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Unveiling Key Features: A Comparative Study of Machine Learning 
Models for Alzheimer's Detection 

Cailean Bushnell 

 
Department of Economics and Finance 

Utah State University 
 
 

Abstract 
This thesis rigorously evaluates the application of an array of natural language processing 

(NLP) techniques and machine learning models to identify linguistic signatures indicative of 
dementia, as sourced from the DementiaBank Pitt corpus. Utilizing a binary classification 
paradigm, this study meticulously integrates sophisticated embedding methods—including 
Doc2Vec, Word2Vec, GloVe, and BERT—with traditional machine learning algorithms such as 
Random Forest, Multinomial Naïve Bayes, ADA boost, KNN classifier, and Logistic Regression, 
alongside deep learning architectures like LSTM, Bi-LSTM, and CNN-LSTM. The efficacy of 
these methodologies is evaluated based on their capacity to differentiate between transcribed 
speech impacted by dementia and that from control subjects. To enhance interpretability, this 
research also employs feature importance analysis through LIME, SHAP, permutation 
importance, and integrated gradients, shedding light on the variables most instrumental in driving 
model predictions. The results of this comprehensive analysis not only illuminate the robust 
potential of these combined NLP and machine learning approaches in the context of medical 
screening but also contribute additional valuable insights to the field of NLP and dementia 
screening specifically.  

 

Keywords: dementia detection, machine learning, deep learning, Pitt corpus, feature 
importance.  
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SECTION I: Introduction  
Alzheimer's disease (AD), a progressive neurodegenerative disorder that causes atrophy 

of the brain (the loss of neurons and connections between neurons), is the most common form of 
dementia, making up 60%-70% of all dementia cases [10].  AD is characterized by a decline in 
cognitive function and impacts the daily life of a diagnosed individual significantly. It is 
currently the 7th leading cause of death and a leading cause of disability within the elderly 
population[11]. It relentlessly robs individuals of their memories, reasoning skills, and 
ultimately, their independence. Currently, over 55 million individuals are living with AD, with a 
disproportionate percentage of that 55 million (60%), living in low- and middle-income 
countries[11].  

The economic cost of AD is staggering, with healthcare costs for this disease exceeding 
those of heart disease and cancer combined in the United States. As populations live longer, the 
societal impact of AD is projected to be immense. Recent studies predict AD will triple 
worldwide by 2050[9]. In 2019 the global cost of dementia was estimated to be 1.3 trillion US 
dollars[11]. A significant portion of that estimated cost is attributed to formal and informal 
caregiving.  

At this point in time, there is no cure for AD. It is one of the only major diseases where 
once symptoms manifest, medical professionals are unable to reverse or slow down the 
progression of the disease in any meaningful way. Symptoms include, but are not limited to, 
memory loss, problems with every-day tasks, difficulty walking and maintaining bodily 
functions, and reduced language capabilities. 

 Individuals with mild symptoms can continue to function independently, with minor help 
from friends, family, or caregivers. They are able to continue to work, drive, and participate in 
their favorite hobbies. Dementia is a degenerative disease and as patients continue to decline 
from mild AD to severe AD speech inevitably declines. The table presented in this section 
delineates the progression of symptoms associated AD across three stages: mild, moderate, and 
severe.  

 

Mild AD Moderate AD Severe AD 
• General memory loss  
• Mood changes  
• Communication 

problems  
• Orientation issues  
• Misplacing items 

• Increased confusion 
• Difficulty with complex tasks 
• Change in sleep patterns 
• Wandering and getting lost 
• personality and behavioral 

changes that can lead to 
aggressiveness  

• Suspicion  
• Irritability 

• Severe memory loss that may 
inhibit a patient’s ability to 
communicate coherently  

• Unable to recognize loved ones 
• Require full time assistance 

and personal care for daily 
activities 

• Increased susceptibility to 
infections 

 

As Alzheimer's disease progresses, it leads to neuronal damage and brain atrophy, which 
impact various cognitive functions including the ability to use and understand language. Changes 
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in speech can be attributed to varying stages of Memory Loss: as patients struggle with recalling 
words or remembering the thread of a conversation. Executive dysfunction: the disease affects 
the frontal lobe of the brain, which is responsible for executive functions like planning, decision-
making, and moderating social behavior. Anxiety and depression: which are common 
comorbidities in Alzheimer's patients and can exacerbate communication difficulties. Reduced 
Processing Speed: Neurological impairments slow down cognitive processing speed, impacting 
the patient's ability to process incoming speech quickly, respond appropriately, and keep up with 
conversations. Muscle Weakness: Alzheimer’s can affect motor control, leading to weakened 
muscles around the mouth and throat, which are essential for articulation. This can make speech 
less clear and more difficult to understand. Auditory Processing Issues: There can also be a 
decline in the patient's ability to process auditory information correctly, making it challenging to 
respond appropriately in conversations. Progression of Aphasia: This condition, often 
associated with Alzheimer's and other dementias, specifically affects a person's ability to 
communicate. Patients may develop expressive aphasia, where they know what they want to say 
but struggle to express thoughts verbally, or receptive aphasia, where they cannot understand 
spoken or written language well. 

The decline of speech capabilities can be categorized into early, moderate and severe 
stages. In the early stages of AD linguistic changes typically include slower speech, loss of 
verbal fluency, difficulties with formal and informal writing, finishing sentences, and recalling 
words.  As a patient transitions into the moderate stage, changes in speech can include 
conversation that is difficult to comprehend, repeated slurring, stammering, or stuttering, 
inappropriate use of words or phrases, and trouble forming basic sentences. Finally in the severe 
stage, complications with speech present itself as the inability to think and speak clearly, 
conversations that are unconnected to a situation, and the repetition of other peoples’ words.  

Subtle changes in an individual’s language capabilities, such as the use of incorrect 
words, word comprehension, repetitive speech, verbal fluency, and talking at inappropriate times, 
commonly occur among AD patients at varying levels of mild cognitive impairment. Increased 
cognitive impairment is strongly correlated with an increased display of aphasia or the impaired 
ability to understand and produce coherent speech. Given these factors, researchers are looking 
for cost effective and minimally invasive ways to detect and treat this disorder. Methods from the 
field of computation, such NLP, can be used as a tool of analysis for the interpretation and 
detection of changes in a patient’s speech. Recent advances in NLP and deep learning 
technologies have highlighted the potential to detect dementia from spoken language.  

 

Motivation 
The interest of this paper lies primarily in the early screening of AD. Early diagnosis is 

imperative in order to minimize impact on the quality of a patient’s life and manage their 
symptoms. Alzheimer's disease (AD) presents one of the most pressing challenges in 
contemporary medical science. With millions of individuals affected worldwide, the urgency to 
combat this neurodegenerative condition is undeniable. The pathology of Alzheimer's disease 
often begins decades before the manifestation of clinical symptoms, underscoring the critical 
need for early detection. Early diagnosis has the potential to significantly enhance the quality of 
life for patients by allowing for the timely management of symptoms.  
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This thesis is motivated by the possibilities that machine learning, deep learning, and 
natural language processing offer for of early Alzheimer's detection. Language processing 
emerges as a particularly promising area due to the subtle linguistic and cognitive changes that 
precede more overt symptoms of AD. Despite there being no cure for AD, the capacity to predict 
its onset early through linguistic markers offers a transformative approach to pre-symptomatic 
intervention. 

In response to this opportunity, the proposed paper conducts a comprehensive analysis 
aimed at testing and validating the efficiency of various computational models for AD prediction. 
This research evaluates conventional machine learning models such as Decision Tree, Random 
Forest, Logistic Regression, ADA boost classifier, and KNN classifier, alongside sequential deep 
learning models including Long Short-Term Memory networks (LSTM), Bidirectional LSTM 
(Bi-LSTM), and Convolutional Neural Network-LSTM (CNN-LSTM) hybrids coupled with 
various word embedding methods such as GLOVE, Word2Vec, Doc2Vec, and BERT input 
embeddings.  

By integrating advanced ML and NLP methodologies, this thesis strives to forge a path 
toward impactful clinical applications, contributing to the burgeoning field of digital biomarkers 
for AD. The ultimate goal is to leverage technology not just to predict but also to prepare—
transforming how we approach this formidable disease long before its symptomatic onset. 

 

Contributions 
This thesis contributes to the interdisciplinary fields of dementia detection and cognitive 

health through a series of applications and evaluations of machine learning and NLP techniques 
for the early detection of Alzheimer’s disease. Recognizing the pivotal role of early diagnosis in 
mitigating the progression of AD, this research leverages linguistic analysis and computational 
intelligence as a non-invasive screening tool to identify early markers of cognitive decline. The 
following contributions are highlighted:   

• The role of conventional ML models: Logistic Regression, Decision Tree, Random 
Forest, ADABoost Classifier, KNN Classifier, and Multinomial Naive Bayes classifier 
was investigated for the early detection of linguistic characteristics of Alzheimer’s 
patients.  
 

• The performance of sequential deep learning models was investigated: LSTM, Bi-LSTM, 
and a hybrid of CNN-LSTM for automatic detection of AD.  

 

• Multiple embedding techniques/vector representations were obtained from the speech 
transcripts and passed to the aforementioned deep learning and machine learning models 
for evaluation. These techniques include: TF-IDF, pre-trained GloVe embeddings, 
Word2Vec, Doc2vec, and BERT input embeddings.  
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• This paper contributes to the existing literature of evaluating the interpretability of 
machine learning models and deep learning models used in the early detection of 
Alzheimer's disease through the meticulous application of Local Interpretable Model-
agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), permutation 
importance and Integrated Gradients. By employing these techniques, this thesis draws 
valuable insights into localized feature importance, providing a granular analysis of how 
individual features may contribute to model predictions. 
 

The remainder of this paper is structured to provide a comprehensive exploration of machine 
learning and deep learning applications in the early detection of AD, systematically presenting 
the research from foundational theories to practical implications. Section II delves into the 
existing body of knowledge with an extensive literature survey and review of related work, 
establishing the context and justification for this study. Section III discusses the DementiaBank 
Pitt corpus dataset and details the preprocessing steps undertaken to prepare the data for analysis, 
highlighting the rigor in data handling and preparation. Section IV, the methodology section, 
outlines the diverse array of machine learning models and NLP techniques employed, including 
the implementation specifics and the rationale behind the choice of models. Section V presents 
the results and a thorough analysis of the findings, evaluating the performance and feature 
importance of the models in detecting early linguistic markers of Alzheimer's disease. The thesis 
concludes with Section VI, where the conclusions are drawn, and the implications of the 
findings are discussed. This final section also outlines potential avenues for further research and 
the future scope of this study, suggesting directions for continuing advancements in the field. 

 

II. Related Work 
Prior work has analyzed the early detection of Alzheimer’s Disease using text transcripts. 

During the past decade or so, research efforts have focused on utilizing multi-modal information 
(i.e., text and audio) to detect AD using speech and language features, as well as oral transcripts, 
in order to detect patterns of mild cognitive impairment. A plethora of machine learning and deep 
learning techniques have been used to detect anomalies or irregularities in the narrative language 
or speech patterns of patients with varying degrees of severity of AD.  

 

Text-Only Detection Studies 
For example, Accurate Detection of Dementia from Speech Transcripts Using RoBERTa 

Model uses DementiaBank’s Pitt corpus to run multiple experiments evaluating the prediction 
accuracy of Hugging Face’s RoBERTa model. They ran three experiments evaluating 
RoBERTa’s performance against existing research depending on what preprocessing steps are 
taken to prepare the linguistic transcripts. The first experiment removed almost all of the coded 
information found in the .cha files. This included spoken words (words spoken by the 
participant), filler words (words, sounds, and phrases people use to fill empty spaces of 
communication), pauses, coughing, and any repeated or redundant speech. The second 
experiment only removed the filled pauses (uh, um, er. These pauses are preceded by the 
ampersand and hyphen mark.), and finally, in the third experiment both the filled pauses and 
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repeated speech were left in the transcript. Using all three experiments, (Matošević, 2022) 
evaluated RoBERTa against BERT as a baseline model. RoBERTa outperformed BERT with both 
256 and 512 tokens across all three experiments. BERT512 achieved and accuracy of 86.26%, 
85.03%, and 86.29% across experiments one, two and three. Similarly, BERT256 achieved 
85.29%, 86.42%, and 85.22%. They evaluated two RoBERTa models. One using a maximum 
length parameter of 512 and the other using a maximum length of 256. Of the two, the model set 
to 512 performed better across all three experiments. Matošević highlights that their ‘models 
benefit from a larger text span’. The second experiment produced their best trained model, which 
achieved a 90.16% accuracy. (Matošević, 2022) attribute this to the inclusion of repeated speech 
in the second experiments transcripts, a common characteristic of dementia. Their model was 
able to isolate this pattern as one correlated with cognitive decline, and outperform the models 
that had removed the repeated speech. In the third experiment, surprisingly, the inclusion of 
filled pauses in the transcripts did not affect the performance of the model, indicating they do not 
lead to better performance.  

The Comparative study of Deep Classifiers for Early Dementia Detection using Speech 
Transcripts used a combination of deep learning models, transformer models, and vector 
representations to detect the dementia class or control group from the Pitt Corpus transcripts. 
Their aim was to use a variety of methods for binary classification using deep learning and NLP 
techniques that had not been previously studied. The Pitt Corpus was cleaned by removing 
punctuation marks, capitalization, and unwanted annotations. Different vectorization techniques 
were used to obtain embeddings, such as, doc2vec, word2vec, GloVe, BERT, RoBERTa, and 
ALBERT. The embeddings were then fed to a series of deep learning models consisting of 
LSTM, BiLSTM, and GRU. Their highest performing accuracy was achieved by the BiLSTM 
model with BERT embeddings at 81%. The second highest performing model was GRU with 
RoBERTa embeddings at 80%. The highest precision obtained was 96% by the LSTM model 
with BERT embeddings[2].  

