pixel i (i � (x,y)). Therefore, Hk is the maximum
difference at different orientations of the averaged gray values be-
tween a local area and its surroundings for different scales (sizes
of Haar windows). These features can be considered as a set of mul-
ti-scale directional steerable filters (Freeman and Adelson, 1991),
which were designed to obtain optimal response of a filter at differ-
ent orientations and scales. In applying Eq. (1), the sizes of the ob-
jects of interest are first estimated empirically from the raw image
data, and the maximum size of the shaded area in the Haar window
should be set just larger than that of the objects. Since features in
live cells are usually much simpler than those of a human face, no
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spatial correlation of different Haar-like features is required to iden-
tify the particle-like objects. Consequently, the decision network
used in the face detection is not required. Instead, we combine
the three Haar-like features linearly:

HðiÞ ¼
X3

k¼1

ckHkðiÞ ð2Þ

where ck,
P

kck ¼ 1, are the weights of the Haar-like features. For ob-
jects of no preferred shape and orientation, an equal weight of
ck = 1/3 (k = 1, 2, 3) is the obvious choice. In order to use the
Haar-like features in a simple manner to construct a particle prob-
ability image, we classify each pixel, i, to belong to a particle if:

HðiÞP k ð3Þ

where k is the (positive) threshold value in determining if the gray-
scale difference value is consistent with a region being a particle or
not. In applying Eq. (3) we empirically choose a ‘weak’ threshold va-
lue, k, so that few pixels belonging to a particle are wrongly ex-
cluded (see Table 1). Subsequent steps are able to further reduce
false positives as described below.

2.2. Particle probability image

We use the results of Eq. (3) to construct a particle probability
image from the original grayscale image. To do so we define the
probability of finding a particle at position i to be the ratio:

PðiÞ ¼ ðDN=NtotÞAi
ð4Þ

where Ntot is the total number of pixels in a given (small) area Ai

centered at i and DN is the number of pixels in Ai that satisfies
Hði0ÞP k (including i0 = i) and are spatially connected. The number
DN is calculated by using the simple 4-nearest neighborhood grow-
ing strategy (Gonzalez and Woods, 2002) from the center of the
neighborhood. The particle probability image is generated by apply-
ing Eq. (4) at each pixel position and therefore depends upon: the
Haar-like feature at this pixel, those in the surrounding area and
whether these pixels are spatially connected. The probability is high
only when there is a concentration of pixels that satisfy Eq. (3),
which reflects very well the characteristics of a particle in a gray-
scale image. Initial overestimation of the particle class (those pixels
that belong to particle features), due to the weak threshold intro-
duced in Eq. (3), is reduced by application of this connectivity crite-
rion, since noise spikes are randomly distributed in space and are
not spatially connected. In general, the size of the neighborhood
in measuring Eq. (4) is chosen to be close to the size of the smallest
particle expected in an image.

We undertook a case study mapping a grayscale image to a par-
ticle probability image by using Eqs. (1)–(4) on a synthetic image
Table 1
Parameters of FP-NLM filter [used in Eqs. (1)–(6)].

Parameter Values

Wi Searching window centered at position i, used to
calculate the average in Eq. (5)

21 � 21 pixels u

Ni Neighborhood centered at position i, used to calculate
the Euclidean distance

7 � 7 pixels use

h First filtering parameter h = a1 � r,a1 2 [0
g Second filtering parameter g = r/a2, a2 2 [5

detection of we
s The scale of Haar window used to calculate Haar-like

features Hs
k (k = 1, 2, 3)

Sufficiently larg
37 � 37 pixels

k Weak threshold to classify each pixel into two classes
(particle/background)

