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ABSTRACT

Federated Learning in Wireless Networks

by

Xiang Ma, Doctor of Philosophy

Utah State University, 2024

Major Professor: Rose Qingyang Hu, Ph.D.
Department: Electrical and Computer Engineering

With the advancement of the semiconductor industry, there has been a rapid prolifer-

ation of devices on the Internet of Things (IoT), such as smartphones, smart speakers, and

intelligent vehicles. Furthermore, the computational capabilities of these IoT devices have

also increased significantly. This allows for a significant shift, where more computations

occur at the local level rather than in the cloud. Federated learning (FL) is a promising

distributed machine learning paradigm that enables clients to execute task computations

locally without sharing raw data with a central server. Clients obtain enhanced collective

intelligence in FL through model parameter sharing and global aggregation. This approach

preserves data privacy among clients and fosters the collaborative construction of a ro-

bust model. Despite its promise of addressing privacy concerns, FL faces many challenges,

particularly within wireless networks. There are four primary challenges in FL: high com-

munication cost, system heterogeneity, statistical heterogeneity, and privacy and security

issues. As the learning process engages many clients while operating within limited wire-

less channels, this results in considerable communication overhead. The state-of-the-art

deep learning algorithm requires the manipulation of millions or even billions of parame-

ters during model training. Transmitting these parameters becomes a bandwidth-intensive

process that incurs transmission delays. The phenomenon of system heterogeneity extends
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its influence on device configurations, deployment scenarios, and connectivity capabilities.

Furthermore, statistical heterogeneity becomes prominent through data distribution and

model variation divergences. Furthermore, due to the distributed architecture, FL remains

vulnerable to attacks inside and outside the system.

This dissertation has explored various algorithms to address the aforementioned chal-

lenges. First, the proposed research leverages cutting-edge communication methodologies,

including Non-Orthogonal Multiple Access (NOMA), over-the-air computation, and approx-

imate communication techniques. Additionally, gradient compression, client scheduling, and

power allocation are used to reduce communication overhead. Incorporating asynchronous

FL is instrumental in tackling system heterogeneity by decoupling communication from

computation processes. In all scenarios, data distribution takes into account statistical

heterogeneity. Ultimately, security and privacy issues are addressed by implementing inno-

vative model update aggregation and individual client initialization schemes.

(136 pages)
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PUBLIC ABSTRACT

Federated Learning in Wireless Networks

Xiang Ma

Artificial intelligence (AI) is transitioning from a long development period into reality.

Notable instances like AlphaGo, Tesla’s self-driving cars, and the recent innovation of Chat-

GPT stand as widely recognized exemplars of AI applications. These examples collectively

enhance the quality of human life. An increasing number of AI applications are expected

to integrate seamlessly into our daily lives, further enriching our experiences.

Although AI has demonstrated remarkable performance, it is accompanied by numerous

challenges. At the forefront of AI’s advancement lies machine learning (ML), a cutting-edge

technique that acquires knowledge by emulating the human brain’s cognitive processes. Like

humans, ML requires a substantial amount of data to build its knowledge repository. Com-

putational capabilities have surged in alignment with Moore’s law, leading to the realization

of cloud computing services like Amazon AWS. Presently, we find ourselves in the era of

the IoT, characterized by the ubiquitous presence of smartphones, smart speakers, and in-

telligent vehicles. This landscape facilitates decentralizing data processing tasks, shifting

them from the cloud to local devices. At the same time, a growing emphasis on privacy

protection has emerged, as individuals are increasingly concerned with sharing personal

data with corporate giants such as Google and Meta. Federated learning (FL) is a new

distributed machine learning paradigm. It fosters a scenario where clients collaborate by

sharing learned models rather than raw data, thus safeguarding client data privacy while

providing a collaborative and resilient model.

FL has promised to address privacy concerns. However, it still faces many challenges,

particularly within wireless networks. Within the FL landscape, four main challenges stand

out: high communication costs, system heterogeneity, statistical heterogeneity, and privacy
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and security. When many clients participate in the learning process, and the wireless com-

munication resources remain constrained, accommodating all participating clients becomes

very complex. The contemporary realm of deep learning relies on models encompassing

millions and, in some cases, billions of parameters, exacerbating communication overhead

when transmitting these parameters. The heterogeneity of the system manifests itself across

device disparities, deployment scenarios, and connectivity capabilities. Simultaneously, sta-

tistical heterogeneity encompasses variations in data distribution and model composition.

Furthermore, the distributed architecture makes FL susceptible to attacks inside and out-

side the system.

This dissertation presents a suite of algorithms designed to address the challenges ef-

fectively. Mew communication schemes are introduced, including Non-Orthogonal Multiple

Access (NOMA), over-the-air computation, and approximate communication. These tech-

niques are coupled with gradient compression, client scheduling, and power allocation, each

significantly mitigating communication overhead. Implementing asynchronous FL is a suit-

able remedy to solve the intricate issue of system heterogeneity. Independent and identically

distributed (IID) and non-IID data in statistical heterogeneity are considered in all scenar-

ios. Finally, the aggregation of model updates and individual client model initialization

collaboratively address security and privacy issues.
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CHAPTER 1

INTRODUCTION

Federated learning (FL) was first proposed by Google in 2016 to train a collaborative

model without sharing data from individual mobile devices [1]. It has been implemented

on the Google keyboard, which is called Gboard. FL is a new machine learning (ML)

architecture that allows each mobile device to keep data locally and train the model on

each device without sharing data with other devices. To gain collective intelligence, the

learned model is shared instead. In this way, the data privacy of mobile devices is protected

while a global model can still be learned.

1.1 Background

With the development of the semiconductor industry, the computational capacities

of edge mobile devices, such as smartphones, smartwatches, and unmanned aerial vehicles

(UAVs), have been increasing rapidly. The number of mobile devices is also growing tremen-

dously. According to Ericsson [2], the number of smartphone subscriptions worldwide will

double from 2016 to 2025, as shown in Fig. 1.1.

The large computation capacities of edge mobile devices allow the computation to occur

on the edge mobile device rather than on the cloud or central server. This allows for the

training of ML tasks locally. However, ML needs a substantial amount of data to train the

model in order to achieve acceptable performance. The AlphaGo is trained using a KGS

data set with 29.4 million moves from 160,000 games [3]. GPT-3 [4] used 570 GB text

data after filtering from a 45 TB data set. These data come from public resources or are

collected from users. During the data collection and transmission process, users’ privacy

may be compromised.

The public has been increasingly concerned about their privacy. The General Data

Protection Regulation (GDRP) [5] was approved by the European Union (EU) in 2016 and
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Fig. 1.1: Number of smartphone mobile network subscriptions worldwide

went into effect in 2018. And most recently, Meta (previous Facebook) agreed to pay $725

million to settle a privacy lawsuit. More actions are needed to protect the privacy of users

in the age of artificial intelligence (AI). A new ML diagram, termed Federated Learning

(FL), emerges to protect users’ privacy while training a robust model. This is achieved by

sharing the trained model rather than raw data among users.

1.2 FL Applications

Due to the privacy protection features in distributed learning, FL has been applied to

multiple fields. In [6], the authors reviewed the application of FL in mobile devices, indus-

trial engineering, and healthcare. The prediction of keyboard action is performed in [7],

where out-of-vocabulary words are learned and predicted using the FL method. Addition-

ally, human trajectory prediction can be done without sharing the user’s real trajectory

with the server in [8]. In industrial engineering, monitoring data can be learned and trained

with FL to build a robust global ML model [9]. UAV network jamming attacks can be de-

tected using FL without sharing UAV trajectory data [10]. FL uses patient data available
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in each medical institute in healthcare and breaks down barriers through different hospi-

tals [11]. In [12], the researchers applied FL to predict the mortality rate of patients with

heart disease using data from electronic health records.