 

Multi-Modal Detection Studies 
Multiple research papers have utilized both the audio files and text transcripts for 

dementia detection. One such work is Machine learning of transcripts and audio recordings of 
spontaneous speech for diagnosis of Alzheimer’s disease. Their objective was to evaluate the 
performance of manual transcripts vs automatic ones, noised vs denoised recordings, and the 
different methods of speech recognition models. This work explored machine learning methods 
to detect AD using Dementia Bank’s Pitt corpus by evaluating three different approaches. It 
utilized both the speech and text data available. The original linguistic transcripts were evaluated 
alongside automatically generated transcripts based on denoised voice recordings and generated 
transcripts that had not been denoised. Transcript generation was achieved using the Python 
library noisereduce. Transcribing the audio into text data was done by CMUSpinx pocketsphinx, 
a program that reads audio from standard input files and attempts to recognize speech in it, and 
MozillaDeepSpeech, an open-source speech-to-text engine. Transformer model BERT was used 
to create feature vectors with contextual representation of the transcripts. A neural network 
model was constructed to perform the classification analysis. This process utilized a 10-fold 
cross validation and was repeated 20 times. The average results were reported. (Liu, 2021) found 
features extracted from denoised MozillaDeepSpeech transcripts performed best overall with a 
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92.72% accuracy. Overall performance between raw and denoised speech recordings was 
incongruous. Results were dependent on which speech recognition software was used. Features 
from the pocketsphinx transcripts with noisy recording outperformed the denoised ones, which is 
opposite relationship observed with the MozillaDeepSpeech transcripts[3].  

Computational Intelligent Models for Alzheimer's Prediction Using Audio Transcript 
Data like (Nambiar, 2022), performs a comprehensive analysis of machine learning (Decision 
Tree, and Random Forest), deep learning (LSTM, Bi-LSTM, and CNN-LSTM), and transfer 
learning models (BERT and XLNet) for AD prediction. DementiaBank’s Pitt Corpus was also 
utilized for this study. Data preprocessing steps included tokenization, case correction, 
stemming, and lemmatization (punctuation, spaces, capitalization, symbols, stop words, and non-
ascii characters were removed from the original transcripts).  

The statistical method known as term frequency-inverse document frequency (TF-IDF) 
was then performed to generate vectors. TF-IDF gives a higher weight to words that appear more 
frequently within a document. The TF-IDF formula is:  

𝑇𝑇𝑇𝑇(𝑡𝑡,𝑑𝑑) =
number of times 𝑡𝑡 appears in 𝑑𝑑

total number of terms in 𝑑𝑑
 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) = log 
𝑁𝑁

1 + 𝑑𝑑𝑑𝑑
 

𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡,𝑑𝑑) = 𝑇𝑇𝑇𝑇(𝑡𝑡,𝑑𝑑) ⋅ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) 

 It is particularly useful at helping detect semantic relevance and identifying which words 
are important and which words are not within a document. The TF-IDF parameters were as 
follows: Vector dimensions = 316, max df = 0.9, min df = 5. From the embeddings, vectors were 
calculated, and an output embedding vector for each tokenized vector was created and ultimately 
used as an embedding layer for the deep neural networks evaluated. To fine tune 
hyperparameters for the models being evaluated (Khan, 2022) utilized the simplest algorithm for 
tuning, the grid search technique. Model performance was evaluated using the metrics: testing 
accuracy, validation accuracy, ROC curve, and F1-score. Out of the machine learning models, 
SVM performed the best with an accuracy rate of 85%. Among the deep learning models the 
CNN-LSTM hybrid achieved a high classification performance with a 90% accuracy. Both 
transfer learning models, BERT and XLNet outperformed the deep learning and machine 
learning models at 92% and 93% accuracy rates, respectively. The AUC values for XLNet and 
BERT were both 97%. Further showing that the transfer learning models outperformed their 
machine learning and deep learning counterparts.  

Overall, BERT obtained the best testing accuracy of 93% and a validation accuracy of 
95% when fed the vectors generated by TF-IDF and the model utilizing the fine-tuned 
parameters. Moreover, these findings are unsurprising given the nature of this classification 
particular problem. The statistical ML classifier’s treat each word independently and do not 
discriminate by position within the text sequence. The deep learning methods applied in (4) 
better captured the meaning of the transcript sequences due to their sequential nature. Though, 
was outperformed by BERT and XLNet’s ability to identify contextual relationships within the 
transcripts.  These results highlight the different assessment methods for AD classification, and 
ultimately show transformer learning based methods achieved higher accuracy and less 
validation loss.  Recent research and practical applications suggest that while text-only models 
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provide significant insights, particularly in linguistic analysis, multimodal models tend to deliver 
superior performance in terms of accuracy and comprehensiveness. This allows for a more 
holistic assessment of a patient, a richer more diverse set of features from both the audio and 
text, and models that are less susceptible to overfitting[4].  

 

Feature Analysis in AD Classification 
The purpose of (Meghanani, 2021) is to evaluate the classification problem of AD 

transcripts and MMSE scores prediction (MMSE score refers to a regression task, created to 
evaluate a participants Mini Mental Status Examination score (MMSE) based on speech and/or 
language data. This score quantifies cognitive impairment). (6) evaluates two models for AD 
classification, a FastText model and a CNN model with a single convolutional layer to capture n-
gram-based linguistic information. FastText can be used as a CBOWs model or Skip-gram model 
specifically for learning text representations for text classifiers. Representations created by 
FastText can be used for a plethora of applications from data compression, as features into 
additional models, for candidate selection, or as initializers for transfer learning. The FastText 
model uses a bag of bigrams and trigrams in order to catch word orderings. The CNN model 
captures different n-grams (2, 3, 4, and 5) by adapting the kernel size to n. For both models, 
embeddings are created using pretrained GloVe vectors.  

FastText models outperform several baseline methods historically used in AD 
classification. They are shallow in nature and tend to perform training and evaluation 
significantly faster than other deep learning models. Other research has shown that language 
impairment, including repetitive speech, lexical retrieval, and loss of verbal fluency, is often 
indicative of mild to severe cognitive impairment. A CNN model was chosen specifically to 
capture linguistic information in the n-grams present in an input transcript. Meghanani expounds 
on this by saying, “Any n × d CNN filter, where n is the number of sequential words looked over 
by the filter and d is the dimension of word embedding, can be viewed as a feature detector 
looking for a specific n-gram in the input that can capture the language impairments associated 
with AD.” Both models are used because of their ability to capture linguistic features from n-
grams[6].  

 Text transcripts from the Alzheimer’s Dementia Recognition through Spontaneous 
Speech (ADReSS) dataset are used for evaluation. Like the Pitt Corpus, transcripts contain a 
conversational task between a participant and investigator. Transcripts include supplemental 
information, such as filler words, coughing, and pauses in speech. Each transcript is treated as a 
single datapoint with a correlating AD label and MMSE score, both of which were provided by 
the ADReSS challenge.  After preprocessing steps were taken, the transcripts were broken up 
into two categories. One includes solely the speech from the participant, the other features 
speech from both the investigator and the participant.  

For the AD prediction problem, the models were trained for 100 epochs with a batch size 
of 16. Adam optimizer is used with a learning rate of 0.001. Conversely, the MMSE task trained 
for 1500 epochs. The AD classification problem used binary cross-entropy as a loss function and 
the MMSE prediction task utilized a fully connected linear activation function.  
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The bootstrap method, bagging, was used to predict the final labels and MMSE scores for 
all test samples across both tasks.  

RMSE (root mean square errors) and accuracy were used to evaluate the models. On the 
MMSE prediction task the CNN model scored a 4.38 and the fastText model scored 4.28.  The 
best performing model was fastText with bi-grams on the transcripts that included both 
participants and investigators speech. The cross-validated accuracy was 86.09%. Across the 
different CNN models evaluated, tri+4+5 grams gave the best accuracy rates between both sets 
of transcripts. Overall, (Meghanani, 2021) found both models benefitted from keeping in 
utterances from the investigator. This is likely due to the variance between the speech of an AD 
participant and investigator. 

Dementia Detection using Transformer-Based Deep Learning and Natural Language 
Processing Models performed the binary text classification with five pre-trained transformer 
models including: BERT, ALBERT, XLNet, RoBERTa, and ELECTRA. They utilized the Pitt 
corpus, the ADReSS challenge, an augmented set of the ADReSS challenge, and UW semi-
structured interviews in an effort to compare transcripts to semi-structured interviews, as well as 
evaluate the effect of data augmentation on prediction. The UW transcripts used Type-Token 
Ratio for manual linguistic analysis. Data was split using an 80:20 train to test set ratio, and 20% 
of the training data was held back for the validation set fine tuning for each model. The ADReSS 
set was augmented using Random Deletion (RD) of the Easy Data Augmentation (EDA). 
Performance was evaluated using validation accuracy and prediction, precision, F1-score, recall, 
and Mcc. The results found across models; the UW interviews predictions were not consistent. 
The BERT model evaluating the augmented ADReSS challenge achieved the highest F1-score at 
90%. Their results did show some performance gains can be made using an augmented dataset. 
Though, the overall performance of the original ADReSS challenge and the Pitt Corpus lagged 
slightly behind other foundational research[8].  

 

Alternative Methods for AD Classification 
Works such as (Bouazizi, 2023), evaluated alternative approaches to traditional deep 

learning and transfer learning methods for AD classification.  Advanced language models have 
been utilized for multiple speech and cognitive classification problems the last few years. This is 
not without cost. LLMs require a large amount of data and computational power to train. This is 
often outside the realm of possibility for many researchers and is unnecessary for many 
classification tasks. While pretrained models minimize that cost, they do little to address the 
overfitting problem often found when using small datasets. This makes work unreliable at best 
and irreproducible at worst. Relying heavily on pretrained models also overlooks the fact that not 
all information for text classification problems can be found in the vocabulary and grammar 
related contexts. To assess this claim, Bouazizi extracts the topics subjects are talking about and 
how often they change from one sentence to the next or within one particular sentence for the 
Pitt Corpus image description task. This builds on previous work evaluating the importance of 
grammar and vocabulary in AD detection. This paper used unconventional methods to classify 
AD. The cookie theft image from the Pitt Corpus was split into regions of interest in order to 
identify which areas of the picture a participant was discussing.  Independent from the data 
provided by DementiaBank, words that could be associated with each area of interest were 
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collected from an online thesaurus and NLTK in order to collect synonyms and hypernyms to 
ultimately enrich the dataset.  The transcripts were split into sentences, each sentence was 
checked for the presence of words associated with that region, and then that number was 
counted. The goal was to observe how the topics of sentences changed over time. An LSTM 
model was then trained for the binary classification task and MMSE regression. The LSTM was 
meant to capture trends associated with both the control and dementia group, and did so 
moderately compared to existing literature. (Bouazizi, 2023) also augmented samples of data 
using GPT-4. They were able to achieve an 83.56% accuracy at the subject level and 82.07% 
accuracy at the sample level on the DementiaBank cookie theft task. The results show control 
subjects spend more time describing certain aspects of the cookie theft image compared to their 
AD counterparts. Dementia subjects also tended to jump from one topic to another, having a 
higher degree of variance in their sentence subjects than members from the control group. 
Overall this highlights alternative methods for perusing AD classification[5].  

 

Feature Importance 
The work conducted by (Vimbi et al., 2024) provides a systematic review on the 

application of LIME (Local Interpretable Model-agnostic Explanations) and SHAP (Shapley 
Additive exPlanations) in the detection of Alzheimer's Disease (AD) using artificial intelligence 
(AI) (Vimbi et al., 2024). This work is pivotal in the field of explainable artificial intelligence 
(XAI), particularly within the context of medical diagnosis where understanding the reasoning 
behind AI predictions is crucial for clinical acceptance and trust. The study emphasizes the 
necessity of XAI in enhancing the transparency and trustworthiness of AI-based diagnostic 
systems, making them more acceptable for clinical use. It adheres to rigorous systematic review 
methodologies (PRISMA and Kitchenham’s guidelines) to collate and analyze data from multiple 
studies, ensuring comprehensive coverage of the current landscape of XAI in AD detection. The 
paper delves into the capabilities, benefits, and challenges of using LIME and SHAP 
frameworks. These tools help interpret AI-driven decisions in AD diagnostics, demonstrating 
how they can provide meaningful insights into the decision-making processes of complex 
models. By integrating these XAI frameworks, the paper highlights their role in improving the 
fidelity of clinical decision-support systems, aiming to facilitate early intervention and better 
management of Alzheimer’s disease[23]. 

Training Models on Oversampled Data and a Novel Multi-class Annotation Scheme for 
Dementia Detection by Nadine Abdelhalim, Ingy Abdelhalim, and Riza Batista-Navarro explores 
an advanced approach for classifying dementia through text analysis of patient-doctor 
conversations (Abdelhalim, 2023). This study is crucial as it employs a novel three-class 
annotation scheme that categorizes patients into Healthy Control (HC), Mild Cognitive 
Impairment (MCI), and Dementia stages, enhancing the granularity of dementia detection 
beyond traditional binary classifications. The study utilizes a dual approach to address data 
imbalances and increase the robustness of the findings: 

The first approach involves oversampling underrepresented classes (MCI and Dementia) 
in the Pitt dataset to balance the dataset effectively. This is crucial as it allows the models to learn 
more representative features of these categories without bias towards the more numerous HC 
class. The second approach combines the Pitt dataset with additional datasets from Holland and 
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Kempler, introducing a richer variety of text data and discussion topics which help in 
generalizing the model’s application. 

 For model development, the authors employed bidirectional transformers based on 
BERT, RoBERTa, and DistilBERT architectures, renowned for their effectiveness in text 
classification tasks. These models were trained to classify transcripts into the three specified 
classes, employing stratified 10-fold cross-validation to ensure robust evaluation. 

The models achieved impressive classification accuracy and macro-averaged F1 scores, 
particularly, the DistilBERT model trained on the oversampled Pitt dataset and the combined 
dataset exhibited state-of-the-art performance with an accuracy of 98.8% and a macro-averaged 
F1-score of 98.6%, respectively. 

LIME was employed to analyze the output of the bidirectional transformer-based models 
(BERT, RoBERTa, and DistilBERT) that were trained to classify text into three dementia-related 
categories: Healthy Control (HC), Mild Cognitive Impairment (MCI), and Dementia. The main 
goal of using LIME in this context was to provide explanations for individual predictions, 
highlighting the specific words or phrases in the patient-doctor conversation transcripts that 
influenced the models' classifications. 

