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Abstract: To create a radiogenomics map and evaluate the correlation between molecular and
imaging phenotypes in localized prostate cancer (PCa), using radical prostatectomy histopathology
as a reference standard. Radiomic features were extracted from T2-weighted (T2WI) and Apparent
Diffusion Coefficient (ADC) images of clinically localized PCa patients (n = 15) across different
Gleason score-based risk categories. DNA extraction was performed on formalin-fixed, paraffin-
embedded (FFPE) samples. Gene expression analysis of androgen receptor expression, apoptosis,
and hypoxia was conducted using the Chromosome Analysis Suite (ChAS) application and OSCHIP
files. The relationship between gene expression alterations and textural features was assessed using
Pearson’s correlation analysis. Receiver operating characteristic (ROC) analysis was utilized to
evaluate the predictive accuracy of the model. A significant correlation was observed between
radiomic texture features and copy number variation (CNV) of genes associated with apoptosis,
hypoxia, and androgen receptor (p-value ≤ 0.05). The identified radiomic features, including Sum
Entropy ADC, Inverse Difference ADC, Sum Variance T2WI, Entropy T2WI, Difference Variance
T2WI, and Angular Secondary Moment T2WI, exhibited potential for predicting cancer grade and
biological processes such as apoptosis and hypoxia. Incorporating radiomics and genomics into a
prediction model significantly improved the prediction of prostate cancer grade (clinically significant
prostate cancer), yielding an AUC of 0.95. Radiomic texture features significantly correlate with
genotypes for apoptosis, hypoxia, and androgen receptor expression in localised prostate cancer.
Integration of these into the prediction model improved prediction accuracy of clinically significant
prostate cancer.

Keywords: radiogenomics; biparametric magnetic resonance imaging; copy number variation

1. Introduction

Pre-biopsy MR imaging, especially multi-parametric sequences (e.g., T1WI, T2WI,
DCE), has become the standard of care for PCa diagnosis and characterisation. MRI visible
lesions are categorized using structured the Prostate Imaging Reporting and Data System
(PI-RADS v2), which predicts the likelihood of clinically significant PCa [1]. However,
PI-RADS v2 based interpretation of the images is limited by inter-observer variation
between radiologists [2]. Reports have been made regarding the use of PI-RADS scores
to predict the GS of PCa [2–5]. Additionally, recent studies have explored the potential
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correlations of texture features based on grey level co-occurrence matrices (GLCMs) of T2WI
images and pathological differences in PCa [6–8]. Radiomics analysis using MR images
has been reported for assessing heterogeneity in various cancers, including glioblastoma
(GBM) [9,10], lung [11,12], colorectal [13–15] and PCa [16–21], among others. A similar
approach in prostate cancer is in its early stages. Certainly, an association between genomic
alteration and textural features in prostate cancer has not been reported.

In addition to radiomics features, genetic alterations in cancers determine tumor ag-
gressiveness and growth pattern. The integration of genomics and radiomics analyses is
called radiogenomics and the map generated by integration of features from both could
serve as biomarker of the disease. To use radiogenomics as cancer biomarkers, features must
reflect underlying pathophysiology and be reproducible. Key drivers of cancer progression,
such as angiogenesis, apoptosis, and hypoxia, are known [22–26], but their interpretation
via non-invasive radiomics analysis for PCa remains unexplored. Molecular sequencing
and advanced computing enable large-scale characterization and high-throughput data
extraction from MRI images [20,27,28]. These have paved the way for precision and per-
sonalized medicine. Radiogenomics approaches provide evidence for imaging biomarkers
as surrogates for molecular features, facilitating molecular subtyping and insights into PCa
progression and treatment response.

In the present study, the radiogenomics maps were created using pre-biopsy bipara-
metric MRI (bpMRI) in men with clinically localized PCa. The maps linked textural features
from biparametric MR images and gene expression profiles generated by DNA sequencing
for patients with localized PCa. We believe this approach contributes to several new areas
of knowledge. Firstly, several textural features were extracted in three different risk groups
of PCa, with radical prostatectomy as the reference standard. Secondly, DNA extraction
and genomic analysis were performed on matched areas of cancer between images and
histology, facilitated by 3-D printed moulds as an orientation method. Finally, the signifi-
cance of the radiogenomics approach was analyzed statistically to explore its potential in a
predictive model aimed at Gleason score prediction.