1.3 System Model

FL system usually consists of a central parameter server (PS) and a large number of

clients. The learning process runs iteratively between the server and the clients, typically

spanning multiple rounds. The model learned in the previous round serves as the starting

point for the learning in the subsequent round. Each round has four primary steps, as

shown in Fig. 1.2. First, in step (S1), the server transmits the current global model to the

clients. Second, in (S2), clients utilize the global model as their starting point and apply

optimization methods such as stochastic gradient descent (SGD) to derive updated local

models. Then, in step (S3), the clients upload their updated local models to the server.

Finally, in step (S4), the server aggregates the local models received to create a new global

model, which serves as the basis for the next round. This iterative process continues until

the model converges. Here, the FL system consists of one PS and M clients. Each client m

has a dataset Dm.

FL aims to train a global model with data distributed on each client. The objective

function can be defined as

min
w∈Rd

f(w), (1.1)

where w is the model parameter, d is the model size, f(w) = 1
|D|

∑|D|
i=1 fi(w), |D| is the

size of the dataset D, which is the collection of all dataset Dm. fi(w) = ℓ(xi, yi;w) is the

loss function used to capture the error between the data sample (xi, yi) and the mapping

made by w. Since the data are distributed among M clients, the objective Eq. (1.1) can

be rewritten as

f(w) =

M∑
m=1

|Dm|
|D|

Fm(w), (1.2)
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where, Fm(w) = 1
|Dm|

∑
i∈Dm

fi(w). The centralized objective Eq. (1.1) is transformed in

a distributed manner in Eq. (1.2).

In each FL round, the client performs local training based on the local data and the

most recently received global model, that is

wm
t = wt − η∇Fm(wt), (1.3)

where at round t, ∇Fm(wt) is the gradient of Fm(wt), η is the learning rate, wt is the

received global model, wm
t is the local model on client m.

The server aggregates the uploaded local model to build a global model as

wt+1 =
M∑

m=1

|Dm|
|D|

wm
t . (1.4)

Here, |Dm|
|D| is the contribution of the client m to the global model, and

∑M
m=1

|Dm|
|D| = 1.

This is termed the Federated Raw (FedRaw) method here.

Another method of aggregating the global model is federated SGD (FedSGD), where

the local gradient rather than the local model is uploaded to the central server. The local

gradient is calculated as

gmt = ∇Fm(wt). (1.5)

Subsequently, the global model is computed using the most recent gradient and the global

model from the previous round, i.e.,

wt+1 = wt − η
M∑

m=1

|Dm|
|D|

gmt . (1.6)

The main difference between FedSGD and FedRaw is the parameters uploaded by the

clients. In FedSGD, the local gradient information is uploaded, and the server performs

gradient aggregation and updates the global model as in Eq. (1.6). Clients upload the local

weight information to FedRaw.

This method is under ideal conditions where all clients participate in the learning.
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When the channel resource is constrained, and only a fraction of clients are allowed to

participate in the learning, the classical algorithm to implement FL is Federated Averaging

(FedAvg). The pseudo-code is given in Algorithm 1.

Algorithm 1 FederatedAveraging

1: Server executes:
2: initialize w0

3: for each round t=1,2,... do
4: K ← max(C ·M, 1)
5: St ← (random set of K clients)
6: for each client m ∈ St in parallel do
7: wm

t+1 ← ClientUpdate(m, wt)
8: end for
9: |DSt | ←

∑
m∈St

|Dm|
10: wt+1 ←

∑
m∈St

|Dm|
|DSt |

wm
t+1

11: end for
12: ClientUpdate(m, w): // Run on client m
13: B ← (split Pm into batches of size B)
14: for each local epoch i from 0 to E do
15: for batch b ∈ B do
16: w ← w − η∇ℓ(w; b)
17: end for
18: end for
19: return w to server

The FedAvg algorithm addresses the limited channel problem when there are many

clients in the FL system. When C = 1, FedAvg becomes FedRaw, which means that all

clients participate in the learning process. Otherwise, only a fraction of clients can upload

their locally learned models. When C = 1, and E = 1, FedAvg becomes FedSGD.

In summary, the weights or gradients of the participating clients can be uploaded to

the server. After the gradients are uploaded, the server aggregates the received parameters

and calculates the most recent global model based on Equation (1.6). The server always

sends the most recent global model to the clients for the next round of training.
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1.4 Existing Problems

While federated learning is a promising technique to address privacy issues in dis-

tributed machine learning, there are still many challenges. In [13], the authors mentioned

four key challenges associated with FL: high communication cost, system heterogeneity,

statistical heterogeneity, and privacy concerns.

High communication costs may appear from several perspectives. First, the FL system

potentially has many clients, e.g., millions of smartphones, and communication becomes

the system’s bottleneck. Second, state-of-the-art neural networks require millions, even

billions, of model parameters to train the model. This results in a high communication

overhead when transmitting the model parameters. The heterogeneity of the system is

reflected in the variety of clients and their connectivity capabilities. This could be caused

by differences in hardware, network infrastructure, power, storage, computational capacity,

and communication capabilities. System heterogeneity makes it difficult for the server to

manage the learning process. For statistical heterogeneity, the data across clients may

be non-independent and identically distributed (non-IID). One of the primary distinctions

between Federated Learning (FL) and classical distributed learning lies in the data source.

In FL, data are typically collected from local environments instead of being assigned by the

server. The distributed nature of the Federated Learning (FL) system can cause privacy and

security concerns. There is a risk that certain clients could be compromised and exploited

to launch attacks on the entire system. To protect learning performance, it is essential

to implement additional security measures. In addition, gradient information has been

shown to potentially reveal some aspects of privacy. Malicious actors like eavesdroppers or

dishonest parameter servers might exploit gradient information to infer sensitive raw data.

1.5 Literature Review

Numerous efforts have been made to tackle the challenges of Federated Learning (FL),

as outlined above. This section focuses on a comprehensive examination of existing research

and efforts.
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1.5.1 Communication Cost

The massive number of clients who participate in the learning process and ML models

to train the data on the clients result in high communication costs. To mitigate communi-

cation delays in Federated Learning (FL) within wireless networks, various approaches have

been explored, including 1) decreasing communication frequency, 2) implementing compres-

sion techniques, 3) utilizing advanced communication methods, and 4) employing resource

scheduling strategies. These schemes aim to enhance the efficiency of FL in wireless network

settings.

1.5.1.1 Reducing communication frequency

In FL, clients tend to communicate with the server more frequently to gain collective

intelligence from other clients. In [1], the authors proposed a communication-efficient al-

gorithm FederatedAveraging (FedAvg). In FedAvg, only a fraction of clients are selected

to participate in the learning process in each round, and a small mini-batch of data is

used in each round. Furthermore, multiple local iterations are performed in each FL round

to reduce the communication frequency. The hierarchical FL of the client edge cloud is

presented in [14]. By introducing the edge layer, clients can send the local model to the

edge server for aggregation rather than directly sending it to the cloud server. Therefore,

communication with the cloud server is reduced. The device-to-device (D2D) training of

FL is also applied in [15]. No server is involved in this design, and clients communicate

directly with neighboring clients. This expands the coverage areas of the client distribution

and increases channel frequency reuse.

