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Abstract

Aims Electronic health records (EHR) linked to Digital Imaging and Communications in Medicine (DICOM), biological speci-
mens, and deep learning (DL) algorithms could potentially improve patient care through automated case detection and surveil-
lance. We hypothesized that by applying keyword searches to routinely stored EHR, in conjunction with AI-powered auto-
mated reading of DICOM echocardiography images and analysing biomarkers from routinely stored plasma samples, we
were able to identify heart failure (HF) patients.
Methods and results We used EHR data between 1993 and 2021 from Tayside and Fife (~20% of the Scottish population).
We implemented a keyword search strategy complemented by filtering based on International Classification of Diseases (ICD)
codes and prescription data to EHR data set. We then applied DL for the automated interpretation of echocardiographic
DICOM images. These methods were then integrated with the analysis of routinely stored plasma samples to identify and cat-
egorize patients into HF with reduced ejection fraction (HFrEF), HF with preserved ejection fraction (HFpEF), and controls with-
out HF. The final diagnosis was verified through a manual review of medical records, measured natriuretic peptides in stored
blood samples, and by comparing clinical outcomes among groups. In our study, we selected the patient cohort through an
algorithmic workflow. This process started with 60 850 EHR data and resulted in a final cohort of 578 patients, divided into
186 controls, 236 with HFpEF, and 156 with HFrEF, after excluding individuals with mismatched data or significant valvular
heart disease. The analysis of baseline characteristics revealed that compared with controls, patients with HFrEF and HFpEF
were generally older, had higher BMI, and showed a greater prevalence of co-morbidities such as diabetes, COPD, and CKD.
Echocardiographic analysis, enhanced by DL, provided high coverage, and detailed insights into cardiac function, showing sig-
nificant differences in parameters such as left ventricular diameter, ejection fraction, and myocardial strain among the groups.
Clinical outcomes highlighted a higher risk of hospitalization and mortality for HF patients compared with controls, with par-
ticularly elevated risk ratios for both HFrEF and HFpEF groups. The concordance between the algorithmic selection of patients
and manual validation demonstrated high accuracy, supporting the effectiveness of our approach in identifying and classifying
HF subtypes, which could significantly impact future HF diagnosis and management strategies.
Conclusions Our study highlights the feasibility of combining keyword searches in EHR, DL automated echocardiographic in-
terpretation, and biobank resources to identify HF subtypes.

Keywords Deep learning algorithms; Electronic health record data; Epidemiology; Heart failure; Preserved ejection fraction;
Validation
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Introduction

Heart failure (HF) is a highly prevalent yet underdiagnosed
clinical syndrome with high mortality and morbidity.1 Echo-
cardiography is a foundational investigation to diagnose HF
and differentiate HF with reduced (HFrEF) and preserved
(HFpEF) ejection fraction.2,3

Electronic health records (EHRs) are an increasingly
high-quality data source that can be used for the creation
of pragmatic cohort studies4 disease surveillance, case selec-
tion for pragmatic randomized clinical trials (RCTs),5 and qual-
ity improvement initiatives.6 The quality and quantity of EHR
data are expanding and increasingly include EHR-linked
biobanks7–9 and EHR-linked imaging data.10

Validation of HF diagnosis using imaging data is critical to
unlocking the full potential of EHR data for HF surveillance
and research. However, retrospective selection and analysis
of echocardiographic images are time-consuming and prohib-
itively expensive. Furthermore, clinically reported echocar-
diographic values are commonly incomplete and can be of
differing quality due to time constraints in routine clinical
practice and differences in clinical indications and readers.
Deep learning (DL) algorithms can automate the reading of
echocardiographic images.11,12 Combined with EHR data,
these algorithms can help identify HF and classify patients ac-
cording to their left ventricular ejection fraction (LVEF)
subtypes.13,14 Measurement of plasma biomarkers, like N-ter-
minal-pro-brain natriuretic peptide (NT-proBNP), in
bio-banked blood samples can further enhance diagnosis
and offer opportunities for pragmatic patient selection for
RCTs or translational cohort studies.

This study aimed to identify and classify patients with HF
from routinely stored EHR data, linked to Scottish Health Re-
search Register (SHARE)9 bioresource and echocardiographic
data collected from the Tayside and Fife region of Scotland
using a deep learning-based approach. By leveraging keyword
searches in Electronic Health Records (EHRs), automated
reading of DICOM echocardiography images through AI, and
analysis of biomarkers from routinely stored plasma samples,
we aim to refine the identification and differentiation process
of HF patients, particularly distinguishing between HF with
preserved ejection fraction (HFpEF) and HFrEF.