2. Results
2.1. Patients Summary and Workflow

The distribution of demographic data of patients included in this study is shown in
Table 1. A total of 15 patients with PCa were included in the prospective data collection
(Figure 1). They were divided into three groups after the reclassification using the ISUP
grading system [29,30]. Group 1 consisted of Gleason scores of 3 + 3; Group 2 consisted of
Gleason scores of 3 + 4; and Group 3 consisted of Gleason scores of or more than 4 + 3 or
4 + 4. The workflow of this study is described in Figure 2, which shows a two-stage pipeline.
Radiomic feature extraction from T2WI and ADC images occurred in stage one, followed by
tissue processing, staining, DNA extraction, and correlation analysis in stage two. Results
are displayed in a heatmap, and the radiogenomic model’s accuracy in predicting clinically
significant prostate PCa is represented by an ROC plot.

Table 1. Demographic data and Gleason grouping.

Characteristics PCa (n = 15) (Median-IQR)

Age (years) 15 66–13
Pre-operative PSA (ng/mL)

PSA 4–20 15 10.8–4.2
Size (mL) 15 51.5–22
Location

Transitional zone 4
Peripheral zone 11

Clinical staging
cT2a 6
cT2b 5
cT2c 4
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Figure 2. Schematic description of the study. Stage 1 involved the extraction of radiomic textural
features from T2WI and ADC images using MATLAB software R2023a. In Stage 2, tissue blocks were
marked at ROI corresponding to images and Gleason scored post H and E staining. DNA extraction
and ChAS tool analyses chromosome structure abnormalities, such as copy number gains or losses.
Pearson’s correlation examines the relationship between radiomics texture features and genetic CNVs.
The results are represented in a heatmap graph.
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2.2. Radiomic Texture Feature Analysis

The radiomic texture features were evaluated for variability using one-way ANOVA
and Kruskal–Wallis tests. The significant features (p-value ≤ 0.05) were further investigated
(Table 2) to ensure reliable and accurate results.

Table 2. Statistically significant radiomic texture features between the three groups of Gleason scores
groups (p-value ≤ 0.05).

Radiomic Texture Features p-Value

Contrast T2WI 0.029
Inverse Difference T2WI 0.026
Sum Square Variance T2WI 0.028
Sum Average T2WI 0.029
Difference Variance T2WI 0.032
Angular Secondary Moment T2WI 0.049

2.3. Chromosomal Analysis

The karyoview was chosen from the ChAS tool option, which displays all CNVs of
the entire genome of the tested tissue samples, with red bars indicating loss and blue
bars indicating gain. Typically, the size of each bar corresponds to the size of the CNV.
Furthermore, using the segments tab (rather than the default Karyoview), with an emphasis
on copy number gain or loss, ChAS enabled us to visualize and summarize chromosomal
abnormalities throughout the genome on the Apoptotic, Androgen regulated, and hypoxia
related genes, which were of particular interest.

2.4. Correlation Analysis

Figure 3 shows the correlation using heatmaps with Hierarchical Clustering of hypoxia
genes against significant radiomic features in relation to Gleason Grade. In high grade
group Prolyl 4-hydroxylase, alpha polypeptide 1 (P4HA1) significantly correlated with
Angular Second Moment T2WI, Correlation T2WI, Sum Average T2WI and Sum Square
Variance T2WI (r = 0.667, 0.704, 0.625 and 0.575, respectively). Angiopoietin-like protein 4
(ANGPLT4) correlated with Sum square variance T2WI, and Vascular endothelial growth
factor (VEGFA) correlated with Contrast T2WI (r = 0.518 and 0.736, respectively). In
the intermediate group, ANGPTL4 correlates with Angular Second Moment (r = 0.613).
In the low-grade group, P4HA1 correlates with Sum square variance T2WI and Inverse
difference T2WI (r = 0.702 and 0.606, respectively). VEGFA correlated with Contrast T2WI,
and Sum average T2WI in high grade and low-grade cancers, respectively (0.517 and
0.606, respectively).