The paper does not detail specific results from the LIME analysis, such as the exact 
words or phrases identified as influential. However, it emphasizes that LIME was instrumental in 
manually inspecting the models’ outputs, which involved saliency highlighting to visually 
represent the importance of different parts of the text. This technique helps in pinpointing 
linguistic features that are indicative of dementia and could be used as diagnostic markers. The 
use of LIME allowed Abdelhalim, to better understand model behavior, enhance model trust, and 
identify any potential biases[24].  

In the paper Explainable Identification of Dementia from Transcripts Using Transformer 
Networks by Loukas Ilias and Dimitris Askounis, the authors address the challenges of 
identifying Alzheimer's dementia using transformer-based networks while emphasizing the 
importance of model interpretability (Ilias, 2022). They integrate the prediction of dementia and 
the evaluation of its severity (Mini-Mental State Exam scores) into a unified approach rather than 
treating them as separate tasks. The paper uses several transformer-based models, including 
BERT, which demonstrated the highest accuracy of 87.50%. They also developed an 
interpretable siamese network architecture, which achieved an accuracy of 83.75%. Additionally, 
the study introduced two multi-task learning models that simultaneously addressed dementia 
identification (binary classification) and severity assessment (multiclass classification), 
achieving accuracy up to 86.25%. 

The ADReSS Challenge Dataset was used, which focuses on minimizing bias by 
matching for gender and age and includes spontaneous speech recordings along with their 
transcriptions from both Alzheimer's patients and non-demented controls. 

LIME was specifically utilized to interpret the best performing model's predictions, 
enhancing the understanding of the linguistic differences between dementia and non-dementia 
groups. Part-of-speech tagging was involved in detailed linguistic analyses to discern patterns 
more effectively. The results from LIME corroborated with linguistic and speech markers, 
indicating that explanations from LIME aligned well with known linguistic traits associated with 
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dementia, such as simplified vocabulary and grammar structures, which are commonly seen in 
patients with dementia[25]. 

This research builds upon and extends the findings from previous studies by employing a 
comprehensive and innovative approach to the detection and analysis of using speech and 
language data. While the aforementioned works have laid a strong foundation by exploring 
various machine learning and NLP techniques, this work introduces further methodological 
enhancements and integration strategies. By leveraging a nuanced combination of deep learning 
models, and innovative preprocessing strategies that maintain critical linguistic features often 
discarded in traditional analyses, this study aims to provide a more accurate and holistic 
understanding of the linguistic markers associated with AD. Additionally, the application of 
advanced interpretability tools such as LIME and SHAP enables a deeper insight into the 
decision-making processes of the models, thus contributing to a more transparent and replicable 
research framework. Collectively, these efforts not only enhance the capabilities of AD 
prediction models but also address the critical challenge of reproducibility in computational 
research, paving the way for future studies to build upon this work with greater confidence and 
scientific rigor. 

 

 

III. Dataset  
This study utilizes the DementiaBank dataset, specifically the Pitt Corpus, a key 

component of the TalkBank system (Becker, 1994), which provides valuable resources for the 
linguistic analysis of cognitive disorders such as AD. A particularly pertinent subset of this 
dataset is the cookie theft picture description task, a speech based medical examination for 
neurological diseases, wherein participants were asked to describe everything they could see in a 
complex scene depicted in an image. A picture description assignment is one of the best 
techniques for getting an appropriate standardized speech sample across a variety of subjects. 
The cookie theft picture description task includes 243 control samples and 309 dementia 
samples. This task is designed to elicit rich linguistic output that captures a range of cognitive 
functions (including modalities of perception: gestural, auditory, and visual; Functions of 
processing analysis like: problem solving and comprehension; modalities of response: 
articulation and writing manipulation, etc.), making it an excellent tool for identifying early 
linguistic markers of dementia. Participants without neurological impairment are able to perceive 
and identify every aspect of the picture, whereas, those with cognitive decline may struggle with 
a range of cognitive skills, such as attention, memory, and description. They may not recall 
recounting certain scenes and repeat them multiple times, use repetitive language to describe the 
picture, be unable to relay the information in a logical format or present a cohesive description of 
the image.  The picture included a mother washing dishes and her children stealing cookies from 
a jar and can be found in Figure One.  
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The participant responses describing the above image were recorded and subsequently 
transcribed verbatim. The dataset used in this thesis consists of speech transcripts produced in the 
transcription software CLAN, which allows for detailed annotations and structuring of dialogue 
data (MacWhinney, 2010). In order to prepare this data for analysis, several preprocessing steps 
were necessary, many of which were adapted and implemented through the TRESLE 
preprocessing framework (Li, 2023). TRESLE, which stands for Toolkit for Reproducible 
Execution of Speech, Text, and Language Experiments, was designed to facilitate the 
reproducibility of computational models that assess speech and language changes associated with 
cognitive impairments, such as those caused by AD. TRESTLE, allows options to remove clear 
throat indicators, parenthesis and brackets, noise indicators, multiple spaces, capitalization and 
punctuation, and non-alpha numeric characters. Specific steps taken by this paper included: 

 

• Punctuation Handling: All punctuation marks were stripped from the transcripts 
except for periods, which are crucial for maintaining the integrity of sentence 
structures. 
 

• Speaker Separation: The speech of the investigators was removed, ensuring that 
only the participants' responses were retained for analysis. 

 
 

• Whitespace Correction: Extraneous spaces within the transcripts were removed 
to standardize the text formatting. 
 

• Stop Word Retention: Unlike typical text processing that might remove stop 
words to focus on more meaningful words, in this context, every word including 
stop words was kept to preserve the natural flow and subtle linguistic cues in the 
speech. 

Figure 1: Cookie Theft picture, adapted from Matošević et al. 2022 
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• Character Filtering: Non-ASCII characters were removed, and all symbols were 
excluded except alphabetic characters, to focus solely on the linguistic content. 
 

• Case Normalization: The text was converted to lowercase to ensure uniformity 
across the dataset, facilitating more straightforward textual analysis. 

 
 

• Pause Notation: Pauses, indicated in the transcripts, were retained as they 
provide significant insights into the speech patterns and cognitive load in 
individuals, which are critical for this analysis. 

 

• Ampersand Notation and Underscore Replacement: Any text elements marked 
with an ampersand (indicating special annotations or actions within speech) are 
normalized or removed based on the research requirements. Additionally, 
underscores within the text are replaced with spaces to ensure consistency and 
readability in the transcript formatting. 
 

Once the dataset was preprocessed, it was divided into three subsets to support different 
phases of the model development process: training, testing, and validation. Specifically, the 
dataset was split into proportions of 70%, 20%, and 10%. The training set, constituting 70% of 
the data, was utilized to train the various models described in this study. The test set, making up 
20% of the data, was employed to evaluate the performance of the models post-training. Lastly, 
the validation set, which comprised the remaining 10% of the data, was crucial for tuning the 
hyperparameters of the models.  

These preprocessing steps were critical for ensuring that the data was clean, structured, 
and suitable for the subsequent analysis using advanced machine learning models. By 
standardizing and refining the dataset in this manner, the study aims to isolate and identify 
linguistic features that are indicative of AD, thereby supporting the effectiveness of the 
predictive models developed in this research. 

 
SECTION IV: Methodology 

 
The figure presented below illustrates the proposed architecture for this study, and 

displays a comprehensive outline of the framework employed. 
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4.1 Vectorization Method: TF-IDF 

Vectorization Configuration 
Term Frequency-Inverse Document Frequency (TF-IDF) is a quantitative measure used 

to gauge the relevance of a word to a document within a corpus, relative to its frequency across 
the corpus. This statistic is crucial for tasks such as search engine optimization and information 
retrieval, as it helps differentiate between commonly used words and those that provide specific 
insight into the content of a document. The TF component of the measure calculates the 
frequency of a word in a single document, while the IDF component scales down this frequency 
by the number of documents that contain the word. This dual approach helps to attenuate the 

Figure Two: Proposed Architecture  
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effect of terms that appear frequently across documents, emphasizing words that are more unique 
to individual documents. 

 

Configuring the TfidfVectorizer 
In this study, the TfidfVectorizer from the Scikit-learn library was strategically 

configured to optimize the extraction and analysis of linguistic features relevant to Alzheimer's 
Disease: 

• Stop Words: The inclusion of a parameter to exclude common English stop 
words ('the', 'is', 'and', etc.) is crucial as these words are typically poor 
discriminators in thematic content analysis. Their removal increases the focus on 
more meaningful terms that are potentially indicative of cognitive patterns 
specific to Alzheimer's Disease. 
 

• Maximum Features: By setting a cap of 1000 on the number of features, the 
model focuses on the top terms by term frequency, thus simplifying the model and 
enhancing its computational efficiency. This limitation also helps prevent 
overfitting by not overly tailoring the model to the noise within the training data. 

 
 

• Minimum Document Frequency (min_df): This threshold was set at 5 to ensure 
that only terms that appear in at least five documents are considered. This filter 
helps to remove anomalies or rare occurrences that might otherwise skew the 
analysis. 
 

• Maximum Document Frequency (max_df): By excluding terms present in more 
than 90% of the documents, the model avoids terms that are too common and 
therefore not useful for distinguishing between different document types or 
contents. 

 
 

• N-Gram Range: The vectorizer was configured to consider both unigrams (single 
words) and bigrams (pairs of words). This range allows the model not only to 
assess the importance of individual words but also to capture the context provided 
by adjacent word pairs, enhancing the model's ability to recognize more complex 
linguistic structures which could be critical in identifying subtle cognitive 
impairments. 

 

To systematically evaluate the impact of different n-gram configurations on model 
performance, the study conducted separate analyses using unigrams only, bigrams only, and a 
combination of both. This approach enabled the paper to discern which n-gram configuration 
most effectively captures the linguistic nuances associated with AD. It was hypothesized that 
while unigrams might highlight prevalent words, bigrams could reveal more about the 
relationships between words, potentially identifying patterns that are not apparent from single-
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word analysis alone. The combined analysis aimed to leverage the strengths of both unigrams 
and bigrams, potentially offering a more comprehensive view of the text data. 

 

Data Transformation Process 
Utilizing the configured TfidfVectorizer, text data from the 'text' column of the 

talk_bank_small dataset was transformed into a TF-IDF matrix. This dataset, containing 
transcribed speech data from subjects, is pivotal for identifying linguistic markers of AD. The 
transformation process converts this textual information into a numerical format, where each row 
of the matrix represents a document, and each column corresponds to a TF-IDF score for a term, 
facilitating subsequent machine learning analyses. 

 

Matrix Dimensions 
The resulting TF-IDF matrix, denoted as X, measures 549 rows by 954 columns for 

unigrams and bigrams. For bigrams X measured at 549 rows by 610 columns, and for unigrams 
only X was represented by 549 rows by 344 columns. Each row represents a unique document 
from the dataset, and each column corresponds to a distinct term identified within the corpus. 
The dimensionality of X reflects the methodological choices made, capturing the most 
significant terms as determined by the TF-IDF vectorization process, constrained by the specified 
maximum features and n-gram range. 

 

4.2 Machine Learning Models Using TF-IDF 
In the pursuit of identifying the most effective machine learning model for detecting 

linguistic markers indicative of AD, several models were evaluated using the TF-IDF vectorized 
data. This section outlines the specifics of each model's operational framework and their 
performance based on accuracy, precision, recall, F1 score, and log loss metrics. 

 

Logistic Regression 
Logistic Regression is a statistical model that in this context, estimates the probabilities 

of binary outcomes based on input features derived from TF-IDF scores. It is particularly useful 
for this kind of binary classification task because it provides a direct probabilistic interpretation 
for class membership (Alzheimer's vs. non-Alzheimer's). The model demonstrated robust 
performance with a notable accuracy and a balanced precision-recall trade-off, reflecting its 
ability to handle linear relationships within the data. 

 

K-Nearest Neighbors (KNN) 
K-Nearest Neighbors (KNN) classifies new cases based on a similarity measure (e.g., 

distance functions). KNN has been included in the analysis to leverage its non-parametric nature, 
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which makes no assumptions about the underlying data distribution. This model is intuitive and 
effective, particularly when there is little or no prior knowledge about data distribution. In this 
study, KNN showed a competitive accuracy, suggesting it can effectively capture the 
complexities in the data introduced by the high-dimensional TF-IDF vectors. 

 

Decision Tree Classifier 
Decision Tree Classifier builds a model in the form of a tree structure. It breaks down the 

dataset into smaller subsets while at the same time, an associated decision tree is incrementally 
developed. The final result is a tree with decision nodes and leaf nodes, which is easy to interpret 
and understand. This model's simplicity can be particularly advantageous for explaining 
decision-making processes but showed some limitations in handling the sparse matrix from TF-
IDF, as reflected in the lower accuracy and higher log loss compared to other models. 

 

Multinomial Naive Bayes 
The Multinomial Naive Bayes classifier is a probabilistic learning method commonly 

used in NLP and document classification. This classifier operates under the foundational 
assumption of the Naive Bayes theorem, which posits that the presence (or absence) of a 
particular feature in a class is independent of the presence (or absence) of any other feature. This 
assumption, while simplistic, allows the model to perform efficiently even with complex 
datasets. Multinomial Naive Bayes is particularly well-suited for classification tasks involving 
discrete data, such as text classification where features are typically the frequencies with which 
words appear in documents. The model calculates the probability of each class based on the input 
features (word counts or frequencies) and then predicts the class with the highest probability.  

 

Random Forest Classifier 
Random Forest Classifier is an ensemble of Decision Trees, typically trained via the 

bagging method. The general idea of the bagging method is that a combination of learning 
models increases the overall result. Put simply: Random Forest builds multiple decision trees and 
merges them together to get a more accurate and stable prediction. Random Forest constructs 
multiple decision trees, referred to as base models or weak learners, during the training phase. 
This ensemble technique takes the majority vote from these trees to decide the output class, 
enhancing prediction accuracy and robustness over a single decision tree. In this study, the 
Random Forest model was configured with several parameters optimized for textual data 
analysis: In this methodology, various parameters of random forest, such as n estimators = 100, 
min sample leaf = 1, min_samples_split=2,  max_depth=None, min sample split = 2, criterion = 
gini, are used. Random Forest showed a strong performance across all metrics, suggesting that it 
can manage the high feature dimensionality well, providing a balance between overfitting and 
underfitting. 
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AdaBoost Classifier 
AdaBoost Classifier begins by fitting a classifier on the original dataset and then fits 

additional copies of the classifier on the same dataset but where the weights of incorrectly 
classified instances are adjusted such that subsequent classifiers focus more on difficult cases. 
This model is used to boost the classification performance by combining multiple weak models 
to create a strong classifier. AdaBoost’s performance in this setup highlights its ability to 
adaptively focus on challenging cases in the dataset. 

