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Abstract

Gene expression varies across the brain. This spatial patterning denotes specialised

support for particular brain functions. However, the way that a given gene's expres-

sion fluctuates across the brain may be governed by general rules. Quantifying pat-

terns of spatial covariation across genes would offer insights into the molecular

characteristics of brain areas supporting, for example, complex cognitive functions.

Here, we use principal component analysis to separate general and unique gene regu-

latory associations with cortical substrates of cognition. We find that the region-

to-region variation in cortical expression profiles of 8235 genes covaries across two

major principal components: gene ontology analysis suggests these dimensions are

characterised by downregulation and upregulation of cell-signalling/modification

and transcription factors. We validate these patterns out-of-sample and across dif-

ferent data processing choices. Brain regions more strongly implicated in general

cognitive functioning (g; 3 cohorts, total meta-analytic N = 39,519) tend to be more

balanced between downregulation and upregulation of both major components

(indicated by regional component scores). We then identify a further 29 genes as

candidate cortical spatial correlates of g, beyond the patterning of the two major
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Aging and the Brain, Grant/Award Number:

BRO-D.FID3668413 components (jβj range = 0.18 to 0.53). Many of these genes have been previously

associated with clinical neurodegenerative and psychiatric disorders, or with other

health-related phenotypes. The results provide insights into the cortical organisation of

gene expression and its association with individual differences in cognitive functioning.

K E YWORD S

biological processes, cognition, gene expression, meta-analysis, neuroanatomy, neurostructural
correlations

Practitioner Points

• We discover and validate two general rules that govern the spatial variation of gene expres-

sion across the cortex of the human brain.

• We conduct the largest meta-analysis of regional cortico-macrostructural correlates (in vivo

MRI; cortical volume, surface area and thickness; total N = 39,519) of individual differences

in general cognitive functioning to-date.

• Regional spatial correlations between cognitive-morphometry associations and the compo-

nents of gene expression are calculated. Then, controlling for the two major dimensions, we

identify a further 29 specific genes preferentially expressed in g regions.

1 | INTRODUCTION

In any given cell, genes that are required for that cell's function are

expressed. Therefore, it is tenable that observed regional variations in

the expression of genes across the brain reflect location-pertinent cel-

lular processes critical for functioning. Information about regional

gene expression profiles across the cerebral cortex has been recently

used to infer substrates of brain development, maintenance, and

health (Darby et al., 2016; Parker et al., 2020; Shin et al., 2018; Vidal-

Pineiro et al., 2020). This is achieved by comparing the spatial agree-

ment between the brain regional expression profiles of individual

genes or gene sets with the brain regional associations with a pheno-

type of interest. For example, which specific genes or gene sets are

more highly expressed in brain regions that are most strongly related

to a particular phenotype of interest (Writing Committee for the

Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder,

Bipolar Disorder, Major Depressive Disorder, Obsessive-Compulsive

Disorder, and Schizophrenia ENIGMA Working Groups, 2021)? This

approach, while powerful, potentially suffers from confounding by

association. That is, for example, the expression of an individual gene

might show a correlation with a phenotype because it reflects general

rules that govern the spatial variation in the expression of very many

genes over the brain's cortex, rather than something unique to the

specific gene in question. There are general dimensions of spatial vari-

ation in gene expression covariance, demonstrating shared covariation

in expression patterns across multiple genes, across the human body

(Lukk et al., 2010), and within multiple organs (Lenz et al., 2016). This

includes across the human cortex (Bhaduri et al., 2021), where general

dimensions of gene expression have previously been linked to in-vivo

MRI estimates of cortical structural anatomy (Burt et al., 2018), and

to functional MRI-derived neurocognitive associations (Hansen

et al., 2021; Wagstyl et al., 2022). It is therefore critical to control for

general dimensions along which regional variation in gene expression

covary when seeking gene-specific associations. Because much of our

information on gene expression patterns in the brain (with sufficient

regional fidelity for these questions) comes from relatively few

donors, it is also critical to seek out-of-sample replication. Here, we

unite micro- (gene expression) and macro-level (morphometry) infor-

mation about the brain, to inform the underlying molecular neurobiol-

ogy of complex cognitive functioning.

General cognitive functioning, or ‘g’, is a robust and well-

replicated index of individual differences in cognitive functioning, cap-

turing variance in reasoning, planning, problem-solving, some aspects

of memory, processing speed and abstract thinking (Deary, 2012;

Panizzon et al., 2014). It is associated with educational attainments

(Bijwaard et al., 2015), life achievements (Strenze, 2007), health

(Wraw et al., 2015) and lifespan (Batty et al., 2007; Calvin

et al., 2011). Regions of the brain proposed to support general cogni-

tive functioning, or ‘g’ (and which relate to individual differences

therein), have been identified via an array of methods including resting

state fMRI (Dubois et al., 2018), structural and functional connectivity

(Zimmermann et al., 2018), lesion studies (Barbey et al., 2012), post

mortem brain studies (Dawe et al., 2018) and genetic information

(Davies et al., 2018). These brain regions overlap substantially with

those associated with other summary cognitive constructs, such as

executive functioning (Camilleri et al., 2018). Macrostructural cortical

measures provide some convergent evidence for a specific patterning

of brain regional g-correlates, particularly highlighting parieto-frontal

regions (Cox et al., 2019; Jung & Haier, 2007). However, debate

remains about the loci of g's cortical correlates, for which large

multi-cohort analyses are required (Marek et al., 2022). Specifically,

there is uncertainty in how much overlap there is in the spatial pat-

terns of g associations with cortical thickness and surface area, mea-

sures which are largely phenotypically and genetically distinct
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(Dickerson et al., 2009; Eyler et al., 2012; Panizzon et al., 2009;

Storsve et al., 2014).

Here, we combine (i) postmortem gene expression data and (ii) the

largest meta-analysis of the cortico-macrostructural correlates (in vivo

MRI; cortical volume, surface area and thickness) of individual differ-

ences in cognitive functioning to-date. Both are available at the same

level of granularity with respect to brain regions, allowing us to quan-

titatively assess spatial associations between cortical gene expression

and general cognitive function. Therefore, we can ask this new ques-

tion: is there an association between variation in gene expression

across different brain areas and how strongly brain structural mea-

sures are associated with cognitive functioning in those same brain

regions? That is, does the brain regional map of gene expression

resemble the brain regional map of brain structure-cognitive function

correlations?

Previous work shows that the expression of genes varies together

in a synchronised fashion across the cerebral cortex (Burt et al., 2018,

2020; Dear et al., 2022; Hawrylycz et al., 2012; Markello,

Arnatkeviciute, et al., 2021). Here, using French and Paus' regional

mapping of expression for 8235 genes, two major components

account for the majority (49.4%) of the variance in regional gene

expression profiles, representing a cell-signalling/modifications axis

and a transcription factors axis, and we control for these components

to analyse associations of single genes and cell types. We address the

potential limitations of having only N = 6 tissue donors and one

regional sampling approach: the dimensions of gene expression are

validated in two independent gene expression atlases (N = 5, N = 11

tissue donors), and are not driven by a small number of individual out-

lier regions. Similarly, our meta-analysis of associations between g and

regional cortical morphometry (volume, surface area, thickness),

across three cohorts (total N = 39,519), shows good cross-cohort

consistency in regional mapping.

The patterning of g-associations with brain structural measures

across the cortex are associated with both of the identified gene

expression components, with medium-to-large effect sizes for g-volume

and g-surface area associations but weaker ones for g-thickness. We

further identify 29 single genes whose expression patterns are individu-

ally associated with g-cortical profiles beyond the two major dimen-

sions of cortical gene expression. Thus, this study provides clarity on

the patterning and replicability of the brain-macrostructural correlates

of cognitive functioning differences and identifies novel regional global

and specific gene expression patterns that might govern them.

2 | MATERIALS AND METHODS

2.1 | Gene expression method

The Allen Human Brain Atlas is a high-resolution mapping of cortical

gene expression for N = 6 donors (five male, one female, age

M = 42.50 years, SD = 13.38 years, range = 24–57 years). The com-

plete microarray data from a custom-designed Agilent array for all six

donors are openly available for download. French and Paus (2015)

summarised these data to the Desikan-Killiany cortical atlas. To briefly

summarise their method (for more information, refer to the original

paper and Table S6), gene expression values were averaged across

multiple probes. Each of the 3702 brain samples was assigned to one

of the 68 Desikan-Killany regions based on their MNI coordinates,

and then gene expression values were averaged per region, resulting

in an expression value for each gene for each region. These between-

donor median expression values are publicly available (French, 2017).