Figure 4 shows the correlation heatmap with Hierarchical Clustering of androgen
receptor genes against significant radiomic features in relation to Gleason Grade. In the high
grade, Kallikreins 2 (KLK2) correlates with Contrast T2WI (r = 0.704). In the intermediated
grade, NK3 Homeobox 1 (NKX3.1) correlated with ContrastT2WI, Correlation T2WI, Sum
Square VarianceT2WI and Inverse Difference T2WI (r = 0.527, 0.539, 0.636 and 0.857,
respectively). KLK2 correlated with Angular Second Moment (r = 0.539). In low grade
disease, NKX3.1 correlated with Angular Second Moment, Sum Square Variance T2WI and
Inverse Difference T2WI (r = 0.772,0.636 and 0.857, respectively). KLK3 correlated with
Sum Square Variance T2WI and Sum Average T2WI (r = 0.628 and 0.639).
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Figure 4. Correlation heatmaps with Hierarchical Clustering of androgen receptor and significant
radiomic features in relation to Gleason grade.

Figure 5 shows the correlation heatmaps with Hierarchical Clustering of apoptosis
genes against significant radiomic features in relation to Gleason Grade. In high grade,
Tumor Protein p53 Binding Protein 2 (TP53BP2) correlated with Sum Square Variance T2WI,
Inverse Difference T2W and Sum Average T2WI (r = 0.609, 0.652, 0.822, respectively). In
intermediate grade tumors, BCL2-Associated Athanogene 3 (BAG3) correlated with Inverse
difference T2WI (r = 0.604), and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand
receptor 2 (TRAIL.R2) correlated with Contrast T2WI (r = 0.659). In Low grade tumors,
BAG3 correlated with Contrast T2WI (r = 0.523).
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2.5. Predictive Analysis

The combination of radiomics and genomics had a notable impact on prostate cancer
Gleason score prediction. The integrated model’s accuracy was assessed using Receiver
Operating Characteristic (ROC) analysis, showing a strong ability to predict clinically
significant PCa (Figure 6).
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3. Discussion

In the present study, we correlated textural image features of pre-biopsy MRI of PCa
with the DNA-based arrays data to delineate radiogenomics biomarkers of localized PCa
in three risk categories based on histopathological Gleason grading. The findings of this
study, to the best of our knowledge and for the first time, showed correlations between key
PCa pathways (apoptosis genes, hypoxia driven genetic changes and androgen receptor
related genes) and radiomics textural features using pre-biopsy bpMRI scans obtained
in biopsy naive men. The study used oncoScanTM FFPE kit assays for genetic analysis
utilizing archived radical prostatectomy tissues. The advantages of this approach, based
on molecular inversion probe technology, are well described in previous reports [31,32].
This technique allows assessment of PCa archived tissues (frozen repository of prostate
cancer tissue is challenging). Correlating imaging features with molecular signatures for
non-invasive imaging-based insights into cancer behavior and treatment responses, in
high-grade cancers, loss of androgen receptor genes (NKX 3.1) may correlate with specific
radiomics features on radiogenomics mapping, as shown in Figure 4. The map holds poten-
tial as a marker for aggressive prostate cancer and therapy, considering molecular processes
and the tumor microenvironment’s influence on treatment strategies and disease prognosis.

The study showed that hypoxia related genes and the high-grade group of PCa had
positive correlations as shown between P4HA1 gene and Angular Second Moment T2WI,
Correlation T2WI, Sum Average T2WI, and Sum Square Variance T2WI, with coefficients
ranging from 0.575 to 0.704, as shown in Figure 3. The overexpression of P4HA1, a gene
encoding a collagen synthesis enzyme, has been associated with increased invasion and
metastasis in various malignancies, including prostate cancer. Collagen and stromal tissues
play essential roles in the tumor microenvironment, influencing tumor progression and
metastasis. Studies have linked the onset and progression of prostate cancer to three genes
related to hypoxia: P4HA1, ANGPLT4, and VEGFA. P4HA1 expression positively correlates
with tumor stage and grade, with higher levels observed in prostate cancer tissue compared
to healthy tissue [33,34]. The development and progression of prostate cancer through the
P4HA1 pathway involves facilitating the growth and survival of cancer cells, activating
certain cellular signaling pathways, and controlling the activity of a key transcription factor
HIF-1α. By focusing on inhibiting P4HA1 and the pathways it influences, there may be
potential for a viable approach to treating PCa. Contrast T2WI evaluates the variability in
intensity differences, offering insights into the level of sharpness and sudden changes in
texture present within the image [35]. ANGPTL4 is a member of the angiopoietin family
and over expressed in cancer tissue due to hypoxia [36]. In the present study, ANGPTL4
expression was also found to correlate with Sum square variance T2WI. ANGPTL4 plays a
role in angiogenesis, the process of blood vessel development, and its increased expression
has been observed in several malignancies, including prostate cancer. Higher ANGPTL4
levels in prostate cancer tissue have been associated with worse overall survival rates.
The active PI3K/Akt pathway induces ANGPTL4 production in response to hypoxia,
promoting cancer growth [23]. VEGFA is responsible for stimulating angiogenesis and
is known to be overactive in various cancers, including prostate cancer. Prostate cancer
tissue demonstrated significantly higher levels of VEGFA expression compared to healthy
tissue. Upregulation of VEGFA was associated with more advanced stages and grades of
tumors [37].

