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Minimal surfaces arise as energy minimizers for
fluid membranes and are thus found in a variety
of biological systems. The tight lamellar structures
of the endoplasmic reticulum and plant thylakoids
are composed of such minimal surfaces in which
right and left handed helical motifs are embedded
in stoichiometry suggesting global pitch balance.
So far, the analytical treatment of helical motifs
in minimal surfaces was limited to the small-slope
approximation where motifs are represented by the
graph of harmonic functions. However, in most
biologically and physically relevant regimes the inter-
motif separation is comparable with its pitch, and
thus this approximation fails. Here, we present a
recipe for constructing exact minimal surfaces with
an arbitrary distribution of helical motifs, showing
that any harmonic graph can be deformed into a
minimal surface by exploiting lateral displacements
only. We analyze in detail pairs of motifs of the similar
and of opposite handedness and also an infinite
chain of identical motifs with similar or alternating
handedness. Last, we study the second variation of the
area functional for collections of helical motifs with
asymptotic helicoidal structure and show that in this
subclass of minimal surfaces stability requires that the
collection of motifs is pitch balanced.
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1. Introduction
From soap films and liquid crystals to plant thylakoids and the endoplasmic reticulum, minimal
surfaces arise as the ground state of a variety of manmade and naturally occurring membranes
and lamellar structures. Minimal surfaces minimize the area of a surface that passes through a
given boundary [1], and thus arise naturally in cases where surface tension is dominant. However,
minimal surfaces also arise in systems dominated by membrane bending energy as they constitute
trivial critical points of the Helfrich free energy [2].

Recently, helical motifs were discovered in the lamellar structures of the endoplasmic
reticulum [3] and plant and cyanobacteria thylakoids [4,5]. Both right and left handed motifs
were observed in both systems, in stoichiometry that suggested global pitch balance. While in the
endoplasmic reticulum the right and left handed helical motifs were mirror images of one another
and appeared in equal amounts, in the thylakoid the right and left handed motifs differed in their
pitch, core radius, and density yet preserved pitch balance on average [6].

To advance our understanding of these systems we require the ability to construct minimal
surfaces in which the appropriate helical motifs are embedded. Twist grain boundaries, composed
of infinitely many helical motifs of a single handedness embedded along a line in a minimal
surface, allow an exact formulation and are well understood [7–9]. In contrast, embedding finitely
many motifs in a minimal surface, as well as combining motifs of different pitch values remains
a challenge. Coming to address these structures more explicitly Guven et al [10] considered
the small slope approximation for minimal surfaces. The main advantage of this approach is
that minimal surfaces are obtained as harmonic graphs (i.e. surfaces given in a Monge-patch
parametrization (x, y, h(x, y)), where h is harmonic), and thus this approach allows for the simple
addition of helical motifs of arbitrary geometry and topology. However, the resulting surfaces
are not exactly minimal. This is exceptionally apparent in the immediate vicinity of the helical
structures, i.e. within a distance of a few pitch lengths from the core of each motif, as can be
observed in Fig. 1.

In the biologically and physically relevant regimes, helical motifs are commonly separated
by a distance comparable to the pitch, rendering the small slope approximation irrelevant for
these structures [3,6]. With the purpose of bridging this gap, in this work, we provide a recipe for
constructing exact minimal surfaces with an arbitrary distribution of helical motifs. We first show
that any harmonic graph (approximately minimal surface) can be deformed into an exact minimal
surface through an explicit, yet non-local operation. We moreover show that every minimal
surface could be obtained through this recipe. We conclude by surveying key examples: a pair
of motifs of the same and opposite pitch, and an infinite chain of identical motifs distributed
along a line with similar or alternating handedness.

2. Enneper immersions of minimal surfaces
We begin by presenting a somewhat underused representation of minimal surfaces termed
Enneper immersions due to Andrade [11]. In essence, this technique allows us to “fix” an
approximate minimal surface given as a graph over the plane such that it becomes an exact
minimal surface by only exploiting lateral displacements and not varying the height data.
Consider a surface given by a harmonic function h :Ω→R over a domain Ω in the complex
plane

r(z) = (z, h(z)), z = x+ iy ∈Ω ⊂C, ∂z̄∂zh= 0, (2.1)

where we use z̄ = x− iy, ∂z ≡ ∂
∂z = 1

2 (∂x − i∂y), and ∂z̄ ≡ ∂
∂z̄ = 1

2 (∂x + i∂y). For convenience, we
will from now on also represent surfaces through complex (non necessarily analytic) functions
since in the subsequent calculations we will need the derivatives of h with respect to z and z̄

which results in complex functions that are not real valued.
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Figure 1. Deviation from minimality in the small slope approximation as a function of p
R

. The figure depicts two layers

obtained from the graph of the harmonic function h(z) = p arg(z − R
2
)− p arg(z + R

2
) colored by its mean curvature

H . Notice that the deviation from minimality is most apparent for the closely-separated motifs and near the helical core.

The size of the region where H cannot be neglected increases with p
R

. (Left) Plot for p= 0.5 and R= 1.0. (Right) Plot

for p= 0.5 and R= 4.0.

The mean curvature H of such a surface reads

H =
(1 + h2

x)hyy − 2hxhyhxy + (1 + h2
y)hxx

2(1 + h2
x + h2

y)
3
2

=−2
h2
zhz̄z̄ − (1 + 2hzhz̄)hzz̄ + h2

z̄hzz

(1 + 4hzhz̄)
3
2

. (2.2)

As H = 1
2∇

2h+O(‖∇h‖2) =O(‖∇h‖2), such surfaces are considered minimal within the small
slope approximation (where terms of order O(‖∇h‖2) are omitted). A great advantage of this
method is that due to the additivity of harmonic functions one can simply “add” helical motifs.
The surface

r(z) = (z, p0 arg(z − z0)), (2.3)

yields a helicoid of pitch p0 centered around z0 which is exactly minimal. One can explicitly
construct the surface which includes N helical motifs located at the points {zk}Nk=1 and of
corresponding pitches {pk}Nk=1 through

r(z) = (z,

N∑
k=1

pk arg(z − zk)).

The mean curvature of this surface, however, does not vanish identically. (The helicoids and
planes are the only minimal surfaces that are also the graph of a harmonic function.) In particular,
considering the case of a dipole of pitches +p and−p separated a distance R from each other, say
with axes located at z1 = R

2 and z2 =−R2 , the mean curvature reads

H =− p3R3y

C(x, y)
1
2 [C(x, y) + p2R2]

3
2

, where C(x, y) = [(x− R

2
)2 + y2][(x+

R

2
)2 + y2].

For example, as x=R/2 and y→ 0 then H→−8/R, or expressed in dimensionless terms
|H/
√
−K|= 2p/R. We thus see that the deviation from minimality becomes significant whenever

the inter-motif separation becomes comparable to their pitch (which is the case in both [3] and [6]).
To amend this we turn to construct a specific type of an Enneper immersion. We begin by stating
the general result due to Andrade [11]:

Let h :Ω ⊂C→R be a harmonic function and L,P :Ω ⊂C→C be holomorphic. We may
define

X(z) = (L(z)− P (z), h(z)), z ∈Ω. (2.4)
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The mapping X is a conformal minimal surface when L and P satisfy

L′(z)P ′(z) =

(
∂h

∂z

)2

and |L′(z)|+ |P ′(z)| 6= 0. (2.5)

The first condition guarantees that X is conformal, i.e., the coefficients a11 = 〈∂xX, ∂xX〉, a12 =

〈∂xX, ∂yX〉, and a22 = 〈∂yX, ∂yX〉 of the metric satisfy a11 = a22 and a12 = 0, while the second
implies that the surface is regular, i.e., det(aij) 6= 0. Conversely, every minimal surface can be
written as the Enneper graph of a harmonic function. The reader is referred to [11] for proof of
the general case. Below we address a particular case where L(z) = z.

(a) Obtaining exact minimal surfaces from harmonic approximations
Consider an approximately minimal surface in the form of a harmonic graph (2.1), then the
surface

r(z) = (z − P (z), h(z)), where P (z) =

∫
(∂zh)2 dz, (2.6)

is an exact minimal surface. Conversely, every minimal surface can be locally parametrized as
in equation (2.6). Moreover, the complex variable z provides a conformal parametrization of the
surface r, and the area element dA and Gaussian curvature K read:

dA= (1 + |∂zh|2)2dxdy= (1 + 1
4‖∇h‖

2)2dxdy (2.7)

and

K =−4
|∂zzh|2

(1 + |∂zh|2)4
=

hxxhyy − h2
xy

[1 + 1
4 (h2

x + h2
y)]4

. (2.8)

It is important to state that the x, y coordinates above are not Cartesian coordinates on the
plane, i.e., they do not provide a Monge patch for the surface r, rather they are the image of these
coordinates under the transformation z 7→ z − P (z) 1.

We next provide a rigorous proof of these claims.