French and Paus also provide a method of quality control for

between-donor consistency in regional gene expression profiles

(French & Paus, 2015). In this method, profiles with Spearman's

ρ > .446 (equivalent to one-sided p < .05) between the average of

donor-to-median left hemisphere profile correlations are considered

to have high between-donor consistency. This method results in the

retention of 8325 out of 20,737 genes.

The right hemisphere expression data are based on a maximum of

N = 2 donors, compared to a maximum of N = 6 donors for the left

hemisphere. The number of samples per region is lower in the in right

hemisphere (M = 12.59, SD = 8.90, range 2–34) than the left hemi-

sphere (M = 37.32, SD = 24.37, range = 6–100). Further details of

the number of samples and donors per region are in Table S2. The

donor-level expression data are not available, so in the present study

the 8235 genes that passed the quality control protocol in the left

hemisphere were also analysed for the right. There is a strong correla-

tion between the expression values of individual genes between

hemispheres (r = 0.997, p < 2.2e16, see Figure S2) suggesting that, at

the hemisphere level, the relative expression values for the 8235

genes were not affected by the sampling differences between the

two hemispheres.

We conducted PCA on the median gene expression values of

8235 genes across 68 cortical regions—rows = cortical regions

(in place of participants in a traditional PCA) and columns = genes.

We performed extensive checks for the validity of the first two

components—these are detailed in Section 3.

In the raw data, the right hemisphere generally has slightly lower

average expression values than the left hemisphere (right: M = 6.035,

SD = 2.343, left: M = 6.091, SD = 2.368, t(58.345) = 6.490, p =

2.051e08). This is likely due to comparative lack of power between

hemispheres or due to differences in sample compositions, as there is

only a maximum of N = 2 donors for the right hemisphere compared

to a maximum of N = 6 donors for the left. Alternatively, mean age

and sex differences between the two right hemisphere and six left

hemisphere donors may have contributed to the differences. Both

right hemisphere donors were male, and they include the youngest

donor (24 years old, while the other donors' ages range between

31 and 57 years old). There is a clear hemisphere difference centred

around zero in component scores for both components: Component

1: t(65.931 = 7.794), p = 6.218e-11, M left = �0.687 (SD = 0.715),

M right = 0.687 (SD = 0.739), Component 2: t(65.931) = �5.315,

p = 1.388e-06, M left = �0.543 (SD = 0.798), M right = 0.543

(SD = 0.886). However, there was a strong interhemispheric correla-

tion in scores between the 34 paired regions for both Component

1 (r = 0.815, p = 4.41e09) and Component 2 (r = 0.725, p = 1.25e06).
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To confirm it was appropriate to treat these hemispheric differ-

ences as an artefact of the data, and thus scale the component scores

in each hemisphere, we looked to the Kang et al. (2011) dataset. In

this dataset, there was a more even number of donors per hemisphere

(left hemisphere M = 9.55, SD = 1.04 donors per region, right hemi-

sphere region M = 7.19, SD = 0.60 donors per region), the same age

range for data in both hemispheres (23 to 55 years old) and a more

even balance of male and female between hemispheres (left hemi-

sphere: 7 male, 4 female; right hemisphere: 5 male, 4 female).There

was no difference in mean expression values per hemisphere t

(19.344) = �0.852, p = .405, M left = 7.521 (SD = 1.944), M

right = 7.535 (SD = 1.943). For the rotated scores of PC1 (which had

a factor congruence of 0.96 with the French and Paus expression

matrix), scores were comparable between hemispheres t(19.997)

= �0.265, p = .794. Therefore, we deemed it appropriate to scale the

component scores separately for each hemisphere in the current data-

set (see Figure S3).

2.1.1 | Statistical overrepresentation analysis

To assist with interpretation of the two identified major components

of gene expression, PANTHER's protein analysis and GO-Slim molecu-

lar, biological and cellular (version 16.0, released 2020-12-01) terms

were analysed. All genes included in the PCA were submitted as a ref-

erence set for the statistical overrepresentation analysis and 7389 out

of 8235 (89%) genes were available in PANTHER, and so were used

as the background set. Fisher's exact test and FDR correction were

used, and four subsets of genes were tested for statistical overrepre-

sentation: Component 1 loadings < �0.3 (total N = 3367, available

N = 3099, 92%) and loadings >0.3 (total N = 2093, available

N = 2000, 96%); and Component 2 loadings < �0.3 (total N = 3476,

available N = 3234, 93%) and loadings >0.3 (total N = 1705, available

N = 1551, 91%). Note: The GO analysis results for a threshold at 0.6

are also available in the Supplementary Tabular Data File. Whilst there

are generally fewer FDR significant GO terms (which is expected, as

there are as there are fewer genes included than the more lenient 0.3

threshold—Component 1 N = 674 genes >0.6, and 1891 genes <�0.6

and Component 2, N = 471 genes >0.6, and 1815 < �0.6), they are

consistent with those from the 0.3 threshold, which suggests that the

interpretation of GO terms at 0.3 holds for this more stringent

threshold.

The statistical overrepresentation results are provided in full in a

supplementary data file. Some genes have absolute loadings >0.3 on

both components (N = 3026, 36.75%). There are also a number of

genes that had absolute loadings >0.3 only on either Component

1 (N = 2438, 29.61%) or Component 2 (N = 2157, 26.19%). N = 614

genes (7.46%) did not load with an absolute >0.3 on either compo-

nent, and all statistical overrepresentation tests for this set were null.

For the two components, a gene set enrichment analysis was run

in FUMA (Functional Mapping and Annotation of Genome-Wide

Association Studies, https://fuma.ctglab.nl/). Gene sets were created

using previous associations in GWAS of diseases and traits listed in

the GWAS catalogue. Hypergeometric tests were performed to test if

genes of interest were overrepresented in any of these pre-defined

gene sets (those with absolute loadings >0.3 on each component and,

separately, those with the more stringent threshold of 0.6), with the

8235 genes as a background set. No significant (α < .05) gene sets

were reported.

2.2 | g � cortical morphometry associations meta-
analysis method

2.2.1 | Cohorts

The UK Biobank (UKB, http://www.ukbiobank.ac.uk; Sudlow

et al., 2015) holds data from �500,000 participants, and for

�40,000 at wave 2 of data collection, data includes head MRI scans

and cognitive test data. In the current study, we did not include partic-

ipants if their medical history, taken by a nurse at the data collection

appointment, recorded a diagnosis of e.g. dementia, Parkinson's dis-

ease, stroke, other chronic degenerative neurological problems or

other demyelinating conditions, including multiple sclerosis and

Guillain–Barré syndrome, and brain cancer or injury (a full list of exclu-

sion criteria is listed in the Supplementary tabular data file, and see

Figure S4 for N by exclusion condition). After these exclusions, the

final study included N = 37,840 participants (53% female), age

M = 63.81 years (SD = 7.64 years), range = 44–83 years. The UKB

was given ethical approval by the NHS National Research Ethics Ser-

vice Northwest (reference 11/NW/0382). The current analyses were

conducted under UKB application number 10279. All participants pro-

vided informed consent. More information on the consent procedure

can be found at https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=

100023.

STRADL is a population-based study, developed from the Gener-

ation Scotland Scottish Family Health Study. Participants who had

taken part in the Generation Scotland Scottish Family Health Study

were invited back to take part in this additional study, which was ini-

tially designed to study major depressive disorder, although partici-

pants were not selected based on the presence of depression (Habota

et al., 2021; https://www.research.ed.ac.uk/en/datasets/stratifying-

resilience-and-depression-longitudinally-stradl-a-dep). Data are avail-

able for N = 1188 participants. The current sample includes

N = 1043 participants, for whom both MRI head scans and cognitive

data are available (60% female), age M = 59.29 years (SD =

10.12 years), range = 26–84 years. STRADL received ethical approval

from the NHS Tayside Research ethics committee (reference

14/SS/0039), and all participants provided written informed consent.