In intermediate-grade cancer, NKX3.1 (Androgen receptor gene) showed positive
correlations (ranging from 0.527 to 0.857) with Contrast T2WI, Correlation T2WI, Sum
Square Variance T2WI, and Inverse Difference T2WI. KLK2 correlated with Angular Second
Moment (r = 0.539). In low-grade cancer, NKX3 displayed strong positive correlations
(ranging from 0.636 to 0.857) with Angular Second Moment, Sum Square Variance T2WI,
and Inverse Difference T2WI. KLK3 correlated with Sum Square Variance and Sum Average
(r = 0.628 and 0.639). The androgen receptor (AR) plays a vital role in prostate cancer
growth and progression [38,39]. Genes regulated by AR, such as KLK2, NKX3.1, and KLK3
(PSA), are extensively studied in prostate cancer [40–42]. KLK2, regulated by AR, is a
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biomarker for PCa [42]. Reduced NKX3.1 levels are associated with aggressive PCa and
disease progression [43]. KLK3 (PSA), regulated by AR, is used clinically as a biomarker for
PCa progression. Monitoring changes in KLK3 levels helps track disease advancement [42].

The results for apoptotic genes revealed significant findings in high-grade PCa, where
TP53BP2 exhibited positive correlations (ranging from 0.609 to 0.822) with Sum Square
Variance T2WI, Inverse Difference T2WI, and Sum Average T2WI. In intermediate-grade
cancer, BAG3 had a positive correlation (r = 0.604) with Inverse Difference T2WI, and
TRAIL.R2 showed a positive correlation (r = 0.659) with Contrast T2WI. In low-grade
cancer, BAG3 displayed a positive correlation (r = 0.523) with Contrast T2WI. TRAIL.R2
and TP53BP2 may play roles in PCa, with TRAIL.R2 promoting apoptosis and TP53BP2
regulating p53’s activity, influencing tumor growth and apoptosis resistance. However, the
exact mechanisms require further investigation [44–46].

Textural features of images assess tissue homogeneity. This is measured via Inverse
Difference. The latter is derived from the GLCM and represents the average variation in
pixel intensity levels between adjacent pairs in the image. Inverse difference values range
from greater to lower, with a higher value denoting a more homogeneous texture and a
lower value denoting a more heterogeneous texture [47–50]. GLCM Inverse Difference
T2WI can differentiate between cancerous and healthy tissue, as cancerous tissue has a
more uneven texture and lower inverse difference value [48–51]. GLCM Sum of Squares
Variance (SSV) is useful for evaluating prostate gland homogeneity for PCa detection in
T2WI, where a higher SSV score indicates malignancy [50,52,53]. GLCM Sum Average
feature analyzes T2WI texture, identifying PCa lesions as regions with lower signal strength
due to malignant cells [50,54]. GLCM contrast measures grey-level variation, enabling
PCa and normal tissue differentiation [50,55,56]. GLCM Correlation analysis assesses
textural disparities, aiding PCa detection by measuring spatial correlation of grey-level
values [50,57,58].

The proposed radiogenomics model demonstrated high predictive accuracy, achieving
an AUC of 0.95 (CI: 0.88–1) and an accuracy of 0.93.