Typically 20% of
and a typical ba

Ai An area centered at position i to calculate particle
probability

Typically the siz
that simulates live-cell data recorded from a microscope. The data
are constructed by using a linear model (Boulanger et al., 2008;
Boulanger et al., 2010) comprising particles, uneven background,
Poisson and Gaussian noises (standard deviation r = 20 for this 8
bit data). The synthetic noise-free and noisy images are shown as
Fig. 2A and B. As seen, particle-like features have varying signal
strengths and shapes, the size of which can be estimated by using
the two (orthogonal) axes of a particle, the shortest is around 5 pix-
els whereas the longest is 30 pixels. Accordingly, we choose 5 dif-
ferent Haar-like windows (s = 1–5), from 7 � 7 to 37 � 37 pixels, to
ensure that the shaded areas in the Haar window varies sufficiently
to cover the size range of the particles as required for measuring
Eq. (1). To allow for a sufficient margin to detect faint particles in
images, we empirically set the threshold k in Eq. (3) to be 20% of
the difference in the averaged pixel gray values between a typical
particle region and a typical background region across the imaged
field. Setting the threshold value in this way avoids falsely exclud-
ing true particle objects and accommodates particle intensity vari-
ations across the images under investigation. We find that this
threshold determination works well for the synthetic and real
live-cell images presented in this paper. [Note: with images where
signal falloff is severe, image data should first be flat field corrected
(for example, by using adaptive histogram equalization methods
(Pisano et al., 1998; Stark, 2000)) before applying Eqs. (1)–(4).]

A binary image from Haar-like feature based classification is pre-
sented in Fig. 2C (bright for HðiÞP k and dark for HðiÞ < kÞ showing
that all the particles in the image are identified. The isolated high
gray value pixels are a consequence of overestimation due to the
weak threshold and high noise contamination. Fig. 2D is the particle
probability image derived from the binary image by using Eq. (4)
with Ai being 5 � 5 pixels, which corresponds to the size of smallest
particles in the image. By comparison to the noise-free image
(Fig. 2A), we find the distributions and strengths of the probabilities
(Fig. 2D) are generally well matched to the real particles in the gray-
scale image. While the algorithm at this stage does still overestimate
the identification of particles in this image, the effect is reduced in
comparison to the binary image (Fig. 2C) because the isolated spikes
in the latter are averaged over the area of the neighborhood. As seen
in Fig. 2D (marked by ‘a’), the overestimation due to noise and lim-
ited resolution of the Haar windows used can lead to the joining to-
gether of two or more spatially proximate particles in the probability
image. We show below that the overestimation at this level does not
play an important role in denoising in our proposed feature-preserv-
ing non-local means (FP-NLM) filter.
2.3. Feature-preserving non-local means (FP-NLM) filter

In the newly proposed FP-NLM filter an image is processed by
two Gaussian weighted Euclidean distances, measured in grayscale
sed in FP-NLM and NLM. Variable window size in PBF

d in FP-NLM and NLM; 9 � 9 pixels used in PBF

.75,1] chosen in NLM (Buades et al., 2008), h = 0.9r used in FP-NLM; N/A for PBF
0,100] is chosen empirically in FP-NLM; N/A for NLM and PBF. Reduce to improve
ak features
e to cover the size range of particle; s = 1–5 is used in the paper, from 7 � 7 to

the difference of the averaged pixel gray values between a typical particle region
ckground region in the image
e of the smallest particles to be detected in the image; 5 � 5 used in the paper



Fig. 2. Mapping of a grayscale image to a particle probability image. (A) Synthetic noise-free image; (B) corresponding noisy image (standard deviation r = 20 for 8 bit data);
(C) binary image showing classification results, the 5 Haar-like window sizes used were 7 � 7, 11 � 11, 17 � 17, 25 � 25, 37 � 37 (increment of 1.5 times), and k = 7.0 based
on the 20% threshold criterion; (D) particle probability image.
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and particle probability images. As in the conventional NLM filter,
the processed gray value at pixel i of image F, FPNLM(F)(i), is given
as the weighted average of all pixel grayscale values in a searching
window Wi centered at i:

FPNLMðFÞðiÞ ¼
X
j2W i

xði; jÞF 0ðjÞ ð5Þ

where F0(j) = F(j) if there is no pre-processing on the original image.
The weight function fxði; jÞgj2W i

in Eq. (5) is in a non-local Gaussian
form of:

xði; jÞ ¼ 1
AðiÞ

� exp �
VðNiÞ � VðNjÞ
�� ��2

2;a

h2 �
PðNiÞ � PðNjÞ
�� ��2

2;a

g2

0
@

1
A ð6Þ

where V(Ni) is the vector of the pixel gray values taken from the
neighborhood Ni centred at i and P(Ni) is the vector of the particle
probability values from the same neighborhood, the Euclidean dis-
tance �k k2