The LBC1936 is a longitudinal study of a sample of community-

dwelling older adults most of whom took part in the Scottish Mental

Survey of 1947 at �11 years old, and who volunteered to participate

in this cohort study at �70 years old (Deary et al., 2007; Taylor

et al., 2018; https://www.ed.ac.uk/lothian-birth-cohorts). The current

analysis includes data from the second wave of data collection, which

is the first wave at which head MRI scans are available, in addition to
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cognitive tests. In total, 731 participants agreed to MRI scanning.

After image processing, data were available from N = 636 participants

(47% female), age M = 72.67 years, SD = 0.41 years, range = 70–

74 years. The LBC1936 study was given ethical approval by the

Multi-Centre Research Ethics Committee for Scotland, (MREC/

01/0/56), the Lothian Research Ethics Committee (LREC/2003/2/29)

and the Scotland A Research Ethics Committee (07/MRE00/58). All

participants gave written consent before cognitive and MRI measure-

ments were collected.

2.2.2 | MRI protocols

Detailed information for MRI protocols in all three cohorts are

reported elsewhere: UKB (Miller et al., 2016), LBC1936 (Wardlaw

et al., 2011) and STRADL (Habota et al., 2021), but are briefly sum-

marised here. In the present sample, UKB participants attended one

of four testing sites: Cheadle (N = 22,636, 60%), Reading (N = 5463,

14%), Newcastle (N = 9526, 25%) and Bristol (N = 51, 0.14%).The

same type of scanner was used in all four testing sites, a 3 T Siemens

Skyra, with a 32-channel Siemens head radiofrequency coil. The UKB

MRI protocol includes various MRI acquisitions (more details available

here https://www.fmrib.ox.ac.uk/ukbiobank/protocol/V4_23092014.

pdf) but relevant to this work are the T1-weighted MPRAGE and

T2-FLAIR volumes. For T1-weighted images, 208 sagittal slices were

acquired with a field view of 256 mm and a matrix size of 256 � 256

pixels, giving a resolution of 1 � 1 � 1 mm3. The repetition time was

3.15 ms and the echo time was 1.37 ms.

STRADL had two testing sites: Aberdeen (in the present sample,

N = 528, 51%) and Dundee (N = 515, 49%). Detailed information

about the STRADL structural image acquisitions is available here

https://wellcomeopenresearch.org/articles/4-185. For the current

analysis, we used the T1-weighted fast gradient echo with magnetisa-

tion preparation volume sequence. The Aberdeen site used a 3 T Phi-

lips Achieva TX-series MRI system (Philips Healthcare, Best,

Netherlands) with a 32-channel phased-array head coil and a back fac-

ing mirror (software version 5.1.7; gradients with maximum amplitude

80 mT/m and maximum slew rate 100 T/m/s). For T1-weighted

images, 160 sagittal slices were acquired with a field of view of

240 mm and a matrix size of 240 � 240 pixels, giving a resolution

of 1 � 1 � 1 mm (Vidal-Pineiro et al., 2020). Repetition time was

8.2 ms, echo time was 3.8 ms and inversion time was 1031 ms. In

Dundee, the scanner was a Siemens 3 T Prisma-FIT (Siemens,

Erlangen, Germany) with 20 channel head and neck phased array coil

and a back facing mirror (Syngo E11, gradient with max amplitude

80 mT/m and maximum slew rate 200 T/m/s). For T1-weighted

images 208 sagittal slices were acquired with a field of view of

256 mm and matrix size 256 � 256 pixels giving a resolution of

1 � 1 � 1 mm (Vidal-Pineiro et al., 2020). Repetition time was

6.80 ms, echo time was 2.62 ms, and inversion time was 900 ms.

All LBC1936 participants were scanned in the same scanner at

the Brain Research Imaging Centre, Western General Hospital, Edin-

burgh, using a GE Signa LX 1.5 T Horizon HDx clinical scanner

(General Electric, Milwaukee, WI) with a manufacturer supplied

8-channel phased array head coil. More information on the structural

image acquisitions for the LBC1936 cohort is available in (Wardlaw

et al., 2011). For T1-weighted images (3D IR-Prep FSPGR), 160 coro-

nal slices were acquired, with a field of view of 256 mm and a matrix

size of 192 � 192 pixels giving a resolution of 1 � 1 � 1.3 mm (Vidal-

Pineiro et al., 2020). The repetition time was 10 ms, echo time was

4 ms and inversion time was 500 ms.

For all cohorts, the FreeSurfer image analysis suite (http://surfer.

nmr.mgh.harvard.edu/) was used for cortical reconstruction and volu-

metric segmentation. The Desikan-Killany atlas parcellation yields

34 paired regional measures in left and right cortical hemispheres

(Desikan et al., 2006). Different versions of FreeSurfer were used in

the three cohorts (UKB = v6.0, STRADL = v5.3, LBC1936 = v5.1),

and only for UKB were T2-FLAIR volumes used to improve the pial

surface reconstruction. The LBC1936 and STRADL parcellations have

previously undergone thorough quality control, with manual editing to

rectify any issues. Manual edits were performed to ensure correct

skull stripping, tissue identification and positioning of cortical regional

boundary lines. The UKB regional data were extracted from the aparc.

stats files and these parcellations have not been manually or automat-

ically edited. For the current study, UKB values more than 4 standard

deviations from the mean for any individual regional measure were

excluded (UKB M = 24.28, SD = 19.41, range = 0–104 participants

per region). For UKB and STRADL cohorts, cognitive and MRI data

were collected on the same day, but in LBC1936, there was a slight

delay between the two testing sessions (M = 65.08, SD = 37.77 days).

Raw values are plotted for mean volume, surface area and thickness by

age and cohort in Figure S7, and for each region in Figures S8–S14.

2.2.3 | Cognitive tests

All three cohorts have collected data across several cognitive tests,

covering several cognitive domains, which enables the estimation of a

latent factor of general cognitive functioning (g). The cognitive tests in

each cohort have been described in detail elsewhere: UKB (Fawns-

Ritchie & Deary, 2020), STRADL (Habota et al., 2021), LBC1936

(Deary et al., 2007;Ritchie et al., 2016; Tucker-Drob et al., 2014). The

measures used in the present study are summarised in Tables S10–S12

and correlation plot of cognitive tests within each cohort is available

in Figure S5. In STRADL and LBC1936, the cognitive data was used as

provided, as this data has been pre-cleaned. For UKB, we coded pro-

spective memory from 0 to 1, as suggested in (Lyall et al., 2016), for

numeric memory, values at �1 were removed (abandoned test) and

for Trail B, values at 0 were removed (trail not completed). Reaction

time, trail B and pairs matching scores were log transformed.

A latent factor of g was estimated for each cohort, using all avail-

able cognitive tests, using confirmatory factor analysis in a structural

equation modelling framework. Each individual test was corrected for

age and sex. Latent g model fits were assessed using the following fit

indices: Comparative Fit Index (CFI), Tucker Lewis Index (TLI), Root

Mean Square Error of Approximation (RMSEA), and the Root Mean
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Square Residual (SRMR) (for model fits, see Table S17). For the

LBC1936, g has previously been modelled with a hierarchical confir-

matory factor analysis approach, to incorporate defined cognitive

domains (Ritchie et al., 2016; Tucker-Drob et al., 2014). Here, in keep-

ing with these previous models, within-domain residual covariances

were added for four cognitive domains (Visuospatial skills, Crystalised

ability, Verbal memory and Processing speed). Results of the

g measurement models are summarised in Tables S13–S16, and

Figure S6. For all cohorts, all estimated paths to latent g were statisti-

cally significant with all p < .001.

The latent g scores were extracted for all participants. Those for

UKB were multiplied by �1 so a higher score reflected better cogni-

tive performance, to match scores from STRADL and LBC1936. Then,

for each cohort, a standardised β was estimated between g and three

measures of cortical morphometry (volume, surface area and thick-

ness) for each of the 68 regions. Cortical measures were controlled by

age, sex head position in the scanner (X, Y and Z coordinates), testing

site (for UKB and STRADL) and lag between cognitive and MRI

appointments (for LBC1936). The resulting standardised β estimates

for each region and each measure were meta-analysed between the

three cohorts (68 regions � 3 measures = 204 random effects meta-

analyses). The full results of these meta-analyses are in Tables S18–S20.

Although we controlled for age in the g-cortical morphometry

association models within each cohort, each cohort had different age

ranges (with the LBC1936 having a notably narrow age-range of 70–

74 years old), and it is possible this might affect the associations.