 

Grid Search 
Grid search is a widely used technique for hyperparameter tuning in machine learning, 

aiming to find the optimal combination of parameters for a given model. This method 
systematically constructs and evaluates a model for each combination of algorithm parameters 
specified in a predefined grid. Each parameter configuration is validated through techniques like 
cross-validation to determine which set of parameters achieves the best performance metrics. 

In the context of this study, the grid search method was employed to explore a variety of 
hyperparameter settings across different machine learning algorithms. The parameters varied 
included regularization techniques and strength for logistic regression, the number of neighbors 
and the weighting method for K-Nearest Neighbors, criteria for splitting in decision trees and 
forests, learning rates for boosting methods, and kernel types for Support Vector Machines, 
among others. 

Despite the comprehensive exploration of hyperparameter spaces facilitated by grid 
search, the results indicated that the default settings of the models generally outperformed the 
alternative combinations. This outcome suggests that the default parameters, often chosen based 
on extensive empirical evidence and best practices in the field, are robust across a range of 
datasets and scenarios. This finding underscores the importance of empirical validation even 
when theoretical considerations might suggest alternative configurations. It also highlights the 
effectiveness of the default settings in providing a strong baseline performance, simplifying the 
model development process without extensive tuning efforts. 

 

4.3 Embedding Methods 

GloVe Word Embeddings 
GloVe (Global Vectors for Word Representation embeddings) are an unsupervised 

method of word representation that captures the associations between words through the 
aggregation of global word-word co-occurrence statistics from a corpus (source). The primary 
idea behind GloVe's approach is to derive semantic relationships between words by examining 
how frequently words appear together in a context window within a given corpus. Unlike other 
embedding techniques that focus solely on local context, GloVe constructs an explicit word-
context or word-co-occurrence matrix using statistics across the entire corpus, thereby encoding 
both local and global context information in the embedding space. 
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In this research, the implementation of GloVe embeddings involved several steps to 
transform raw text data from the dataset into a format suitable for deep learning models. These 
vectors were obtained from the GloVe model pre-trained on a large external dataset, allowing the 
embedding to encapsulate a rich set of semantic relationships found between transcripts. 
Following tokenization, the GloVe pre-trained word vectors were leveraged to create an 
embedding matrix that represents each word in the vocabulary by a dense vector of fixed size. 

 

Word2Vec 
 Developed by Tomas Mikolov and colleagues at Google in 2013, Word2Vec is designed 

to map words into an embedding space where the geometric relationships between these vectors 
reflect the semantic relationships between the words themselves (15). Word2Vec employs a 
shallow neural network model that utilizes one of two architectures: Continuous Bag of Words 
(CBOW) or Skip-Gram, both of which are grounded in the distributional hypothesis of 
linguistics—words that appear in similar contexts tend to have similar meanings. Both models 
optimize the same objective function, which is to maximize the log probability of observing a 
context word given a word, over all word-context pairs observed in the corpus. This paper 
implements the Word2Vec model using CBOW. Formally, for Skip-Gram: 

 

� log 𝑃𝑃(𝑐𝑐|𝑤𝑤)
(𝑤𝑤,𝑐𝑐)∈𝐷𝐷

 

 

Where D is the training corpus, w is a word, and c is a context word. The probability 
p(c∣w) is computed using the softmax function: 

 

𝑃𝑃(𝑐𝑐|𝑤𝑤) =
exp (𝐯𝐯𝑐𝑐⊺𝐯𝐯𝑤𝑤)

� exp (𝐯𝐯𝑐𝑐′
⊺ 𝐯𝐯𝑤𝑤)𝑐𝑐′∈𝐶𝐶

 

 

Here, vw and vc are the vector embeddings of the word and the context, respectively. C 
represents all context words in the vocabulary. In this paper, the Word2Vec model is applied to 
transform the training data into vector space using the following configuration: Vector Size: 100 
dimensions. Window Size: 2, allowing the model to consider words within two places of the 
target word, focusing on more immediate contextual relationships. Minimum Count: 1, ensuring 
even rare words are included, which could be crucial in clinical narratives where specific terms 
may be vital yet infrequent. Post-training, the word vectors are integrated into a neural network 
workflow via Keras, utilizing a custom function w2v_to_keras_weights to transfer the learned 
word vectors into a format suitable for embedding layers in deep learning models. This process 
enables the subsequent application of the embeddings in predictive modeling, specifically 
focusing on classifying transcripts for AD. The application of Word2Vec in this research is 
particularly aimed at enhancing the model's ability to discern subtle linguistic cues that might 
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indicate cognitive impairments like Alzheimer's. The dense embeddings generated by Word2Vec 
provide a rich, nuanced representation of text data. The embedding matrix created from these 
Word2Vec embeddings was directly passed as an embedding layer in deep learning models.  

 

Doc2vec  
Doc2Vec, also known as Paragraph Vector, is an unsupervised algorithm for generating 

vector representations of variable-length pieces of texts such as sentences, paragraphs, and 
documents. Developed by Le and Mikolov in 2014, Doc2Vec extends the Word2Vec 
methodology to allow for the embedding of entire documents (16). This capability is crucial for 
tasks where the context provided by the entire document is necessary for understanding, such as 
in document classification, sentiment analysis, and patient record analysis. Doc2Vec is 
fundamentally designed to overcome the limitations of averaging word vectors (Word2Vec) loses 
the ordering of words and hence the meaning encoded in sequence. It introduces a document-
level vector which serves as a unique tag for each document in the corpus. Distributed Memory 
(DM) preserves the word order in a document, acting similarly to a memory that remembers 
what is missing from the current context — or the paragraph vector. Distributed Bag of Words 
(DBOW) ignores the context words in the input but forces the model to predict words randomly 
sampled from the paragraph in the output. In both cases, words are projected into a continuous 
vector space along with the document itself. The document vector is trained to predict the words 
in a small context window. Each document’s vector is unique in the model, allowing it to capture 
the essence of the document. During training, word vectors and paragraph vectors are trained 
using either the context of the words (DM) or by predicting words randomly sampled from the 
paragraph (DBOW). The loss function optimized during training is similar to that in Word2Vec, 
typically using negative sampling or hierarchical softmax. Shown as:  

 

Objective = argmin𝜃𝜃�� log 𝑃𝑃(𝑤𝑤|𝜃𝜃)
𝑤𝑤∈𝑑𝑑

𝑑𝑑∈𝐷𝐷

 

 

In this research, the Doc2Vec model is employed to capture the nuanced linguistic 
characteristics inherent in the training transcripts related to the classification of AD. The 
approach involves: Tokenizing the training data and tagging them with unique identifiers, setting 
vector size to 100, window size to 2, and minimum count =1. After training, document vectors 
are extracted and used to create an embedding matrix which serves as input to subsequent deep 
learning models for classifying AD.  

 

BERT Input Embeddings 
BERT (Bidirectional Encoder Representations from Transformers) is a groundbreaking 

method in the field of NLP introduced by researchers at Google AI in 2018 (17). BERT’s primary 
innovation lies in its ability to train language models based on the entire set of words in a 
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sentence or document. This approach allows BERT to capture the context of a word based on all 
of its surroundings (both left and right of the word). BERT utilizes the Transformer, an attention 
mechanism that learns contextual relations between words (or sub-words) in a text. The multi-
headed attention mechanism allows the model to capture various aspects of the data in parallel, 
improving its contextual understanding of the text. It is a way to learn the inherent relation 
between single sentences or different related sentences in order to obtain a more robust 
representation of attention vectors for each word. These are in turn then used to compute a final 
attention vector consisting of a weighted average. To do this, the input vectors are linearly 
projected multiple times to form sets of queries (Q), keys (K), and values (V). This is illustrated 
by the equation:    

Attention(𝑄𝑄,𝐾𝐾,𝑉𝑉) = softmax �
𝑄𝑄𝐾𝐾⊺

�𝑑𝑑𝑘𝑘
�𝑉𝑉 

 

Essentially, for each attention "head," there is a distinct set of projection matrices. Within 
each head, attention scores are calculated using the scaled dot-product attention. The result is 
then summed up for each query, producing an output vector for each head. The output vectors 
from all heads are concatenated, and once concatenated the output undergoes one final linear 
transformation through another learned weight matrix. This step integrates information from all 
the heads into a single vector for each token. The multi-head attention mechanism allows the 
model to attend to different parts of the input sequence differently. For example, one head might 
focus on the syntactic role of a word, while another might focus on its semantic role. This is 
particularly useful in the context of AD detection due to the complexity of analyzing speech.  

In its essence, the Transformer includes two separate mechanisms—an encoder that reads 
the text input and a decoder that produces a prediction for the task. Unlike directional models, 
which read the text input sequentially (left-to-right or right-to-left), the BERT model is deeply 
bidirectional. BERT's architecture is composed of a multi-layer bidirectional Transformer 
encoder. Each layer aggregates information from both directions and all positions of the text 
sequences. To understand the order of words, positional encodings are added to the input 
embeddings to provide some information about the relative or absolute position of the tokens in 
the sequence. The model is pre-trained on a large corpus of text in two unsupervised tasks. First 
the model was trained as a Masked Language Model where random words are masked (hidden), 
and the objective is to predict the masked word based only on its context. Then trained in Next 
Sentence Prediction, where model predicts whether a sentence naturally follows a given 
sentence, which helps it understand relationships between consecutive sentences. 

In the context of this this thesis, BERT is utilized to generate robust input embeddings for 
the training transcripts. The implementation involves the following steps: Tokenizing the 
transcripts into tokens that BERT can understand. Each token is converted into IDs that are fed to 
BERT to obtain corresponding embeddings. The BERT model is then used to transform these 
tokenized inputs into embeddings. Each token ID is converted into a dense vector of fixed size 
(768 dimensions in the case of BERT base models). BERT embeddings are then employed to 
enrich the feature set for deep learning models by providing a deep, contextualized 
representation of the Pitt corpus data.  
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4.4 Deep Classifiers 
The advancements in neural network architectures have led to significant improvements 

in text classification tasks, particularly in the context of AD detection. As part of the ongoing 
exploration into more effective methods for detecting AD through binary classification, this 
study employs sophisticated deep learning models such as Long Short-Term Memory (LSTM), 
Bidirectional LSTM (Bi-LSTM), and Convolutional Neural Network-LSTM (CNN-LSTM). 
These models are particularly adept at processing sequential data, like text, where understanding 
the temporal dynamics is crucial. This section of the thesis details the implementation and 
configuration of these models, and outlines how they integrate the different embedding 
techniques discussed above—including GloVe, Doc2Vec, Word2Vec, and BERT—to enhance 
their predictive capabilities. 

 

LSTM  
Long Short-Term Memory (LSTM) models are a type of Recurrent Neural Network 

(RNN) specifically designed to avoid the long-term dependency problem, allowing them to 
remember information for extended periods. Unlike standard feedforward neural networks, 
LSTMs have feedback connections that make them capable of processing entire sequences of 
data. A key feature of LSTM units is their use of gated cells, which regulate the flow of 
information. These gates—forget, input, and output gates—determine which parts of a cell state 
should be retained or discarded, thus enabling the model to learn what to keep from long-term 
and what to remove from short-term memory. 

The LSTM architecture used in this thesis is constructed using Keras. The first layer is an 
embedding layer, designed to convert input data into dense vectors of fixed size. In this study, the 
embedding layer is configured to use pre-trained vectors from GloVe, Doc2Vec, Word2Vec, or 
BERT, varying by each experimental run. The embeddings are set to non-trainable to preserve 
their pre-learned semantic properties. The models are trained using sequences of 100 tokens for 
uniformly shaped data, binary crossentropy as the loss function, batch_size = 256, epochs = 45, 
validation split= .01, metrics = accuracy, and optimizer = ‘adam’. The output layer is a dense 
layer with a single neuron and a sigmoid activation function. One of the major drawbacks of 
using an LSTM model is that it only captures unidirectional context in a sentence, which is why 
Bi-LSTM models were also included to enhance robustness.  

 

Bi-LSTM 
Bidirectional Long Short-Term Memory (Bi-LSTM) networks are an extension of the 

traditional LSTM model that can enhance model performance by providing additional context. 
While standard LSTMs process data from past to future (left to right in a sequence), Bi-LSTMs 
run two LSTMs simultaneously, one in the forward direction and the other in the backward 
direction. This allows them to capture information from both past and future states, offering a 
richer understanding of context, which is particularly beneficial for complex sequence prediction 
tasks like text classification where context from both directions is crucial. Bi-LSTMs are 
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particularly well-suited for tasks where the entire sequence context (both preceding and 
following information) is crucial for understanding the current element. This dual-direction 
processing capability makes Bi-LSTMs adept at handling sequences where the context in both 
directions is critical for accurate predictions. The outputs from both LSTMs are typically 
concatenated at each time step, which doubles the dimensionality of the output space compared 
to a standard LSTM. This concatenation allows the following layers to learn from the complete 
history of inputs (both past and future relative to a given time step). 

The Bi-LSTM is also built using Keras. The first layer is one of the embedding matrices. 
Input sequences = 100, loss = binary crossentropy, batch_size = 256, epochs = 45, validation 
split= .01, metrics = accuracy, and optimizer = ‘adam’, activation = sigmoid.  