2;a is a classical L2 norm, convolved with a Gaussian kernel
of standard deviation a (Buades et al., 2005). The first term is therefore
the Euclidean distance of pixel gray values between the two neigh-
borhoods Ni and Nj within the searching window, as in the conven-
tional NLM filter. Similarly, the second term is the Euclidean
distance of particle probabilities between the two same neighbor-
hoods taken from the probability image. The sizes of the neighbor-
hood and searching window can be chosen by following the same
criteria in NLM filter. The parameters h and g control the strengths
of the first and second weights in Eq. (6), the values and ratio of which
must be set appropriately (see Table 1) in order to achieve a good bal-
ance between background smoothing and object enhancement, A(i) is
the normalization factor ensuring

P
j2W i

xði; jÞ ¼ 1. When g ?1, the
second term in Eq. (6) can be dropped and the FP-NLM filter is reduced
to the conventional NLM filter (Buades et al., 2005), in which the
weighted averaging is determined by only the first term that mea-
sures the Euclidean distance from the grayscale image F0. The second
term can therefore be regarded as an adaptively varying coefficient
that controls the filtering strength of the conventional NLM filter
(first term). In low SNR environments with non-Gaussian noise, when
the Euclidean distance measurement fails to establish a difference be-
tween a particle region and background region in a grayscale image,
the first term attempts to use the background information to smooth
the particle region. However, the same measurement in the corre-
sponding particle probability image behaves very robustly because
particle features are well preserved in this image. Consequently, the
second term acts to protect the particle region by using the probabil-
ity information to reduce the filtering strength of the first term. On
the other hand, isolated spikes in the probability image due to over-
estimation will not survive because there is little signature of parti-
cles in the original grayscale image. The choice of h and g also
depends on whether the goal is to denoise the image or to improve
detection. The former (denoising) usually requires a balanced filter-
ing on both feature and background areas whereas the latter (particle
detection) pays particular attention only to feature recovery. For the
latter case, we can increase the second weighting (reduce g) in Eq. (6)
to improve the detection of weak features in low SNR images. A more
detailed discussion is given in the experimental Sections 3 and 4.
Moreover, since each pixel in the original image F(j) has been classi-
fied using Haar-like features into two classes by Eq. (3) and few pixels
belonging to the particle class have been wrongly classified due to the
use of a weak threshold value, a simple pre-processing of F(j), such as
mean filtering the background region before applying Eq. (5), may be
useful. A large mean filter window can heavily smooth the back-
ground while a small one can remove undesirable high frequency
components. The choice of this window size depends on the images
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under investigation and the biological application. We show later in
experiments on synthetic images that this simple mean filtering
can significantly reduce artifacts in background that may be caused
by the subsequent non-local means filtering.

In summary, the proposed algorithm for FP-NLM filter works in
three steps. First: calculation of Haar-like features, initially calcu-
lated in Eq. (1) and then combined using Eq. (2), followed by bina-
rization according to the threshold condition Eq. (3). Second:
construction of the particle probability image by using the defini-
tion Eq. (4), which is the ratio of the number of pixels that satisfy
Eq. (3) and are spatially connected to the total number of pixels in
a selected small area. Third: generation of a denoised image in the
form of the Gaussian weighted average Eq. (5) in which the coeffi-
cient is given by Eq. (6), which is based on two Euclidean distance
measurements in the grayscale and particle probability images.

3. Testing algorithm performance with synthetic data

We first tested the FP-NLM filter (Eqs. (5) and (6)) on the syn-
thetic image shown in Fig. 2B. The neighborhood was set to be
Fig. 3. Tests on the synthetic noisy image shown in Fig. 2B. (A) FP-NLM filtered; (B) a sele
selected region; (D) denoised image of Fig. 2B by NLM filter; (E) denoised image of Fig. 2
shown enlarged, left: FP-NLM filtered, middle: NLM filtered and right: PBF filtered. The
7 � 7 pixels whereas the searching window is 21 � 21 pixels, both
of which follow the suggested values for NLM filter (Buades et al.,
2005) for a good balance between the performance and the compu-
tational cost (see Table 1). The first filtering parameter h deter-
mines the conventional non-local means averaging weight, the
value of which is chosen within the operation window of
h = a1 � r with a1 2 [0.75,1] for a ‘high visual quality solution’
(Buades et al., 2008). The second filtering parameter g determines
the level of enhancement in the particle regions. We found that, for
the given values h, an operation range of g = r/a2 with a2 2
[50,100] gives empirically a good balance between background
smoothing and particle enhancement in denoised images. Since
both parameters are proportional to r, their relative strengths re-
main the same for varying noise levels in images. The large differ-
ence of the two coefficients (1/a2 and a1) is due to the fact that the
particle probabilities are normalized but gray values are not. We
chose a middle value of h = 0.9r and g = r/70 for the present image
under investigation. The denoised image by FP-NLM filtering is
shown in Fig. 3A, where F0(j) in Eq. (5) was obtained by applying
a mean filter of 5 � 5 pixels to F(j) in background regions classified
cted image region taken from Fig. 2B and enlarged; (C) FP-NLM filtering result in the
B by PBF; (F) denoised images of the area marked by the white box in (A, D, and E)
filtering parameters are given in the main text.
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by the binary image Fig. 2C (black pixels). Fig. 3A has correctly
identified all particles by comparing to the noise-free image
Fig. 2A, including those which are barely visible in the noisy image
Fig. 2B.