Therefore, we also tested for mean age moderation effects on meta-

analytic estimates, and none were significant after FDR correction (all

FDR Q > .27), see Tables S21–S23.

Additional analyses

In addition to the main analyses, which focus on g-associations with

general and specific gene expression profiles, we also ran a parallel

supplementary analysis simply on the regional morphometry means

(see Supplementary Text 1).

2.3 | Analysis software

Most analyses were conducted in R 4.0.2. (R Core Team, 2020). The

psych package was used for PCAs (Revelle, 2021), the core R stats

package was used for the Kruskal-Wallis tests, the FSA package (Ogle

et al., 2021) was used for Dunn's Kruskal-Wallis multiple comparisons,

and the metafor (Viechtbauer, 2010) package was used for the

meta-analyses. All structural equation models were estimated in

lavaan (Rosseel, 2012) with the full information maximum likelihood

method. GO term analyses were conducted at http://geneontology.

org/, which is powered by PANTHER (Thomas et al., 2003). FUMA

https://fuma.ctglab.nl/ was used for gene set enrichment analysis for

the two components, and previous GWAS associations with allelic

status of the specific individual genes-g associations were looked up

in the GWAS catalogue. For spatial correlations, we report both the p-

value directly from the Pearson's correlation and the_permutation p-

value, using a regional spin test method in MATLAB (Váša et al., 2017)

https://github.com/frantisekvasa/rotate_parcellation, with 1000

permutations.

2.4 | Data availability

Supporting scripts for this manuscript are available here https://

github.com/JoannaMoodie/moodie-geneexpression-cognition. All UKB

data analysed herein (including IDPs) were provided under project ref-

erence (Hansen et al., 2021),279. A guide to access UKB data are

available from http://www.ukbiobank.ac.uk/register-apply/. To access

data from the STratifying Resilience and Depression Longitudinally

(STRADL) study, which is part of the Generation Scotland study, see

https://www.research.ed.ac.uk/en/datasets/stratifying-resilience-and-

depression-longitudinally-stradl-a-dep, and to access the Lothian Birth

Cohort data, see https://www.ed.ac.uk/lothian-birth-cohorts/data-

access-collaboration.

3 | RESULTS

3.1 | Two major dimensions of cortical gene
expression

The Allen Human Brain Atlas consists of a high-resolution mapping of

gene expression to the cerebral cortex for N = 6 donors (5 male,

1 female, Age M = 42.50 years, SD = 13.38 years, range = 24–

57 years). French and Paus (2015) summarised these data across

donors to find the average gene expression values for each region in

the Desikan-Killiany atlas and provide a method of quality control for

between-donor consistency in regional gene expression profiles,

which results in retention of 8325 genes (out of 20,737 originally

available from the atlas). These retained genes are associated with

neural gene ontology (GO) terms, and those not retained tend to have

low expression across the cortex or are associated with other GO

terms, for example, olfactory receptor and keratin genes (French &

Paus, 2015). This results in a gene expression matrix (rows = 68 corti-

cal regions, columns = 8235 genes) of median gene expression values

for each region for each gene across donors. Initial results of a princi-

pal component analysis (PCA) on these data indicated that regional

variation in gene expression across the cortex occurs across very few

biological dimensions (see Figure 1b); that is, there was much similar-

ity across genes in the patterning of their expression across brain

regions. Mindful of the potential limitations of basing a new discovery

in fundamental neuroscience on a modest postmortem dataset (N = 6

donors), we performed extensive checks.

We tested the factor congruence of the resulting principal com-

ponents in terms of: over-reliance on specific cortical regions, congru-

ence with nine different gene expression data processing pipelines, in

two independent samples, and different brain parcellation choices.

First, to test the regional dependence of the principal components, we

used cross-validation to create five random partitions of the
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68 regions 50 times without replacement. Each time, the partitions

were arranged into two sets, one with �54–55 regions (4 of 5 parti-

tions) and the other with �13–14 regions (1 of 5 partitions). The PCA

was repeated for each iteration (a total of 250 tests). Absolute coeffi-

cients of factor congruence between the two sets tended to be high

for the first two components (PC1: M = 0.926, SD = 0.064; PC2:

M = 0.830, SD = 0.092), and were notably weaker, with higher vari-

ability, from the third component onwards, see Figure 2c. Therefore,

the first two components do not rely heavily on individual regions,

and so were taken forward in the current analysis. Unrotated, PC1

accounted for 31.9% of the variance, and PC2 for 17.5%, (after vari-

max rotation PC1 accounts for 25.8% of the variance, and PC2

for 23.6%).

Although there are efforts towards developing standardised pro-

cessing of gene expression data (Markello, Arnatkeviciute,

et al., 2021), there remains no consensus. There have been several

proposed pipelines for summarising the Allen Human Brain Atlas data,

and so we sought to test whether the gene expression components

derived using PCA are valid when the data are summarised with

different processing choices. We applied the scripts provided by Mar-

kello, Arnatkeviciute, et al. (2021), that reproduce the pipelines for

several studies (see Table S6). The initial number of retained genes,

and the number of genes matched to French and Paus' post-

consistency check genes are in Table S8. We investigated whether

the two identified components are similar when different methods of

summarising the Allen Human Brain Atlas to Desikan-Killiany space

(see Figure 2d). To test this, we replicated the gene expression matrix

from French and Paus using Markello et al.'s scripts (Markello,

Arnatkeviciute, et al., 2021) and the abagen toolbox (Markello, Shafiei,

et al., 2021). This replication is not exact, but very close—8108 genes

were retained and the factor congruence coefficient for PC1 = 0.99,

and for PC2 = 0.98. We then ran PCAs on the resulting gene expres-

sion matrices obtained from nine gene expression data processing

pipelines (Markello, Arnatkeviciute, et al., 2021; see Table S6). For

each pipeline, we calculated factor congruence coefficients with

French and Paus' method based on matched genes. Absolute coeffi-

cients ranged from 0.93 to 0.97 for PC1 and 0.24 to 0.72 for PC2 (see

Figure 2). Of all 10 pipelines, French and Paus' is the only one to not

include gene normalisation (see Table S6), which might account for

the generally lower agreement of PC2 with other pipelines. Markello,

Arnatkeviciute, et al. (2021) report that, with the Allen Atlas data, dif-

ferent choices of gene normalisation methods have the largest impact

on results. Additionally, there is particularly low agreement for PC2

with certain pipelines—Burt, et al. (2018), Anderson, et al. (2020), Liu,

et al. (2020) and Markello, Arnatkeviciute, et al. (2021)—which are

likely due to specific choices such as donor-specific probe selection,

stringent interareal similarity filtering thresholds, and other choices

that impact the number of genes retained (the number of genes

retained for these three pipelines range from 6164 to 7800, compared

to 8108 for the other pipelines, see Table S6).

We limited the donor age from these additional datasets to be in

proximity to the age range of the Allen Human Brain Atlas (24–

57 years of age). See Table S1 for descriptive statistics of the valida-

tion samples. The test for between-donor consistency provided by

F IGURE 1 An illustration of the analytic framework. (a) Gene expression data from the Allen Human Brain Atlas were summarised to the
Desikan-Killiany Atlas. (b) We conducted PCA on the gene expression matrices (68 regions * 8235 genes) and two components were justified
with validity checks. (c) We rotated these two components, and the component scores show the relative positions of the 68 Desikan-Killany
regions on these components. (d) g � brain cortical morphometry associations were calculated for three cohorts. (e) The g � brain cortical
morphometry associations were meta-analysed with random effects models. (f) The meta-analysed standardised β values of each g-regional
morphometry metric (cortical volume, surface area and thickness) associations. (g) Spatial correlations were tested between the brain-regional
component scores for gene expression and the regional g � brain cortical morphometry associations. Then, controlling for the regional
component scores, g-associations for individual genes were calculated.
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French and Paus (64) was applied to these datasets. Then, PCAs were

conducted on the gene expression matrices (rows = cortical regions,

columns = genes), and genes were matched with those in the Allen

dataset to test for factor congruence. Summaries of the number of

retained genes at each step are in Table S7.