1.5.1.2 Compression schemes

Model compression can be applied to reduce the transmission of the number of model

parameters. In [16], the authors proved that 99% of gradients can be dropped in distributed

gradient descent with little or no performance loss. Gradient quantization [17] can be used

after gradient decrease. The model updates are forced to be sparse and low-rank in [18].
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Model updates can be learned from a restricted space. In this way, only a small fraction of

gradients need to be transmitted to the server.

1.5.1.3 Advanced communication schemes

In wireless networks, advanced communication can be employed to improve communi-

cation efficiency. Non-orthogonal multiple access (NOMA) is used in FL to allow multiple

users to transmit at the same channel simultaneously [19]. Over-the-air computation (Air-

Comp) can also be applied in FL to aggregate the model faster in [20]. The superposition

property of multiple-access wireless channels allows for multiple signal aggregation during

transmission. Therefore, multiple users are allowed to transmit their local models simulta-

neously. Additionally, FL only needs a global model on the server side, and AirComp saves

time by decoding individual models.

1.5.1.4 Client Scheduling

Clients can be scheduled to participate in the learning process according to channel

conditions or the importance of achieving optimal performance in wireless networks. Client

scheduling policies are explored in [21] when only a subset of clients can be scheduled to

participate in the learning process. The authors considered three practical approaches:

random scheduling, round robin, and proportional fairness based on channel conditions.

Different schemes require different learning rounds to achieve convergence under a high or

low signal-to-interference-plus-noise ratio (SINR) threshold. In [22], a joint client scheduling

and resource allocation algorithm is proposed. The bandwidth is allocated to the scheduled

clients to achieve the best performance.

1.5.2 System Heterogeneity

As mentioned above, system heterogeneity describes the varieties of client computation,

storage, and connectivity in the FL system. To handle the system heterogeneity problem,

1) active client sampling and 2) asynchronous communication can be employed.
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1.5.2.1 Active client sampling

FL aggregation can be triggered periodically without waiting for all clients to complete

their local learning. The straggler problem can be solved with some existing methods.

However, the straggler is less likely to have the opportunity to access the channel. In [23],

the researchers proposed a straggler-resistant algorithm by gradually increasing the number

of participants. Channel condition-based client scheduling is proposed in [24]. A subset

of clients with the highest channel gain are selected to participate in the learning in each

round.

1.5.2.2 Asynchronous communication

The classical FL works in synchronous mode. The computation in the subsequent

round runs after completing all communications. Asynchronous communication is applied

in [25] [26] to decouple computation and communication. The server aggregates the global

model once it receives a local model from clients rather than waiting for all clients.

1.5.3 Statistical Heterogeneity

Since client data are collected from the local environment, the data distribution can be

very divergent. In addition, some clients may want a personalized rather than an identical

global model. The weight divergence in [27] explains FL with non-IID data. The authors

created a small subset of data shared globally between all clients to improve training perfor-

mance. Also, new algorithms should work on both IID and non-IID data settings to verify

their effectiveness.

Personalized FL is applied in [28] to provide personalization of clients in FL. The

authors presented an adaptive, personalized FL algorithm to train local models on clients

while contributing to the global model. The personalized model for each client is the mixing

of the global model and the local model with some mixing weight. Better performance can

be achieved when the mixing weight is tuned adaptively.
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1.5.4 Security and Privacy

FL operates as a distributed system that is vulnerable to internal threats. External

attackers can intrude and control some clients, mislead the global model, and leak client

privacy to dishonest servers or eavesdroppers.

In [29], verifiable outlier detection, secure distance computation, and secure model

aggregation are used to make the Byzantine-resilient FL system. To mitigate backdoor

attacks, a model pruning method is proposed in [30] to remove redundant neurons and

adjust the extreme weight value method of the model. The average attack success rate can

be significantly reduced with little loss of test accuracy.

Differential privacy (DP) has become an almost standard method for protecting client

privacy in distributed systems. In [31], DP is used to protect the privacy of patient health

data in FL. DP is used in wireless FL in [32].

1.6 Dissertation Outline

This dissertation focuses on the problems of federated learning in wireless networks,

including high communication costs, system heterogeneity, statistical heterogeneity, and

security and privacy issues. Chapters 2 to 5 focus on methods to reduce communication

costs. Chapter 6 presents a novel asynchronous federated learning architecture to solve

system heterogeneity problems. Chapter 7 proposes model update-based aggregation and

individual client model initialization schemes to enhance FL’s security and privacy. The

statistical heterogeneity problems are considered in all conditions by applying the proposed

algorithm to non-IID data.

In Chapter 2, NOMA reduces communication time by allowing multiple users to upload

their local model parameters in FL. To our knowledge, we are the first to apply NOMA in

FL. The power allocation in NOMA makes the capacity vary for different users. Therefore,

adaptive gradient compression is used to satisfy the channel capacity constraints of the

transmitted message.
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Chapter 3 extends the FL with NOMA by considering user scheduling and power alloca-

tion to improve learning performance. A joint user scheduling and power allocation scheme

is presented to achieve the maximum weight sum rate of the system. This allows users to

transmit more messages under compression. Better learning performance is achieved with

optimal joint user scheduling and power allocation.

Chapter 4 introduces the approximate communication for the transmission of the FL

model. The ML system is found to be error-resilient based on multiple pieces of evidence.

The transmission of the FL model parameter, especially through wireless links, can cause

tremendous errors. Motivated by the gradient clipping for gradient exploding problems,

we constrain the gradient value in a small range by employing the gradient distribution

knowledge. Transmission error is also limited to a small range under the FL system error

resilience capabilities. Then, the FL model is transmitted approximately without forward

error correction and packet retransmission.

In Chapter 5, the over-the-air computation (AirComp) is applied to reduce the com-

munication and computation time in FL. Like NOMA, AirComp allows multiple users to

transmit simultaneously on the same channel. Unlike NOMA, the aggregation of the mes-

sages takes place in the air and cannot be decoded on the receiver side. This fits well for

FL, which only needs the aggregated results. Several different user scheduling schemes have

also been explored in FL with AirComp.

Chapter 6 focuses on security and privacy issues in FL. FL is a distributed system that

is vulnerable to Byzantine attacks. A model update-based (MUB) aggregation makes the

aggregated information less susceptible to Byzantine attacks. The individual client model

initialization (ICMI) scheme helps hide each client’s initial model. Combined with MUB,

ICMI can hide the local model during learning, protecting private data from membership-

inference attacks.

In Chapter 7, we consider the system heterogeneity problem. The computational ca-

pabilities vary between clients, which may have straggler issues. Due to FL’s distributed

training nature, this will affect the model convergence training time. Asynchronous FL
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(AFL) is applied to speed up the learning process. The client scheduling and novel model

aggregation algorithms make model training faster. Model staleness problems in AFL are

addressed.

Chapter 8 concludes this dissertation and discusses future research directions. It will

explore the ongoing research on FL in wireless networks.
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CHAPTER 2

Adaptive Federated Learning with Gradient Compression in Uplink NOMA

2.1 Introduction

This chapter considers the transmission of the FL model in wireless networks using

NOMA. NOMA improves spectrum efficiency and reduces transmission time. Because

NOMA allocates power for successive interference cancellation decoding at the receiver,

gradient compression is performed to satisfy channel capacities.

FL is a distributed ML technique. The learning process is carried out round by round.

The server first transmits the global model to the clients in each round. Then, the clients will

send the learned local model back to the server after local training. The model parameter

information is shared between the server and clients. In wireless networks, time division

multiple access (TDMA) [33] or frequency division multiple access (FDMA) [34] allows

multiple users to access the time/frequency. Under TDMA, users are assigned different

time slots for the whole channel. Each user needs to wait for other users to finish their

transmission until it is scheduled. Correspondingly, for FDMA, the entire channel band is

divided into small pieces for each user. The user can use the scheduled channel band all

the time. Unlike TDMA or FDMA, NOMA [35] allows multiple users to transmit their

signals in the same channel simultaneously. The channel and time resources are shared.