Method

Data sources

This study used EHR data from the National Health Service
(NHS) via the Health Informatic Centre (HIC). HIC is a
third-party data provider with NHS data custodians to host
collated EHRs. De-identified, anonymized, and linkable clini-
cal data was provided for the scope of the study in a Trusted

Research Environment.15 Data included demographic charac-
teristics, co-morbidities, laboratory test results, community-
dispensed prescriptions, DICOM images, hospital admission
records, and mortality data.15 HIC is a partner with SHARE,
the Scottish Health Research Register, and Biobank. NHS Re-
search Scotland supports SHARE, Universities in Scotland,
and the Chief Scientists Office.9 SHARE Biobank collects and
stores consented blood samples from registered individuals
via an interception method with NHS blood sciences labora-
tories that have been taken for NHS diagnostic purposes
but are surplus to these requirements. These samples were
collected before disposal as clinical waste. Access to the
anonymized clinical datasets was administered by HIC at the
University of Dundee using established protocols. For this
study, access to SHARE was approved by Research Ethic Com-
mittee in Tayside (Study reference number 119).

Study definitions and clinical outcomes

Patients with type 2 diabetes mellitus (T2DM) were identified
by linkage to the DARTS register that identifies patients with
T2DM based on having T2DM according to primary and/or
secondary care data sources.16,17 The combination of elec-
tronic prescribing records and ICD-10 coding for atrial fibrilla-
tion (AF) identification. This method has a positive predictive
value of 97%, as previously described.18 We used ICD-10 cod-
ing for coronary artery disease identification. Chronic ob-
structive pulmonary disease (COPD) was defined by linkage
to the community COPD registry (the Tayside Allergy and Re-
spiratory Disease Information System)19 and those previously
hospitalized for COPD based on ICD-10 coding.20 For the
identification of chronic kidney disease (CKD), we used the
NHS CKD diagnosis21 and National Institute for Health and
Care Excellence (NICE) guideline on CKD assessment and
management.22 This means patients with eGFR less than
60 mL/min were considered as CKD in our study. Our defined
clinical outcomes were all-cause mortality and HF related
hospitalization.

Algorithm and study cohort selection

Figure 1 illustrates the patient cohort identification and data
linkage workflow. First, we retained patients with echocardio-
gram records and available corresponding DICOMs. We fil-
tered medical records to identify HF cases and non-HF con-
trols based on the International Classification of Diseases-10
(ICD-10) code of HF (I50.x) or a history of continuous
(>6 months) prescriptions of furosemide. HF patients were
further categorized based on left ventricular ejection fraction
(LVEF): those with LVEF below 40% were designated as hav-
ing heart failure with reduced ejection fraction (HFrEF),
whereas individuals with LVEF above 50% were identified as
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having heart failure with preserved ejection fraction (HFpEF).
Controls were defined as individuals without a history of HF
hospitalization, furosemide prescription, or HF ICD-10 code,
and with an echocardiogram indicating normal or preserved
LVEF. Participants with HF or controls with evidence of valvu-
lar heart disease, such as severe aortic and/or mitral stenosis,
were excluded. We conducted a manual screening combina-
tion with keyword search to clinical data set released to
HIC. Table S1 shows the exact keywords used to select con-
trols and patients with HFrEF or HFpEF.

We manually reviewed and validated clinical and echocar-
diographic parameters for the final cohort selection. We fil-
tered out different study cohorts according to LVEF cut-off
values according to the hierarchy of (i) Simpson’s LVEF avail-
able; (ii) If Simpson’s LVEF was not available, an LVEF was de-
rived from ‘eyeball’ LVEF in the clinical report. Patients were
classified as HFrEF if they had an LVEF ≤40%, HFmrEF if LVEF
was >40% but below 50%, and HFpEF if the LVEF was ≥50%,
in keeping with clinical guidelines.2,3 For descriptive left ven-
tricular function, we mapped LVEF terminology with LVEF nu-

Figure 1 Patient cohort identification and data linkage utilizing available EHR, DICOM, and plasma samples. n = number of records. *Keyword search
as per Table S1.
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merical values and different types of heart failure as previ-
ously described and shown in Table 1.23 Because we identi-
fied few patients with HFmrEF and patients with HFmrEF
are closer to those with HFrEF, we merged patients with
HFmrEF and HFrEF and considered patients with LVEF
<50% as HFrEF.24

In the subsequent phase, the selection was refined to in-
clude only those participants who had available plasma sam-
ples from the SHARE database. These samples were then al-
located for biomarker analysis, and the corresponding
DICOM files were processed through automated analysis. In-
dividuals lacking plasma samples were omitted from further
analysis.