To test whether the first two components were generalisable

beyond the six donors from which the Allen Human Brain Atlas data

were derived, we sought external validation with two independent

datasets, the BrainSpan Atlas https://www.brainspan.org/ and an

atlas provided by Kang et al. connected to the Human Brain Transcrip-

tome Project https://hbatlas.org/ (Kang et al., 2011). Both external

datasets used the Affymetrix GeneChip Human Exon 1.0 ST Array

Platform to summarise gene expression data. and include 11 cortical

regions, which have previously been roughly matched to 14 regions in

the Desikan Killiany atlas (Wong et al., 2018) (see Figure S1). For

BrainSpan (donor N = 5), these are collapsed across hemispheres, but

for the Kang et al. dataset (donor N = 11), they are available for each

hemisphere separately (a total of 22 regions). Genes with consistent

between-donor profiles were identified, using French and Paus' pro-

cedure (French & Paus, 2015). To test for factor congruence, these

were then matched with the 8235 genes that were consistent

between donors in the French and Paus dataset, resulting in 2250

genes for the BrainSpan comparison and 908 for Kang et al. The rela-

tively small numbers of retained genes could be due to different corti-

cal boundaries, extent of cortical coverage or the gene expression

measurement and sampling methods used. There was high factor con-

gruence for PC1Allen in both datasets (the coefficient for

PC1BrainSpaN = 0.88 and PC1Kang et al. = 0.96) and low-moderate fac-

tor congruency for PC2Allen (with PC2BrainSpaN = 0.24, and PC3Kang

et al. = 0.63; see Figure 2e). PC2Kang et al. did not have high factor con-

gruence with any Allen component (the maximum absolute value was

0.19, which was with PC6Allen).

Lastly, we tested whether the positioning of regional boundaries

affected the consistency of the components (see Figure 2f). Three

open-source atlases were tested: Yeo's Functional Connectivity 7 and

17 Network atlases (with 7 and 17 regions, respectively) (Yeo

et al., 2011) and the Destrieux atlas (134 regions, 67 per hemisphere)

(Destrieux et al., 2010). For all three, as with the Desikan-Killiany atlas,

8108 genes matched with the 8235 from the main working dataset.

Again, factor congruence coefficients tended to be higher for PC1Allen

than PC2Allen, (PC1Yeo7 = 0.94, PC1Yeo17 = 0.96, PC1Destrieux = 0.80;

PC2Yeo7 = 0.18, PC2Yeo17 = 0.35, PC2Destrieux = 0.65). Notably, factor

F IGURE 2 Validating gene expression components. (a) Raw gene expression values for the 34 regions for the left and right hemispheres, for

the 8235 consistent genes, ordered by mean region. (b) Correlation plot of the 8235 genes across the 68 cortical regions (8235*8235).
(c) Absolute factor congruence coefficients for the first 10 components between ‘train’ and ‘test’ folds (�54–55 regions, and �12–13 regions),
over 50 repetitions. (d) Absolute factor congruence coefficients from different pipelines with PC1 and PC2 of the current dataset of interest,
using the Desikan-Killiany atlas. * denotes that PC3 from that pipeline is compared with PC2. (e) Absolute factor congruence coefficients for two
external datasets with PC1 and PC2 of the current dataset of interest. * denotes that PC3 from is compared with PC2. (f) Absolute factor
congruence coefficients for three alternative parcellations with the PC1 and PC2 of the current dataset (which uses the Desikan-Killiany atlas).
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congruence coefficients tended to increase for PC2 with increasing

number of regions. These results may partially explain why PC2BrainSpan

was less with PC2Allen (11 regions, less granular) compared to PC2Kang

et al. (22 regions, more granular).

In summary, just two components explain the majority of gene

expression variation across the human cerebral cortex. Unrotated, PC1

accounted for 31.9% of the variance, and PC2 for 17.5%, (after varimax

rotation PC1 accounts for 25.8% of the variance, and PC2 for 23.6%).

These two components are not heavily reliant on individual regions, nor

are they donor-specific (see Figure 2). The first component is robust

across all validation tests but, for the second, we note some effects of

gene normalisation choices, cortical boundary positioning, sampling dif-

ferences, and the number of retained genes. With these results in mind,

we extracted two components, which together account for 49.4% of

the variance, with varimax rotation for further analysis.

3.2 | Interpretation of gene expression
components

To aid interpretation of the two components, we conducted statistical

overrepresentation analyses, at http://geneontology.org/, which is

F IGURE 3 Two major components of cortical gene expression. Top and middle panels (Component 1 and Component 2, respectively) left:
Regional z scores mapped to the cerebral cortex (scaled for each hemisphere) and right: word clouds of the statistical over-representation results.
The relative direction of component scores is arbitrary (dictated by the PCA), and here, the colour scale is flipped between components so that
the directions of upregulation/downregulation match. Bottom panel: Density distribution plots of loadings on Component 1 and Component
2 coloured by cell type.
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powered by PANTHER (Thomas et al., 2003). The results suggest that

Component 1 represents cell-signalling and post-translational modifi-

cation processes (with loadings <�0.3 providing upregulation and

those >0.3 providing downregulation) (see Figure 3 and the

supplementary data file for full GO results and component loadings).

Prominent GO terms include (i) amino acids and organic compounds,

which provide energy to cells and hasten chemical reactions necessary

for post-translational modifications, and (ii) signalling terms, which

convey information about nutrients in the environment and support

coordination between cells. Component 2 is a transcription factors

axis (with loadings <�0.3 providing downregulation and those >0.3

providing upregulation). The GO terms implicate biosynthesis, binding

and RNA polymerase II, defining characteristics of transcription

factors.

Additionally, we tested whether the distribution of component

loadings differed by cell-type. Zeisel et al. (2015) identified

proteins expressed in 9 specific cell-types, from single-cell tran-

scriptomes of 3005 cells in the mouse somatosensory cortex and

hippocampus. Shin et al. (2018) converted these genes to human

gene symbols, with the HologoGene database (O'Leary

et al., 2016). We matched these genes with those available in our

current dataset (N = 8235 genes). Out of the initial set of cell-

specific genes, in our dataset there were 129/214 astrocytes,

204/357 CA1 pyramidal neurons, 127/321 endothelial cells,

191/415 ependymal cells, 181/293 interneurons, 185/374 micro-

glia, 60/133 mural cells, 139/393 oligodendrocytes, 155/236 S1

pyramidal neurons and the remaining 6864 proteins were ‘unclassi-
fied’, and treated as a baseline group.

Descriptive statistics of component loadings for each cell-type

are in Table S3 and the results of the Dunn post-hoc tests are in

Tables S4 and S5. Generally, the loadings of different cell types

tend to be skewed. For Component 1, loadings for all but ependy-

mal and interneuron cell types have an absolute skewness

value >0.228. For Component 2, all but endothelial cells have abso-

lute skewness >0.187. This skewness in loadings suggests that spe-

cific cell types might play a particular roles in the regulation of the

two components. We investigated whether specific cell types load

on the two major components in ways that deviate from the aver-

age distribution of ‘unclassified’ loadings. Loading distributions by

cell type are shown in Figure 3 (bottom panel) and descriptive sta-

tistics and full results of Dunn post-hoc tests, with p-values

adjusted with the Holm method, are in Tables S3–S5. There are

main effects of cell classification for both components (Component

1: H(9) = 88.986, p = 2.6e15, Component 2: H(9) = 81.046,

p = 1.001e13).

For Component 1, the unclassified set's distribution tends

towards the expression side of the axis (M = 0.14, SD = 0.49,

skewness = �0.145). This contrasts with astrocytes (z = �4.05,

p = .002; M = �0.04, SD = 0.49, skewness = 0.375), CA1 pyrami-

dal neurons (z = 05.12, p = 1.36–05; M = �0.03, SD = 0.50,

skewness = 0.254) and microglia (z = �5.60, p = 1.86e-09;

M = �0.11, SD = 0.46, skewness = 0.506), which are skewed

towards the regulation side. For the second component, the unclas-

sified set of genes tend towards regulating transcription factors

(M = 0.15, SD = 0.46, skewness = �0.183). Whereas, S1 pyramidal

cells oppose this direction (z = �5.03, p = 1.98e-08; M = �0.05,

SD = 0.47, skewness = 0.200), astrocytes and microglia fall more

sharply on the regulation side than the unclassified set of genes

(unclassified kurtosis: 1.925; astrocytes: z = 3.89, p = .003,

kurtosis = 2.582; microglia: z = 5.41, p = 2.66e-06, kurtosis =

2.846). For all other comparisons between the unclassified cells

and individual cell types, p = 1.