To successfully decode the message received from each user, the power allocation on the

transmitter side and successive interference cancellation (SIC) [36] at the receiver side are

applied. Different transmission power and channel conditions cause the channel capacity to

differ. Once the learning model is determined, the transmission information size is specified.

To satisfy the channel capacities, gradient compression is needed to transmit the gradients

in a fixed time duration.

In [37], deep gradient compression is applied to reduce the model size for distributed
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learning. It was found that 99% of the gradient is redundant. 1-bit gradient quantization [38]

is used to explore the low-bit expression of gradients in speech DNNs. These works did not

consider the constraints of practical communication networks. In [39], a multi-access channel

(MAC) transmits messages simultaneously, analog or digital. The model is aggregated over

the air to get the model average. However, the researchers fail to consider the effect of

wireless fading channels, making channel conditions impractical. In addition, the projection

of gradients transmitted over MAC could result in a higher bit error rate (BER). Here, we

consider a capacity-limited fading channel in the uplink of the FL system. The gradient size

is adaptively compressed based on the channel capacity. Gradient sparsification is applied

to remove redundant information. Gradient quantization can be used to represent gradients

with fewer bits.

The contributions of this chapter are summarized as follows:

• This is the first time NOMA has been applied for FL model transmission in wireless

networks. NOMA is a favorable selection compared to TDMA in the time perspective.

• Adaptive gradient compression in the NOMA uplink helps to satisfy channel capacity

constraints and reduce communication time.

• The effectiveness of the proposed scheme is verified on several datasets. The results

show that the communication time for FL is reduced by at least 7× without or with

a slight loss in test accuracy.

2.2 System Model

2.2.1 FL Model

Here, we consider an FL model similar to that described in Chapter 1.2. The uploaded

information here is the local gradients, and only a fraction of clients are allowed to upload

in each round due to channel constraints. Other than that, we use the same notation as in

Chapter 1.2.
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2.2.2 Uplink NOMA Transmission

In wireless transmission, the link from the client to the server is usually called an

uplink, and correspondingly, the link from the server to the client is a downlink. The uplink

in the FL system is time-consuming when a large number of clients are connected to the

server. However, the downlink can be broadcast to all clients from the server, making it

time-efficient. Here, we consider NOMA transmission on the uplink and broadcast on the

downlink.

Here, a fading channel is assumed. The channel is assumed to remain constant within

the round time but varies across rounds. To simplify the analysis, the time t is omitted

here. The channel gain between client k and server is hk = Lkh0, where Lk is the large-scale

fading and h0 is the small-scale fading. Lk is assumed to follow the free space path loss

model Lk =
√
δkλ

4πd
α/2
k

, where δk is the gain of the transmitter and receiver antenna, λ is the

wavelength, dk is the distance between client k and server, and α is the path loss exponent.

h0 is assumed to follow a normal Gaussian distribution h0 ∼ N (0, 1).

The transmitted gradient information gtk is normalized as stk, where ||stk|| = 1. Ac-

cording to the NOMA principle, the selected fraction of clients share the same bandwidth

simultaneously. The signals transmitted from different users are superposed during air

transmission [40]. Here, we consider the K clients selected in each round. The received

signal at the server side can be written as:

y =

K∑
k=1

√
pkhksk + n, (2.1)

where pk is the transmission power of client k, and n ∼ N (0, σ2) is the additive noise.

SIC is executed on the receiver side to successfully decode individual sk from the

received signal y. The process of executing SIC is described below. The server distinguishes

different users using the power strength of the received signal. The server will decode the

client signal with the strongest power strength by considering other signals as interference.

Then, the server subtracts the decoded signal from the superposed signal and decodes the
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next strongest signal. This process continues until the server decodes all signals. Without

loss of generality, we assume the power of the received signal p1h
2
1 > p2h

2
2 > · · · > pKh

2
K .

The achievable data rate for user k is

Rk = log2

{
1 +

pkh
2
k

τ(
∑K

j=k+1 pjh
2
j + σ2)

}
,∀k = {1, . . .K − 1}, (2.2)

where τ > 1 stands for performance degradation due to imperfect channel estimation and

decoding errors. The data rate for the last decoded user K is RK = log2(1 +
pKh2

K
τσ2 ).

For each client participating in the parameter uploading process, the maximum number

of transmission bits for the user k is mk = BRktk, where B is the uplink transmission

bandwidth and tk is the transmission duration. Fig. 2.1 illustrates the FL system and the

NOMA uplink NOMA. The red lines indicate the uplink, where K clients are scheduled to

transmit their local parameters using NOMA. The blue lines indicate the downlink to the

broadcast.

Server .
.
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UE 2

UE K 

2
tg

...

NOMA Round 1 NOMA Round 2

1tg 
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1
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tgK

NOMA Update Protocol
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Fig. 2.1: FL update and NOMA update model
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2.3 Adaptive Model Compression with NOMA Transmission

The section considers user scheduling to select K clients to participate in the NOMA

uplink process first. Once the K users are determined, adaptive gradient compression is

performed on each client based on the channel capacities before transmission.

2.3.1 NOMA Scheduling

The selection criteria for the K clients consider 1) NOMA fairness and 2) time budget.

1) NOMA fairness: the server performs a weighted average to the received model

parameters. An effective update capacity is defined to account for the actual contribution

for the weighted average,

Ref
k =

BRktk
|Dk|

. (2.3)

When the data rates of clients vary, FL using NOMA experiences performance degradation.

To make sure each user has a fair update, Jain’s fairness index is applied, which is defined

as:

Ju =
( 1
K

∑K
k=1R

ef
k )2

1
K

∑K
k=1(R

ef
k )2

. (2.4)

When fairness is maximized, Ju should be close to 1. A scheduling algorithm as in [41] is

applied to ensure that Ju gets close to 1.

2) Time budget: NOMA is a synchronous system, and FL waits for the K clients

to finish uploading. This means that the server needs to wait for the selected K clients

to finish their local computation and then start the transmission simultaneously. Since

computational capabilities vary between clients, the server will first select the clients who

completed the local computation.

2.3.2 Adaptive Model Compression

The ML model parameter is fixed when the architecture of the model is determined.

When the gradient size exceeds the maximum allowable transmission size mk, gradient

compression can be used. Gradient compression is executed adaptively to satisfy the channel
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capacity of different clients and to transmit the parameter as much as possible. Assuming

the total number of bits of the model is G, the compression rate for the user k is rk =

max{ G
mk
, 1}. When rk = 1, it means G < mk, and all gradient parameters are transmitted.

2.3.2.1 Gradient Quantization

A 32-bit floating-point number typically represents each model parameter in ML. Trans-

mitting full-length parameters tends to be expensive. Existing work [37] has shown that

good convergence of learning models with slight performance loss can be achieved with

gradient quantization. The ML system is resilient to the “rounding errors” caused by quan-

tization.

In empirical studies [42], the gradients are found to be distributed within the (−1, 1)

range. The DoReFa scheme [43] is suitable for compressing gradients. We use rqk =

max{ G
mk
, 1} to represent the compression rate of quantization. Then, the number of bits

used to represent a gradient value is bqk = ⌊ 1
rqk
32⌋, where ⌊·⌋ takes the floor operation. In

DoReFa, the mapping from a 32-bit floating point number to a quantized number is

qk(x) =
1

a
⌊ax⌉, (2.5)

where ⌊·⌉ rounds to the nearest integer, x is the gradient value, and a = 2b
q
k − 1. And qk(x)

is the quantized gradient value, represented by bqk bits.