 

CNN-LSTM 

The CNN-LSTM architecture combines the strengths of Convolutional Neural Networks 
(CNNs) and Long Short-Term Memory (LSTM) networks, creating a powerful model for 
handling tasks that involve both spatial and temporal dependencies. This architecture is 
particularly effective in areas such as video frame prediction, audio signal classification, and 
complex sequence modeling tasks where both local features (extracted by CNNs) and long-range 
dependencies captured by LSTMs are crucial. Unlike standard LSTMs that only process 
temporal information, CNN-LSTMs incorporate convolutional layers that precede LSTM layers, 
allowing the model to first extract local features through convolutions and then analyze the 
temporal dynamics through recurrent processing. These layers apply a series of filters to the 
input for feature extraction, which identifies local patterns such as edges in images or key 
features in textual data. In text classification, these features might correspond to patterns of 
keywords or phrases that are indicative of certain topics or sentiments. Following convolution, 
pooling layers reduce the dimensionality of the data by combining the outputs of neuron clusters 
at one layer into a single neuron in the next layer, thus reducing the computational complexity 
and controlling overfitting. After processing through CNN and pooling layers, the data is fed into 
LSTM layers, which can then process the sequence data with an awareness of the temporal 
dependencies between the extracted features. 

The hybrid CNN-LSM is implemented using the Keras-API TensorFlow. The first layer is 
one of the embedding matrices. Input sequences = 100, loss = binary crossentropy, batch_size = 
256, epochs = 45, validation split= .01, metrics = accuracy, and optimizer = ‘adam’, activation = 
relu, dropout layer= 0.1. The convolutional layer consists of 32 filters with a kernel size of 5, the 
max pooling layer reduces the spatial dimensions with a pooling size of 4, and the LSTM layers 
process the feature-mapped sequence output from the CNN layers with 64 LSTM units. 

 

Feature Importance 
In the pursuit of enhancing the interpretability of machine learning models in the context 

of AD classification, this thesis dedicates a section to exploring the significance of various 
features utilized by both machine learning and deep learning models. Feature attribution attempts 
to quantify the significance of input characteristics based on deep neural network predictions. 
For the top-performing machine learning models, including Random Forest with bigrams, 
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Random Forest with both bigrams and unigrams, and Logistic Regression with unigrams and 
bigrams, feature importance is assessed using SHAP (SHapley Additive exPlanations) and 
permutation importance. These methods are chosen for their ability to provide a comprehensive, 
local perspective on the contribution of individual features to the prediction outcomes, 
highlighting the most influential factors in the classification process. Meanwhile, for the leading 
deep learning models—specifically those employing Doc2Vec LSTM, Doc2Vec Bi-LSTM, 
Doc2Vec CNN-LSTM, and BERT CNN-LSTM—feature importance is analyzed through LIME 
(Local Interpretable Model-agnostic Explanations) and integrated gradients. These methods 
show how particular features impact model decisions, offering a deeper understanding of the 
underlying mechanisms driving the models' performances. This comprehensive approach to 
feature importance not only clarifies the predictive dynamics of advanced classification models 
but also informs further model refinement and feature engineering efforts, ultimately aiming to 
enhance the diagnostic accuracy and reliability of AD screening tools. 

 

Machine Learning Feature Importance  

SHAP 
SHapley Additive exPlanations (SHAP) is a powerful tool for explaining the output of 

any machine learning model by quantifying the contribution of each feature to the prediction 
(Lundberg et al., 2017). SHAP is grounded in the principles of cooperative game theory, 
specifically the Shapley values—a method developed by Lloyd Shapley in 1953. Shapley values 
provide a fair distribution of payouts (model predictions) among the players (features), 
considering the contribution of each player to every possible coalition. The Shapley value is 
calculated for each feature across all possible combinations of features to determine its average 
marginal contribution to the model’s output. The mathematical formulation is as follows: 

 

𝜙𝜙𝑗𝑗 = �
|𝑆𝑆|! (|𝑁𝑁| − |𝑆𝑆| − 1)!

|𝑁𝑁|!
[𝑣𝑣(𝑆𝑆 ∪ {𝑗𝑗}) − 𝑣𝑣(𝑆𝑆)]

𝑆𝑆⊆𝑁𝑁{𝑗𝑗}

 

 

Where: 

• 𝑁𝑁 is the set of all features. 

• 𝑆𝑆 is a subset of features excluding feature 𝑗𝑗j. 

• 𝑣𝑣(𝑆𝑆) is the prediction function evaluated with the features in set 𝑆𝑆S. 

• 𝜙𝜙j is the Shapley value for feature 𝑗𝑗j, representing the average contribution of feature 𝑗𝑗j to 
the change in the prediction from the baseline prediction (the average prediction over the 
dataset). 

When applying SHAP to text data, such as transcripts from AD assessments, the model's 
predictions are decomposed into the contributions of individual words or phrases within the 
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transcript. This decomposition allows for an in-depth analysis of how certain terms or linguistic 
features influence the model’s outputs, which is crucial for understanding complex models like 
those used in AD classification. 

Transcript data must first be transformed into a numerical format that machine learning models 
can process, typically using techniques like TF-IDF, word embeddings, or Doc2Vec. A predictive 
model is then trained on the transformed text data. This model could be a deep learning model or 
any other algorithm suitable for text analysis. After training, the SHAP values are computed for 
each feature (word or phrase) across many possible combinations of features, quantifying each 
feature's impact on the model's output. SHAP provides clear, actionable insights into which 
words or phrases in a transcript are driving the model’s predictions and identifies whether 
specific features consistently contribute positively or negatively to outcomes. Meaning, a 
positive contribution refers to features that increase the probability of the predicted outcome, 
such as classifying a transcript as indicative of AD. While, a negative contribution refers to 
features that decrease the probability of the predicted outcome or suggest an alternative 
classification, such as a control group without (non-AD). Essentially, SHAP values can reveal 
how much each word or phrase shifts the model's output closer to one class or another, helping to 
clarify the linguistic patterns that the model relies on for its decisions. 

In the realm of machine learning, enhancing the interpretability of algorithms, 
particularly for unstructured data like text, has emerged as a vital area of research. While 
numerous methodologies have been developed for interpreting structured data, the complexity of 
dealing with unstructured datasets such as textual content introduces unique challenges. The 
SHAP summary plot is a powerful visual tool used to display the impact of each feature across a 
dataset[19]. 

 

Permutation Importance  

Permutation importance is a model-agnostic technique used to measure the importance of 
features in a predictive model. Unlike model-specific methods that rely on internal model 
parameters, permutation importance provides a straightforward and intuitive understanding of 
feature significance based on changes in model performance. The method works by evaluating 
the decrease in a model's accuracy after the values of a particular feature have been randomly 
shuffled. This shuffling breaks the relationship between the feature and the target, highlighting 
how much the model’s prediction relies on the feature. 

In the context of this study, permutation importance was applied to assess the significance 
of features in a Logistic Regression model trained on unigrams and bigrams from text data. The 
approach is particularly valuable for unstructured data such as text, where it is crucial to 
understand which words or phrases (features) are most influential in classifying documents. By 
randomly shuffling the values of each feature in the test set and observing the deterioration in the 
model's accuracy, one can infer the relative importance of each feature. 

This particular implementation of permutation importance involved computing the mean 
importance and standard deviation of importance scores across 10 repetitions, ensuring the 
reliability of the importance estimates by mitigating the random variability in the shuffling 
process. The logistic regression model was evaluated using a test dataset (X_test, y_test), with the 
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aim to identify the top 25 features (unigrams and bigrams) that have the most significant impact 
on the model's ability to classify Alzheimer's Disease accurately. 

 

Deep Learning Feature Importance  

LIME 
Local Interpretable Model-agnostic Explanations (LIME) is an innovative technique 

designed to enhance the interpretability of complex machine learning models (Ribeiro et al., 
2016). It is particularly valuable in fields like healthcare, where understanding the reasons 
behind a model's predictions is crucial for trust and actionable insights. LIME provides 
explanations for individual predictions, which helps in demystifying complex models that can 
often seem like "black boxes." LIME is designed to explain the predictions of any classifier or 
regressor in a faithful way by approximating the model locally with an interpretable model. The 
core idea behind LIME is to perturb the input data and observe how the predictions change, 
which provides insight into the behavior of the model near the vicinity of the input being 
explained.  

LIME generates new samples around the vicinity of the input by perturbing it. For tabular 
data, this might involve slight modifications to feature values; for text, it involves creating 
similar texts by removing words. Then those perturbed samples are used to train a simple, 
interpretable model, such as a linear regression or decision tree, restricted to the locality of the 
original instance. Each of the perturbed samples is weighted according to their proximity to the 
original instance, with closer samples receiving higher weights. This ensures that the local model 
is faithful to the area around the data point being explained. The local model is then used to 
explain each prediction in terms of the contributions of each feature. For a linear model, these 
contributions can be directly interpreted as the coefficients of the model. 

The mathematical rationale for LIME involves fitting a linear model 𝑔𝑔 that approximates 
the predictions 𝑓𝑓 of the complex model locally. If 𝑥𝑥 represents the original instance and 𝜉𝜉 
represents the perturbed instances, LIME solves the following optimization problem: 

 

𝜉𝜉 = argmin𝑔𝑔∈𝐺𝐺𝐿𝐿(𝑓𝑓,𝑔𝑔,𝜋𝜋𝜋𝜋) + Ω(𝑔𝑔) 

 
where 𝐿𝐿 is a measure of how unfaithful 𝑔𝑔 is at approximating 𝑓𝑓 over the perturbed 

dataset, 𝜋𝜋𝜋𝜋πx is a proximity measure that defines the locality around 𝑥𝑥, and Ω(𝑔𝑔) is a complexity 
measure of the model 𝑔𝑔. 

In the medical domain, the demand for explainable models is particularly high. Clinicians 
need to understand why a model makes certain predictions to trust its reliability and to integrate 
these insights into their decision-making processes. For example, understanding why a model 
predicts a high risk of dementia based on certain speech patterns or other biomarkers can inform 
better treatment plans and patient management strategies. 
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Feature importances in LIME can be categorized into two types: global and local. Global 
importance refers to the overall impact of a feature across all predictions, providing a broad view 
of feature relevance. Local importance, on the other hand, examines the impact of features on 
individual predictions. This distinction is crucial because features that are globally important 
may not be significant in specific cases, and vice versa. Local explanations allow researchers to 
tailor their interpretations and considering unique factors that may of otherwise been 
overlooked[22].  

 

Integrated Gradients  
Integrated Gradients is a method designed for attributing the prediction of a neural 

network to its input features (Sundararajan et al., 2017). Developed by Sundararajan, Taly, and 
Yan, this technique leverages the axiomatic approach to ensure robust and meaningful feature 
attributions which are critical in many applications, particularly in the medical and financial 
fields where explanations are vital for trust and legality. The core concept behind Integrated 
Gradients is to connect the input of interest to a baseline input (a starting point with no predictive 
signals) through a straight path and to compute the gradients of the output prediction with respect 
to the input features at points along this path. The contribution of each feature is then quantified 
by integrating these gradients along the path, from the baseline to the input. 

Formally, for a given function 𝐹𝐹:𝑅𝑅𝑅𝑅→[0,1]  representing the network, and an input 𝑥𝑥, the 
integrated gradient along the 𝑖𝑖𝑖𝑖ℎ dimension for 𝑥𝑥 relative to a baseline 𝑥𝑥′ is defined as:  

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑖𝑖(𝑥𝑥): : == (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′) × �
∂𝐹𝐹(𝑥𝑥′ + 𝛼𝛼 × (𝑥𝑥 − 𝑥𝑥′))

∂𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

1

𝛼𝛼=0

 

 

Integrated Gradients offers a significant contribution to the interpretability of deep neural 
networks, especially in the realm of NLP. This method provides a systematic approach to 
understanding feature importance across different model architectures, regardless of their 
complexity. It is particularly vital in scenarios where explainability is crucial, such as medical 
diagnostics, financial decision-making, and other sensitive domains where stakeholders require 
transparency and clarity on how decisions are derived.  

The principle behind Integrated Gradients is based on attributing the prediction of a deep 
network to its input features by observing how the predictions change as inputs are varied along 
a straight path from a baseline to the actual input. The baseline is typically a type of input that 
represents an absence of features and is often chosen as a zero vector in text models. The path 
integral of gradients along this path quantifies the contribution of each feature to the final 
prediction. 

For text data, particularly in deep learning models like LSTM or Transformer-based 
architectures, the baseline often represents a state with no textual input, such as a zero-
embedding vector. The gradients calculated reflect how each component (word or sub-word 
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token) of the input text contributes to the final prediction, offering insights into which words or 
phrases are most influential, and potentially why certain decisions are made by the model. 

Integrated Gradients stands out for its simplicity, requiring only basic gradient 
computations, and for its robustness, adhering to desirable axiomatic properties such as 
sensitivity and implementation invariance. It enhances our understanding of complex NLP 
models and also supports efforts to make AI more accountable and transparent. By methodically 
breaking down the contribution of each input feature, integrated gradients helps validate model 
behavior and helps ensure that model decisions are grounded in observable and justifiable 
patterns in the data. This makes it a powerful tool for evaluating the behavior of complex 
models, particularly in high-stakes applications where understanding model reasoning is as 
crucial as the accuracy of its predictions[27]. 

The application of integrated gradients for feature importance analysis exemplifies a 
meticulous approach to understanding the contributions of individual input features to the 
predictions made by deep learning models. This section details the implementation methodology 
and integrated gradients in this paper, by enhancing transparency and interpretability within the 
predictive modeling process. integrated gradients, as a technique, provides a structured method 
for attributing the prediction of a model to its input features by examining how the prediction 
changes when inputs are interpolated between a baseline and the actual input. For this study, it 
was deployed using the Alibi library, which facilitates the integration of this method with 
TensorFlow and Keras models.  

 
 

Implementation of Integrated Gradients 

Configuration Parameters 

The implementation involved configuring the IG explainer with the following 
parameters: 

• Model: The top performing models being explained. 

• Layer: The initial embedding layer of the model, chosen because it directly handles the 
input text data, transforming it into a form that subsequent layers can process. In this case 
that would be the Doc2Vec embedding layer and the BERT input embedding layer.  

• Number of Steps (n_steps): Set to 20 to balance computational efficiency with the 
granularity of the approximation. This parameter dictates the number of steps in the path 
integral approximation from the baseline to the input. 

• Method: 'gausslegendre' was selected for integrating gradients, a method known for its 
efficiency in numerical integration using Gaussian quadrature. 