To characterize how the FP-NLM filter performs, we analyzed in
detail the results for a small image area (Fig. 3B), taken from the
square window in Fig. 2B, and compared to those by NLM filter
which is a special case of FP-NLM filter when the second weight
in Eq. (6) is neglected (g ?1). We first looked into the region
marked by a search window in Fig. 3B. The results of the NLM filter
are given in the upper box in Fig. 4, where the gray value at the
center of the denoised image (C) is the weighted average of the
Euclidean distance (B) on the grayscale image (A) over the search
window. Since the weights (B) are dispersed over the region due
to noise contamination, the enhancement of the central pixel in
(C) is weak. The FP-NLM filtering process is shown in the lower
box, where the probability image (D) gives rise to strong weighting
(G) in the particle area, whereas the pre-processed image (E) (back-
ground smoothed version of the original image (A)) leads to a
weighting profile (H) which is similar to that obtained by NLM fil-
ter (B) in the particle region but reduced in the background region
due to the pre-processing. The overall weights (I) are the product of
the two functions (G) and (H), showing a strong enhancement to
the central (particle) region. As a result, the denoised image (F)
has a higher contrast compared to the image (C). Moreover, the
same argument can explain how the errors due to particle overes-
timation in the probability image can be compensated by the cor-
rect measurement in the grayscale image. An example is pixel ‘a’ in
Fig. 3B. While this pixel is incorrectly classified as belonging to a
particle in the probability image (Fig. 2D), it is clearly part of back-
ground in the grayscale image (Fig. 3B). The two nearly touching
Fig. 4. Comparison of the denoised results for the central point (marked by a small box in
filter: (A) a selected particle region from W1 of Fig. 3B, (B) normalized weights and (C)
associated weights, (E) pre-processed image of W1 and (H) associated weights, (I) norma
increased by 2 times for better display. The parameters are the same as used for Table
particles are clearly distinguished as separate in the denoised im-
age as shown in Fig. 3C.

We show the denoised results of the same image by NLM filter-
ing and PBF in Fig. 3D and E. The parameters in the NLM filter are
the same as ours, whereas in PBF the patch window is 9 � 9, the
maximum number of increments for the nested window size is 4,
the critical parameters k0.01 = 113.5 and q = 3, the reasons for
choosing these parameter values for PBF are explained in the origi-
nal papers (Kervrann and Boulanger, 2008). By comparing Fig. 3A–
D and E, the FP-NLM filter and PBF perform noticeably better than
the NLM filter. Strong noise contamination leads to over-smooth-
ing of particles, particularly weak ones, using NLM and PBF filters,
which can result in loss of potentially important information. This
is shown in Fig. 3F displaying the denoising results by the three fil-
ters in the area marked by the box in Fig. 3A. Retaining the back-
ground context underlying particle features can be important to
the interpretation of biological data. We find that FP-NLM filter
also preserves well the gross non-particle features of the back-
ground (comparing Fig. 3A to Fig. 2A). This is primarily due to
the use of simple mean average to pre-process the background of
the original image, which reduces possible artifacts in the images
when Eqs. (5) and (6) are applied after deconvolution. We can
quantify image fidelity by calculating the peak signal-to-noise ratio
(PSNR) (Kervrann and Boulanger, 2008) between the original and
denoised images by FP-NLM filter and several commonly used fil-
ters: nonlinear anisotropic diffusion (NAD) (Perona and Malik,
1990), total variation (TV) minimization (Rudin et al., 1992), Wie-
ner filtering (WF) (Gonzalez and Woods, 2002), bilateral filtering
(BF) (Tomasi and Manduchi, 1998), NLM filtering and PBF (Kervr-
ann and Boulanger, 2008). The NAD method is based on a heat (dif-
fusion) equation that is capable of preserving edges while
A, C, F) of the searching window between FP-NLM and NLM filters. Upper box – NLM
denoised result. Lower box – FP-NLM filter: (D) particle probability image and (G)
lized weights and (F) denoised result. Pixel values in (A), (C), (E) and (F) have been