Since each gradient parameter is quantized with a compression rate rqk, the transmission

size of all parameters is also quantized with a rate rqk.

2.3.2.2 Gradient Sparsification

Sparsification refers to the approach of sparsifying the gradient vector and setting a

fraction of the gradient values as zero. Only the remaining gradients will be sent. Empirical

experiments [16] have shown that a large proportion of gradient updates in a distributed

SGD are redundant. We keep the important gradients and leave the less critical gradients

as zero. The magnitude of the gradient is one of the metrics used to measure its impor-
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tance. The general rule is to use a threshold to perform the sparsification. Gradients with

a magnitude more significant than the threshold will be kept. Otherwise, they will be

mapped to zero. After sparsification, the nonzero gradients with their index information

will be uploaded to the server. The server will reconstruct the gradient vector based on the

information received and perform the aggregation.

Since the indices of the nonzero gradient values are also transmitted, the sparsification

rate can be calculated as

G

rsk
+

G

rsk32
b̄k = mk, (2.6)

where rsk = max{rsk, 1} is the sparsification rate, and b̄k is the number of bits used for

encoding the index information. G
rsk32

denotes the number of gradients transmitted when

the 32-bit floating point number represents each gradient.

Rather than directly transmitting the index information of the nonzero gradient, the

index’s relative distances between adjacent nonzero gradients are transmitted. Addition-

ally, we use a nonlinear coding method called the Golomb code [44] to encode the relative

distance, which can further save space with variant-length bit representation. The average

number of bits used to encode the relative distance is

b̄k = b∗k +
1

1− (1− rsk)2
b∗k
, (2.7)

where, b∗k = 1 + ⌊log 2( log(ϕ−1)
log(1−rsk)

)⌋, ϕ = 1+
√
5

2 . rsk and b̄k are coupled in Eq. (2.6) and Eq.

(2.7), they can be solved together. When rsk is obtained, the sparsification threshold can be

calculated.

Compared with the Algorithm in Chapter 1.2, the proposed algorithm applied NOMA

in practical wireless networks. Gradient compression is used to satisfy the channel capacity.

2.4 Simulation
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2.4.1 Simulation Settings

This section describes our communication model settings and the FL learning hyper-

parameter settings. We then present the simulation results on three datasets: MNIST,

FEMNIST, and Sent140.

The proposed NOMA-based transmission with the gradient compression scheme will

be evaluated from both a round and communication-time perspective. The TDMA-based

original FedAvg will serve as the baseline.

First, the channel parameters are given as follows. The bandwidth for uplink is B = 5

MHz, the path loss exponent α = 3, and the additive noise power density σ2 = −174

dBm/Hz. The number of users allowed to transmit via the NOMA link in each round is

assumed to be K = 10 or K = 20. All users are randomly distributed in a disk region

with a radius equal to 500 meters. The fading channel gain hk is calculated based on these

settings. The transmission power is assumed to be pk = 0.1 watts for all users. And the

duration of the uplink transmission tk = 0.5 s. The aggregated parameter is broadcast to

all clients without compression for the downlink. The transmission time is calculated as

Td = maxk
G

Bd log 2(1+pdγk)
, where Bd = 10 MHz is the downlink bandwidth, pd = 2 watts is

the downlink power, and γk is the signal-to-noise ratio (SNR) from the server to the client

k.

Three different datasets are explored to make the proposed scheme more convincing,

including two image datasets, MNIST (Modified National Institute of Standards and Tech-

nology) [45] and Federated Extended MNIST (FEMNIST) [46], and one text dataset, Sen-

timent140 (Sent140). Image classification tasks are performed on the two image datasets

with the same LeNet-300-100 model. On the contrary, the text sentiment analysis task is

performed on Sent140 with a long- and short-term memory (LSTM) classifier [47]. The

system heterogeneity is reflected in the non-IID data settings, which is the sample and

the number of samples varying across the clients. Here, a similar data division algorithm

from [47] is employed. The statistics of the datasets are summarized in Table 2.1.

For FL hyperparameter settings, the batch size B = 10 is used in all datasets. The
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Table 2.1: Statistics of Datasets

Dataset No. of
Parameters (P )

No. of
Devices (N)

No. of
Data (D)

MNIST 266,610 1,000 69,035

FEMNIST 266,610 200 18,345

Sent140 243,861 660 40,783

learning rate and communication rounds are fixed for each dataset but vary for different

datasets to optimize learning performance. Specifically, a learning rate η = 0.001 and the

communication round T = 100 are used for MNIST, η = 0.003 and T = 300 for FEMNIST,

and η = 0.05 and T = 100 for Sent140. The testing is performed on the test dataset.

The test accuracy is used as the metric to measure the learning performance in different

scenarios.

2.4.2 Simulation Results
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Fig. 2.2: Test accuracy of MNIST under non-IID vs. round
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In Fig. 2.2, the test results for TDMA FedAvg, NOMA with adaptive quantization,

and NOMA with adaptive sparsification for K = 10 and K = 20 are presented. The

average compression rate of adaptive compression to measure the compression effect. It is

summarized in Table 2.2. When the number of clients participating in the uplink process is

Table 2.2: Average Compression Rate

Uplink User Number (K) K = 10 K = 20

Adaptive Quantization 1.82 3.03

Adaptive Sparsification 1.89 3.23

fixed, adaptive quantization and adaptive sparsification achieve similar compression rates.

Compared to K = 10, K = 20 requires a higher compression rate.

From Fig. 2.2, all schemes achieve similar test accuracy (over 80% except NOMA

with adaptive quantization under K = 20 after 100 training rounds. TDMA FedAvg can

consistently achieve better test accuracy than NOMA compression with k = 10 or K =

20. This indicates that compression affects the learning process. For TDMA FedAvg,

k = 20 achieves better results since more users can reduce non-IID effects. However,

for NOMA with compression, K = 10 achieves better results. When K = 20, mutual

interference in NOMA causes a significant degradation in the data rate. It requires a higher

compression rate, which causes destructive effects. Learning performance is better with

adaptive sparsification than quantization in all NOMA scenarios.

In Fig. 2.3, the test accuracy of different schemes is evaluated from a time perspective.

For simplicity, we only show the user number K = 10 here, but the conclusion also applies

toK = 20 scenarios. Finishing an FL round takesKtk+Td for TDMA FedAvg, while tk+Td

for NOMA with adaptive compression schemes. It can be readily found that NOMA with

adaptive compression can achieve 85% of test accuracy with around 70 s. However, it takes

more than 500 seconds for TDMA FedAvg to achieve the same accuracy. NOMA-aided FL

can save 7× communication time in FL model training. Notably, adaptive sparsification also

achieves better learning performance than adaptive quantization during the whole learning
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Fig. 2.3: Test accuracy of MNIST under non-IID vs. time

process in NOMA.

To generalize the proposed scheme, we run tests on another image dataset, FEMNIST,

and a text dataset, Sent140. Here, we present the results for the scenarios K = 20. Figs. 2.4

and 2.5 show a fluctuation of test accuracy high, especially for the FEMNIST dataset under

all scenarios. It is highly non-IDD, and each client has a distinct data distribution. We can

see similar performance trends for TDMA FedAvg and our proposed NOMA with adaptive

compression schemes. The TDMA FedAvg can consistently achieve the best performance.

Sparsification can achieve better learning accuracy than quantization when NOMA is used.