• Internal Batch Size: Set to the last 100 tokens to manage memory usage during the 
computation of gradients, especially beneficial when handling large input datasets or 
complex models. This parameter is critical, as it determines the number of samples 
processed simultaneously when computing gradients. While larger batch sizes can 
theoretically provide a more stable gradient estimation by reducing variance, they also 



31 
 

significantly increase computational demands. The limitation on computational resources 
necessitated this choice, as the complete processing of entire transcripts at once would 
require extensive memory and processing power, potentially making the execution 
impractical on available systems. Consequently, the chosen batch size represents a 
compromise that balances the need for accurate gradient computation with the practical 
limitations of hardware resources, ensuring that the explanatory analysis remains 
computationally feasible while still yielding meaningful insights into the model’s 
decision-making process. 

 

SECTION V: Results 
This section of the thesis provides a quantitative assessment of the distinct approaches 

implemented in the study, focusing on the performance of both machine learning and deep 
learning methods applied to transcripts from the DementiaBank database. By systematically 
evaluating these methods, the study not only highlights the strengths and limitations of each 
approach but also offers valuable insights into how these models process and analyze complex 
clinical data. Additionally, this section delves into evaluating the importance of different features, 
which elucidates their contributions and influence on the predictive power and interpretability of 
the models. The insights derived from this analysis are instrumental in understanding the 
underlying dynamics of the models, which in turn can inform improvements in algorithm design 
and application, ultimately aiding in the development of more accurate and robust tools for 
dementia diagnosis.  

Each model was evaluated using five scoring methods. These indicators included: Testing 
Precision, Accuracy, F1-Score, Recall, and area under the ROC curve.  These were applied to all 
of the classification tasks in this thesis. The machine learning methods additionally employed the 
metric log loss. The subsequent section evaluates the model’s ability to measure classifying AD 
or Control. In the evaluation of top-performing models for the classification of AD, particular 
emphasis was placed on the precision metric due to the critical nature of accurately identifying 
potential dementia cases in clinical settings. Higher precision minimizes the risk of false 
positives, which is essential in medical diagnostics where the cost of misdiagnosis can be high 
both in terms of patient care and subsequent medical treatment. Moreover, additional emphasis 
was put on the precision scores, as they were used to evaluate the effectiveness of the given 
model, and then used as a criterion for selecting the top performing models for feature 
importance.  

 

5.1: Machine Learning Model Evaluation 
The Random Forest model using only bigrams (figure four) showed the best overall 

precision at 83%, with a particularly high precision of 90% for dementia cases, underscoring its 
strength in correctly identifying true positive cases of dementia. The accuracy stood at 84% and 
the f1-score was 83% with 80% for control cases and 86% for dementia cases. The focus on 
bigrams likely helped the model to better understand the contextual dependencies in the speech 
patterns of dementia patients, which are crucial for accurate classification. 
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Models Evaluated with Bigrams 

Model Precision  Recall F1-score Accuracy 
Logistic 
regression 

0.76 0.74 0 .74 0.75 

KNN 0.66 0.66 0.66 0.66 
Decision Tree 0.66 0.66 0.66 0.66 
MN Bayes 0.71 0.71 0.71 0.71 
Random Forest 0.83 0.84       .83 0.84 
AdaBoost  0.65 0.64 0.64 0.65 

 

The Random Forest model utilizing both unigrams and bigrams demonstrated strong 
performance, achieving an accuracy of 81% with a precision of 82% for control cases and 79% 
for dementia cases. This model exhibited a solid balance between precision and recall, indicating 
its effectiveness in classifying dementia with a high degree of reliability.  

The Logistic Regression model combining unigrams and bigrams also showed robust 
performance, with a precision of approximately 82.58% across both classes. The model achieved 
an overall accuracy of 81.82% and a macro-average F1 score of 81%, reflecting a strong balance 
between precision and recall. In contrast, the Logistic Regression model employing bigrams 
achieved an accuracy of 75.45% and a precision of 76.05%. These results illustrate that Logistic 
Regression, while simpler in its approach compared to more complex models, remains an 
effective tool for capturing linguistic patterns indicative of cognitive decline. 

 

Models Evaluated with Both Unigrams and Bigrams 

Model  Precision Recall F1-Score Accuracy 
Logistic 
Regression 

0.82 0.81 0.81 0.81 

KNN 0.77 0.77 0.77 0.77 
Decision Tree 0.71    0.71 0.71 0.72 
MN Bayes 0.78 0.74 0.74 0.74 
Random Forest 0.82      .80 .81 .80 

AdaBoost  0.65 0.65 0.65 0.65 
 

As noted in figures four and five, the Multinomial Naive Bayes classifier for bigrams 
demonstrated a commendable effectiveness in classifying AD from transcript data, achieving an 
accuracy of 71.81% and a precision of 71.28%. While these metrics indicate a strong capability 
to identify true AD cases, they are slightly lower compared to the model's performance with 
unigrams and bigrams, which attained an accuracy of 75.45% and a precision of approximately 
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78.91%. The recall for the bigram model was notably consistent, with a balanced performance 
between precision and recall as indicated by an F1 score of 73.00%. 

The K-Nearest Neighbors (KNN) classifier utilizing both unigrams and bigrams also 
performed adequately, recording an accuracy of 77.27% and a precision of 77.15%. This 
performance did not lag significantly behind the top-performing models, demonstrating its 
viability as a reliable alternative for text classification in dementia contexts.  

Conversely, the worst-performing model in this analysis was the AdaBoost classifier, 
which registered a lower accuracy of 65% for both unigrams and bigrams. This 
underperformance could be attributed to AdaBoost's sensitivity to noisy data and outliers, which 
are prevalent in natural language processing tasks. AdaBoost's algorithmic design, which focuses 
on increasing the weight of misclassified instances, may not be ideally suited for text 
classification where semantic nuances and contextual dependencies are crucial. This sensitivity 
might lead to an overemphasis on hard-to-classify examples, detracting from the model's overall 
ability to generalize from textual data. 

The top performing models had fairly high scoring precision metrics, with the Random 
Forest model using bigrams only slightly outperforming the others in terms of precision for AD 
classification. This suggests that the granularity provided by bigrams is particularly useful in 
capturing the linguistic complexities associated with dementia speech.  

 

5.2: Deep Learning Model Evaluation 
The comparative analysis of the scoring metrics for each model is presented in Table six. 

Examination of these metrics reveals that the Bi-LSTM+Doc2Vec model achieved superior 
performance, registering the highest Precision score at 90% and an Accuracy score of 89%. 
Following closely, the CNN-LSTM+Doc2Vec model demonstrated robust results with a 
Precision score of 89% and an Accuracy of 87%. Subsequent evaluations show that the CNN-
LSTM+BERT and LSTM+Doc2Vec models also performed commendably, with precision scores 
of 86% and 84% respectively. In contrast, the LSTM+Word2Vec model exhibited the least 
effectiveness, achieving a Precision of 28% and an Accuracy of 55%, thereby ranking as the 
lowest-performing model in this study. 

 

Models 
 

Precision Recall F1-Score Accuracy 

LSTM+GloVe .79 .79 .82 .79 
Bi-LSTM+GloVe . 72 .71 .76 .72 
CNN-
LSTM+GloVe 

.82 .77 .83 .79 

LSTM+Word2Vec .78   .52 .57 .72 
Bi-
LSTM+Word2Vec 

.61 .51 .71 .56 

CNN-
LSTM+Word2Vec 

  0.28 0.50 0.36   0.55    
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LSTM+Doc2Vec .84 .84 .85 .84 
Bi-
LSTM+Doc2Vec 

.90 .90 .89 .89 

CNN-
LSTM+Doc2Vec 

.89 .86 .90 .87 

LSTM+BERT . 75 .70 .79 .73 
Bi-LSTM+BERT .74 .61 .75 .65 
CNN-
LSTM+BERT 

.86 .85 .88 .85 

The models’ loss and accuracy information were stored in the object history for each 
epoch. Training and validation accuracy was plotted across the number of epochs in the training 
process. Figure Eight, found in the appendix, shows Training vs Testing accuracy and loss for the 
Doc2Vec LSTM, Bi-LSTM and CNN-LSTM. 

The analysis of model loss and accuracy graphs plays a crucial role in the assessment and 
optimization of machine learning models, particularly in deep learning applications where the 
complexity of models often obscures their functioning. These graphs provide a visual 
representation of the training and validation processes, offering critical insights into the model's 
performance across different stages of the learning process. 

In the context of this study, the training loss versus testing loss over epochs for the 
Doc2Vec LSTM, Bi-LSTM, and CNN-LSTM models, as depicted in Figure 10, is essential for 
evaluating model fit and the generalization ability. The loss function, calculated as a quantitative 
measure of error between the predicted outputs and actual outputs, is computed over all data 
items throughout each epoch. By monitoring this loss across epochs, we can observe how well 
the model learns the dataset's patterns over time. 

A key observation from these graphs is the divergence between training loss and testing 
loss starting around epoch 20. This widening gap is indicative of overfitting—a scenario where 
the model learns the details and noise in the training data to an extent that it negatively impacts 
the performance on new data. Essentially, while the training loss continues to decrease, 
suggesting better performance on the training set, the validation loss begins to increase, 
reflecting a decline in the model's ability to generalize to unseen data. 

Optimization for validation loss is crucial as it helps ensure that the model adjustments 
enhance its performance on externally valid data, not just the training set. Which was why all 
deep learning were optimized for validation loss. This approach helps in fine-tuning the model to 
achieve a balance between underfitting and overfitting, striving for a model that generalizes well 
on new unseen data, while performing adequately on the training set. 

 

5.3 Feature Importance  
This section presents results of the feature importance for the machine learning and deep learning 
dementia text classifiers. The presentation of the LIME and Integrated Gradients methods are 
facilitated by visual examples which can be created for individual observations in the data. 
Unfortunately, not all 500 transcripts can be displayed to the reader in this paper and so a select 
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few are included that neatly illustrate the most important findings. Where possible, the same 
transcripts are compared from one method and model to another.  

 
Machine Learning Feature Importance  

SHAP 
In the context of this thesis, the summary plot for Random Forest with Bigrams, which 

can be found in figure four, is utilized to illustrate the contribution of different bigrams to the 
predictions made by a Random Forest model trained on the DementiaBank transcripts. The plot 
highlights the features (bi-grams) that have the most substantial impact on the model’s output. 
Bigrams such as 'mother drying', 'window open', and 'girl reaching', ‘reaching cookie’, and 
‘mother washing’ exhibited a high correlation with the control class (non-dementia). This 
implies that the frequent occurrence of these bigrams is associated with instances more likely to 
be classified as belonging to the control. This overlaps with the features found in the random 
forest with unigrams and bigrams model, which consisted of overlapping features like, ‘mother 
drying’, ‘window’, ‘action, ‘open’, ‘mother’, and ‘reaching cookie’, and can be found illustrated 
in Figure five. Such bi-grams may occur in more structured and logical narratives typical of 
individuals without cognitive impairments. These phrases and words may represent coherent 
activities or scenarios that are less typical in the disjointed narratives of Alzheimer's patients. 

In contrast, the random forest model with bigrams categorizes 'cookie jar', which showed 
a high importance with the AD class, and ‘gonna fall’ which showed moderate importance 
suggest a higher association with the AD group as important features for AD detection. It is 
particularly interesting that within the random forest with unigrams and bigrams model the 
features ‘jar’, ‘uh’, and ‘oh’ are the features ranked with the highest importance for classifying a 
transcript as AD. The linguistic markers ‘uh’ and ‘oh’ are filled pauses, and can be indicative of 
cognitive impairments associated with the progression of dementia. These expressions, typically 
employed in speech to signal hesitation or a search for the correct terminology, can become 
notably prevalent as the neurological impact of Alzheimer’s disrupts the patient's linguistic 
abilities. From a cognitive perspective, AD characteristically leads to difficulties in retrieving 
words and forming coherent thoughts, processes that are heavily influenced by degeneration in 
temporal and parietal lobes of the brain—regions critical for language and memory. 
Consequently, affected individuals may rely increasingly on nonspecific filler words or pauses as 
placeholders during moments of lexical retrieval failure. 

 

 

SHAP for Random Forest with Bigrams 
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SHAP For Random Forest with Unigrams and Bigrams 

 

Figure 4 
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PERMUTATION IMPORTANCE 

The sorted feature importance, particularly visualized through a horizontal bar chart 
found in figure six, not only quantifies the influence of each feature but also incorporates error 
bars representing the standard deviation of importance scores across repetitions. This 
visualization highlights the uncertainty and variability in the importance estimates, providing a 
clearer and more nuanced understanding of each feature's role. 

 

Permutation Importance for Logistic Regression with Unigrams and Bigrams 

Figure 5 
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The results obtained from the permutation importance analysis for the Logistic 
Regression model complement and reinforce the insights gathered from SHAP summary plots 
for the Random Forest models. For instance, certain linguistic markers that were identified as 
significant in the SHAP plots, such as ‘action’, ‘window’, ‘ok’, and ‘standing’, also showed high 
importance in the Logistic Regression analysis, affirming their predictive power. This alignment 
between the two methods not only strengthens the confidence in the models' assessments but also 
underscores the consistency of the identified linguistic features across different analytical 
approaches. By providing a converging validation from both permutation importance and SHAP 
values, the results reinforce the robustness of the feature selection process and enhance the 
interpretability of the predictive models used in this study. 

 

Deep Learning Feature Importance  

LIME 
LIME is particularly beneficial. Text data is inherently high-dimensional and sparse, 

making traditional feature importance techniques less effective. LIME's ability to provide 
explanations for individual predictions by highlighting words or phrases that influence the 
model’s output offers clear, actionable insights into how language use correlates with dementia 
diagnoses. This is critical in ensuring that the models used are not only accurate but also 
clinically meaningful. 

The LIME explanation framework is initiated specifically for text data by importing 
LimeTextExplainer from the LIME library. This setup helps tailor the LIME output to be intuitive 
and directly applicable to the task at hand, facilitating easier interpretation. A crucial step in the 
LIME process is defining a prediction function that the explainer can use to simulate how the 

Figure 6 
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model behaves with modified inputs. The predict_proba function is defined to take a list of 
transcripts, preprocess it by tokenizing and padding to fit the model's input requirements, and 
output the probability predictions for each class. This function uses the trained deep learning 
model to predict how likely each transcript belongs to the control or dementia The 
explain_instance method is called for a specific instance and the prediction function. It returns an 
explanation by predicting repeatedly with modified inputs, which features (words or phrases) in 
the transcript were most influential in the model’s prediction and the direction of their impact 
(increasing or decreasing the probability of belonging to a particular class). 