2, and given in the main text.
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smoothing other areas. The diffusion function used here is (1 +
(jr Fj2)/K2)�1 with 150 iterations. The TV method tackles edge-pre-
serving smoothing by minimizing an energy functional to achieve
the best balance between the TV norm and image fidelity. We set
the Lagrangian multiplier (Rudin et al., 1992) in the energy func-
tional to be 0.05. WF reduces noise present in the image by com-
parison with the mean square error (MSE) estimation of the
desired noiseless image. Here we use a window of 9 � 9 pixels to
estimate local noise distribution for WF (Matlab function wiener2).
BF is an improved method of Gaussian low-pass filtering which can
prevent smoothing across edges. Here the filtering window size
was set to be 31 � 31 pixels, and the standard deviations
rdomain = 5 and rrange = 50. The results in Table 2 show that the
FP-NLM filter achieves the highest PSNR. Moreover, since an
important application for denoising fluorescence live-cell images
is to facilitate detection of features of interest, we have computed
the receiver operating characteristic (ROC) curves for the binarized
denoised images as the threshold is varied (Fig. 5). Here the true
positive rate (TPR, sensitivity) is the proportion of pixels belonging
to particles that are correctly recognized and false positive rate
Table 2
PSNR performance comparison of denoising algorithms.a

RAW r NAD TV WF BF NLM PBF FP-NLM

20 34.26 34.81 34.05 32.01 33.44 36.04 36.59
30 31.87 32.45 32.10 28.36 31.30 33.84 34.25

a PSNR was determined from the denoised synthetic image data for the 7 dif-
ferent algorithms compared. Two levels of noise were tested: added Gaussian noise
levels of r = 20 (as shown in Fig. 2A) and 30. PSNR values of the unprocessed images
were 21.88 and 18.65, respectively.

Fig. 5. Comparison of receiver operating characteristic (ROC) curves for denoising
results of different algorithms (see figure key) on the synthetic image shown in
Fig. 2A with noise of standard deviations r = 20 (A) and r = 30 (B).
(FPR, specificity) is the proportion of pixels belonging to back-
ground that are falsely classified, all measured against the known
binary class of the noise-free image of Fig. 2A (representing the
‘ground truth’). The higher sensitivity achieved by FP-NLM filtering
indicates its better capability to pick out true particles from images
with different levels of noise contamination. These results indicate
that our FP-NLM filter is the preferred choice to be used for
improving particle detection.
4. Applying the algorithm to real data

At present, our ability to quantitatively determine the distribu-
tion and orientation of the individual microtubules (MT) that con-
stitute a microtubule network is limited in various ways.
Examination of markers in fixed material provides a static view
and at best reveals only the gross distribution and net orientation.
Tracking individual MT with end binding-protein 1 GFP (EB1-GFP)
marking extending MT plus ends in living cells, can provide de-
tailed information of dynamics, distribution and orientation (Stone
et al., 2008). However, the use of EB1-GFP is hampered by difficul-
ties in achieving images from live tissue of sufficient quality to
track automatically, which limits our ability to analyze sufficient
data to provide biologically and statistically relevant results.

In order to first evaluate the performance of our FP-NLM filter in
a controlled situation, where we have a reliable ground truth and
can easily manipulate the imaging conditions, we tested the filter
on a field of sub-resolution fluorescent beads (Invitrogen, 200 nm
NileRed beads). Thereafter, we applied our FP-NLM filter to live
images of EB1-GFP and assessed its ability to achieve the required
image quality for meaningful quantitative analysis. The results of
EB1 tracking are outside the scope of this paper and will be pub-
lished separately.
4.1. Test one