Additionally, through FUMA https://fuma.ctglab.nl/ we tested

whether the genes with absolute loadings >0.3 on each component

were significantly related to gene sets in the GWAS catalogue. There

were no significant (α = .05) associations for either component, dem-

onstrating the highly general nature of the two components of cortical

gene expression.

3.3 | Regional distribution of component scores
across the cerebral cortex

The component scores were scaled to correct for interhemispheric

differences in gene expression values (see Section 2 for details).

These component scores were then mapped to the 68 Desikan

Killany regions (see Figure 4 and Table S9). There was a strong inter-

hemispheric correlation in scores between the 34 paired regions for

both Component 1 (r = 0.815, p = 4.411e09) and Component 2

(r = 0.725, p = 1.25e06). The direction of upregulation and downre-

gulation of the loadings (as determined by GO analysis) informed

whether the regional component scores suggested upregulation or

downregulation of the two components. For Component 1, negative

loadings suggest upregulation, and positive suggest downregulation;

conversely for Component 2, positive loadings suggest upregulation

and negative suggest downregulation. Parietal and occipital regions

are on the upregulation side of Component 1 (cell signalling/modifi-

cation), with frontal and temporal regions indicating downregulation.

For Component 2 (transcription factors), lateral frontal areas tend

towards balance between upregulation and downregulation,

whereas medial frontal regions tend towards downregulation and

parietal and occipital regions towards upregulation. For both compo-

nents and in both hemispheres, the highest absolute scores are

observed in the medial occipital regions (pericalcarine, cuneus and

lingual regions), which fall strongly on the upregulation side of both

components.

We tested whether the regional mean morphometry profiles

(see Supplementary Text 1) are associated with regional gene

expression component score patterning. In general, the thicker a

region is, the more strongly it falls on the downregulation side of

both gene expression components (Component 1: r = 0.764,

p = 3.67e14, p_spin < .0001 and Component 2: r = �0.799,

p = 3.132e16, p_spin < .0001). Associations between mean

regional surface area patterns and both components were

10 of 21 MOODIE ET AL.
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small-to-moderate (Component 1: r = �0.230, p = .059,

p_spin = .042, Component 2: r = 0.245, p = .044, p_spin = .021),

and between mean regional volume and both components were

small and not statistically significant at the α < .05 level

(Component 1: r = �0.082, p = .504, p_spin = .266, Component 2:

r = 0.111, p = .368, p_spin = .202).

3.4 | Cortical morphometric associations with
general cognitive functioning (g)—meta-analyses
(N = 39,519)

We first used raw data from three cohorts to estimate regional associ-

ations between three MRI-derived morphometry measures (cortical

volume, surface area and thickness) and g (total N = 39,519; three

cohorts—the UK Biobank (UKB, Sudlow et al., 2015, http://www.

ukbiobank.ac.uk): N = 37,840 participants (53% female), age

M = 63.81 years (SD = 7.64 years), range = 44–83 years; STRADL

(Habota et al., 2021, a Generation Scotland imaging sample):

N = 1043 participants (60% female), age M = 59.29 years

(SD = 10.12 years), range = 26–84 years; and the Lothian Birth

Cohort 1936 (LBC1936; Deary et al., 2007; Taylor et al., 2018,

https://www.ed.ac.uk/lothian-birth-cohorts): N = 636 participants,

(47% female), age M = 72.67 years, SD = 0.41 years, range = 70–

74 years). General cognitive function (g) scores were derived using

confirmatory factor analysis (in a structural equation modelling frame-

work) in each of the three cohorts using multi-domain cognitive test

batteries, and each individual test score was corrected for age and

sex. As one of the most replicated phenomena in psychological sci-

ence, g is based upon the tendency for performance on all cognitive

tests to be correlated, and is generally invariant to cognitive test con-

tent, provided that multiple domains are captured (Salthouse, 2005).

These properties lend it well to cross-cohort genetic analyses (Davies

et al., 2018), for example, and we leverage them here.

Latent g scores were extracted for all participants, and associations

with three measures of cortical morphometry (volume, surface area and

thickness) were estimated for each of the 68 regions in each cohort. Cor-

tical measures were controlled by age, sex, head position in the scanner

(X, Y and Z coordinates), testing site (for UKB and STRADL) and lag

between cognitive and MRI testing appointments (for LBC1936). For

UKB, X, Y and Z co-ordinates were calculated relative to one target par-

ticipant, and for LBC1936 and STRADL, they were taken from the

mri_info -cras flag output. We computed standardised β estimates of the

association in each brain region between g and each brain morphometric

property (volume, surface area, thickness) for each cohort. There were

strong cross-cohort correlations for g-associations between the

68 regions for each measure of morphometry (see Table 1).

We then ran a random effects meta-analysis on the standardised

β values. The meta-analytic results of the three cohorts' associations

between g and brain morphometry data (68 regions � 3

measures = 204 meta-analyses) are summarised in Figure 4 and

reported in detail in Tables S18–S20. Meta-analysed standardised βs

for g-volume associations M β = 0.103 (SD = 0.034, β range from

0.015 to 0.175), for g-surface area, M β = 0.102 (SD = 0.027, range

from 0.020 to 0.150), and for g-thickness associations M β = 0.031

(SD = 0.035, range = �0.048 to 0.124).

The current results provide support for theories (Cox et al., 2019;

Jung & Haier, 2007) regarding which regions are key in brain

morphometry-g associations (e.g., the parieto-frontal integration the-

ory, P-FIT, see Figure S16). Parietal and frontal regions generally have

relatively strong g-associations with volume and surface area, though

not with cortical thickness. For all three morphometry measures, the

superior temporal region had relatively high g-associations mean β

(between hemispheres) = 0.163, 0.143 and 0.116, for volume, surface

area and thickness respectively. Some of the highest g-volume and g-

surface area associations are for the fusiform (mean β (between hemi-

spheres) = 0.154 and 0.126, for volume and surface area, respec-

tively) and inferior parietal region (mean β (between hemispheres)

= 0.153 and 0.145, respectively). The precuneus regions also have

among the overall highest associations (mean β = 0.136, and

β = 0.129), in line with updated reports of regional g-associations

(Basten et al., 2015; Cox et al., 2019).

There is high inter-hemispheric consistency for each of the

meta-analytic g-morphometry associations: volume (r = 0.887,

p = 2.988e12), surface area (r = 0.807, p = 8.105e09) and thickness

(r = 0.878, p = 9.578e12), see Figure S15. In addition, estimates were

strongly correlated between g-volume and g-surface area associations

(r = 0.831, p = 1.66e18, p_spin < .0001), and moderately correlated

between g-volume and g-thickness (r = 0.579, p = 2.365e07,

p_spin = .001). As anticipated, based on previous work showing phe-

notypic and genetic distinctions between surface area and thickness

(Dickerson et al., 2009; Eyler et al., 2012; Panizzon et al., 2009;

Storsve et al., 2014) the correlation between g-surface area and g-

thickness estimates was small and not statistically significant at the

α < .05 level (r = 0.150, p = .222, p_spin = .134).

To help interpret why some regions might have higher associa-

tions with g than others, we tested correlations between regional g-

associations and the regional mean profiles of volume, surface area

TABLE 1 Cross-cohort correlations of regional g-associations.

Cohort comparison g � volume g � surface area g � thickness

LBC1936–STRADL r = 0.538 r = 0.424 r = 0.567

STRADL–UKB r = 0.665 r = 0.723 r = 0.741

UKB–LBC1936 r = 0.663 r = 0.692 r = 0.692

Note: (all p < .001, all p_spin ≤ .001).
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and thickness (reported in Supplementary Text 1). The regional g-

associations were positively associated with the corresponding

regional mean profiles for all three morphometry measures. Volume

had the strongest correlation (r = 0.709, p 1.35e11, p_spin < .0001),

followed by surface area (r = 0.614, p = 2.58e08, p_spin < .0001), and

then thickness (r = 0.313, p = .009, p_spin = .0095). In other words,

F IGURE 4 Meta-analysed
brain regional associations with g.
(a) Standardised β estimates and
FDR Q values for each
g � morphometry association
mapped to the cerebral cortex.
(b) Meta-analysed standardised β

estimates for g-volume, g-surface
area and g-thickness. Those for

which p < .05 are filled in, and
those for which p > .05 are
outlined. The y-axis is ordered by
the mean left and right hemisphere
meta-analysed β values
(decreasing) for each morphometry
measure.
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regions with stronger g-associations tend to be larger in terms of vol-

ume and surface area, and also moderately tend to be thicker.