Notice that the TDMA FedAvg and NOMA with adaptive quantization achieve almost

identical results from the round perspective. Therefore, it can be hard to distinguish the

figures.

From the communication time perspective, to achieve 79.5% of the test accuracy in

FEMNIST, TDMA FedAvg takes approximately 1600 s. Under NOMA with adaptive com-

pression, it costs around 200 s. Similarly, the communication time of the Sent140 dataset

is 510 s versus 75 s to achieve the 73.5% test accuracy. Our proposed NOMA with adap-
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tive compression schemes can significantly save communication time and speed up the FL

learning process.
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Fig. 2.4: Test accuracy of FEMNIST
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Fig. 2.5: Test accuracy of Sent140

2.5 Chapter Conclusion

In this chapter, we propose to apply NOMA in the FL for transmission of the client

model to the server on the uplink. Practical fading channels are considered in the uplink.
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Adaptive gradient compressions, including sparsification and quantization, are considered

to satisfy the channel capacity constraints. The effectiveness of the proposed scheme is

demonstrated by testing three public datasets with TDMA FedAvg as a baseline. From

the communication time perspective, the proposed NOMA with adaptive compression can

significantly reduce communication time while preserving test accuracy. Since FL is a

distributed learning system, NOMA with power control or multiple antenna systems can

further improve the learning performance in future research.
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CHAPTER 3

Scheduling Policy and Power Allocation for Federated Learning in NOMA-Based MEC

3.1 Introduction

In the previous chapter, we applied NOMA with adaptive gradient compression to

transmit the parameters of the FL model. The fading channel is considered in the uplink.

All clients employ a uniform transmission power. We also applied a user scheduling scheme

that considered the user’s fairness and time budget. Great learning performance is achieved

on three different datasets.

This chapter presents a joint user scheduling and power allocation scheme in the NOMA

uplink for FL model transmission. A graph-based user scheduling scheme helps to achieve

user fairness. And an optimal power allocation is constructed.

In communication-constrained environments, especially wireless networks, FL only se-

lects a subset of connected clients for model transmission on the uplink. Since the clients

collect the data from local environments, the data tends to be heterogeneous across clients.

The user scheduling selects clients participating in the model parameter transmission pro-

cess, contributing to global model aggregation. Therefore, user scheduling plays a crucial

role in the contribution of the global model. In [21], three different user scheduling poli-

cies, i.e., random scheduling, round robin, and proportional fair, are proposed to schedule

clients randomly, in groups with a round-robin way, or according to channel conditions,

respectively. The convergence of three scheduling policies is analyzed. Running FL with a

proportional fair scheme can reduce communication time compared to random and round-

robin scheduling to achieve the same learning performance under high SINR. However, the

researchers ignored the effects of data distributions. A coordinated scheduling and power

control scheme in cloud radio access networks is introduced in [48]. A maximum weighted

sum-rate problem is formulated and transformed into a maximum-weight clique problem
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to achieve the system’s weighted sum data rate. The user scheduling problem is then

solved using a graph-theoretical approach. The power allocation problem is resolved using

MAPEL [49] to achieve maximum weighted throughput through power control. In [50],

the spectrum efficient resource management problem (SERMP) under NOMA is investi-

gated. It is transformed into a maximum-weight independent set problem and solved using

graph theory. Jointly considering channel assignment and power control helps achieve high

spectrum efficiency.

Motivated by the above-mentioned user scheduling and power allocation scheme, we

apply user scheduling and power allocation in FL with NOMA transmission and adaptive

gradient compression. As implied in Chapter 2, channel capacity can significantly affect

FL learning performance. The user scheduling problem is first formulated to maximize the

weighted sum rate. This would allow more information to be transmitted to obtain better

learning results. Then, the maximum weighted sum-rate problem is transformed into a

maximum weight independent set problem, which is solved with graph theory. The power

allocation scheme is applied to maximize performance in each round.

3.2 System Model

As described in Chapter 2, the transmission of the FL model parameters in the uplink

is transmitted using NOMA. The wireless links between the server and clients are assumed

to be fading channels. Adaptive gradient quantization is applied here to satisfy the channel

capacity constraints. Specifically, we assume that the total number of clients in the FL

system is M , and the maximum number of clients selected to participate in NOMA uplink

transmission is K. The number of iterations or rounds that the learning model needs to

converge is T . Let M, K, and T be the set of all clients, the clients participating in the

NOMA uplink and FL training rounds, respectively. Due to bandwidth limitations, the

number of clients allowed to participate in the NOMA uplink in each round is usually much

smaller than the total number of clients, that is, M ≫ K. The number of rounds required

to converge the FL model is generally small. We assume M ≥ K × T here.
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3.2.1 Problem Formulation

As mentioned in Chapter 2, we consider user fairness in scheduling. Given the mas-

sive number of clients and the stake of fairness, we assume each client can be selected to

participate in the whole learning process at most once. The problem is formulated as an

optimization problem that maximizes the weighted sum rate of all participants. Three

following constraints are considered:

• C1: Each client can be selected at most once during the learning process.

• C2: At most K clients can be selected to participate in the NOMA uplink in each FL

round.

• C3: The transmission power of each client is limited.

Then, the optimization problem is formulated as follows:

max
∑
m,t

τ tmΛt
mR

t
m (3.1a)

s.t.
∑
t

Λt
m ≤ 1,∀m, (3.1b)∑

m

Λt
m ≤ K,∀t, (3.1c)

0 ≤ ptm ≤ ptmax
m , ∀(m, t) ∈M× T , (3.1d)

Λt
m ∈ {0, 1}, ∀(m, t) ∈M× T , (3.1e)

where Rt
m is the data rate for client m at round t, and τ tm is the weight for the data rate.

Λt
m ∈ 0, 1 is a binary variable that determines whether client m is selected in rount t. If

Λt
m = 1, client m is selected to participate in the NOMA uplink in the round t. Otherwise,

Λt
m = 0. Therefore, the constraint (3.1b), (3.1c), (3.1d) corresponds to C1, C2, and C3,

respectively. All possible scheduling patterns need to be traversed to find the optimal user

scheduling scheme to achieve the maximum weighted sum rate under these constraints.

This is highly complex when the total number of clients is large, and the number of clients

allowed to participate in the NOMA uplink in each round is small. Toward that end, a



30

graph-theory-based maximum-weight independent set problem is formulated and solved.

Once the user scheduling pattern is specified, the power allocation problem is solved using

MAPEL [49].

3.3 User Scheduling and Power Allocation

First, the user scheduling and power allocation diagram are given in Fig. 3.1. There

are total T columns and K rows. Each column represents an FL round, and at most K

users are in each column. Here, i, j, l are used to represent clients. And (i1, i2, . . . , iK),

(j1, j2, . . . , jK), · · · , and (l1, l2, . . . , lK) are different combinations of users with K clients in

each set in the FL round. ptk is the transmission power of the user k at round t. Therefore,

Fig. 3.1 overviews user scheduling and power allocation for FL NOMA uplink transmission.

Round 1 Round 2 Round T
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Tpl1

2p j
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Fig. 3.1: Diagram of user scheduling and power allocation

We first review all possible user patterns for the proposed joint user scheduling and

power allocation scheme. Then, optimal power allocation is applied to each pattern to find

the optimal one. This is very difficult to solve. The user scheduling aims to maximize the

system’s weighted sum rate. We first transform the maximum weighted sum rate problem

into a maximum-weight independent set problem and solve it using a graph-theory-based

method.
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We first introduce the maximum-weight independent set problem. An independent set

is a subgraph of an undirected graph with no edge between any two vertices. The maximum

independent set is the independent set with the most nodes in a given graph G. Fig. 3.2

gives a maximum independent set with nine blue vertices in a generalized Petersen graph

G(12, 4) [51].