We tested the FP-NLM filter on a field of 200 nm fluorescent
beads representing spot-like sub-resolution features (imaged on
an OMX imaging system, from Applied Precision, with a Roper Cas-
cade II back-thinned EMCCD detector in conventional mode). We
took a range of exposures to analyze the capability of FP-NLM
denoising to reduce the illumination threshold required to obtain
meaningful results for analysis. We changed illumination dosage
by varying exposure time and laser power. In this way we could
achieve images of different signal-to-noise ratio (SNR). Normally,
1% laser power setting (with a 200 mW, 488 nm laser) for 10 ms
achieves good image quality with fluorescent beads (Fig. 6A) and
we refer to this setting as dosage level 1 (bead signal is measured
33 gray levels above a background level of 51 gray levels; back-
ground standard deviation is 6 gray levels, so giving SNR of 5.5).
According to the Rose criterion (Rose, 1948), images with SNR P 5
are required for reliable feature detection. Fig. 6B shows the same
slide as Fig. 6A but imaged at a lower illumination dosage with
only bead intensity of 7 gray levels above the background. The dos-
age level for this image is 0.2 relative to the reference dosage of 1.
The SNR of this image is 1.4. To improve particle detection in the
dosage 0.2 image in Fig. 6B, we applied the FP-NLM filter to the
raw data and then deconvolved the denoised image. The resulting
image is plotted in Fig. 6C, which shows a good recovery of the
spot-like features (SNR = 4.7) and background noise suppression
compared to Fig. 6A and B.

We constructed a ‘ground truth’ for the bead data using a very
high quality image (SNR = 19), by applying a simple detection
threshold defined as the average of the maximal pixel gray value
and the mean value of the image to unambiguously identify parti-
cles. We used this ground truth to measure the receiver operator



Fig. 6. Tests of denoising algorithm performance on a field of sub-resolution fluorescent beads representing spot-like features. (A) Good SNR image (dosage level 1):
deconvolved single Z plane. (B) Low SNR image (dosage level 0.2): deconvolved single Z plane. (C) Denoised result on Fig. 6B (PF-NLM filtered and then deconvolved). (D)
Denoised result on Fig. 6B (NLM filtered and then deconvolved). (E) ROC curves comparing different denoising performances (see figure key). Note: images (A–D) have been
individually contrasted for better display.
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characteristic (ROC) of the images shown in Fig. 6A–D. The ROC
curves are shown in Fig. 6E. As can be seen, the ROC for image
Fig. 6A at dosage level 1 (SNR = 5.5) has nearly perfect sensitivity
and specificity, indicating that the spot-like features can be de-
tected without applying any denoising algorithm. However, for
the image in Fig. 6B at dosage level 0.2, the deterioration of the im-
age quality is evident from the ROC, also shown in Fig. 6E, where
significant errors occur when detection is performed on this image.
The ROC of the denoised image is shown to be close to that of
Fig. 6A, demonstrating that reliable detection has been achieved.
Together, these results show that, by applying the FP-NLM filter,
the illumination threshold required to obtain reliable particle
detection (SNR approaching 5) can be reduced by a factor of almost
five times for this data. In Fig. 6E we also plot the ROC of the deno-
ised image obtained using the NLM filter (Fig. 6D, SNR = 2.7) for
comparison. The curve is noticeably below that of FP-NLM filtered
image, indicating less effective denoising.

Since wide field imaging coupled with deconvolution is often
used for rapid imaging of live cells, we also used the bead data to
compare the efficacy of denoising before deconvolution versus
denoising after deconvolution. Each is known to have drawbacks
(Chaux et al., 2007). In the former approach, denoising may modify
the point spread function (PSF) model of the imaging system and
change the noise statistics, both of which can lead to problems in
the following deconvolution operation. Following the latter ap-
proach, deconvolution can lead to the propagation of noise in
images and a change of its statistics, both of which pose difficulties
for the subsequent denoising processing. The results are shown in
Fig. 6E for both FP-NLM and NLM filters. We find that while the
denoising before deconvolution shows a better result for the FP-
NLM filter, denoising after deconvolution performs slightly better
for the NLM filter as judged by the ROC curves (Fig. 6E). Over-
smoothing is evident in the NLM denoised image (due to the low
SNR of the raw data) and amplification of these errors upon decon-
volution explains the poorer performance of this approach in the
case of NLM filtered images. In summary, we find that the success
of deconvolution before or after denoising depends on the denois-
ing algorithms involved and that the difference between the two is
modest in terms of particle detection as measured by ROCs.
4.2. Test two

Our final test of the FP-NLM filter was on a live-cell image se-
quence of EB1-GFP, expressed in the Drosophila egg chamber
where the MT cytoskeleton is complex and imaging is a consider-
able challenge (Fig. 7). In the Drosophila egg chamber, MT based
transport is responsible for the localization of specific mRNA tran-
scripts which in turn establish the polar axis of the developing fly
(Becalska and Gavis, 2009). The egg chamber is therefore a good
model in which to study the mechanisms involved in the determi-
nation of cellular polarity.