In the third step of our methodology, depicted in Figure 2,
we synchronized the plasma samples with echocardiographic
data. Given that heart failure (HF) patients may undergo mul-
tiple echocardiograms at different times, there was a need to
methodically match these with the corresponding plasma
samples collected for the SHARE project. To achieve this,
we adopted a hierarchical approach to identify the echocar-
diographic study that was most temporally proximate to the
plasma sample collection. Our primary criterion was to select
the echocardiogram conducted closest to, and preferably

before, the date of plasma collection. If no such echocardio-
gram was available, we then selected the nearest study per-
formed after the plasma collection, provided it was within a
180-day timeframe. Any echocardiographic data collected
more than 180 days following the plasma sample were not
considered for analysis. This careful matching process re-
sulted in a refined cohort of 578 patients, which was divided
into 186 controls, 236 patients diagnosed with heart failure
with preserved ejection fraction (HFpEF), and 156 patients
with heart failure with reduced ejection fraction (HFrEF), fol-
lowing the exclusion of any unmatched plasma and echocar-
diographic data.

Analysis of Digital Imaging and Communications
in Medicine data and biomarker levels

The training and external validation of the deep learning
workflow to analyse the DICOM images have been extensively
described elsewhere.11,25 The fully automated DL-based
workflow uses various supervised and unsupervised
convolutional neural networks (CNN) to classify echocardio-
graphic 2D videos and doppler modalities according to their
respective views (e.g. A4C or A2C) or modality without the
need for human intervention. The workflow has two separate
pipelines for 2D videos and Doppler modalities, which use a
CNN to produce segmentation masks and/or heatmaps to an-
notate 2D images and Doppler modalities. These algorithms
were previously validated in various external cohorts11,25 and
against core-lab measurements,25 leading to the United
States Food and Drug Administration (FDA) approval of the
workflow as artificial intelligence (AI) based decision support
tool.26

Table 1 Mapping LVEF numerical values from report terminology

LVSD report terminology LVEF assignment HF subtype

‘Severe’ 25% HFrEF
‘Moderate to severe’ 30% HFrEF
‘Moderate’ 35% HFrEF
‘Mild to moderate’ 40% HFmrEFa

‘Mild’ 45% HFmrEFa

‘Normal’ 55% HFpEF
aHeart failure with mildly reduced ejection fraction.

Figure 2 Exemplar patient regarding selection and linkage of echocardiographic data, DICOM files and SHARE plasma samples.
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Plasma concentrations of NT-proBNP were quantified utiliz-
ing a commercially available electro chemiluminescent sand-
wich immunoassay (Roche Modular E170, Roche Diagnostics,
Mannheim, Germany), employing plasma samples sourced
from SHARE.27 Moreover, exploratory biomarker analyses per-
formed with plasma samples derived from the study cohort
will be detailed in a forthcoming scholarly article.

Statistical analysis

Continuous variables were summarized as median ± standard
deviation, while categorical variable was represented a n with
a percentages. We used the one-way analysis of variance,
Wilcoxon rank sum test, analysis of variance (ANOVA), or
chi-squared test to test differences between controls, HFrEF
and HFpEF, depending on the nature and distribution (i.e.
normal vs. non-normal, categorical vs. continuous) of the var-
iable. A Cox proportional hazards regression model was used
to explore the relationship between HF diagnosis and clinical
outcomes. We performed Cohen’s kappa (κ) analysis to de-

termine the agreement of the final diagnosis between man-
ual validation and the proposed algorithm.