[51]

Fig. 3.2: Maximum independent set

3.3.1 Scheduling Graph Construction

This section will describe how the user scheduling graph is constructed and how the

maximum weighted sum rate problem is transformed into the maximum weight independent
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set problem. In the following context, we will use vertex and edge concepts from graph

theory.

Let S be the set that includes all possible scheduling patterns for all clients and FL

rounds. s ∈ S is a possible schedule. The objective of the problem (3.1a) is to find a s that

maximizes the weighted sum rate.

The scheduling graph is constructed as follows. First, the vertices are generated. Each

vertex is a combination of multiple clients and a round. A vertex vj = (j1, j2, . . . , jK)t

represents clients j1, j2, . . . , jK scheduled in the round t. In this way,
(
M
K

)
×T vertices exist.

Notice that a client j can appear in
(
M
K

)
× K

M × T vertices, and each user combination

(j1, j2, . . . , jK) appears in T vertices. The edge construction should follow the constraints

C1 and C2 mentioned above in the problem formulation part. Specifically, for two vertices

vi = (i1, i2, . . . , iK)ti and vj = (j1, j2, . . . , jK)tj , if ik ∈ {j1, j2, . . . , jK}, ∀k = {1, . . . ,K}

(violates C1) or ti = tj (violates C2), then vi and vj are connected with an edge. If the

intersection of two vertices is non-empty, either from the client or round perspective, then

the two vertices are connected. Then, when selecting vertices to construct an independent

set, the constraints C1 and C2 are satisfied.

Here is an example of scheduling graphs with M = 4,K = 1, T = 2. There are total(
4
1

)
×2 = 8 vertices. The edges are constructed as mentioned above. In Fig. 3.3, each vertex

only connects to the vertices with intersections. For vertex (1)1, which means that client 1 is

scheduled to round 1, the possible independent sets are {(1)1, (2)2}, {(1)1, (3)2}, {(1)1, (4)2}.

Similarly, we can find all independent sets for each vertex in the graph.

When we set the weight of each vertex as the sum of the data rate of the clients

scheduled to the round specified by the vertex, the sum of the weight of all vertices in an

independent set equals the sum of the data rate of a possible user pattern. The maximum

weighted sum rate problem is transformed into a maximum-weight independent set problem.

The maximum-weight independent set problem involves searching all possible independent

sets and finding the one independent set with the maximum weight value.
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Fig. 3.3: A scheduling graph example

3.3.2 Optimal Scheduling Pattern

The scheduling graph can be extremely complicated when the number of clients M

is large. It can be challenging to review all vertices and find all independent sets. The

maximum-weight independent set problem is a strongly NP-hard problem [52], which is un-

likely that an efficient algorithm exists to find the solution. Here, a greedy-based algorithm

is employed to find the local optimal vertex and the next optimal vertex. This continues

until the maximum independent set is achieved.

As mentioned above, we first calculate the weight of each vertex as the sum data rate

of the clients scheduled in the round represented by the vertex. The weight of vertex vj is

defined as:

τ(vj) =
∑
k∈vj

τ tkR
t
k, (3.2)

where k is a client of the scheduled clients in round t. Then the sum of the weight of all

vertices in an independent set, which equals the sum rate of a scheduling pattern, can be
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calculated as: ∑
j

τ(vj) =
∑
k,t

τ tkR
t
k,∀(k, t) ∈ s, (3.3)

where vj represents vertex in an independent set s, and the summation involves all vertices

in s.

The objective function (3.1a) is equal to maximizing 3.3, which is the maximum-weight

independent set problem. The algorithm to find the optimal scheduling pattern is described

in Algorithm 2.

Algorithm 2 Optimal Scheduling Selection

1: Require: M,K, T , ptm, and htm.
2: Initialize O = ∅
3: Construct scheduling graph G
4: Compute τ(v), ∀v ∈ G
5: while G ̸= ∅ do
6: Q =

{
v|τ(v) ≥

∑
u∈J(v)

τ(u)
β(u)+1

}
7: Select v∗ = argmaxv∈Q

τ(v)
β(v)+1

8: Set O = O ∪ {v∗}
9: Set G = G− J(v∗)

10: end while
11: Output O

Here, O is the maximum-weight independent set, the optimal scheduling pattern to

maximize the weighted sum rate. J(v) is the subgraph of G that contains the vertex v and

the neighboring vertices of v. And β(v) is the degree of v, the number of vertices connected

to v. Q is the set of vertices where the weight of the vertex v is greater than the average

weight of J(v). v∗ is the local optimal vertex to maximize the average weight of J(v). The

algorithm 2 first calculates the weight of each vertex and then finds the local optimal vertex

to maximize the independent set. The selected vertex with its adjacent vertices will be

removed from the graph, and the next optimal vertex will be searched. In this way, the

maximum-weight independent set can be solved.
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3.3.3 Power Allocation

When the user scheduling pattern is determined, the power allocation can be executed

based on the channel condition to achieve the maximum sum rate. We use MAPEL [49] to

solve the power allocation problem in NOMA. The objective function (3.1a) as a logarithmic

function of SINR increases monotonically. It can be transformed into multiplying a series

of exponential linear fraction functions. Then, the optimal power allocation problem for a

specified user scheduling pattern can be written as:

max

K∏
k=1

(
µk(p)

ϕk(p)
)τk , (3.4a)

s.t. 0 ≤ pk ≤ pmax
k , ∀k ∈ K. (3.4b)

where p is the power vector, µk(p) =
∑K

j=k pjh
2
j + σ2, and ϕk(p) =

∑K
j=k+1 pjh

2
j + σ2. By

letting zk = µk(p)
ϕk(p)

, problem (3.4) can be reformulated as

max
K∏
k=1

(zk)
τk (3.5a)

s.t. 0 ≤ zk ≤
µk(p)

ϕk(p)
, ∀k ∈ K, (3.5b)

0 ≤ pk ≤ pmax
k , ∀k ∈ K. (3.5c)

The function f(x) =
K∏
k=1

(xk)
τk is an increasing function for all positive xk, where x is the

set of ek. For two vectors xl and xm, xl ⪰ xm means that each element in xl is greater than

the element in the same index in xm. Then we have f(xl) > f(xm). The optimal solution

occurs when z∗k = µk(p)
ϕk(p)

, and pk is in the feasible set. Now, this problem can be regarded

as a multiplicative linear fractional programming (MLFP) problem, and K linear equations

can be written as:

z∗kϕk(p
∗)− µk(p∗) = 0,∀k ∈ K. (3.6)

There are K linear equations, with K unknown variables pk. Random channel gains make

the linear equations independent, implying a unique optimal power allocation p∗. This can
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be solved efficiently with the algorithm in [49].

3.4 Simulation

As mentioned above, we also applied NOMA to the FL model parameter uplink trans-

mission. Adaptive gradient compression is used to satisfy channel constraints. In Chapter

2, a uniform transmission power is applied for all clients. Here, we compare the performance

of the following four schemes: 1) optimal joint user scheduling with power allocation (our

proposed scheme), 2) optimal user scheduling with maximum power, 3) random scheduling

with optimal power allocation, and 4) random scheduling with maximum power.

3.4.1 Simulation Settings

All the simulations are run on the MNIST dataset. A fully connected neural network,

LeNet-300-100, with two hidden layers, is used. The first layer has 300 neurons, and the

second has 100 neurons. Thus, the total number of model parameters, including bias, is

266, 610.