(i) Proof of equations (2.6), (2.7) and (2.8)
Any immersion r = (L− P , h) can be rewritten as r = Re

∫
(L′ − P ′,−i(L′ + P ′), 2hz)dz, where

the third coordinate was obtained by taking into account that for any real function h it is valid
dh= hzdz + hz̄dz̄ = hzdz + hzdz, from which follows that h=

∫
dh= 2Re(

∫
hzdz). Now, using

the known results for holomorphic representations of minimal surfaces, see Appendix A for
details, the necessary and sufficient conditions for r = Re(

∫
φ1dz,

∫
φ2dz,

∫
φ3dz) to be a minimal

immersion are that φ1, φ2 and φ3 are holomorphic, φ2
1 + φ2

2 + φ2
3 = 0, and |φ1|2 + |φ2|2 + |φ3|2 6=

0, whose validity for Enneper immersions follows from (2.5). In addition, we obtain that the area
and Gaussian curvature of r = (z − P̄ , h) are given by equations (2.7) and (2.8).

For the converse, i.e., showing that any minimal surface is an Enneper immersion, Andrade
uses the Uniformization Theorem to pass to the universal covering of Σ and then build L, P ,
and h [11]. Here, we shall provide a more elementary proof to show that every minimal graph
r(ζ) = (ζ, h(ζ)) can be written as an Enneper graph r(z) = (z − P (z), h(z)) after an appropriate
change of coordinates ζ 7→ z(ζ). To find this change of coordinates we proceed as follows. First,
note we may assume that neither hζ = 0 nor hζ̄ = 0. Otherwise, h(ζ) would be (anti-)holomorphic,
but no non-constant real function can be (anti-)holomorphic. Now, assuming we are able to

1Distinguishing the coordinate systems is exceptionally important in view of the functional similarity between the above
result and the expression for the Gaussian curvature of an arbitrary surface given as a graph:

K(x,y,h(x,y)) = (hxxhyy − h2
xy)/(1 + h

2
x + h

2
y)

2

.
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reparametrize r(ζ) = (ζ, h(ζ)) as r(z) = r(ζ(z)) = (z − P (z), h(z)) and using ζ = z − P̄ , gives

Pz = (hz)2 = (hζζz + hζ̄ ζ̄z)2 = h2
ζ − 2Pzhζhζ̄ + h2

ζ̄P
2
z ,

which allows us to write

Pz =
1 + 2hζhζ̄ ±

√
1 + 4hζhζ̄

2(hζ̄)2
and Pz̄ = 0.

In order to find P for a given minimal graph r(ζ) = (ζ, h(ζ)), we must be able to write a
differential equation for P in terms of ζ and ζ̄. To do that, we use Pz = Pζζz + Pζ̄ ζ̄z = Pζ − PzPζ̄
and 0 = Pz̄ = Pζζz̄ + Pζ̄ ζ̄z̄ = Pζ̄ − P̄z̄Pζ to find the system of differential equations

Pζ =
B

1− |B|2
and Pζ̄ =

|B|2

1− |B|2
; B(ζ) :=

1 + 2hζhζ̄ +
√

1 + 4hζhζ̄

2(hζ̄)2
. (2.9)

Notice, B is the “plus" solution for Pz and, consequently, the denominator of the ODE’s in
equation (2.9) is

1− |B|2 =−
1 + 4hζhζ̄ + (hζhζ̄)2 + (1 + 2hζhζ̄)

√
1 + 4hζhζ̄

(hζhζ̄)2
< 0,

where we used that hζhζ̄ = 1
4‖∇h‖

2, which implies that the numerator of |B|2 − 1 is a sum of
positive quantities.

In short, the equations in (2.9) provide necessary conditions for the existence of the coordinate
change ζ 7→ ζ(z). It remains to show they are also sufficient. From now on, let r(ζ) = (ζ, h(ζ))

be a minimal graph. Thus, it makes sense to write the system of ODE’s in equation (2.9), whose
solvability condition is Pζ̄ζ = Pζζ̄ . Using the definition of B, we have

Pζζ̄ − Pζ̄ζ =
Bζ̄ +B2B̄ζ̄ −BB̄ζ − B̄Bζ

(1− |B|2)2
=

(1 + 4hζhζ̄)H

2hζ(hζ̄)2(1− |B|2)
= 0⇔H = 0,

whereH is the mean curvature of r(ζ) = (ζ, h(ζ)) as given in equation (2.2). In conclusion, we can
integrate equation (2.9) if and only if r(ζ) = (ζ, h(ζ)) is minimal. Thus, after integrating equation
(2.9) we can find P (ζ) and define z as z = ζ + P (ζ). Since the Jacobian of the transformation
ζ 7→ z(ζ) is

∂(z, z̄)

∂(ζ, ζ̄)
=

∣∣∣∣∣ zζ zζ̄
zζ̄ zζ

∣∣∣∣∣= 1 + P̄ζ + Pζ̄ + |P̄ζ |2 − |Pζ̄ |
2 = 1 + P̄ζ =

1

1− |B|2
< 0,

we can invert ζ 7→ z(ζ) and write ζ(z) = z − P (z).
It remains to check that P (z) = P (ζ(z)) is holomorphic, h(z) = h(ζ(z)) is harmonic, and

Pz = (hz)2. Notice, if P (z) is holomorphic, then Pz is also holomorphic and we conclude that
hz =

√
Pz must be holomorphic, which implies ∆h= 4hzz̄ = 0. Thus, it suffices to prove P (z) is

holomorphic and Pz = (hz)2. From ζ = z − P̄ , we find the system of equations

Pζ = Pzzζ + Pz̄ z̄ζ = (1 + P̄ζ)Pz + PζPz̄ and Pζ̄ = Pzzζ̄ + Pz̄ z̄ζ̄ = PzP̄ζ̄ + (1 + Pζ̄)Pz̄ .

Using the ODE’s for Pζ and Pζ̄ , we can solve this system and find that Pz =B(ζ(z)) and Pz̄ = 0,
which in particular implies P (z) must be holomorphic. In addition, using that Pz =B and that
hz = hζζz + hζ̄ ζ̄z = hζ − P̄z̄hζ̄ , we can straightforwardly deduce that Pz = (hz)2.

In conclusion, given a minimal surface Σ parametrized as a graph r(ζ) = (ζ, h(ζ)), we can
perform a change of coordinates ζ 7→ z(ζ) and reparametrize Σ as an Enneper immersion in the
particular form r(z) = (z − P (z), h(z)), i.e., we are able to seeΣ as the deformation of a harmonic
graph.
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(b) Basic example: helicoid
Since a single helicoid is exactly minimal, one may expect that applying equation (2.6) to equation
(2.3) would result in a trivial map, i.e., it would give r = (z, p0 arg(z − z0)) back. However, an
Enneper immersion is necessarily conformal, which is not the case for r = (z, p0 arg(z − z0)). The
above intuition is, however, not entirely wrong; the Enneper graph of h(z) = p0 arg(z − z0) yields
the same helicoid but parametrized via a conformal immersion.

Consider h(z) = p0 arg(z − z0) = p0 Im ln(z − z0). The remaining function P composing the
Enneper data is given by

∂zh=
p0

2i(z − z0)
⇒ P (z) =

∫
(∂zh)2 =

p2
0

4(z − z0)
.

Thus, the Enneper graph of a single helicoid is r = (z − p20
4(z̄−z̄0)

, p0 arg(z − z0)). Setting z − z0 =

reiθ , the surface may be written as

r =

(
r(1− p2

0

4r2
)eiθ + z0, p0 arg(z − z0)

)
,

where the distance from the axis is measured by ρ= r(1− p2
0/4r

2). To be more precise, the
parametrization is a double covering of the helicoid since ρ∈ (−∞, 0] for 2r≤ |p0| and ρ∈ [0,∞)

for 2r≥ |p0|. Notice that the entire boundary of the disc r= |p0|/2 is singular and can be
associated with the axis of the helicoid. The large distortion associated with the mapping and
the singularities is a consequence of the conformality of the parametrization.

The two copies of the helicoid can be easily distinguished using the surface’s unit normal,
which can be expressed as N = (p2

0 + ρ2)−
1
2 (p0 sin θ, p0 cos θ, ρ)∈ S2. It is immediate to see that

in the exterior (interior) of the disc of radius |p0|2 around z0 the normal takes values on the north
(south) hemisphere of S2. Finally, from equations (2.7) and (2.8), the area of the Enneper graph
of a helicoid on the domain corresponding to an annulus of radii r2 > r1 ≥ |p0|2 and the Gaussian
curvature are ∫r2

r1

∫2π

0
(1 +

p2
0

4r2
)2rdrdθ= π(r2

2 − r2
1) + πp2

0 ln
r2
r1
− πp4

0

16

(
1

r2
2

− 1

r2
1

)
(2.10)

and

K =− p2
0

r4(1 +
p20
4r2

)4
=− p2

0

(p2
0 + ρ2)2

. (2.11)

These results will allow us to compare the surfaces obtained for interacting motifs with that of a
single helicoid.