We then tested whether larger and thicker brain regions are more

strongly associated with g because they tend to be better proxies for

whole-brain measures (as they contribute more to the total measure).

The magnitude of total brain g-volume and g-surface area associations

are in line with the maximum of the individual regions—g-whole cortex

volume (β = 0.180, SE = 0.036, p = 5.93e07), g-whole cortex surface

area (β = 0.160, SE = 0.021, p 3.93e14). Perhaps as there are some

negative g-thickness associations, the g-whole cortex mean thickness

association was not significant (β = 0.065, SE = 0.043, p = .13). We

then corrected regional g-associations for these total brain measures,

and correlated regional profiles with and without correction. These cor-

relations are moderate-to-strong: g-volume (r = 0.613, p = 2.76e08), g-

surface area (r = 0.556, p = 8.78e07) and g-thickness (r = 0.945,

p < 2.2e16), suggesting that it is not simply because larger/thicker brain

regions are a better proxy for the whole brain measure that they are

more strongly associated with g.

3.5 | Interregional variation in gene expression
corresponds to interregional variation in cognitive
function

3.5.1 | Associations between g and components of
gene expression

Next, we tested whether brain regions' differences in gene expression

(as measured using the two components we described earlier) are cor-

related with g-morphometry associations. That is, we asked whether

brain regions for which morphometric measures (volume, surface area

and thickness) are more strongly related to g were also more strongly

related to general dimensions of gene expression.

We tested linear correlations between the absolute component

scores of gene expression and the meta-analysed standardised β

scores for cortical morphometry associations with g, and also report

the comparable quadratic regression results with non-absolute

scores (see Table 2 and Figure 5). There were negative associations

for all analyses, and those for g-volume and g-surface area were

moderate-to-strong and statistically significant at the α < .05 level.

These results suggest that, generally, regions more strongly associ-

ated with g tend to be more balanced between the downregulation

and upregulation sides of both cell-signalling/modification and tran-

scription factors components.

There were no correlations between regional mean expression

across genes and g-brain morphometry association profiles for which

p < .05 (g-volume r = �0.023, p = .853; g-surface area r = �0.058,

p = .640; g-thickness r = 0.103, p = .403), demonstrating the value of

the PCA approach as associations between genome-wide dimensions

of expression and g are not reducible to an average brain-wide pattern

of gene expression.

3.5.2 | Associations between g and individual genes

Lastly, we tested for individual gene-g expression pattern associations,

controlling for the two general components of gene expression. For

all 8235 individual genes, the median expression scores per region

were scaled separately for left and right hemisphere regions, to

account for sample-based artefacts in hemisphere differences in

expression values, in line with the method for the component scores.

After FDR correction (threshold = Q < .05), there were 522 individual

genes whose cortical patterning was correlated with g-volume pat-

terning, 609 with g-surface area and 516 with g-thickness (these

results are available in detail in the supplementary data file, and

Figures S18–S20). Two hundred and sixty eight genes were shared

between g-volume and g-surface area, 253 between g-volume and g-

thickness and 42 between g-surface area and g-thickness. Forty one

genes with FDR Q < .05 overlapped for all three morphometry mea-

sures, and of these, spin-test p-values were < .05 for all three mor-

phometry measures for 29 genes (jβj range = 0.18 to 0.53, see

Figure 6). These 29 genes are particularly likely candidate substrates

of cognition. Some regional expression profiles have positive associa-

tions with g-cortical measure profiles, while others have negative

associations. For discussion, genes with negative g-associations in the

present study are marked with an asterisk.

Several of these 29 genes have been previously reported to be

associated with Alzheimer's Disease: overexpression of ANGPT1* has

been found to increase amyloid beta secretion (Peng et al., 2020)

whilst CLEC4G suppresses amyloid beta (Kizuka et al., 2015), and

increased levels of ENC1 (Gns et al., 2022; White et al., 2017) and

NPTX2 (Belbin et al., 2020; Libiger et al., 2021; Shao et al., 2020; Xiao

et al., 2017) are consistently demonstrated to have protective effects

against cognitive decline in Alzheimer's disease. Other genes from this

list have been associated with other neurodegenerative disorders—for

example. Loss of GABRQ*-containing neurons is an indicator of early

social–emotional cognitive decline in frontotemporal dementia (Gami-

Patel et al., 2022), IL6R* has been associated with memory domain

scores, and Alzheimer's disease pathology (cerebrospinal fluid pTau

TABLE 2 Correlations of correlations: Meta-analysed g-cortex
associations with two major gene expression components.

g � Component 1 Component 2

Volume r = �0.385, p = .001,

p_spin = .0015

r = �0.582, p = 1.96e07,

p_spin < .0001

Surface

area

r = �0.345, p = .004,

p_spin = .003

r = �0.500, p = 1.45e05,

p_spin = .0005

Thickness r = �0.145, p = .237,

p_spin = .128

r = �0.255, p = .036,

p_spin = .021

Note: Pearson's r values for the correlation between brain-g associations

and brain-gene expression component profiles. Note that these are for

linear associations using the absolute gene-expression component scores.

Results for the equivalent associations using the non-absolute

components scores (quadratic component) are presented in Table S24 and

Figure 5, which illustrates the balance between downregulation and

upregulation.
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and Aβ42/40 ratio) (Quillen et al., 2023), and DTNB is an indicator of

extent of neuronal injury and inflammation in Alzheimer's disease

(Neumann et al., 2022). CYP26B1 is upregulated in the prefrontal

cortex (Shibata et al., 2021), and there are links between its catabo-

lism in the hippocampus and poor cognitive outcomes in mice

(Wołoszynowska-Fraser et al., 2021).

F IGURE 5 Associations between regional-g profiles and the two gene expression components. LOESS functions are plotted (the quadratic
model results are comparable to the absolute score correlations and are presented in Table S24). A vertical line at component scores of
0 represents a balance between upregulation and downregulation ends of each component. The colour scale is flipped between Components, so
that the direction of downregulation and upregulation match.
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Other individual genes associated with g-cortical profiles have

been associated with cognitive functioning more generally, for

example, RGS9* has been implicated in motor coordination and

working memory (Blundell et al., 2008). Some others have been

linked to cognitive disorders, for example LYRM4 has been linked

to schizophrenia (Jablensky et al., 2012). Previous significant

GWAS associations with these 29 genes were identified in the

GWAS catalogue and are available in the supplementary data file.

These associations include educational attainment (C10orf134*,

CYP26B1, LYRM4, NELL1, PLCD3*, SMPX), body mass index (BMI)

(C10orf134*, DTNB, GOLGA6L5*, KCTD8, MYL3*, PLAG1*,

STK33*), brain measurements (ANGPT1*, C10orf134*, NPL*),

schizophrenia (CYP26B1), and depression (YIPF1) (see the

supplementary data file for full details). Individual gene substrates

of complex cognitive processing identified in the present study

whose significant associations with cognition were not directly

identified in the previous literature include: AC135995.5*, ANO3,

C7orf27*, C9orf91, CD99*, GLTSCR2*, GOLGA6L5*, KCTD8, MYL3*,

NPL*, PAK1, PLAGL1*, PLCD3*, RPS3P3*, SMPX, STK33* and YIPF1.

We also ran a protein network analysis on the 29 identified genes

through STRING (Szklarczyk et al., 2023) (Search Tool for the

Retrieval of Interacting Genes/Proteins), with a minimum required

interaction score of ‘medium confidence’ (0.400), and the background

set of 8235 genes. Three proteins were not available in STRING, so

there were 26 proteins involved in the analysis. The PPI enrichment

p-value is .506, with the expected number of edges being 2, and the

observed number of edges, also 2, showing that the network does not

have significantly more interactions than expected. There are two

edges—both connections are sourced from text mining and co-expres-

sion: one is between MYL3* and SMPX and the other is between

ANGPT1* and IL6R*. Overall, these results suggest that there are not

widespread interactions between these top genes, which further vali-

dates the aim of establishing unique signals beyond general gene

expression patterns.