Results

Baseline characteristics

Table 2 shows the participants’ baseline characteristics. Com-
pared with controls, patients with HFrEF and HFpEF were
older, had a higher body mass index (BMI), and had a higher
prevalence of diabetes, COPD, and CKD. Compared with
HFrEF, patients with HFpEF were more likely women and
had less diabetes, AF, and CAD than those with HFrEF. Pa-
tients with HF had higher concentrations of NT-proBNP than
controls. NT-proBNP concentrations were higher in HFrEF
than HFpEF; 93% of patients with HFrEF were on beta-
blockers, 82% on ACE inhibitors ad 31% on spironolactone
compared with 77%, 68%, and 19% of patients with HFpEF
on beta-blockers, ACE inhibitors, and spironolactone,
respectively.

Table 2 Demographic and clinical characteristics of the study groups

Control HFrEF HFpEF P-valuea

Patients (n) 186 156 236
Demography

Age, years (median ± SD) 59.5 ± 18 74 ± 10 77.5 ± 13 <0.001
Sex, female (%) 61% 37% 61% <0.001
BMIb 25.8 ± 6.4 27.0 ± 0.4c 28.9 ± 5.8 0.87

Medical history (%)
Diabetes 9% 39% 31% <0.001
AF NA 40% 30% <0.001
CAD NA 46% 29% <0.001
COPD 32% 53% 56% <0.001
CKD 3% 42% 39% <0.001

Laboratory
Serum creatinine 67 ± 15.3 93 ± 98.1 83 ± 88.4 <0.001
eGFR (MDRD) 94 ± 27.7 63.6 ± 23.6 66.9 ± 27.2 <0.001
Potassium 4.3 ± 0.4 4.4 ± 0.4 4.3 ± 0.5 0.68
Sodium 139 ± 3.2 139 ± 3.3 139 ± 3.7 0.36
NT-proBNP (pg/mL) 77.2 [32.8–155.8] 1651 ± 6302.4 686.3 ± 4925.3 <0.001

Medication (%)
Furosemide NA 90% 83% <0.001
Bumetanide NA 13% 11% <0.001
Spironolactone 2% 31% 19% <0.001
Eplerenone NA 17% 3% <0.001
Aspirin 24% 68% 59% <0.001
Statin 25% 78% 69% <0.001
SGLT2i 1% 2% 2% 0.48
Beta-blocker 31% 93% 77% <0.001
ARB 14% 33% 33% <0.001
ACEI 20% 82% 68% <0.001

ACEI, angiotensin-converting enzyme inhibitors; AF, atrial fibrillation; ARB, angiotensin receptor blockers; BMI, body mass index; CAD,
coronary artery disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration
rate; MDRD, Modification of Diet in Renal Disease; NT-proBNP, N terminal pro B type natriuretic peptide; SGLT2i, sodium-glucose co-trans-
porter-2 inhibitors.
aP-value is calculated using either ANOVA or chi-squared test. Chi-squared test is used when the data is categorical, for example, sex, co-
morbidity, and medication.

bBased on 43 patients with weight and height available.
cBased on 2 patients.
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Echocardiographic parameters

Table 3 shows the coverage and median values with inter-
quartile range (IQR) of the echocardiographic parameters
measured by the deep learning workflow. Coverage was gen-
erally high, ranging from 46% to 93%. Patients with HFrEF had
a higher left ventricular diameter in diastole (LVIDd) than the
control and HFpEF group. Patients with HFrEF had a lower
LVEF than those with HFpEF and controls. Patients with HFrEF
more often had an abnormal left ventricular global longitudi-
nal strain (LVGLS) than those with HFpEF or controls. Left
ventricular filling pressure index E/e′ and left atrial end-sys-
tolic volume (LAESV) biplane values were higher in HFrEF
and HFpEF compared with controls. Compared with controls,
patients with HFpEF and HFrEF had greater LV mass, higher
mitral E/e′ ratio, higher pulmonary artery systolic pressure,
more impaired LV strain and right ventricle (RV) dysfunction.

Table 4 shows the coverage of echocardiographic param-
eters for diagnosis of HFpEF according to ESC guidelines.2

Deep learning analysis enhanced the availability of echocar-
diographic parameters used to aid in the diagnosis of
HFpEF.

Clinical outcomes

In total, 119 patients died, and 116 patients were hospital-
ized for HF during a median follow-up time of 1089 days.
Compared with 5% of controls, 37% of HFpEF and 58% of
HFrEF experienced heart failure hospitalization or all cause
death during follow-up. Compared with controls, patients
with HFrEF (hazard ratio [HR]: 7.27, 95% CI 3.58–14.78) or
HFpEF (HR 5.44, 95% CI 2.69–10.98) were at a higher risk
of death. Patients with HFrEF (HR 16.13, 95% CI 8.12–
32.07) or HFpEF (HR 9.2, 95% CI 4.63–18.28) were at a
higher risk of HF hospitalization during follow-up than
controls.