(c) Finite collections of helical motifs and the multipole expansion
The construction of an Enneper graph is associated with a harmonic function, whose singularities
may be interpreted as charges in analogy to point charges in electrostatic. This analogy suggests
that we can resort to a multipole expansion by considering helical motifs as point charges. While
in the 2d electrostatic the potential associated with a point charge has the logarithmic singularity
V (r, θ) = V (r) = ln 1

r , in the context of helical motifs point charges should have an arg-singularity
h(r, θ) = h(θ) = θ. (Up to constants, h= θ is the only purely angular 2d harmonic function while
h= ln r is the only purely radial 2d harmonic function.) Given an electric charge density µ(x, y)

entirely contained in a disc DR = {(x, y) :
√
x2 + y2 ≤R}, the electrostatic potential outside the

disc is harmonic ∆V = 0 in R2\DR, but inside DR we have ∆V = 2πµ. (We are employing a
distinct sign convention that will prove to be more useful when extending the approach to our
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context.) Outside the disc DR, V has the multipole expansion [12]

V = p ln r +

∞∑
k=1

1

rk
[ak cos(kθ) + bk sin(kθ)] = Re

(
p ln z +

∞∑
k=1

ck
zk

)
, (2.12)

where ck = ak + ibk ∈C and p∈R. The coefficients p, ak, and bk are written as functions of the
charge density µ according to

p=

∫
R2
µ dxdy and ck =− 1

k

∫
R2
µzkdxdy. (2.13)

Now, considering the imaginary part, the multipole expansion associated with a "helicoidal"
charge density µ is

h= p θ +

∞∑
k=1

1

rk
[bk cos(kθ)− ak sin(kθ)] = Im

(
p ln z +

∞∑
k=1

ck
zk

)
, (2.14)

where the coefficients are the same as in equation (2.13).
For a single helicoid of pitch p0 located at 0∈C, we know that the corresponding harmonic

function is h(r, θ) = p0 θ= p0 Im ln z. Thus, a single helicoidal charge p0 is, as expected, associated
with the distribution µ= p0 δ(z), where δ is the Dirac delta function. (This distribution leads to
ck = 0.) On the other hand, for a helicoidal charge p0 located at z0 ∈C, we have

p0 ln(z − z0) = p0 ln z + p0 ln(1− z0
z

) = p0 ln z −
∞∑
k=1

p0

k

(z0
z

)k
,

which implies

h(z) = p0 θ +

∞∑
k=1

p0

k

(r0
r

)k
sin k(θ − θ0). (2.15)

This expression is in agreement with equation (2.14) for the distribution µ= p0δ(z − z0). Indeed,

p0 =

∫
p0δ(z − z0),−

∫
p0z

k

k
δ(z − z0) =−p0z

k
0

k
⇒ h(z) = Im

[
p0 ln z −

∞∑
k=1

p0

k

(z0
z

)k]
. (2.16)

In general, for a set of helicoidal charges {pj} located at {zj}Nj=1 ⊂C, the charge density is
given by µ=

∑N
j=1 pj δ(z − zj). Then, the coefficients in the multipole expansion are

p=

∫ N∑
j=1

pj δ(z − zj) =

N∑
j=1

pj and ck =− 1

k

∫ N∑
j=1

pjz
k δ(z − zj) =− 1

k

N∑
j=1

pjz
k
j . (2.17)

Finally, the corresponding harmonic function is

h(r, θ) =
( N∑
j=1

pj

)
θ +

∑
k≥1

N∑
j=1

pj
k

(rj
r

)k
sin k(θ − θj). (2.18)

Notice that this power series converges absolutely as long as r > rk for all k, i.e., for all z outside
the disc of radius maxk{rk}.

This expansion shows that the far-field behavior of the fundamental layer of any finite
collection of helical motifs asymptotes to that of a helicoid whose pitch is given by the sum of
the pitches of the individual motifs. Several such intertwined simple helicoids may be required to
fully cover all leaves of the structure. Note, however, that an infinite collection of helical motifs,
as well as motifs that are not perpendicular to the parallel layers they pierce, are not described by
this expansion.
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Figure 2. Layers of a minimal 2-helicoid obtained by concatenating two oppositely handed or two equally handed

helical motifs, left and right figures, respectively. (In the figures, |p1|= |p2|= 0.15 and R= 1.) Inner rims with distinct

colors/shading emphasize the distinct handedness of the motifs.

3. Concatenating helical motifs
Let us investigate in some detail the concatenation of two helical motifs, see Fig. 2. Consider two
helical motifs of pitches p1 and p2 located at z1 and z2, separated a distanceR from each other. The
corresponding harmonic function is given by h(z) = p1 arg(z − z1) + p2 arg(z − z2), whose graph
is only minimal up to leading order in ‖∇h‖. Without loss of generality, we may assume z1 = R

2

and z2 =−R2 , where R= |z2 − z1|> 0. Since ∂zh= p1
2i(z−z1)

+ p2
2i(z−z2)

, integrating (∂zh)2 we
have

P (z) =
p2

1

4(z − R
2 )

+
p2

2

4(z + R
2 )

+
p1p2

2R
ln

(
z + R

2

z − R
2

)
. (3.1)

The first two terms above are the sum of the functions P (z; {z1, p1}) and P (z; {z2, p2}) associated
with helicoids around z1 = R

2 and z2 =−R2 . The surface obtained as the algebraic sum of
the Enneper immersions of h(z; {z1, p1}) = p1 arg(z − R

2 ) and h(z; {z2, p2}) = p2 arg(z + R
2 ) is

not a minimal surface. The last term in P (z), which can be written as p1p2
R times the scale-

independent function 1
2 ln[(ζ + 1

2 )/(ζ − 1
2 )], ζ = z/R, thus introduces a pair-interaction between

the two helicoids required to make the corresponding parametrization a conformal minimal
immersion. It is important to note that, in order to obtain a periodic layered surface, the pitches
p1 and p2 should be commensurate.

In addition, the stereographic projection of the unit normal of a minimal 2-helicoidal parking
garage is given by (see Appendix A for the relation between the normal N and the Enneper data)

g=−

[
p1

2i(z − R
2 )

+
p2

2i(z + R
2 )

]−1

=−2iR
( zR )2 − 1

4

(p1 + p2) zR + 1
2 (p1 − p2)

. (3.2)

As the example of a single helicoid teaches us, we should pay attention in selecting the correct
domain for a minimal 2-helicoid. The analysis of g will help us identify the proper domain for the
Enneper graph of a parking garage and we shall consider as the domain of the Enneper graph
the points z ∈C where the unit normal N takes values on the North hemisphere: ΩN = {z ∈C :

|g(z)| ≥ 1}. The curves |g|= 1, i.e., the boundary ofΩN , (Fig. 3) will be associated with the helices
of each helical motif, as explained in the following subsections.

(a) Concatenating two identical helical motifs
For simplicity, we start by considering the symmetric problem of gluing two identical motifs
such that p1 = p2 = p. For large distances (as we prove in Subsection 2.(c)) the resulting surface
is well approximated by two intertwined and identical copies of helicoids of pitch 2p displaced
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-1.0 -0.5 0.0 0.5 1.0
-1.0
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0.0
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1.0

x / R

y
/
R

Cassini ovals

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x / R

Modified Cassini ovals

Figure 3. Level curves of the mapping z 7→ |g(z)| associated with two helical motifs: (Left) For a minimal dipole, the

curves are Cassini ovals with equation ρ4 − 1
2
ρ2 cos(2θ) + 1

16
= p̃2

4
, where p̃= |g| p

R
and ρ= r

R
. Qualitatively, there

are 4 types of shapes. (i) p̃2 < 1
4

: two disconnected and symmetric closed curves (dashed blue line). (ii) p̃2 = 1
4

: a

Lemniscate of Bernoulli, i.e., it has the shape of an 8 (dotted yellow line). (iii) 1
4
< p̃2 < 1: a peanut-shaped curve (thick

green line). (iv) p̃2 > 1: a closed convex curve (dotted-dashed red line); (Right) For a symmetric minimal non-dipole,

the curves are modified Cassini ovals with equation ρ4 − 1
2
ρ2 cos(2θ) + 1

16
= p̃2ρ2, where p̃= |g| p

R
and ρ= r

R
.

Qualitatively there are 5 types of shapes. (i) p̃2 < −1+
√

5
2

: two disconnected and symmetric closed convex curves (large-

dashed violet line). (ii) −1+
√

5
2

< p̃2 < 1: two disconnected and symmetric closed non-convex curves (dashed blue line).

(iii) p̃2 = 1: the curves degenerate to two closed curves touching at two points (dotted yellow line). (iv) 1< p̃2 < 1+
√

5
2

:

two asymmetric pieces, a peanut-shaped curve and an inner closed convex curve (full green line). (v) p̃2 > 1+
√

5
2

: two

disconnected and asymmetric closed convex curves (dotted-dashed red line).

a distance p along the helicoids’ axis with respect to each other, Fig. 2 (Right). The near field
structure is, however, non-trivial.