The main limitation of this study is its reliance solely on data from a single institution,
coupled with the inability to perform external validation due to a small sample size
and the lack of suitable external datasets aligning with imaging and clinical parameters.
Although the importance of external validation was acknowledged, its viability was limited.
Future validation efforts are essential to ensure the credibility and generalizability of our
model. Analyzing data from multiple institutions would enhance the applicability of the
findings. Additionally, the small sample size (n = 15) and fewer tumors in the transitional
zone compared to the peripheral zone could potentially confound the results. Manual
segmentation of the ROI might introduce inter-observer variability. Future research should
prioritize larger, prospective studies involving multiple institutions to validate the potential
of radiogenomics, identify relevant imaging biomarkers, and implement them successfully
in clinical practice. This study lays the groundwork for standardization, which is critical
for these investigations and future research.

4. Materials and Methods
4.1. Cohort Recruitment

Fifteen men (five from each risk category of low, intermediate, and high, respectively)
with clinically localized PCa scheduled for radical prostatectomy (RP) were prospectively
recruited into the study. Inclusion criteria were:

1. PSA level of ≤20 ng/mL,
2. T2 disease on imaging and clinically.
3. Patients with a minimum of 10-year expected survival.
4. Ability to give informed consent.

Locally advanced cases and those who could not provide informed consent were
excluded from the study. The study had institutional approval (Caldicot number IGTCAL
number 5816 and date 6 February 2019). Clinically significant PCa was defined as a
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lesion with a predicted Gleason’s grade group of 2 or higher, a volume ≥ 0.5 mL, or
extra-prostatic extension.

4.2. bpMRI Protocol for Imaging Data Acquisition

Pre-biopsy bpMRI scans (T2WI and DWI) were obtained using a 3T scanner. T2WI
utilized a turbo spin-echo sequence with a 3.6 mm slice thickness and 0.5 mm in-plane
resolution. DWI was acquired through a single-shot echo-planar imaging sequence with
2 mm in-plane and 3.6 mm slice thickness, using diffusion encoding gradients in 3 directions.
DWI data with b values of 0, 400, and 1000 s/mm2 were used to calculate ADC maps.
The images were converted to DICOM format before importing into MATLAB® (Figure 2).
Texture features were extracted at a 320 × 320 × 19 resolution, and ROI intensities were
normalized to a range of 0 to 1. The DCE sequencing used 3D fast gradient-echo sequences
with intravenous Dotarem, a gadolinium-based contrast agent, at a dose of 2 mL/kg, and a
temporal resolution of 4 s.

4.3. PI-RADS Classification

Two uro-radiologists, each with experience of more than ten years in PCa imaging
diagnostics, reviewed the images. The mpMRI, including T2WI, DWI with a corresponding
ADC map, and DCE of the index lesion in each patient, were rated using PI-RADS v2.1 on
a scale of 1 to 5. Scores from the two readers’ PI-RADS evaluations were used to correlate
with the grade of cancer following radical prostatectomy. They also marked on the images
a region of interest (ROI) for textural features extraction.

4.4. Image Processing and Analysis of Extracted Textural Features

Both T2WI and ADC images were utilized for ROI segmentation, after visually confir-
mation by experienced radiologists for consistency. ROIs were aligned with histopathologi-
cal tissue lesions using 3-D printed moulds, as described below. Texture parameters were
extracted from segmented T2WI and ADC using MATLAB® software, comprising 22 GLCM
and 6 histogram parameters for each ROI. Histograms represent first-order texture features,
while GLCMs represent second-order texture features (Supplementary Table S1).

4.5. Histopathology Protocol

The radical prostatectomy (RP) specimens were labeled, weighed, and fixed in for-
malin. Patient-specific molds were created from images using 3-D printers. These RP
specimens, along with a specialized mold, were used during tissue slicing to ensure accu-
rate alignment with the imaging sections. This precise alignment facilitated the marking of
tissue regions of interest (ROIs) corresponding to the MR imaging data. Subsequently, the
marked ROI was excised from the tissue area that matched the imaging slice used for ex-
tracting radiomic features. This process ensured the macroscopic image co-registration with
histologic analyses [21]. Following the tissue slicing and marking process, an experienced
uro-pathologist assigned Gleason grades to matched tumor lesions, categorized under
the ISUP system [29,30]. The cancer site was then identified on hematoxylin and eosin-
stained slides obtained from 10-µm slices of FFPE samples, facilitating microdissection and
subsequent genomic analysis.