Table 3 Echocardiographic characteristics of the study groups (parameters derived from the Us2.ai software analyses) (median ± SD)

Us2.ai features Coverage Control HFpEF HFrEF P-value

LV dimensions (linear) IVSd (mm) 93% 8.7 ± 1.8 9.8 ± 2.3 9.8 ± 2.2 <0.001
LVIDd (mm) 93% 45.8 ± 5.7 44.9 ± 6.1 51.5 ± 7.3 <0.001
LVPWd (mm) 92% 8.4 ± 1.2 9.4 ± 1.6 9.3 ± 1.6 <0.001
LVIDs (mm) 91% 30.9 ± 5.7 32.2 ± 7.3 42.8 ± 8.5 <0.001
RWT (mm) 93% 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 <0.001
LV mass (g) 93% 123 ± 40.4 150.8 ± 43.4 183 ± 50.4 <0.001

LV (volume and) systolic function LVEF (any single plane) (%) 92% 62.7 ± 9.3 59.6 ± 11 41.6 ± 15.5 <0.001
LVEF biplane (%) 73% 62.5 ± 8.5 59.8 ± 10.2 41.4 ± 14.3 <0.001
LVEDV biplane (mL) 74% 79.6 ± 23.9 81.9 ± 30.7 109.6 ± 42.7 <0.001
LVESV biplane (mL) 73% 30.3 ± 12.3 33.7 ± 17.7 63.7 ± 36.1 <0.001

LVGLS LVGLS (overall) 60% �21.2 ± 3.4 �18.4 ± 4.3 �12.1 ± 4.3 <0.001
LVGLS (apical 3-chamber) 73% �21.6 ± 5.1 �17.8 ± 6.5 �11.9 ± 5.7 <0.001
LVGLS (apical 4-chamber) 91% �20.9 ± 4.1 �19.1 ± 4.9 �12.2 ± 4.8 <0.001
LVGLS (apical 2-chamber) 78% �21.5 ± 4.4 �19 ± 5.7 �12.8 ± 5.1 <0.001

LV diastolic function MV E (cm/s) 88% 71.2 ± 17.5 79 ± 33.7 88.5 ± 30.3 <0.001
MV A (cm/s) 71% 69.7 ± 20.9 82.8 ± 28.4 73.7 ± 29.2 <0.001
E/A ratio 70% 1 ± 0.4 0.8 ± 0.5 1 ± 0.6 0.059
DT (ms) 76% 223.2 ± 46.6 209.8 ± 64.6 180.4 ± 65 <0.001
e′ septal (cm/s) 52% 7.4 ± 3 5.9 ± 2 4.8 ± 2.1 <0.001
e′ lateral (cm/s) 52% 10.6 ± 4 8.1 ± 2.6 7.7 ± 2.8 <0.001
e′ mean (cm/s) 47% 9 ± 3.1 7.2 ± 2 6.3 ± 2 <0.001
E/e′ mean (cm/s) 46% 7.7 ± 2.9 10.3 ± 4.9 12.6 ± 5.6 <0.001
LAESV biplane (mL) 59% 35.9 ± 15.2 52.4 ± 27.2 59.3 ± 25.6 <0.001

RV function TAPSE (mm) 75% 22.7 ± 5 21 ± 5.1 18.7 ± 4.7 <0.001
RVFAC (%) 57% 36.2 ± 13 30.4 ± 13.2 26.3 ± 15.4 <0.001
RVIDd (mm) 76% 33.4 ± 5.6 35.4 ± 6.3 36.2 ± 7.4 <0.001
TR Vmax (m/s) 68% 2.3 ± 0.4 2.5 ± 0.6 2.7 ± 0.6 <0.001
TR Pmax (mmHg) 73% 17.9 ± 6.6 21.9 ± 14.9 23.7 ± 9.1 <0.001

RA size RAESV (mL) 80% 29.9 ± 18.6 38.1 ± 23.7 41.1 ± 33.6 <0.001
RA area (cm2/m2) 72% 12.8 ± 3.8 15.6 ± 5 15.7 ± 6.4 <0.001