The Gauss map in this case reads g=−iRp [ zR −
1

4(z/R)
], from which follows that for every

w ∈C, the equation g(z) =w will have in general two distinct solutions. This means that the unit
sphere is covered twice by the unit normal and, therefore, the total Gaussian curvature should
be −8π. However, selecting as the domain of definition the points z where the unit normal takes
values on the North hemisphere, ΩN , the correct value of the total curvature of a minimal non-
dipole is −4π, i.e., −2π for each helical motif. The equator of the unit sphere is sent by the
stereographic projection of the unit normal on the curve z 7→ |g(z)|= 1. Notice that

|g|2 =
1

(p/R)2(r/R)2

[( r
R

)4
− 1

2

( r
R

)2
cos 2θ +

1

16

]
=

C( rR , θ)

( pR )2( rR )2
, (3.3)

where C(ρ, θ) = ρ4 − 1
2ρ

2 cos 2θ + 1
16 is a function whose level sets are the well known Cassini

ovals (see Fig. 3, Left plot). It follows that the level curves of |g|2 are modified Cassini ovals
that can be analytically described in terms of fourth-degree polynomial curves whose shape is
depicted in Fig. 3 (Right plot). For small pitches, the region C−ΩN is made of two disconnected
pieces around z1 and z2. However, when the pitches increase, the level sets display a topological
transition at pc ≡R and the complement of the domainΩN is no longer disconnected. The curves
|g|= 1, whose shape depends on p/R, parametrize the axes of the two helical motifs. By increasing
p/R, we note that under the deformation in equation (2.6) the two axes move toward each other
and, consequently, the distance between them is smaller than the initial separation R of the
undistorted surface, see Fig. 4 (Center). For p < pc, we may compute the points of closest approach
of the two axes from the points of closest approach on the distinct connected components of
|g(z)|= 1. For the critical value p= pc the two axes finally intersect. In addition to getting closer
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along the line containing the motifs, the two axes also incline away from the line connecting the
motifs but in opposite senses, see Fig. 4 (Left). Finally, the vertical separation between neighboring
layers in the periodic structure remains unchanged during the deformation process as the height
data provided by the harmonic function h is preserved.

To describe the geometry of the helical core in the symmetric case, we may compute the
gradient and Hessian of h(z) = p arg(z + R

2 ) + p arg(z − R
2 ). The gradient and Hessian of h are

‖∇h‖2 =
4
( p
R

)2 ( r
R

)2[
( rR )2 cos 2θ − 1

4

]2
+ ( rR )4 sin2 2θ

= 4
( p
R

)2
(
r
R

)2
C( rR , θ)

(3.4)

and

hessh=−4
( p

R2

)2

(
x2−y2
R2 + 1

4

)2
+ 4x

2y2

R4[(
x2−y2
R2 − 1

4

)2
+ 4x

2y2

R4

]2
=−4

( p

R2

)2 C( rR , θ + π
2 )

C( rR , θ)
2

. (3.5)

Therefore, from equation (2.8), the Gaussian curvature of a minimal pair of identical motifs is

K =− 4

R2

( p
R

)2 C( rR , θ + π
2 )C( rR , θ)

2[
C( rR , θ) +

( p
R

)2 ( r
R

)2]4 r�R
≈ − 4

R2

( p
R

)2 ( r
R

)−4
=−4 p2

r4
. (3.6)

The infinitesimal area element of a minimal pair of identical motifs is

dA=

1 +

( p
R

)2 ( r
R

)2[
x2−y2
R2 − 1

4

]2
+ 4x

2y2

R4


2

dxdy=R2
( r
R

)[
1 +

( p
R

)2 ( r
R

)2
C( rR , θ)

]2

d
( r
R

)
dθ. (3.7)

It follows that the area of an annulus with large enough radii r2 > r1�R is given by∫r2
r1

dA≈ π(r2
2 − r2

1) + 4πp2 ln
r2
r1

+O(
1

(r/R)2
). (3.8)

Comparison with equation (2.10) shows that, up to a small correction, the area of a minimal pair
of identical motifs behaves for large distances as the area of a single helicoid of pitch p0 = 2p. This
is compatible with the expectation that a minimal pair of helical motifs can be well approximated
by a helicoid of pitch p0 = p1 + p2. (See the multipole expansion developed in Subsection 2.(c).)
Notice that the same is also valid for the behavior of the Gaussian curvature. Indeed,K(r�R)≈
−4p2/r4, which is precisely the asymptotic behavior of the Gaussian curvature of a helicoid of
pitch p0 = 2p, as confirmed by equation (2.11).

(b) Minimal helicoidal dipole
Now, assume that the total pitch p0 = p1 + p2 vanishes. Then, writing p= p1 =−p2, the Gauss
map becomes g=−2iRp [(z/R)2 − 1/4]. This implies that the unit sphere is covered twice and,
therefore, selecting as the domain of definition the points z where the unit normal takes values
on the North hemisphere, ΩN , the total Gaussian curvature of a minimal dipole is −4π, i.e., −2π

for each helical motif. In addition, noticing that

|g|2 =
4R2

p2
C(

r

R
, θ), (3.9)

the curves defined by the level sets of |g|2 are the well known Cassini ovals. Thus, the shape
of the curve associated with the equator of S2, i.e., z 7→ |g(z)|= 1, is completely determined
by the parameter p̃= |p|/R, as described in Fig. 3 (Left plot). Here the curves |g|= 1, whose
shape depends on p/R, parametrize the axes of the two helical motifs. Under the deformation in
equation (2.6) the central part of two axes of a dipole pair do not converge toward each other upon
increasing p/R, but their extremities do. For p < pc ≡ R

2 , the points of closest approach of the two
axes can be computed from the points of closest approach on the distinct connected components
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Figure 4. (Left) The averaged inclination, with respect to the z-axis, of the two central axes of a minimal pair of equally

handed helical motifs as a function of the pitch p and initial separation R. The axes incline in opposite directions, toward

and against the positive y-axis, which is orthogonal to the line containing the motifs. (Center) Minimal separation, S(p),

between the two axes of a minimal pair of equally handed helical motifs given by the closest points as a function of the

pitch p and initial separation R. (Right) Two layers of two equally handed motifs. The dashed blue lines represent the

helical axes before the deformation. (In the picture, p= 0.5 and R= 1.)
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Figure 5. (Left) The averaged inclination, toward the y-direction and with respect to the z-axis, of the two central axes of

a minimal dipole as a function of the pitch p and initial separationR. (Center) Minimal separation, S(p), between the two

axes of a minimal dipole given by the closest points as a function of the pitch p and initial separationR. (Right) One layer

of a minimal dipole. The dashed blue lines represent the helical axes before the deformation. (In the picture, p= 0.45

and R= 1.)

of |g(z)|= 1, see Fig. 5 (Center plot). The level curves of |g(z)| have a topological transition at
pc = R

2 and it follows that for p > pc the two axes of the Enneper graph of two oppositely handed
helical motifs of pitch p and −p merge into a single smooth curve. In addition, the two axes
effectively incline in the direction orthogonal to the line containing the motifs (both in the same
sense), see Fig. 5 (Left plot). Finally, the vertical separation between neighboring layers in the
periodic structure remains unchanged during the deformation process.

As in the previous case, to describe the geometry of the helical core in the dipole case, we
may compute the gradient and Hessian of h(z) = p arg(z + R

2 )− p arg(z − R
2 ). The gradient and

Hessian of h are

‖∇h‖2 =
( p
R

)2 1[(
r
R

)2 − 1
4

]2
+
(
r
R

)2
sin2 θ

=
( p
R

)2 1

C( rR , θ)
(3.10)
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and

hessh=− 4

R2

( p
R

)2
(
r
R

)2{
[( rR )2 − 1

4 ]2 +
(
r
R

)2
sin2 θ

}2
=− 4

R2

( p
R

)2 ( r
R

)2 1

C( rR , θ)
2
. (3.11)

Therefore, from equation (2.8), the Gaussian curvature of a minimal dipole is

K =− 4

R2

( p
R

)2 ( r
R

)2 C( rR , θ)
2

[C( rR , θ) + 1
4 ( pR )2]4

r�R
≈ − 4

R2

( p
R

)2 ( r
R

)−6
. (3.12)

Notice that K decays to zero faster than the Gaussian curvature of a minimal non-dipole. On the
other hand, the infinitesimal area of a minimal dipole is

dA=

[
1 +

1

4C( rR , θ)

( p
R

)2
]2

dxdy=R2
( r
R

)[
1 +

1

4C( rR , θ)

( p
R

)2
]2

d
( r
R

)
dθ. (3.13)

It follows that the area of an annulus with large enough radii r2 > r1�R is given by∫r2
r1

dA≈ π(r2
2 − r2

1) +O(
1

(r/R)2
). (3.14)

The non-trivial contribution is nothing but the area of a planar annulus. This is compatible with
the fact that for large distances, a minimal pair of opposite helical motifs is well approximated by
a single helicoid of pitch p0 = p− p= 0, i.e., a minimal dipole is approximately a plane at large
distances. (See the multipole expansion developed in Subsection 2.(c).)

(c) Gluing finitely many helical motifs
For an arbitrary number of helicoids of pitches p1, . . . , pN located at z1, . . . , zN , we may consider
the harmonic function

h(z) =

N∑
k=1

pkIm[ln(z − zk)] =

N∑
k=1

pk arg(z − zk)⇒ ∂h

∂z
=

N∑
k=1

pk
2i

1

z − zk
. (3.15)

Now, since P ′ = (∂zh)2, we have after integration

P (z) =
1

4

∑
k

p2
k

z − zk
− 1

2

∑
k<j

pjpk
zj − zk

ln

(
z − zj
z − zk

)
+ const. . (3.16)

Each term in the first sum above corresponds to the function P (z; {zk, pk}) associated with a
single helicoid of pitch pk located at zk. The remaining terms can be seen as pair interactions
between distinct helicoids required to assure that the corresponding parametrization is a
conformal minimal immersion.