4.6. The OncoScan® FFPE Assay (Genomics Analysis)

There were several challenges to using formalin-fixed paraffin embedded tissue for
genetic analysis, due to DNA degradation and natural tumor heterogeneity. These were
overcome by utilizing the OncoScan® FFPE Assay Kit. The OncoScan array protocol utilizes
SNP probes to assess copy variation and allele frequency, as described in detail in other
studies [59].



Int. J. Mol. Sci. 2024, 25, 5379 10 of 14

4.7. DNA Extraction Protocol

The QIAamp DNA FFPE Advanced technique, as described in www.qiagen.com
(accessed on 22 April 2022) [31,60], efficiently removed paraffin from FFPE tissue blocks
without using xylene or trimming excess paraffin. Formalin-induced cross-links in DNA
are eliminated through proteinase K digestion and DNA de-crosslinking. Further steps
involving uracil-N-glycosylase, RNase A digestion, and DNA binding improve lysis effi-
ciency and yield. Buffers and ethanol are used to remove contaminants, and DNA is eluted
in a concentrated form. The amplified DNA is labeled with fluorescent dyes and measured
on the ONCOSCAN array, enabling specific sequence binding. The output is converted to
a CEL file for analysis, providing valuable genetic information from archived PCa tissues.

4.8. Statistical Analysis

The study utilized one-way ANOVA and the Kruskal–Wallis test to determine the
variation in radiomic texture features. One-way ANOVA was employed when the data con-
formed to a normal distribution, while Kruskal–Wallis test was used when the data did not
conform to a normal distribution. The significant radiomic texture features (p-value ≤ 0.05)
were then selected for further analysis.

The genotyping interface was used in the study’s evaluation of the CEL files to confirm
the accuracy of the genotyping analysis. Samples having a QC call score of 80% or more
were taken into consideration for further analysis whereas samples with a score of less than
80% were excluded from the analysis. The ChAS program was used to import CEL data
and create copy numbers from raw intensity to investigate CNV.

The analysis and reporting of copy number and cytogenetics studies, focusing on the
alterations in androgen receptor, apoptosis, and hypoxia related genes, was performed
using the ChAS program https://www.thermofisher.com/chas (accessed on 8 September
2022). To access the data, we opened the OSCHP files in ChAS and used the Segments tab
(rather than the default Karyoview). With an emphasis on copy number gain or loss, ChAS
enabled us to visualize and summarize chromosomal abnormalities throughout the genes
of interest. This focuses on the overall number of gains and losses across each sample,
and attempts to correlate these genetic scores with high, medium, and low Gleason Score
categories were made.

Statistical analysis of copy number states in each sample was performed, followed by
statistical correlation with radiomics texture features using Pearson’s correlation analysis.
SPSS version 22 and R (version 4.2.1; R Core Team, 2022) were utilized for statistical analysis.
Model predictions were evaluated using Boosted regression (BR) analysis.

5. Conclusions

Radiomic texture features display a significant correlation with genotypes associated
with apoptosis, hypoxia, and androgen receptor expression in localized prostate cancer.
Integrating these findings with genomics enhances the prediction accuracy not only for
prostate cancer grade but also for clinically significant prostate cancer, yielding an impres-
sive AUC of 0.95. However, it is imperative to acknowledge the study’s limitation, as it
focuses exclusively on predicting clinically significant prostate cancer within the context
of localized disease. Moving forward, additional validation and clinical application are
necessary to fully harness the potential of these findings in guiding treatment decisions for
localized prostate cancer.
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mdpi.com/article/10.3390/ijms25105379/s1.
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FISH Fluorescence in situ hybridization
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GLCM Gray level co-occurrence matrices
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HIF-1 Hypoxia-inducible factor 1
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KLK Kallikreins
mpMRI Multiparametric magnetic resonance imaging
NKX3.1 NK3 Homeobox 1
Nt Nucleotide
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PCa Prostate cancer
PI3K Phosphatidylinositol 3-kinases
PIRADS Prostate imaging–reporting and data system
PKB or Akt Protein kinase B
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RNA Ribonucleic acid
ROI Region of interest
RP Radical prostatectomy
ROC Receiver Operating Characteristic
SSV Sum of Squares Variance
T2WI T2 weighted Image
TP53BP2 Tumor Protein p53 Binding Protein 2
TRAIL.R2 Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand receptor 2
VEGFA Vascular endothelial growth factor A
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