To test how well the algorithm performs in identifying particles
under poor SNR conditions we validated the denoised image
against a ground truth as with the bead data (see later). Image data
was collected on a DeltaVision imaging system from Applied Preci-
sion (using a Roper Cascade II back-thinned EMCCD detector in
conventional mode) over three Z planes (200 nm, spacing) with
30 ms exposures at 32% illumination intensity, (300 mW Xenon
lamp light source), and then deconvolved with softWoRX Resolve
3D software (Applied Precision). Fig. 7A is a noisy image from a sin-
gle Z plane at time-point 70 (of 120) to be used to test the FP-NLM
filter – the EB1 foci (or particles) are barely visible. Fig. 7B is the
corresponding ‘high quality’ image with good SNR generated by
average projecting the three Z planes at that time-point. With in-
creased SNR the EB1 foci are clearly visible.



Fig. 7. Application of denoising to the detection of EB1 foci in a Drosophila egg chamber expressing EB1-GFP. (A) Low SNR image: single time-point, single Z-plane. (B) Good
SNR image: same time-point as (A) after average projection of 3 Z-planes (see main text). (C) Resultant image after denoising (A) by FP-NLM filter with k = 10.0 (based on the
20% selection criterion), h = 0.9r, g = r/70 and r = 20. (D–E) Resultant images after denoising (A) by NLM filter (D) and PBF (E). (F) ROC curves comparing filtering performance
(see main text). (G) Manual identification of EB1 particles for the subregion marked in (A), arrowheads indicate the locations of particles, green: strong particle; yellow: weak
particle; red: particle not discernible. (H–L) Denoised images of the subregion marked in (A) for the five different values of g = r/a2tested [a2 = 0; 30; 70; 100 and 120,
respectively, with a fixed value of h = 0.9r] other parameters used are the same as in the experiments on synthetic image data. (M–N) Denoised images of the subregion
marked in (A) using NLM and PBF, respectively. Scale bars A–E = 10 lm; G–N = 5 lm. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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The low contrast between particles and background from the
cytoplasmic EB1-GFP signal in this type of image data (Fig. 7A)
poses a serious challenge to denoising algorithms based solely on
the Euclidean distance measurement of grayscale images. The
additional information from the proposed feature image in the
FP-NLM filter thus becomes crucial in processing these images.
We first apply Eqs. (1)–(4) to construct the probability image
where the threshold in Eq. (3) is set to be k = 10.0 (calculated as
20% of the intensity difference between particle and background
regions as described in Section 2.1) and then use (5) and (6), with
parameters h = 0.9r and g = r/70, to obtain the denoised image,
where the noise level is measured as r = 20 on the raw image data.
(Note that since deconvolution changes the noise statistics, the
noise level of deconvolved data cannot be simply measured by
standard deviation.) The denoised image is shown in Fig. 7C. As
seen, particle-like objects have been significantly enhanced and
noise in background regions has been suppressed, making the par-
ticles of interest readily identifiable. The overall structure of the
Drosophila egg chamber is well preserved in the denoised image.
By comparison, the NLM filter results in over-smoothing of many
particles in the image due to the low contrast of these particles
against a noisy background (Fig. 7D). When PBF is applied, particles
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of interest at different intensity levels have been enhanced
(Fig. 7E), demonstrating the improved capability of the algorithm
through adaptively varying the search window size and the filter-
ing strengths. However, filtering of the background region has cre-
ated obvious artifacts from the noise – compare Fig. 7N versus J
and B: spurious swirling patterns are evident throughout the PBF
result, which are noticeably absent from the corresponding FP-
NLM result J. FP-NLM avoids this problem because the particle
probability image provides additional vital information about par-
ticle presence, based on which, both particles and background are
dealt with optimally.

Since the variations of parameters h and g in our FP-NLM filter
can adjust the relative strengths between background smoothing
and object enhancement as discussed earlier (Section 3), we make
use of this capability to facilitate the improved detection of parti-
cles with lower contrast. The results are shown in Fig. 7H–L for
the white-boxed subregion for different ratios of g(g = r/a2,
a2 = 0, 30, 70, 100, 120) to h (fixed at h = 0.9r). Visual inspection
of Fig. 7H–L reveals a gradual increase in particle clarity with the
increase of the ratio h/g, the effect appears to saturate for
a2 = 100 and further increase of a2 leads to over-enhancement of
features. The parameter ranges for h and g are consistent with
those given earlier. For comparison, the denoised images for the
same subregion by NLM filtering and PBF are shown in Fig. 7M
and N, respectively. As seen, FP-NLM filter performs noticeably bet-
ter than PBF in particle enhancement and background smoothing.