The stereographic projection of the layer normal N is given by

g=−

(
N∑
k=1

pk
2i

1

z − zk

)−1

=−2i
zN − a1z

N−1 + a2z
N−2 · · ·+ (−1)NaN

d1zN−1 − d2zN−2 + · · ·+ (−1)N−1dN
. (3.17)

The coefficients ak and dk are computed from {pj} and {zj} as

ak = sk(z1, . . . , zN ) and dk =
N∑
j=1

pjsk−1(z1, . . . , zj−1, zj+1, . . . , zN ),

where sk denotes the k-th symmetric polynomial, s0(x1, . . . , xm) = 1 and sk(x1, . . . , xm) =∑
1≤i1<···<ik≤m xi1 · · ·xik .
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(d) Twist grain boundary - linear chain of infinitely many helical motifs
Twist grain boundaries (TGB) are structures composed of an infinite collection of identical
helical motifs evenly spaced along a straight line. These structures have been studied extensively
in the context of smectic liquid crystals [13], where the individual helical motifs are termed
screw dislocations after their crystalline cousins. Unlike individual motifs of finite charge which
asymptote to parallel planes, TGB’s asymptote to two different families of parallel planes on the
two sides of the TGB line, Fig. 6 (Left). The two families of planes form a finite angle with respect
to one another, whose magnitude is determined by the ratio of inter-motif distance and its pitch.

The distinct layers in a smectic structure are often modeled within the small slope
approximation as level sets of the phase field [8]

φ(x1, x2, x3) = λx3 −
b

2π
Im ln sin

[
π(x1 + ix2)

`d

]
.

Equivalently, individual layers may be identified with the graph of the harmonic function

h(z = x+ iy) =
b

2πλ
Im ln sin

(
πz

`d

)
.

The resulting surface is minimal only to orderO(‖∇h‖2). Thus this approximation was primarily
employed to address small angle variations in the surfaces normals, and TGB’s comprised of
helical motifs that are well separated compared with their pitch. An exact minimal TGB surface
allows estimating the elastic energy in cases where the inter-motif distance is comparable to the
pitch.

Twist grain boundaries have an exact formulation provided by the family of Scherk doubly
periodic minimal surfaces. In addition, it can be also shown that this surface can be seen
as an infinite superposition of helicoid-like surfaces [14], though each term appearing in
the superposition is not exact minimal. However, it is not clear how to generalize Scherk’s
construction to a family of helical motifs of different pitch values as well as to finitely many helical
motifs, as done in the previous subsections. To illustrate the robustness of our method, here we
construct a minimal TGB as an Enneper graph2 and, later, we also consider a minimal Untwisted
Grain Boundary (UtGB), i.e., an infinite chain of evenly spaced helical motifs of alternating
handedness, see Fig. 6 right.

To achieve an exact formulation in the most transparent form, we start from considering the
Enneper immersion of a linear stack of infinitely many helical motifs of pitch p, evenly spaced a
distance `d from each other: h(z) =

∑∞
k=−∞ p Im[ln(z − k`d)]. Differentiating we obtain

∂h

∂z
=

∞∑
k=−∞

p

2i

1

z − k`d
=
p

2i

( ∞∑
k=1

2z

z2 − k2`2d
+

1

z

)
=
p

2i

π

`d
cot(

πz

`d
), (3.18)

where we used the identity π cot(πz) = z−1 + 2z
∑
n≥1(z2 − n2)−1. Squaring and integrating we

obtain the correction term to produce the desired Enneper immersion

P (z) =

∫ (
∂h

∂z

)2

dz =−p
2

4

∫
π2

`2d

(
csc2(

πz

`d
)− 1

)
dz =

p2

4

π

`d
cot(

πz

`d
) +

p2

4

π2

`2d
z.

Alternatively, we can rewrite P (z) as an infinite sum of the functions P (z; {zk, pk}) associated
with helicoids of pitch p located at {n`d : n∈Z} plus a linear correction:

P (z) =
∑
n∈Z

p2

4(z − n`d)
+
p2π2

4`2d
z. (3.19)

2Our minimal TGB has a strong resemblance with the doubly periodic Scherk surface. Since they are similarly doubly
periodic, they should coincide as a consequence of the topological characterization of Scherk minimal surfaces [15].
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Figure 6. (Left) Layers of a minimal Twist Grain Boundary (TGB) obtained by concatenating infinitely many helical motifs

of same pitch p. (Right) Layers of a minimal Untwisted Grain Boundary (UtGB) obtained by concatenating infinitely many

helicoidal dipoles of pitches p and −p. (In the figure, p= 0.3 and `d = 1.)

The stereographic projection of the layer unit normal is

g=− 1

∂zh
=

2`d
pπi

tan

(
πz

`d

)
. (3.20)

As in the concatenation of finitely many helical motifs, here the level sets of |g| help to find the
proper domain to compute the Enneper graph of a minimal TGB (see Fig. 7, left). In addition,
the image of the surface unit normal N over the fundamental domain Ω0 = {(x, y)∈ [0, 2`d]×
R : |g(x+ iy)| ≥ 1} covers the unit sphere exactly twice, which results in a total curvature of∫
Ω0

KdA=−4π: one copy comes fromΩ0 ∩ [0, `d]× R and another fromΩ0 ∩ [`d, 2`d]× R. Since
there are infinitely many helical motifs periodically distributed on a line, the total curvature of
a minimal TBG is infinite. The Gaussian curvature K is computed from the first and second

derivatives of h. The second derivative is ∂2
zh=− pπ

2

2i`2d
csc2(πz`d ), from which follows that

K =−p
2π4

`4d

| csc(πz`d )|4(
1 + p2π2

4`2d
| cot(πz`d )|2

)4
=−p

2π4

`4d

| sin(πz`d )|4(
| sin(πz`d )|2 + p2π2

4`2d
| cos(πz`d )|2

)4
. (3.21)

Finally, upon application of the deformation in equation (2.6) leading to the Enneper graph of
a minimal TGB, the effective distance between neighboring axes diminishes under the increase
of p/`d, as depicted in Fig. 8 (Left). It then follows that in order to obtain a minimal TGB with
prescribed pitch and axes distance, the value of `d in the expression of h(z) has to be appropriately
tuned. The pitch remains unchanged during the deformation process.

Now, we consider the construction of a minimal UtGB as an Enneper immersion, Fig. 6 right.
The corresponding harmonic function is then given by

h(z) = p Im
(

ln sin
πz

2`d

)
− p Im

(
ln cos

πz

2`d

)
, (3.22)

where p and −p are the pitches of the helical motifs in each dipole pair that are separated by a
distance `d. From

∂h

∂z
=

pπ

4i`d

[
cot

(
πz

2`d

)
+ tan

(
πz

2`d

)]
=

pπ

2i`d
csc

(
πz

`d

)
, (3.23)
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Figure 7. Level curves of the Gauss map z 7→ |g(z)| given by the stereographic projection of the unit normal of minimal

surfaces obtained by concatenating infinitely many helical motifs in a line. (Left) Level curves associated with a TGB, i.e.,

an infinite collection of identical motifs evenly spaced along a line. (Right) Level curves associated with UtGB, i.e., an

infinite collection of helicoidal dipoles evenly spaced along a line. In both cases, the critical pitch is given by pc =
2`d
π

.
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Figure 8. (Left) Effective axes distance `eff of minimal TGB’s as a function of the pitch p and initial axes separation `d. For

a fixed `d, the two axes coincide at the critical value pc =
2`d
π

, i.e., the effective distance `eff vanishes. In addition, the

corresponding minimal surface has both asymptotic planes with the same inclination meaning that the unit cell collapses to

a plane. The dashed blue lines indicate the position of the axes before the deformation. (Right) Minimal axes separation

S(p) of minimal UtGB’s as a function of the pitch p and initial axes separation `d. On average, the distance between

neighboring axes remains constant. However, the top and bottom portions of the two axes in a unit cell approach while

for two neighboring cells the approach happens around the center of the corresponding neighboring axes. For a fixed `d,

neighboring axes touch at the critical value pc =
2`d
π

. The dashed blue lines indicate the position of the axes before the

deformation.

we can compute the auxiliary function P (z) =
∫
(∂zh)2dz as

P (z) =
p2π

4`d
cot

(
πz

`d

)
=
∑
n∈Z

p2

4(z − n`d)
. (3.24)

Contrarily to minimal TGB’s, for a minimal UtGB we just have an infinite sum of the functions
P (z) associated with helicoids of pitch of magnitude |p| located at {n`d : n∈Z} without any
further correction.

Upon application of the deformation in equation (2.6) leading to the Enneper graph of a
minimal UtGB, any pair of neighboring axes deform under the increase of p/`d, as depicted in Fig.
8 (Right). On average, the distance between neighboring axes remains constant. However, the top
and bottom portions of the two axes in the same unit cell approach while for two neighboring
axes from distinct cells this happens around the center of axes. For a fixed `d, neighboring
axes finally touch at the critical value pc = 2`d

π , which corresponds to the topological transition
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observed in the level curves of |g(z)| as depicted in Fig. 7. The pitch remains unchanged during
the deformation process.

From the second derivative ∂2
zh=− pπ

2

2i`2d
cot(πz`d ) csc(πz`d ), the Gaussian curvature is

K =−p
2π4

`4d

| sin(πz`d )|4| cos(πz`d )|2(
| sin(πz`d )|2 + p2π2

4`2d

)4
. (3.25)

Finally, the stereographic projection of the unit normal of the layers of a minimal UtGB is

g=− 1

∂zh
=

2`d
pπi

sin

(
πz

`d

)
. (3.26)

The level sets of |g| help to find the proper domain to compute the Enneper graph of a minimal
UtGB (see Fig. 7, right). In addition, the image of the surface normal over the fundamental domain
Ω0 = {(x, y)∈ [0, 2`d]× R : |g(x+ iy)| ≥ 1} covers the unit sphere exactly twice, which results in
a total curvature of

∫
Ω0

KdA=−4π. For example, one copy comes from Ω0 ∩ [0, 2`d]× [0,∞)

and another from Ω0 ∩ [0, 2`d]× (−∞, 0].