3.5.3 | Associations between g and cell types

Then, we used our discovery of what is common about regional corti-

cal gene expression profiles to identify specific cell type-cognitive

relationships. The raw expression values by the nine cell types and

their correlations are shown in Figure S17. The mean profiles of the

nine specific cell types were scaled in each hemisphere, and we con-

trolled for the two major components of gene expression (detailed

regression results are in Table S25) to assess their associations with g-

morphometry profiles. For two cell types, there were associations for

which FDR Q < .05: ependymal cells with g-volume (β = �0.200,

SE = 0.054, FDR Q = .007) and with g-thickness (β = �0.244,

SE = 0.053, FDR Q = .001), and for microglia, with g-volume

(β = �0.155, SE = 0.054, FDR Q = .035) and g-surface area

(β = �0.175, SE = 0.053, FDR Q = .013).

4 | DISCUSSION

This study reveals and validates a fundamental organisation principle

of cortical gene expression patterns across the human brain. We then

use this information to identify the shared and specific aspects of

regional cortical gene expression and show that they are associated

with regional brain-structure correlates of complex thinking skills. We

F IGURE 6 Associations between
regional g-morphometry profiles and
29 individual gene expression profiles.
Standardised β for specific individual
gene profiles (i.e., corrected for general
components of gene expression) for
which FDR Q < .05 for all three
cortical morphometry associations
with g and the spin-based permutation

test p < .05.
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also show that this information is not obtainable by simply considering

aggregate/mean levels of gene expression across regions.

We validated our discovery of two major components of interre-

gional variation in gene expression: one indicating cell-signalling/

modifications and the other, transcription factors. Using the largest

meta-analysis of the cortical loci of general cognitive functioning (g)

to-date, we find that regions that are more balanced between down-

regulation and upregulation of these two gene expression compo-

nents are most strongly associated with g. Controlling for these

established patterns of gene expression covariation allowed us to

identify which individual genes had spatial expression patterns that

specifically reflect cortical correlates of g, beyond the major dimen-

sions of gene expression. Critically, without this approach, one is likely

to miss or erroneously ascribe an interpretation to an individual gene,

as its profile is confounded by major components of shared spatial

covariation across multiple gene expression patterns.

We conducted one of the largest analyses of g-cortical morphom-

etry associations to-date. These associations are generally in line with

the parieto-frontal integration theory (P-FIT; Jung & Haier, 2007) and

strengthens support for the involvement of regions (e.g., temporal,

precuneus) that were not included in earlier iterations of the model.

There was strong agreement across the three cohorts in the magni-

tudes and spatial patterning of associations, which speaks to the valid-

ity of g, as a measure of cognitive functioning (indicated by different

cognitive tests included by each cohort). The consistency of results

also indicates that careful harmonisation of image processing along-

side careful attention to phenotype measurement may partially offset

the apparent need for many thousands of participants to obtain repli-

cable brain-behaviour association results (Marek et al., 2022).

Turning to the gene expression components-g correlations, the

more strongly regions were associated with g, the more they tended

towards the balance between the downregulation and upregulation

sides of the cell-signalling/modification and transcription factors com-

ponents. Complex cognitive functions therefore may be facilitated at

a midpoint of downregulation and upregulation of each of these com-

ponents. Other regions that fall on either the downregulation or upre-

gulation sides of each of the two major dimensions perhaps specialise

in less general functions. An important question this raises, but we

cannot answer here, is whether individual differences in the balance

of gene expression in these cortical dimensions might partly explain

why people differ from each other in their general cognitive

functioning.

Using this newly gleaned information about what is common

among gene expression profiles, we then identified 29 individual

genes whose spatial expression was correlated with g cortical pattern-

ing, independent of the two major dimensions. Whereas some of the

genes strongly indicated in the two major dimensions themselves

could also pertain, causally, to mechanisms and processes underpin-

ning g, the nature of shared expression patterns as presented here dis-

allows that direct inference for individual genes. In contrast, these

29 genes with specific associations are particularly strong candidates

for playing a role in facilitating complex cognitive processes. Several

of these genes have been previously identified as associated with

various cognitive outcomes, whilst others are potentially less well-

researched substrates of cognition. Both the current gene patterning

approach and GWAS can be used to identify gene-cognition associa-

tions. GWAS examines common genetic variants and their association

with cognitive traits, whereas a gene expression patterning approach

encompasses the effects of many common and rare genetic variants

along with environmental influences. Due to these differences, these

approaches may identify different genes. Additionally, in this study, a

gene expression approach allows us to look specifically at gene

expression within the brain.

After testing the g-associations of the major components of gene

expression, we turned to specific cell type–g associations. Microglia

and ependymal cells both had negative associations with cognitive

morphometry measures—ependymal cells with volume and thickness,

and microglia with volume and surface area. These two cell types both

play key roles in waste removal from the brain, which might explain

these negative associations—it could be that some regions specialise

in fundamental brain maintenance processes, such as waste manage-

ment, thus enabling others to specialise in cognitive processes. This

study has several strengths and limitations. As we quantitatively dem-

onstrate, the present approach surpasses candidate gene and median

expression information, clarifying our understanding of the molecular

substrates of complex cognitive abilities in the human brain. We

extensively validate the discovered components of gene expression,

mitigating concerns that this finding might be an artefact of a small

number of donors in a single sample. The first component is highly

consistent across different datasets, gene expression data processing

and summary choices, and brain regional parcellation choices.

Although the second component does not depend heavily on individ-

ual regions, it is somewhat affected by the granularity and boundaries

of the parcellation, gene expression data sampling and processing

choices, and the number of genes retained. While efforts continue to

standardise gene expression processing pipelines (Markello,

Arnatkeviciute, et al., 2021), the effects of different choices on dimen-

sions of between-gene covariances should continue to be considered.

As donor contributions to gene expression databases continue to

increase, brain regional summaries of gene expression will become

more precise. Several genes were excluded from the current analysis

due to low between-donor consistency. Although this is partially due

to some of these genes having generally low expression across the

cortex, there also appears to be an effect of the sampling methods of

gene expression data. Gene expression sampling methods consistent

with clear cortical boundaries and full cortical coverage will increase

between-donor consistency in regional gene expression profiles and

enable stronger tests of external validity. Additionally, future research

should consider whether major dimensions of regional cortical gene

expression, such as those reported in the current paper, are consistent

between postmortem and in vivo data (Liharska et al., 2023), as this is

likely to affect the interpretation of results.

We leveraged the fact that the UKB, STRADL and LBC1936

cohorts have adopted comparable methods, including similar MRI pro-

cessing pipelines with FreeSurfer http://surfer.nmr.mgh.harvard.edu/,

and collection of various cognitive test scores, which enabled us to
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harmonise the processing and approach to the calculation of g. Con-

sistency in the applied methods between cohorts allows for direct

quantitative comparison. Despite these advantages, there were also

some differences between MRI data and processing the three cohorts,

which might differentially affect the cortical surface results: (i) each of

the three cohorts used different scanners for MRI acquisition and,

although T1-weighted data provides consistent between-scanner

measures (Buchanan et al., 2021), we cannot rule out scanner-specific

differences, (ii) Desikan-Killiany parcellations were visually inspected

and manually edited for LBC1936 and STRADL, but not for UKB (out-

liers SD >4 were excluded) and (iii) different FreeSurfer versions were

used for each cohort, which is likely to have contributed to some dif-

ferences in estimations, alongside different types and quantity of cog-

nitive tests. However, high between-cohort correlations suggest that

these differences may not meaningfully affect the current results and

provide evidence in support the use of g in meta-analytic studies

to reach reproducible brain-cognition associations (Nikolaidis

et al., 2022).

A separate limitation of this study is that all included participants

were in relatively good health, as we chose to exclude

participants with declared neurological conditions. It is therefore not

clear that the reported regional g-associations would generalise to

clinical populations. Additionally, whereas the cognitive-MRI data do

not include childhood and adolescence (and therefore the results may

not relate directly to those parts of the life span), the good adulthood

age coverage, absence of age moderation of the meta-analytic esti-

mates, and clear agreement across cohorts suggests that the well-

powered results reliably capture adulthood brain-g correlations.

5 | CONCLUSION

In summary, this newly possible study uses robust methods to

advance our understanding of how gene expression is associated with

complex cognitive functioning. We discovered and interpreted two

general components of cortical gene expression, and identified gen-

eral and specific patterns of gene expression that are candidate sub-

strates that may contribute to some of the association between brain

structure and complex cognitive functioning.
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