DT, deceleration time; E/A, mitral valve early diastolic velocity to late diastolic velocity ratio; E/e′, ratio between early mitral inflow velocity
and mitral annular early diastolic velocity; IVSd, interventricular septum thickness in diastole; LAESV, left atrial end-systolic volume; LV, left
ventricle; LVGLS, left ventricle global longitudinal strain; LVEDV, LV end-diastolic volume; LVEF, left ventricular ejection fraction; LVESV,
left ventricular end-systolic volume; LVIDd, left ventricular internal. Diameter at end-diastole; LVIDs, left ventricular internal diameter
end-systole; LVMass, left ventricle mass; LVPWd, end-diastolic left ventricular posterior wall thickness; MV A, mitral valve late diastolic ve-
locity; MV E, mitral valve early diastolic velocity; PASP, pulmonary arterial systolic pressure; RA area, right atrial area; RAESV, right atrial
end-systolic volume; RV.FAC, right ventricular fractional area changes; RVIDd, right ventricular internal dimension at end-diastole; RWT,
relative wall thickness; TAPSE, tricuspid annular plane systolic excursion; TR Pmax, tricuspid regurgitation maximum pressure; TR Vmax,
tricuspid regurgitation maximum velocity.
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Proposed algorithm concordance with clinical
records

We have taken 150 patients from our study cohort to test the
agreement between patients identified using the proposed
algorithm and diagnosis by manual validation. The positive
predictive value was 86%, 100% sensitivity, 94% specificity
with a kappa value of 0.891 was recorded in HFrEF patient
group. The positive predictive value of the automated versus
manual diagnosis of HFpEF was 80%, 100% sensitivity, 90%
specificity with a kappa value of 0.842. A 100% concordance
rate was noted in control group.

Discussion

In our research, we explored the integration of routinely
stored EHRs with DL automated interpretation of DICOM
and biobank resources to refine the identification and classifi-
cation of heart failure (HF) subtypes. Through a detailed pro-
cess beginning with a dataset of 15 000 patient records and
narrowing down to a carefully curated cohort of 578 patients,
our study underscores the critical role of data curation and the
application of AI in enhancing the precision and relevance of
health data analysis. This meticulous selection process,
involving keyword searches, linkage with plasma samples,
and exclusion criteria for data quality, enabled the effective
utilization of deep learning (DL) algorithms in our study.

Despite the inherent challenges in curating HF diagnosis and
subtypes from large EHR databases such as the often-limited
availability of left ventricular ejection fraction (LVEF) data,28–
30 our approach demonstrates a novel method to overcome
these obstacles. Patients can be classified based on their
ICD-10 coding, but the specificity is limited. In a previous study,
identifying patients with HFrEF or HFpEF based on ICD-10 cod-

ing only had a specificity of 63–68% for HFrEF and 86%–93% for
HFpEF.31 Advances in natural language processing (NLP) to ex-
tract HF subtypes have shown promise.32,33 However, NLP algo-
rithms might be challenging to validate externally and provide
limited information on parameters other than LVEF. We
highlighted the limitations of relying solely on ICD-10 coding
for HF classification due to its limited specificity, and we ad-
dressed the potential of natural language processing (NLP)
and AI in extracting more nuanced HF subtypes and echocar-
diographic parameters as using AI algorithms can significantly
improve the availability of echocardiographic data in EHRs that
can help diagnose HFpEF according to guidelines.2,3 These find-
ings suggest that AI algorithms coupled with EHR data can im-
prove efficiency, reduce the time for patient selection for prag-
matic clinical trials, and improve HF surveillance and early
diagnosis across hospital systems.

Our research represents an advancement in the utilization
of deep learning (DL) to automatically interpret echocardio-
graphic DICOM images, thus streamlining the identification
of patients with heart failure with reduced ejection fraction
(HFrEF) and heart failure with preserved ejection fraction
(HFpEF) within electronic health record (EHR) datasets. We
previously demonstrated the use of these algorithms to auto-
matically interpret systolic and diastolic parameters in five ex-
ternal cohorts.11,25 In this study, we have applied a machine
learning algorithm which automatically generated echocar-
diographic parameters resulting in >90% of patients having
available LV linear dimensions, LV volume and systolic func-
tion. Our data also support the use of machine learning to
help enhance HFpEF diagnosis. HFpEF is characterized by its
heterogeneity, which extends to its definition. Over the years,
HFpEF has previously been referred to as ‘diastolic’ heart fail-
ure, or heart failure with normal ejection fraction (HFnEF).
However, diastolic dysfunction has been shown not to be
unique to HFpEF, as evidence of diastolic dysfunction may
also be found in systolic heart failure. Moreover, the term
‘normal ejection fraction’ is not correct either as some pa-
tients with HFpEF may in fact have supranormal function,
such as in hypertrophic cardiomyopathy or cardiac amyloid-
osis. The updated European Society of Cardiology guidelines
include the objective evidence of cardiac structural and/or
functional abnormalities consistent with the presence of LV
diastolic dysfunction or raised LV filling pressure or raised na-
triuretic peptides.2 These structural and/or functional abnor-
malities help to define and diagnose HFpEF.