4. Second variation of the area functional
The above procedures allow us to construct explicitly exact minimal surfaces with any desired
arrangement of helical motifs. The physical motivation for this construction is that minimal
surfaces arise naturally as critical points of both the area of a surface and of the Helfrich free
energy. However, while minimal surfaces are stationary points of these functionals, they are not
necessarily (local) minima. To establish that a given configuration is indeed of minimal energy the
second variation should also be examined. For simplicity, we restrict ourselves to analyzing the
area functional alone. Moreover, the configurations we will consider will be restricted to harmonic
functions of the form of equation (3.15), i.e., arrangements of helical motifs that asymptote to
helicoidal surfaces. This is not the most general case. Nonetheless, as will be next demonstrated,
this restricted class singles out global pitch balance as a necessary condition for stability. While
claims of stability are valid only within this restrictive set of asymptotically helicoidal surfaces,
surfaces proved to be locally unstable will remain so even when considering all possible harmonic
functions.

Considering normal variations of a minimal surface r :D→Σ in the direction of V = vN,
where v ∈H(D) = {f ∈C∞(D) : f |∂D = 0}, the second derivative of the area functional is [16]

I(v)≡ d2

dt2
Area|{Σ:H=0} =

∫
Σ
v(−∇2

av + 2Kv)dA. (4.1)

Therefore, a minimal surface is said to be stable, i.e., it is a local minimum, if I(v)> 0 for all v ∈
H(D). (When D̄=D ∪ ∂D is not compact, the surface is said to be stable if it is stable for allΩ ⊂D
such that Ω̄ is compact.) We note that our variations are assumed to vanish on the boundaries
(which are also assumed stationary). Thus, while negative values in the second variation imply
instability, a positive definite second variation does not necessarily imply stability if the helical
motifs are allowed to change their relative orientation or move in space.

A stability criterion for fixed boundaries can be established based on the area over the unit
sphere covered by the surface unit normal N. If the area of this spherical image is smaller than 2π,
then the corresponding minimal surface has to be stable [16]. (It is worth mentioning that for this
stability criterion to work N does not need to be a one-to-one map.) In our case, the investigation
of g, the stereographic projection of the surface unit normal N, will play an important role in
the study of the stability of minimal helical motifs since the corresponding Gauss map is just
the quotient of polynomials. Finally, a criterion of instability that will be useful to our purposes
is the following: if the surface normal N is a one-to-one map from Σ to S2 and N(Σ) is a
hemisphere, in particular, the spherical area is 2π, then the corresponding minimal surface is
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unstable [1,16]. (When the area of N(Σ)⊂ S2 is precisely 2π, but N is not one-to-one or does not
cover a hemisphere, the minimal surface may or may not be stable [17].)

(a) Two equally handed helical motifs are unstable
The stereographic projection of the Gauss map of a pair of equally handed helical motifs is given
by

g(z) =− i

p/R

(
z

R
− R

4z

)
∝ z

R
if
∣∣∣ z
R

∣∣∣� 1.

For any givenw ∈C, the equation g(z) =w will generically have two distinct solutions and it then
follows that the unit normal N covers the north hemisphere of the unit sphere S2 exactly twice.
(The domainΩN is chosen such that N takes values on the north hemisphere only.) For the sake of
our study of stability, we do not need to count the spherical area with multiplicity and, therefore,
the area of the spherical image of any piece r :D⊂ΩN →R3 of a minimal pair of equally handed
motifs is bounded by 2π. We are going to show that there exists a bounded domain Dc ⊂ΩN
whose spherical image is precisely the north hemisphere and the corresponding normal is a 1-1
map, from which it follows that pairs of equally handed helical motifs are not local minima of the
area functional with respect to normal variations that leave the boundary fixed.

In general, any bounded region D⊂ΩN is necessarily contained in a sufficiently large
disc D(0, ρ)⊂C, ρ� 1. Under the stereographic projection Π : S2→C, a sufficiently small
neighborhood of the north pole is mapped on the complement of D(0, ρ), in particular, it is
mapped outside the domain D. Now, since g behaves linearly for large values of |z/R|, any
sufficiently small neighborhood of the north pole is mapped under g=Π ◦N outsideD⊂D(0, ρ)

only once! Noticing that g(z = 0) =∞, i.e., N(0) is the north pole of S2, we conclude that there
exists a neighborhood of the north hemisphere which is the image under g of some region inside
D(0, ρ). Thus, it follows that there should exist a domain Dc ⊂ΩN such that its image under g is
precisely the north hemisphere, as we are going to show below in more detail.

The norm of g can be computed as

|g|= 2R

p

∣∣∣∣∣ rR eiθ − e−iθ

4r/R

∣∣∣∣∣= 2R

p

√
cos2 θ + sinh2(ln 2

r

R
). (4.2)

Using that the inverse of the stereographic projection is Π−1(w) = (
2Re(w)
1+|w|2 ,

2Im(w)
1+|w|2 ,

−1+|w|2
1+|w|2 ),

we immediately see that the parallels of the unit sphere, i.e., lines of constant latitude, are
associated with the level curves of |g|. We then conclude that the unit normal of a pair of equally
handed helical motifs when restricted to Dc = {z : r≤ 1

2} ∩ΩN is a one-to-one map on the north
hemisphere of the unit sphere. (The second copy comes from considering the outside of the
disc {z : r≤ 1

2}). In conclusion, the normal is a one-to-one map on the north hemisphere when
restricted to Dc and the minimal surface corresponding to a pair of equally handed motifs is
unstable for any domain D containing Dc. (If D were stable, any subdomain D′ ⊆D would have
to be stable.)

The proof above is done for the symmetric case, p1 = p2, but similar arguments can be devised
to show that any pair of helical motifs such that p1 6=−p2 has to be unstable. (In fact, neutral total
pitch is a necessary condition for stability, as will be shown in Theorem 4.2 below.)

(b) Minimal dipoles are stable
Since the Gauss map of a minimal dipole is a quadratic function on the complex plane,

g(z) =− 2i

p/R

[( z
R

)2
− 1

4

]
∝
( z
R

)2
if
∣∣∣ z
R

∣∣∣� 1,

for any w, g(z) =w generically have two solutions and, as in the previous case, the unit normal
N covers the north hemisphere of S2 exactly twice. In addition, the area of the spherical image of
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any piece r :D⊂ΩN →R3 of a minimal dipole is bounded by 2π. We are going to show that this
area is in fact smaller than 2π for any bounded domain D⊂ΩN , from which we will conclude
that minimal dipoles are local minima of the area functional for normal variations that leave the
boundary fixed. Indeed, first note that any bounded region D of ΩN is necessarily contained in
a sufficiently large disc D(0, ρ). Since the north pole is mapped under stereographic projection
Π : S2→C on infinity, each point on the sphere sufficiently close to the north pole should be
mapped on a complex number of sufficiently large modulus. Now, using that g∝ z2 for large
values of |z/R|, the two copies associated with a sufficiently small neighborhood of the north pole
is necessarily mapped under the Gauss map g outside D⊆D(0, ρ). In conclusion, it follows that
the spherical image of any bounded D⊂ΩN is strictly contained in a hemisphere and, therefore,
the corresponding area is smaller than 2π. This can be alternatively confirmed by the fact that
the parallels of the unit sphere are associated with the level curves of the Cassini ovals. Indeed,
the z-coordinate of N =Π−1 ◦ g is given by N3 =

−1+|g|
1+|g| , which is constant if and only if |g| is

constant and, in addition, N3→ 1⇔ |g| →∞ (See Fig. 3, Left).

(c) Stability criterion for finitely many helical motifs
We have seen on the previous subsections that minimal pairs of unequal handed helical motifs,
p1 + p2 6= 0, are not local minima of the area functional, while minimal dipoles are. Therefore,
we arrive at the important conclusion that for two given helical motifs, neutral total pitch is a
necessary and sufficient condition for the corresponding minimal surface be a local minimum
of the area functional. For more than two helical motifs, extra conditions must be imposed to
guarantee stability.

Following Barbosa–Do Carmo [16], the stability of a minimal surface may be investigated by
computing the area under the Gauss map. For n helical motifs glued together, we will proceed
as before and study how the complex plane is covered by the stereographic projection of the unit
normal, which is a quotient of polynomials of degree n and n− 1.

We now formulate a stability criterion for minimal parking garages depending on the position
and pitches of the helical motifs. A proof for the first theorem below is based on the observation
that n helical motifs are stable if only if g, which in general is a rational function, is a polynomial
of degree n. The second theorem is a reformulation of the first and will allow us to check the
stability of minimal helical motifs with respect to normal variations that leave the boundary fixed
more easily.