The subsequent figures provide a visual representation of the outputs generated by the 
Local Interpretable Model-agnostic Explanations (LIME) text explainer for several instances 
across the top-performing models in this study, specifically the Doc2Vec LSTM, Bi-LSTM, 
CNN-LSTM, and BERT CNN-LSTM models. These figures are instrumental in understanding 
the interpretative capacity of the models, showcasing how each model weights and prioritizes 
different features or phrases within the transcripts to arrive at a diagnostic classification. 

The application of LIME is used to analyze the classification of transcripts from top-
performing models—Doc2Vec LSTM, Bi-LSTM, CNN-LSTM, and BERT CNN-LSTM— to 
provide critical insights into the linguistic patterns associated with AD and control groups. 
LIME's utility lies in its ability to visually and quantitatively highlight the influence of specific 
words or phrases on the models' classification decisions, assigning colors to tokens where blue 
indicates a correlation with the control group and orange signifies a connection with the AD 
class. The intensity of the color corresponds to the degree of influence, providing a clear 
indication of feature importance at a local level. The LIME text explainer results offer a nuanced 
understanding of how certain tokens contribute to the classification accuracy and reliability of 
the models 

The application of LIME to analyze transcripts from Alzheimer’s Disease (AD) patients 
and control groups has provided nuanced insights into the linguistic and speech patterns 
characteristic of each group. This analysis is particularly important for understanding the 
cognitive impairments associated with AD and the relative clarity observed in the control group. 

 

Integrated Gradients  
The subsequent figure provides a visual representation of the Integrated Gradients method 

applied to selected examples from this paper. These illustrations encapsulate the attributions of 
individual features within the last 100 tokens of each transcript (limited due to computational 
constraints), highlighting the impact of specific words on the model's predictions. Each example 
within the figure has been meticulously chosen to demonstrate how Integrated Gradients 
highlights the contributions of various elements of the input data towards the predictive 
outcomes. The visualization serves as an integral component of this thesis, offering a clear and 
concise depiction of the model's interpretive processes, and fostering a deeper understanding of 
the underlying mechanisms driving the predictions.  
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Intgrated Gradients Transcripts 
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In the analysis of Integrated Gradients for the feature importance section, the significance 
of words within the transcripts is visually highlighted to discern their impact on model 
predictions. The color-coding scheme employed provides an intuitive understanding of each 
word's contribution: words colored greener denote a higher positive attribution toward the 
predicted class (AD), while those in pink suggest a negative attribution. This method of 
visualization is particularly effective in distinguishing the salient features that drive the model's 
decisions.  

Despite the methodological constraint of analyzing only 100 tokens per transcript, 
notable commonalities are observed between features associated with the control and AD groups 
across both integrated gradients and LIME. Such overlaps in linguistic features are illustrative of 
the complex nature of language processing in the context of dementia classification. Common 
tokens such as 'the', 'from', 'cookie jar', 'and', 'some', and 'for' appear across transcripts from both 
AD groups, suggesting that these words are central to helping identify dementia the descriptions 
given in the Cookie Theft picture description task. 

For the control class, specific phrases like 'a sign to her lips', 'that's all I can see', 
'cupboard', 'drying dishes', 'curtains', 'window', and 'trees outside' are recurrent. These phrases 
generally depict more structured and detailed observations of the scene, which might imply a 
higher level of cognitive coherence and linguistic organization typical of control subjects. This 
observation aligns with linguistic research suggesting that individuals without cognitive 
impairment tend to provide more detailed and contextually rich descriptions. 

The overlaps in tokens between the two classes may be occurring due to the universal 
nature of the task, where subjects from both groups are asked to describe the same picture. As a 
result, certain items or actions within the picture (like 'cookie jar' or 'drying dishes') are likely to 
be mentioned by different subsets of subjects and seems to be correlated with their cognitive 
status. However, the way these items are described—the detail, coherence, and context 
provided—can differ significantly, which is why deeper linguistic and semantic analysis beyond 
surface tokens is crucial for more accurate classification. This exemplifies the importance of 
employing sophisticated NLP tools and techniques that can capture not just the presence of 
words, but their contextual relevance and integration into coherent narratives, which are often 
more telling of a subject's cognitive state. 

 

Discussion 
Deep Learning Models 
The notable performance of the BERT input embeddings combined with the CNN-LSTM 

architecture, as demonstrated by a precision of 86%, an accuracy of 85%, recall of 85% and an 
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F1-score of 88%, demonstrates the synergetic potential of integrating advanced embedding 
techniques with sophisticated neural network structures. This model configuration leverages the 
strengths of BERT’s deep contextual embeddings and the dynamic processing capabilities of the 
CNN-LSTM framework, making it particularly adept at handling complex language data 
inherent in clinical diagnostics such as AD detection. 

Performance of the CNN-LSTM+BERT can be attributed to the unique architecture of the 
model. Unlike traditional word embeddings that generate a single word embedding for each 
token in the vocabulary, BERT considers the full context of a word by looking at the words that 
come before and after it in a sentence. Moreover, the convolutional layers act as feature 
extractors that identify and encode local patterns within the input data. These features might 
include key phrases or syntax patterns in text that are indicative of cognitive issues. Convolution 
operations apply filters to the input data, which can be represented mathematically as: 

𝑓𝑓(𝑥𝑥) = (𝑥𝑥 ∗ 𝑤𝑤) + 𝑏𝑏 

where ∗ denotes the convolution operation, x is the input, 𝑤𝑤 represents the weights of the 
filter, and b is the bias.  

The integration of BERT embeddings provides the CNN-LSTM architecture with a rich, 
pre-trained contextual basis from which to build its feature analyses, thus enhancing the model’s 
ability to discern subtle linguistic cues linked to AD. This model's high F1-score suggests an 
effective balance between precision and recall, indicating not only its accuracy in identifying 
relevant cases but also its reliability in minimizing false positives and negatives—an essential 
attribute in medical applications. 

The models that exhibited the least effectiveness were those utilizing Word2Vec 
embeddings within the CNN-LSTM and Bi-LSTM architectures, with the machine learning 
models outperforming them. Specifically, the CNN-LSTM with Word2Vec embeddings 
demonstrated a notably low precision score of 28% and an accuracy of 58%, while the Bi-LSTM 
with Word2Vec achieved a precision of 61% and an accuracy of 56%. Several factors might 
contribute to these underwhelming performances, which stand in stark contrast to the more 
successful models employing different embeddings. This could be attributed to inaccurate 
contextual representation. Word2Vec, as a method of generating embeddings, focuses primarily 
on capturing local contextual meanings within a fixed window size around each word, unlike 
BERT or Doc2Vec that account for broader or entire document context, Word2Vec may not fully 
capture the necessary contextual clues that indicate cognitive impairments in Alzheimer's 
Disease, which often manifest in more complex and subtle linguistic patterns beyond local word 
pairs. The embeddings are also static, meaning that each word is represented by a single 
embedding, regardless of its varying meanings in different contexts. These static embeddings 
might be insufficient for the deep learning models, particularly CNN-LSTMs and Bi-LSTMs, 
which require dynamic and rich input features to effectively model the intricacies of natural 
language as it pertains to AD symptoms. 

The poor performance may also be ascribed to mismatched architecture. The architecture 
of CNN-LSTMs, which are designed to capitalize on both local feature extraction (through CNN 
layers) and sequential data processing (through LSTM layers), might not align well with the 
nature of Word2Vec embeddings. The simplistic and local context focus of Word2Vec may not 
provide enough depth and variation needed for the CNN layers to extract meaningful features, 
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nor for the LSTM layers to capture long-term dependencies effectively. Further, both CNN-
LSTM and Bi-LSTM models with Word2Vec may also suffer from overfitting or underfitting, 
particularly if the model training did not adequately account for the nuances and variability 
within the AD-related data. 

Of the traditional machine learning models, Random Forest with bigrams and unigrams, 
and Logistic Regression with unigrams and bigrams, demonstrated competitive, and at times 
superior, performance compared to more complex deep learning models such as the Word2Vec 
CNN-LSTM and Bi-LSTM. This observation can be explained by a common heuristic in the 
field of machine learning regarding the relationship between dataset size and the efficacy of 
model types. 

Deep learning models are renowned for their high capacity and flexibility, enabling them 
to model complex patterns in large datasets. However, they require substantial amounts of data to 
generalize effectively without overfitting. According to a widely accepted rule of thumb in 
machine learning literature, deep learning models typically begin to outperform simpler machine 
learning models only when the available dataset includes thousands to tens of thousands of 
samples. Conversely, when the dataset is smaller, as is often the case in specialized medical 
research studies like AD classification using linguistic data, traditional machine learning models 
tend to be more effective. These models are less prone to overfitting and require fewer data to 
reach a reliable level of generalization, making them particularly suitable for studies with 
datasets comprising fewer than a few thousand examples. 

In the context of this study, the relatively smaller dataset size likely contributed to the 
robust performance of the machine learning models. These models, with their simpler structures, 
could effectively capture the essential patterns in the data without the extensive data 
requirements and computational complexity associated with deep learning models. Thus, the 
Random Forest and Logistic Regression models were able to achieve high accuracy and 
precision scores, closely matching or even surpassing some of the deep learning approaches, 
especially in cases where the latter might have struggled with overfitting or insufficient data to 
learn from effectively. This efficacy denotes the importance of choosing the appropriate 
modeling technique based on the dataset characteristics and the specific requirements of the 
study, thereby ensuring optimal performance and utilization of resources. 

Surprisingly, the top-performing deep learning models in this analysis consistently 
utilized Doc2Vec embeddings, particularly leveraging the Distributed Bag of Words (PV-
DBOW) variant of Doc2Vec, as the primary embedding layer. This notable pattern suggests a 
strong correlation between the use of Doc2Vec embeddings and enhanced model performance 
across different architectures including LSTM, Bi-LSTM, and CNN-LSTM. Two key insights 
can be inferred from this observation: 

Enhanced Semantic Capture: Doc2Vec, especially the PV-DBOW model, excels in 
capturing the overarching semantic context of the entire document without the computational 
burden of sequential dependency. This broader understanding likely contributes to the model's 
ability to discern patterns and nuances in Alzheimer's Disease-related transcripts that are crucial 
for accurate classification. By training word vectors alongside vector representations of entire 
documents, Doc2Vec may provide a more comprehensive feature set for the deep learning 
models, enhancing their predictive capabilities. 
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Generalization Across Architectures: The success of Doc2Vec embeddings across 
various deep learning architectures indicates their robustness and adaptability. Unlike other 
embedding techniques that might favor specific neural configurations, the generic nature of 
Doc2Vec embeddings appears to complement and enhance the inherent strengths of LSTM, Bi-
LSTM, and CNN-LSTM models. Each of these architectures benefits differently from the 
embeddings—LSTMs leverage temporal patterns, Bi-LSTMs utilize bidirectional context, and 
CNN-LSTMs capitalize on localized feature extraction followed by sequence modeling. 

This analysis stands in direct contrast to findings from other studies, such as the 
Comparative Study of Deep Classifiers for Early Dementia Detection using Speech Transcripts 
(2), which reported lower metrics for Doc2Vec-enhanced models. In (2) LSTM+Doc2Vec 
achieved 76% precision and 71% accuracy. Similarly, Bi-LSTM+Doc2Vec had a 71% precision 
and 69% accuracy. The discrepancy could be attributed to several factors, including differences 
in dataset preprocessing, model parameterization, and perhaps the integration technique of 
embeddings within the neural networks. The superior performance in this study may also 
emphasize the effectiveness of the PV-DBOW architecture in handling diverse and complex 
datasets like those involved in AD detection, suggesting that the way embeddings are 
implemented and utilized can significantly influence outcome metrics. 

 

Feature Importance: SHAP 
The paper titled "Classification of Alzheimer’s Disease Leveraging Multi-task Machine 

Learning Analysis of Speech and Eye-Movement Data" explores a multi-modal machine learning 
approach to diagnose Alzheimer's Disease (AD) using novel speech and eye-movement tasks 
(Jang et al., 2021). Jang utilizes the Cookie Theft image description task as part of its multimodal 
approach to analyze speech and eye-movement data for AD classification[20]. This task is a 
traditional component of the Boston Diagnostic Aphasia Examination and is commonly used in 
cognitive assessments for dementia. The Cookie Theft description task contributed to the 
multimodal dataset that achieved high classification accuracies in distinguishing between AD 
patients and healthy controls. It provided critical speech and visual engagement data that, when 
combined with other tasks, enhanced the predictive capabilities of the machine learning models 
used. The image was split up into areas of interest that correlated with language features such as: 
cookie, cookie jar, boy, girl, woman, stool, plate, dishcloth, water, window, curtain, dishes, and 
sink[21]. The AoI’s used in (Barral et al., 2021) can be found in the subsequent figure.  
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Figure 7: Cookie Theft picture featuring AOIs, adapted from Jang et al., 2021 

 

 They found AD patients tended to have shorter fixations, eye movements, and more 
variation in their eye movements during the task. (Barral et al., 2021), the foundational work of 
(20), also found AD patients have a higher proportion of visits to the cookie jar. In contrast, 
controls show more transitions within the window. Healthy controls also have more transitions to 
the girl (sink to girl, and cookie to girl). Which directly overlaps with the linguistic 
commonalities found in this thesis between control and AD transcripts.  

In the context of the cookie theft image description task, it is possible to conclude that 
bigrams and unigrams like 'mother drying', 'window open', ‘window’, ‘action, ‘open’, ‘girl 
reaching’ and ‘mother’ often found in control transcripts could be attributed to control 
participants being better able to identify areas of importance (AoI). 

 

Feature Importance: LIME 
Overlapping Linguistic Features in Dementia Transcripts  

In dementia transcripts, certain tokens such as 'and', 'uh', and 'jar' frequently appear. 
These tokens reveal significant linguistic markers: 

• 'And' is often used repetitively, indicating a difficulty in forming cohesive and 
complex sentences. Its repeated use is typically seen in run-on sentences, which 
may signify an attempt by AD patients to hold onto a train of thought or to mask 
difficulties with word retrieval. 