By leveraging AI, we not only facilitate the detection of
these structural and functional cardiac anomalies but also en-
rich the dataset with critical parameters, such as relative wall
thickness. This enhancement is crucial for diagnosing condi-
tions like left ventricular hypertrophy and evaluating diastolic
function. The comprehensive echocardiographic parameters
we have made accessible, including left ventricular ejection
fraction (LVEF), interventricular septal diameter (IVSd), LV
mass, and indices of diastolic function, support a more re-

Table 4 Coverage of echocardiographic parameters for diagnosis
of HFpEF according to ESC guideline by EHR data and Us2.ai
software analyses

Echocardiographic
parameters

Data available
from EHR

(percentage)

Data available from
deep learning analyses

(percentage)

LV mass 51.04 92.56a

Relative wall thickness 77.85 92.56
LA volume 0.00 58.65b

E/e′ ratio at rest 0.00 45.50
TR velocity at rest 74.57 67.99
PASP 3.11 54

LV, left ventricle; RWT, relative wall thickness; LVMass, left ventricle
mass; E/e′, ratio between early mitral inflow velocity and mitral an-
nular early diastolic velocity; LA volume, left atrial volume; TR
Vmax, tricuspid regurgitation maximum velocity; PASP, pulmonary
artery systolic pressure.
aAs body surface area cannot be obtained from the DICOM image,
the percentage shown here is LV mass.

bAs body surface area cannot be obtained from the DICOM image,
the percentage shown here is LA volume.
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fined diagnosis of HFrEF or HFpEF in line with contemporary
clinical guidelines.

Our approach has potential clinical implications, especially
in the precision required in HFpEF clinical trials and the
broader context of heart failure diagnosis and surveillance.
The automation our DL algorithms provide not only makes
the diagnosis process more efficient than traditional methods
but also paves the way for identifying heart failure cohorts
more pragmatically. When combined with biobank data, such
as that from the SHARE project, our methods hold the prom-
ise of accelerating biomarker validation and fostering innova-
tions in drug discovery for heart failure treatment.

Limitations

Our study has several limitations. Firstly, we have found that
the final number of patients identified from our selection pro-
cess was limited. The key limiting factor was that we had to
have the most temporally proximate plasma sample to the
echocardiogram conducted closest to, and preferably before,
the date of plasma collection.We believe that this was a useful
learning process for future record linkage studies that wish to
link bioresources to echocardiography data. Second, our study
was a retrospective study, which might have introduced selec-
tion bias. Thirdly, in our study process, we were not able to dif-
ferentiate between patients with HFpEF and those with heart
failure who had recovered EF. Finally, our study did not include
direct records of visits with cardiologists or other specific clin-
ical interactions that could serve as additional independent
verification of HF diagnoses. It should be noted that our reli-
ance on furosemide prescription data for more than 6 months
as a criterion for identifying HF patients had been shown pre-
viously to reliably identify HF cases from EHRs.

Conclusions

Our study demonstrated the potential of integrating a key-
word search of routinely stored electronic health records with
AI-based machine learning algorithms and biobank resources
for identifying heart failure (HF) subtypes. While our approach
shows promise in enhancing the efficiency and speed of pa-
tient selection for pragmatic clinical trials, as well as in im-
proving HF surveillance and early diagnosis across hospital
systems, it is important to acknowledge the challenges posed
by limited data availability. The effectiveness of this method,
particularly in terms of early disease detection and its capabil-
ity to increase the availability of biomarkers and echocardio-
graphic parameters, remains an area for further exploration.
Consequently, while our findings are encouraging, they also
underscore the necessity of further studies to assess the diag-
nostic effectiveness of this approach fully.
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