Theorem 4.1 (Stability of minimal helical motifs. I). Consider a set of n helical motifs of pitches
p1, . . . , pn ∈R located at z1, . . . , zn ∈C. The corresponding asymptotically flat Enneper graph is a stable
minimal surface with respect to normal variations that leave the boundary fixed if and only if

∀ k ∈ {0, . . . , n− 2},


dk+1 ≡

n∑
j=1

pjsk(z1, . . . , zj−1, zj+1, . . . , zn) = 0

dn ≡
n∑
j=1

pjsn−1(z1, . . . , zj−1, zj+1, . . . , zn) 6= 0

, (4.3)

where sk(·, . . . , ·) is the elementary symmetric polynomial, i.e., for any (x1, . . . , xm), s0(x1, . . . , xm) = 1

and sk(x1, . . . , xm) =
∑

1≤j1<···<jk≤m
∏k
j=1 xj .

Proof. The stereographic projection of the unit normal N of the Enneper graph Σ of n helical
motifs is

g=−

(
1

2i

n∑
k=1

pk
z − zk

)−1

=−2i
zn − a1z

n−1 + a2z
n−2 · · ·+ (−1)nan

d1zn−1 − d2zn−2 + · · ·+ (−1)n−1dn
,



19

Luiz
C

.B
.da

S
ilva

and
E

fi
E

frati.
C

onstruction
ofexactm

inim
alparking

garages:
nonlinearhelicalm

otifs
in

optim
ally

packed
lam

ellarstructures
......................................................................................................................................................

where the coefficients ak and dk are computed from {pi}nk=1 and {zi}nk=1 in terms of the
symmetric polynomials as ak = sk(z1, . . . , zn) and dk =

∑n
j=1 pjsk−1(z1, . . . , zj−1, zj+1, . . . , zn).

Given w ∈C, the equation g(z) =w can be rewritten as a polynomial equation of degree n
whose coefficients depend on w, {pj}, and {zj}:

g(z) =w⇔ zn − c1zn−1 + · · ·+ (−1)ncn = 0, ck = ck(w, {pj}, {zj}) = ak + iw
dk
2
.

Thus, g(z) =w generically has n solutions and, consequently, the Gauss map g should cover the
north hemisphere of S2 exactly n times. (The domain of the Enneper graph of helical motifs was
defined as ΩN = {z ∈C :N3 > 0, N(z) = (N1(z), N2(z), N3(z))}.)

On the one hand, if the denominator of g is constant, i.e., d1 = · · ·= dn−1 = 0, then g behaves
as ± 2i

dn
zn for large values of |z/R| and the n copies associated with a sufficiently small

neighborhood of the north pole is necessarily mapped under the Gauss map g outside a disc
D(0, ρ), for some ρ� 1. It follows that any bounded subdomain of ΩN has an area on the unit
sphere under N smaller than 2π and, consequently, Σ is stable.

On the other hand, if the denominator of g is not constant, i.e., there exists some k0 <n such
that dk0 6= 0, then g behaves as − 2i

dk0
zn−k0 for large values of |z/R|, say for all z ∈D(0, ρ), ρ� 1.

This means that a sufficiently small neighborhood of the north pole is covered under N only
n− k0 times. Therefore, the remaining k0 copies of a neighborhood of the north pole should come
from the inside of the disc D(0, ρ). It then follows that there must exist a bounded subdomain
Dc of ΩN such that N is 1-1 over Dc and N(Dc)⊂ S2 is precisely the north hemisphere.
Consequently, Σ is unstable.

The coefficients dk+1 can be rewritten in a more convenient form. For k= 0, we obtain the total
pitch

d1 =

n∑
j=1

pjs0(z1, . . . , zj−1, zj+1, . . . , zn) =

n∑
j=1

pj . (4.4)

For k= 1, the coefficient d2 can be rewritten as a function of the "center of mass" of z1, . . . , zn:

d2 =
∑

pjs1(z1, . . . , zj−1, zj , zj+1, . . . , zn)−
∑

pjzj = d1s1(z)−
∑

pjzj , (4.5)

where we adopted the shorthand notation sk(z)≡ sk(z1, . . . , zn). In general, we can write any dk
as function of bk ≡

∑n
j=1 pjz

k
j . (Notice that b0 = d1 =

∑
j pj .) Indeed, we can rewrite dk+1 as

dk+1 =
∑
j

pjsk(. . . , zj , . . . )−
∑
j

pj
∑

j1<···<jk−1;jm 6=j
zjzj1 · · · zjk−1

= d1sk(z)−
∑
j

pjzj
∑

j1<···<jk−1;jm 6=j
zj1 · · · zjk−1

. (4.6)

The second term in the last equality behaves as the coefficient dk associated with the (complex)
pitches p1z1, . . . , pnzn. Thus, proceeding inductively,

dk+1 = d1sk(z)−
∑
j

pjzj
∑

j1<···<jk−1;jm 6=j
zj1 · · · zjk−1

= d1sk(z)−

(
∑
j

pjzj)sk−1(z)−
∑
j

pjz
2
j

∑
j1<···<jk−2;jm 6=j

zj1 · · · zjk−2


= . . . =

k∑
j=0

(−1)jbjsk−j(z). (4.7)

In conclusion, theorem 4.1 can be reformulated as follows.

Theorem 4.2 (Stability of minimal helical motifs. II). Consider a set of n helical motifs of pitches
p1, . . . , pn ∈R located at z1, . . . , zn ∈C. The corresponding Enneper graph is a stable minimal immersion
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with respect to normal variations that leave the boundary fixed if and only if

b0 ≡
n∑
j=1

pj = 0 and bk ≡
n∑
j=1

pjz
k
j = 0, but bn−1 ≡

n∑
j=1

pjz
n−1
j 6= 0, (4.8)

where k ∈ {1, . . . , n− 2}.

Proof. The coefficients dk+1 and bk are related by dk+1 =
∑k
j=0(−1)jbjsk−j(z). In addition, this

correspondence can be rewritten as a system of linear equations:
1 0 0 · · · 0

s1 −1 0 · · · 0

s2 −s1 1 · · · 0
...

...
... · · · 0

sn−1 −sn−2 sn−3 · · · (−1)n−1




b0
b1
b2
...

bn−1

=


d1

d2

d3

...
dn

 . (4.9)

Since the determinant of the coefficient matrix of the system above does not vanish, (−1)n 6= 0,
it follows that {bk} can be uniquely computed for a given {dk} and vice-versa. In particular,
(d1, . . . , dn) = (0, . . . , 0, dn 6= 0) if and only if (b0, . . . , bn−1) = (0, . . . , 0, bn−1 6= 0).

It should be remarked that variations that vanish on the boundaries constitute a subset of
those variations that are allowed to move and/or distort the boundaries. Therefore, as generic
boundary variations will broaden the class of perturbations, they may render surfaces that were
stable under the Barbosa-Do Carmo theorem, unstable. On the other hand, unstable surfaces must
remain unstable. In short, it follows as a corollary that the stability conditions stated in Theorem
4.1 or Theorem 4.2 will become necessary conditions for stability with respect to variations that do
not have to vanish on the boundary.

(i) Example of stable pitch balanced helical motifs

We demonstrated that two helical motifs forming a minimal dipole is an example of a stable
Enneper graph. We now provide another example consisting of a helical motif of pitch −np
balanced by n helical motifs of pitch p each. It is worth mentioning that this type of configuration
resembles the basic units composing the helical geometry in plant thylakoids [6], where the central
right-handed helical motif is balanced by several smaller left-handed motifs.

Let p0 =−np, p1 = p, . . . , pn−1 = p, and pn = p be the pitches of n+ 1 helical motifs located at
the center and vertices of a regular n-gon, respectively. The first equilibrium equation is naturally
satisfied b0 =

∑n
j=0 pj = 0. For the remaining equations, we may use the following identity for the

n-th roots of unity ζ0 = 1, ζ1, . . . , ζn−1:
∑n−1
j=0 ζ

k
j = 0 if k is not a multiple of n, but

∑n−1
j=0 ζ

k
j = n

if otherwise [18]. Now, writing z0 = 0 and zj =Rζj−1, j = 1, . . . , n, it follows that

bk =

n∑
i=0

piz
k
i = pRk

n−1∑
i=0

ζki =

{
0 if k < n

npRn if k= n
. (4.10)

From Theorem 4.2, we conclude that the configuration of helical motifs {(p0 =−np, z0 = 0)} ∪
{(pj = p, zj =Rζj−1)}nj=1, where p 6= 0 and R> 0, is a stable minimal Enneper immersion.

5. Discussion
Examining the non-linear geometric interactions between helical motifs in lamellar structures is
necessary for understanding the inter-motif interaction at distances comparable to their pitch.
Recent experiments revealed such closely packed helical motifs in the Endoplasmic reticulum
[3] and plant thylakoids [6]. By providing a constructive method for producing exact minimal
surfaces from harmonic functions we are able to examine the geometry and interactions between
such closely spaced helical motifs, which are not amenable to a small-slope approximation.
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Figure 9. Multiple layers of minimal surfaces in which 10 identical helical motifs of pitch p are embedded. Visualized far

from the helical cores, the structure looks like interlaced helicoids of pitch P = 10p. Near the cores, however, the structure

resembles that of a twist grain boundary.