To measure the effectiveness of the denoising algorithms tested,
we used the ROC approach applied earlier (Fig. 5). The ground
truth, representing true EB1 foci, was constructed for the high-
lighted subregion in the Z-projected image (Fig. 7B) by applying
a low detection threshold for binarization. This essentially guaran-
teed no false negatives. False positives were then eliminated by
their failure to match EB1 trajectories across the movie sequence.
In this way, manual classification of all the detected pixels as par-
ticle or not particle was achieved. Fig. 7G shows corresponding foci
identified in the low SNR image (Fig. 7A) where visible foci are
marked by green arrows, barely visible ones are marked by yellow
arrows and those which could not be identified are labelled in red.

Fig. 7F shows the ROC curves for Fig. 7H–N. As can be seen, the
FP-NLM filter achieves a higher true positive rate with increasing
value of parameter a2 up to a2 � 100, after which the curves start
to saturate. We note, based on Fig. 7F and H–L, that optimal param-
eters for particle detection and image denoising can be somewhat
different. This is because the former focuses on the identification of
particles whereas the latter requires a balanced recovery of both
particle and background. Optimal denoising results for this case oc-
cur at around a2 = 70, whereas optimal particle detection occurs
around a2 = 100 based on the ROC curves (Fig. 7F). Again, based
on the ROC curves, we find that the FP-NLM filter is preferred to
PBF and NLM filters for our biological applications to identify par-
ticles of interest in such low contrast images.
5. Discussion and conclusions

We have presented a new approach for denoising low SNR live-
cell images, focused upon improving the identification of particle-
like features. We have tested the new algorithm on simulated data,
sub-resolution bead images and live-cell images and demonstrated
good performance in enhancing particle contrast, reducing the
background noise and minimizing artifacts. The algorithm per-
forms consistently within the operation range of its parameters
(see Table 1).

The key in our FP-NLM approach is the calculation of an addi-
tional similarity measurement representing ‘particle feature prob-
ability’ in the original grayscale image, the inclusion of which leads
to significantly enhanced particle contrast. We use Haar-like fea-
tures to estimate rather than precisely determine the presence of
particles at the pixel level. Because it is an estimate only, the sim-
ple threshold condition given by Eq. (3) is an effective approach
chosen to construct the particle probability. This is a robust mea-
sure because it depends not only on the classification at each pixel
but also their spatial connectivity. The particle probability image
constructed in this paper is especially designed for enhancing
weak, discrete particles and for this purpose it improves the perfor-
mance of FP-NLM compared to existing NLM and PBF.

Our approach is generally applicable for different feature sizes
and shapes, since an unlimited variety of Haar-like features can
be constructed to extend the basic NLM filter. We have tested var-
ious other Haar-like features and found that the three features
with different scales of Haar windows that we have selected are
a simple but effective choice. A single Haar-like feature (for exam-
ple Hs

1 in Fig. 1A) can work adequately if the particle-like features
under investigation have a round shape, whereas inclusion of more
Haar-like features than the current three, for example by con-
structing two additional features with diagonally shaded regions
in Haar windows, may increase classification precision and there-
fore the resolution of particles in the denoised images. But these ef-
fects are not critical to the performance of the FP-NLM filter. We
would also like to note that Haar-like features can equally be used
to classify dark particles of interest against a bright background
(Yu and Bajaj, 2004; Zhu et al., 2003) by simply changing the sign
in Eq. (1), which may have further applications in biology and other
fields.

Robust detection of features of interest is a critical step in the
automation of particle tracking which in turn is critical for the
analysis of complex biological data. We find that by using our
FP-NLM filter we are able to reduce the illumination dosage level
by a factor of almost five times and still achieve reliable feature
detection. This should enable increased, more biologically relevant
imaging rates and/or durations. We believe that FP-NLM can have
significant benefits in many situations where quantitative analysis
of dynamic components is required to fully investigate the molec-
ular processes involved. Quantitative analysis of the denoised
images of EB1 tracks will allow us to map both the distribution
and location of MT to aid our understanding of how transport pro-
cesses are organized and regulated within cells and tissues.
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