• 'Uh' reflects moments of hesitation or uncertainty, commonly observed in 
spontaneous speech as AD patients struggle to find the correct words. 
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• 'Jar', a specific noun, repeatedly occurs in the Cookie Theft Picture Description 
Task, pointing towards a narrowed focus on particular elements within a picture, 
possibly due to the patient's reduced ability to interpret the overall scene.  

These findings align with the broader linguistic patterns noted where AD patients tend to 
use more interjections such as 'oh', 'yeah', and 'well', and adverbs like 'maybe' and 'here'. This 
usage may compensate for their uncertainty and cognitive impairments, reflecting an underlying 
struggle with articulating definitive statements. 

 

Overlapping Linguistic Features in Control Transcripts 

Conversely, control transcripts often contain more structured and diverse vocabulary. 
Words like 'window', 'curtains', 'dish', 'mother', ‘the’, and 'say', not only indicate a higher level of 
descriptive detail but also demonstrate the ability to engage with and describe the environment 
more accurately. These words align with the control class features identified in SHAP summary 
plots and eye tracking findings in (Jang et al., 2021) and (Barral et al., 2021).  

An interesting linguistic feature in the control group is the frequent correct usage of the 
apostrophe 's'. This grammatical element suggests proficiency with the possessive case, which 
requires cognitive capabilities that might be compromised in AD patients. The clarity of the 'S' 
sound is important in speech articulation. Proper pronunciation aids in the clarity of speech, and 
its presence in many common words means that any mispronunciation could lead to 
misunderstandings, which are less frequent in the control group but a potential issue in AD due 
to symptoms like slurred speech and stammering. 

Parts of speech (POS) in these analyses helps further differentiate and analyze the 
grammatical tendencies between AD patients and controls. Control transcripts tended to weigh 
the token ‘the’ highly. The frequent identification of the definite article 'the' as a significant token 
merits further discussion. The definite article 'the' is employed in English to refer to specific, 
known entities or nouns within a discourse context. Its usage indicates that the speaker assumes 
the listener knows what is being referred to, without needing to specify it explicitly. This 
linguistic feature is essential in analyzing transcripts involving tasks such as the Cookie Theft 
Image Description, where clarity and specificity in describing known elements of the picture are 
indicative of cognitive health. 

Transcripts from control participants that heavily utilized 'the' likely demonstrated greater 
coherence and connectivity in narrative construction. These participants were more adept at 
identifying and articulating specific elements within the image, suggesting a more organized and 
focused cognitive approach to the task. For detailed visualizations, please refer to Appendix.  

In contrast, less specific or indefinite articles, which refer to unspecific nouns, might be 
more prevalent in the speech patterns of individuals experiencing cognitive decline, as seen in 
Alzheimer’s Disease patients. 

Therefore, the heavy association of 'the' with control transcripts by LIME could be 
indicative of the participants' ability to maintain clear and coherent speech, effectively 
employing definite articles to construct well-defined and logical narratives about the image. This 
linguistic capability reflects a higher level of cognitive functioning, where the speaker can 
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navigate and describe their environment accurately, a skill that is often compromised in the 
progressive stages of dementia. 

 For instance, the higher usage of nouns and adjectives in control transcripts versus the 
frequent use of pronouns and conjunctions in AD transcripts could indicate a decline in the 
ability to name objects or describe them with adjectives, a common symptom in Alzheimer's 
linguistic degradation. 

 

Limitations 
This work, however, is not without its limitations. The models developed are 

monolingual, focusing solely on English speech transcripts, which may limit their applicability in 
more linguistically diverse settings. Furthermore, the models' performance is currently bound by 
hardware limitations, suggesting that with improved computational resources, the efficacy and 
efficiency of these models could be significantly enhanced. 

The choice to utilize a relatively small dataset in this study represents a significant limitation that 
must be acknowledged, as it can constrain the generalizability and robustness of the findings. 
Small datasets often provide insufficient variability and volume to fully train and validate 
complex machine learning and deep learning models, potentially leading to overfitting or under-
representation of the broader population characteristics. However, the decision to employ this 
specific dataset was made strategically to minimize various kinds of biases that could 
compromise the validity of the proposed approaches. By selecting a smaller, more controlled 
dataset, this study aimed to maintain higher data integrity and ensure that the findings are as 
accurate and reliable as possible within the given constraints. Consequently, this methodological 
choice supports a more focused exploration of the specific features and models under 
consideration, facilitating a cleaner analysis of the data and contributing to the credibility of the 
research outcomes 

It is essential to contextualize the findings within the broader spectrum of AD 
classification, linguistic and speech analysis, part-of-speech tagging, and non-verbal behavioral 
analysis such as eye movement tracking. This paper contributes to the burgeoning field of 
explainable AI, particularly within the realm of linguistics-based classification of 
neurodegenerative diseases. By shedding light on how deep learning models process and classify 
linguistic data in the context of AD, this work takes a significant step towards demystifying the 
decisions made by AI systems and advances XAI. This endeavor not only advances the technical 
capabilities of AI models but also enhances their societal acceptance and ethical deployment in 
sensitive domains such as healthcare diagnostics. While the results presented here align with 
existing research in these fields, demonstrating common linguistic patterns and keywords 
associated with AD and control groups, caution must be exercised in interpreting these outcomes. 

The methodologies employed—SHAP, LIME, and Integrated Gradients—have provided 
valuable insights into the features that our models deem significant in classifying AD. However, 
these results should be approached with a degree of skepticism. There are numerous variables 
and external factors that could influence why certain words and phrases were highlighted by 
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these explainability tools. For instance, the intrinsic biases in the training data, the limitations 
inherent in the models themselves, or even the subjective nature of the baseline chosen for 
Integrated Gradients could skew results in unforeseen ways. 

Further research is crucial to validate these findings rigorously. Future studies could 
focus on expanding the datasets used, incorporating multimodal data, or employing more 
sophisticated models that can better capture the nuances of human language and cognition. 
Moreover, interdisciplinary approaches that combine insights from cognitive science, linguistics, 
and computer science could enhance the robustness and applicability of AD classification 
systems. 

 

SECTION VI: Conclusion 
We have explored the potential of multiple machine learning and deep learning models to 

detect AD from transcript data, using the DementiaBank dataset. The primary motivation behind 
this research is the pressing need for early detection of dementia, a condition that, while 
currently incurable, can have its symptoms managed more effectively with timely diagnosis. 

The study employed a variety of vector embeddings and model architectures to 
differentiate between individuals with and without AD. These ranged from traditional machine 
learning models, utilizing bag-of-words approaches, to more complex sequential deep learning 
models that leverage the latest advancements in NLP. The comparative analysis of these models 
highlighted the nuanced capabilities of each approach, with deep learning models showing 
promise in capturing sequential and contextual information that escapes simpler, frequency-
based models. Through the implementation of various machine learning architectures, and the 
application of advanced sequential neural networks, this study aimed to compare and contrast the 
efficacy of different computational approaches in identifying AD. Notably, the Random Forest 
model with bigrams demonstrated the highest classification performance out of the machine 
learning models, achieving an accuracy of 84.00% and a precision of 83.00%. Concurrently, we 
ventured into the domain of deep learning by deploying multiple Long Short-Term Memory 
(LSTM) architectures enhanced with Doc2Vec embedding layers. Among these, the Bi-LSTM 
coupled with Doc2Vec embeddings emerged as the strongest performing model, accurately 
detecting AD patients with an impressive accuracy of 89.00% and a precision of 90.00%.  

A significant component of this research involved the examination of feature importance 
through techniques such as SHAP, LIME, and integrated gradients. This analysis is crucial, as it 
not only provides transparency into the decision-making processes of the models but also 
identifies key linguistic markers associated with AD. These insights are invaluable for clinicians 
and researchers alike, as they highlight potential areas for further diagnostic development, offer a 
deeper understanding of the linguistic impacts of dementia, and provides valuable insight into 
local explainability. This level of granularity in explainability is particularly valuable in clinical 
settings, where understanding the rationale behind a diagnostic prediction or treatment 
recommendation can influence clinical decisions and patient outcomes. Understanding which 
words or speech patterns led to this conclusion can help future research focus on specific 
cognitive aspects when developing models.  
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The analysis of feature importance within this thesis has illuminated significant linguistic 
patterns that distinguish between AD patients and healthy controls. Specifically, the frequent use 
of words such as ‘and,’ ‘yeah,’ and ‘uh’," and particularly ‘and’ at the beginning of utterances, is 
notable among AD patients. This frequent usage suggests a reliance on certain connective or 
filler words to structure speech, which may reflect challenges in maintaining coherent and fluent 
discourse. In contrast, the analysis highlights that healthy individuals tend to use a richer variety 
of linguistic constructs, including verbs in present participle or gerund forms, nouns, and 
determiners. This variety denotes more robust cognitive abilities to structure complex sentences 
and maintain topic coherence.  

This contrast in language usage not only deepens our understanding of the cognitive 
impacts of Alzheimer's but also enhances the potential for developing linguistic-based diagnostic 
tools. By identifying and quantifying these distinctive linguistic markers, feature importance 
analysis provides a pathway for more targeted screenings and supports the broader discourse on 
the capabilities of natural language processing in healthcare screening. The findings from this 
study thus hold significant implications for both theoretical linguistics and practical applications 
in medical settings, offering valuable insights into the intersection of language function and 
neurological health. 

 Future studies could build on this work by incorporating larger datasets, ideally 
enhancing the scope and applicability of the results while continuing to address potential biases 
in data collection and model training; incorporate multilingual datasets and exploring alternative 
tokenization, embedding, and encoding strategies to enrich transcript representations; Increase 
computation power, and integrate feature-fusion techniques to further refine the identification 
processes, potentially leading to more robust models capable of diagnosing dementia across 
various stages and from more diverse demographic backgrounds.  

Overall, this thesis contributes to the body of knowledge in applying NLP techniques to 
health outcomes research, particularly in the context of AD. By providing an extensive 
evaluation of different models and their interpretability through feature importance analysis, this 
study not only advances our understanding of the linguistic characteristics associated with AD 
but also sets the stage for future innovations in the field. The insights gained here underline the 
potential of NLP in medical noninvasive medical screening and the importance of continued 
research in this vital area. 
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Appendix  

 

Figure 8 

Doc2Vec LSTM 

 

 
 

 
 

 

Doc2Vec CNN-LSTM 
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Doc2Vec Bi-LSTM 
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Figure Nine 

LIME 

 

LIME for Doc2Vec LSTM 
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Transcripts (7) and (11) of the Doc2Vec LSTM model demonstrated a 90% prediction 
probability for dementia, correctly classified. These transcripts were marked by the frequent use 
of the word 'and', indicating fragmented and incomplete sentence constructions typical in AD 
speech patterns. Instance (11) displayed repetitive phrases, such as 'what else do you want from 
that' and 'what more do you want', which align with known repetitive speech behaviors in 
dementia. Transcript (50) predicted with an 84% probability as the control class, featuring 
coherent tokens like 'that', 'dish', 'counter', 'open', and 'apostrophe s', suggesting structured and 
coherent speech.  

 

LIME for Doc2Vec CNN-LSTM 
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 BERT CNN-LSTM 
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Transcript (50) had an 80% probability of being part of the control class, which is notably 
lower than the prediction probability of it’s doc2vec model counter parts, with predominant 
tokens 'a' and 'the' influencing the explainer. Transcript (2), which was also lower than the 
Doc2Vec models, had a 74% probability of control, influenced strongly by 'a', 'is', 'the', 
demonstrating clear and logical speech patterns. Predictions explained for the BERT CNN-
LSTM model also sheds light on instances of misclassification, where LIME predicted a control 
classification based on the presence of words typically found in control transcripts, but the true 
class was AD. Conversely, terms that often appeared in dementia-classified transcripts, such as 
'uh', 'and', 'there', and 'he', were pivotal in instances where dementia was correctly identified or 
misclassified, indicating their strong associative impact on model predictions. The term ‘he’ 
showed up as a strong indicator for the dementia class potentially for the focus on the sentences 
containing that term described the boy sneaking into the cookie jar. Instance (7) predicted the 
correct class dementia with weaker probability of 61%, ‘the’ was the most heavily weighted 
word for the control class and for dementia ‘uh’, ‘and’ and ‘there’ had the strongest affect. 
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Transcript (13) an example of a prediction probability being misclassified. The actual class was 
dementia and LIME predicted the probability of control at 83% because this transcript contained 
lots of words that have commonly been found in control transcripts, such as ‘the’, ‘is’, and 
‘faucet’. Another example of an incorrect prediction probability is instance (33). The true class 
was dementia, but LIME gave a 54% probability of the transcript being control and 46% of 
probability of the transcript being dementia. The transcript itself contained ‘is’, ‘a’, ‘see’, for 
control and ‘there’, here’, and ‘he’ for dementia. 

 

 

 

 

Doc2Vec Bi-LSTM 
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Transcript (50), similar to the LSTM model, LIME predicted as part of the control class 
with an 84% probability. It contained overlapping significant tokens with the LSTM model 
including 'open', 'dish', 'that', and 'her'. In transcript (7), the AD class was predicted with a 96% 
probability, with critical tokens, such as 'there', 'and', and 'some', which are indicative of AD due 
to their repetitive use in the transcript. We see repetitive words like ‘and' and 'there’ more than 
once and in multiple dementia transcripts. Instance (11), a dementia transcript with the prediction 
probability of AD as 95%, repeats 'a kid in in the cookie jar', as well as, the word ‘the’ and ‘and’. 
Transcript (2) predicted the probability of control, the correct class, at a 98% probability with 
words like 'say', 'is', and 'window' being the most important. 

 

 

 

Doc2Vec CNN-LSTM 
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Transcript (2) predicted a 96% probability of control (with a true class of control). Key 
tokens included 'say', 'is', 'a', and 'curtains', denoting clear and structured speech. Transcript (11) 
displayed an 87% probability of dementia, with 'and', 'what', and 'jar' significantly influencing 
the prediction, reflecting typical narrative disruptions seen in dementia. Whereas, transcript (7) 
highlighted 'and' and 'jar' as strong indicators of AD, with a 90% probability of correct dementia 
classification. 
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