Focusing on asymptotically helicoidal surfaces we proved that for the obtained minimal
surfaces to be locally stable minima of the area functional the embedded helical motifs must be
pitch balanced. Note, however, that when considering compact domains with boundaries (as is
the case for the pitch balanced helical motifs in the endoplasmic reticulum and plant thylakoids)
the surfaces may not be asymptotically helicoidal, and thus non-pitch balanced helical motifs may
form a stable configuration. Moreover, the stability for pitch balanced arrangements of motifs
is obtained by considering perturbations that vanish on the boundaries, and in particular fix
the helical motifs in place. In many physical and biological cases the helical motifs are mobile
and can vary their relative orientation and position to further lower their energy. Additionally,
this also opens the problem of considering an energy contribution from the boundary, as for
example, the Euler-Plateau problem where one considers the boundary as an Euler elastica [19]
or the Kirchhoff-Plateau problem where one considers the boundary as a Kirchhoff rod [20].
The systematic study of these relative forces and torques between motifs as well as the energy
contribution of the boundaries are left to future work. Extending the results of stability also
requires that we resolve the core of each motif. The Enneper immersion yields in many cases
not only the desired minimal surface and helical motif, but also a non-physical section of minimal
surface to accommodate “excess material”. In the present work, we chose the Gauss Map to define
the boundaries between the physical and non-physical portions of the Enneper immersion. Other
choices may also be possible and are expected to vary the inter-motif interactions.

Under the deformation leading to a minimal Enneper immersion, the distance between
neighboring layers measured with respect to the vertical (z-axis) remains unchanged. The same,
however, can not be said of the distance between layers as measured in the normal direction for
the case of finitely many motifs. In this work, we focused on producing exact minimal surfaces
with desired topology, and thus we were not directly controlling the inter-layer separation,
nor were we considering the elastic penalization associated with deviations from such constant
spacing. While for some applications, such as smectic liquid crystals such terms must be take into
account, it is not clear whether this is the case for biological membranes such as the thylakoid.

The constructive recipe provided here allows us to examine arbitrary arrangements of helical
motifs at any separation and at any scale. For example, resolving the near field for a finite chain
of closely packed identical motifs allows us to show how the expected TGB-like structure of the
near field reconciles with the predicted far field helicoidal structure, as observed in Figure 9.

We proved that every harmonic function on the complex plane can be distorted to an exact
minimal surface using lateral displacements alone, and that every minimal surface may be
obtained through this recipe; For any given minimal surface we can find a harmonic function
whose Enneper immersion yields the desired minimal surface. This invertibility renders this
method a valuable tool with which to study quantitatively the non-linear interaction between
motifs in natural biological and physical settings. The restriction to asymptotically flat surfaces
arises from considering only a subset of harmonic functions, and is not an inherent limitation of
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the method. Extending the analysis presented here to account for all harmonic functions will yield
an explicitly controllable and exhaustive representation of minimal surfaces.

Appendix

A. Holomorphic representation of minimal surfaces
As it is well known, minimal surfaces in Euclidean space admit a representation in terms of
holomorphic functions [21,22]. In this Appendix, we provide a self-contained discussion of this
topic and the relation between the Enneper and Weierstrass representations.

Let r(z) = (f1(z), f2(z), f3(z)) be a smooth parametrization of a regular minimal surface,
where fj is a smooth real function. Define the following complex functions φj =

∂fj
∂x − i

∂fj
∂y ,

j = 1, 2, 3. From the relation φ2
1 + φ2

2 + φ2
3 = ∂xr · ∂xr− ∂yr · ∂yr− i∂xr · ∂yr = a11 − a22 − ia12,

it follows that r is conformal if, and only if,
∑
j φ

2
j = 0. In addition,

∑
j |φj |

2 = ∂xr · ∂xr + ∂yr ·
∂yr = 2a11 and, therefore, r is regular if and only if

∑
j |φj |

2 6= 0. Now, since r is conformal and
minimal, the second derivatives must satisfy ∂2

xr =−∂2
yr and, from the commutativity of mixed

derivatives, we also have ∂2
xyfj = ∂2

yxfj . From the definition of fj , these conditions on the second
derivatives give ∂xRe(φj) = ∂yIm(φj) and ∂yRe(φj) =−∂xIm(φj). In other words, φ1, φ2, and φ3

are holomorphic and, consequently, we can write r = Re(
∫
φ1dz,

∫
φ2dz,

∫
φ3dz).

Conversely, let a regular surface Σ be parametrized by r = Re(
∫z
φ1dζ,

∫z
φ2dζ,

∫z
φ3dζ) =∫z φ+φ̄

2 dζ, where φj (j = 1, 2, 3) is holomorphic and φ= (φ1, φ2, φ3). Employing the Wirtinger
derivatives [18]: ∂x = ∂z + ∂z̄ and ∂y = i(∂z − ∂z̄), it is immediate to obtain that the first and
second derivatives of r are

∂xr =
φ+ φ̄

2
, ∂yr =−φ− φ̄

2i
and ∂2

xr =
φ′ + φ̄′

2
=−∂2

yr, ∂
2
xyr =−φ

′ − φ̄′

2i
. (A 1)

Then, the coefficients of the metric, a11 = ∂xr · ∂xr, a12 = ∂xr · ∂yr, and a22 = ∂yr · ∂yr are

a11 =
1

4

3∑
j=1

(φ2
j + φ̄2

j + 2|φj |2), a12 =
1

4i

3∑
j=1

(φ̄2
j − φ

2
j ), a22 =−1

4

3∑
j=1

(φ2
j + φ̄2

j − 2|φj |2).

It follows that r is conformal, i.e., a11 = a22 and a12 = 0, if and only if φ2
1 + φ2

2 + φ2
3 = 0. In

addition, r is regular if and only if |φ1|2 + |φ2|2 + |φ3|2 6= 0. Now, noticing that b11 = ∂2
xr ·N =

−∂2
yr ·N =−b22, the mean curvature of any conformal immersion r =

∫ φ+φ̄
2 dz vanishes.

For an Enneper immersion r = (L− P̄ , h) = Re(
∫
(L′ − P ′)dz,

∫
−i(L′ + P ′)dz,

∫
2hzdz), it

follows that the metric of the surface given in (2.6) takes the form:

a=

(
∂xr · ∂xr ∂xr · ∂yr
∂xr · ∂yr ∂yr · ∂yr

)
= (1 + hzhz̄)2

(
1 0

0 1

)
.

It is immediate to verify that the conditions L′P ′ = (hz)2 and |L′|+ |P ′| 6= 0 guarantee that
any Enneper immersion is a regular conformal minimal immersion. Alternatively, to prove the
minimality, we may use the fact that for a conformal metric aij = F 2δij , the Laplacian operator
corresponding to aij is∇2

a = 1
F 2∇2 = 4

F 2 ∂z̄∂z . Now, using that 2HN =∇2
ar, the mean curvature

vector of an Enneper immersion is

H∝ (∂z∂z̄ z − ∂z̄∂zP̄ , ∂z̄∂zh) = (0, 0, 0),

which implies H = 0, i.e., an Enneper immersion is minimal.
Before we conclude by computing the Gaussian curvature, it is worthwhile to identify the

mapping between the present formulation and the well-known Weierstrass representation [23] in
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which a minimal surface is expressed in terms of two holomorphic functions f and g through3

r = Re
(∫z

z0

1

2
f(ζ)(1− g2(ζ))dζ,

∫z
z0

i

2
f(ζ)(1 + g2(ζ))dζ,

∫z
z0

f(ζ)g(ζ)dζ

)
. (A 2)

Comparing (A 2) and r = (z − P̄ , h) = Re(
∫
(1− P ′)dz,

∫
−i(1 + P ′)dz,

∫
2hzdz), we identify

1− P ′ = f

2
(1− g2), −i(1 + P ′) =

if

2
(1 + g2), and 2 ∂zh= fg.

from which follows that g=− 1
∂zh

and f =−2(∂zh)2. While the relation between the Weierstrass
and Enneper representations is difficult to directly interpret, it allows us to exploit known results
from one representation to the other. In particular, the known expression for the Gaussian
curvature K in terms of the Weierstrass data [21] yields the curvature of an Enneper graph
through

K =−
[

4|g′|
|f |(1 + |g|2)2

]2

=−4
|∂zzh|2

(1 + |∂zh|2)4
=

hxxhyy − h2
xy

[1 + 1
4 (h2

x + h2
y)]4

, (A 3)

where we used that |P ′|= 1
4‖∇h‖

2 and |∂zzh|2 =− 1
4 (hxxhyy − h2

xy).
To finish this discussion of holomorphic representation, let us find the geometric interpretation

of g=−1/hz , which plays a fundamental role in this text. By seeing the normal N as a map from
Σ to the unit sphere S2, g can be geometrically interpreted as the stereographic projection of N.
Indeed, using the tangent vectors of r = Re(

∫z
φ1dζ,

∫z
φ2dζ,

∫z
φ3dζ) given in equation (A 1),

we have

N =
∂xr× ∂yr
‖∂xr× ∂yr‖

=
2

|φ1|2 + |φ2|2 + |φ3|2
(Im(φ2φ̄3),−Im(φ1φ̄3), Im(φ1φ̄2)). (A 4)

Now, substituting φ1 = f
2 (1− g2), φ2 = if

2 (1 + g2), and φ3 = fg, and computing the stereographic
projection of the unit normal N = (N1, N2, N3), Π ◦N = ( N1

1−N3
, N2

1−N3
), gives the desired

identity g=Π ◦N.
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