The communication parameter is listed below. The uplink bandwidth for NOMA is

B = 4 MHz, the uplink transmission duration is 0.2s, the pass loss exponent is α = 3, and

the noise power density is σ2 = −174 dBm/Hz. The scheduling graph construction requires

high memory to keep all information on the vertices and edges. So we set the number of

clients M = 300 and the number of clients participating in the NOMA uplink K = 3. The

maximum transmission power of any client is pmax = 0.01 watts. Clients are uniformly

distributed in a disk area with a radius of 500 m. Broadcast communication is applied to

the downlink from the server to the client with no gradient compression. The downlink

transmission time is Td = maxk
G

Bd log2(1+pdγk)
, where G is the total bit length of the model,

Bd = 10 MHz is the downlink bandwidth. pd = 0.2 watts is the server transmission power,

γk is the SINR from the server to the client k.

Learning hyperparameters are given in Table 3.1. The FL round T is also set to 35

rather than 100 to meet the computation memory constraints. To verify the effectiveness

and robustness of the proposed scheme, the data is allocated non-IID across clients.
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Table 3.1: Hyperparameters

Learning
rate size (η)

Batch
size (B)

FL
Round (T )

Training
set size

Testing
set size

0.01 10 35 90% 10%

3.4.2 Simulation Results
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Fig. 3.4: Test accuracy vs time

Under NOMA uplink transmission with adaptive gradient compression, FL achieves

better learning performance than TDMA FedAvg. With the specific settings mentioned

above, Fig. 3.4 shows that FL under NOMA with adaptive compression achieves 70% of

test accuracy after 10 s, while under TDMA, it takes about 22 s to achieve similar accuracy.

Fig. 3.5 compares four different user scheduling and power allocation schemes. It can

be observed that all schemes except the random scheduling with maximum transmission

power can obtain test accuracy above 60% after 35 learning rounds. This means that user

scheduling and power allocation are crucial to improving learning performance. The optimal
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Fig. 3.5: Test accuracy vs round

joint scheduling and power allocation scheme consistently achieves the best performance

during the learning process. Compared between user scheduling and power allocation,

optimal scheduling with maximum transmission power achieves better learning performance

than random scheduling with optimal power scheme, which implies that user scheduling

plays a more critical role.

3.5 Chapter Conclusion

In this chapter, we jointly consider user scheduling and power allocation in NOMA

uplink for FL model parameter transmission. The maximum weighted sum rate problem

is transformed into a maximum-weight independent set problem, solved using a graph-

theory-based method. User scheduling and power allocation can significantly affect learning

performance.



39

CHAPTER 4

Approximate Wireless Communication for Lossy Gradient Updates in Federated Learning

4.1 Introduction

In previous chapters, we applied user scheduling and power allocation to NOMA uplink

transmission of FL model parameters. Optimal joint user scheduling and power allocation

can significantly improve FL learning performance. The simulation results also imply that

user scheduling has a greater impact on learning performance than power allocation. These

protocols can significantly reduce communication time and improve learning speed. How-

ever, reliable transmission is required. The information is transmitted with forward error

correction (FEC) schemes [53] to ensure that every bit received is identical to the trans-

mitted one. In addition, packet retransmission [54] is applied to recover the entire packet

when the error is beyond the error correction capabilities of FEC. The adaptive gradient

compression in the previous chapters allows the transmission in capacity-limited channels

while maintaining good learning results. In another way, it indicates the error resiliency

of ML systems. This motivated us to transmit the model parameters in an “approximate”

way without FEC and packet retransmission to reduce the communication overhead.

4.1.1 Error Correction in Wireless Transmission

When UAVs or IoT devices serve as clients, the connection to the server is usually

through wireless links [55]. Wireless channels are unreliable, resulting in huge errors during

transmission. Several methods have been applied to overcome transmission errors in wire-

less communications. Wireless networks also use TCP/IP protocols to connect devices. In

physical layers, transmission power can be increased to improve signal quality and signal-

to-noise ratio (SNR) to mitigate noise impacts. However, this approach increases energy

costs and drains the battery of energy-constrained mobile devices. Additionally, it could
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cause interference to adjacent clients. In the upper layers, the parity check, the checksum

check, and the cyclic redundancy check (CRC) can be used for error detection. When er-

rors are detected, forward error correction (FEC) [56] can be used to correct transmission

errors. FEC encodes the original message into error correction codes (ECCs), adding re-

dundant information. Therefore, the receiver can recover the transmitted message from the

received message with errors. The simplest ECC is the repetition code, where each bit is

repeated several times. The receiver recovers the message that occurs most often. However,

it is not efficient because of the structure. Efficient ECCs, including low-density parity

check (LDPC) and turbo code, are promising to achieve Shannon capacity. Although FEC

can correct random errors, it introduces redundancy and requires additional computation

and communication [54]. Additionally, redundancy determines error correction capability.

That is, a good error correction capability requires high redundancy. And high redundancy

resulted in high computation/communication costs. Therefore, there exists a trade-off be-

tween error correction capability and computational / communication efficiency. When the

errors are beyond the ECC’s correction capability, packet retransmission will be applied in

the transport layer to ensure reliable transmission.

In FL, [57] focused on the transmission errors of the model. A wireless link with erro-

neous communication is considered. Rather than applying FEC or packet retransmission,

the authors discard erroneous local models at the server and reuse the previous local mod-

els to continue training. This saves transmission time and ensures a reliable transmission.

However, the most recent local models are lost and the global model converges more slowly.

In [58], a FedLC framework was proposed. The User Datagram Protocol (UDP) rather than

the Transmission Control Protocol (TCP) is applied to transmit the model update in a lossy

communication channel. Data throughput is improved. FEC and packet retransmission are

further employed to alleviate packet loss. Exploring FL model transmission in unreliable

links is still required.

4.1.2 Approximate Communication

Modern ML systems are compromised by millions or even billions of model parameters.
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The existing dropout randomly drops out nodes during training to reduce overfitting and

improve generalization. This is one piece of evidence that ML is error-resilient. In [59],

the error and fault tolerance in the ML system is reviewed. Large model designs in neural

networks can be regarded as redundancy. The more neurons in the hidden layer, the better

the error tolerance. In [60], the error resilience of the ML system is leveraged to design

energy-efficient accelerators. Fewer bits are used for inexact computing. The FL system is

a distributed ML system with model aggregation to obtain global models. It comes with

the ability to overcome errors. In addition, model averaging helps to reduce error levels,

especially when the number of clients is significant.

Approximate communication has been proposed to reduce communication bottlenecks

in large-scale distributed systems [61]. This allows transmission with minor errors to achieve

efficiency gains. Transmission accuracy is sacrificed to trade efficiency. There are two re-

quirements for approximate communication: 1) the system has error resiliency, and 2) the

error is acceptable. As a distributed ML system, FL shows error resiliency characteristics

in multiple aspects. The gradients in ML vary in a small range to keep the model stable.

This is demonstrated in empirical studies in [42, 62, 63]. The gradients are distributed in a

small range within (−1, 1) or even (−0.01, 0.01). In [42], the gradient histograms in fully

connected layers and convolutional layers are presented in different training iterations. The

probability density function (PDF) and cumulative distribution functions (CDFs) of the

gradients are given in [62]. The gradients are Gaussian or near Gaussian distributed. Since

the gradient value is small, FL performance would not be affected when the transmission

error is constrained to an acceptable level. The error resilience of the FL system can also

be indicated by gradient compression. In previous chapters, we applied gradient quanti-

zation and sparsification to compress the gradient vector size and individual gradient bit

representation. Learning performance is achieved with a slight loss due to information loss.

Lastly, the FL aggregation process is a weighted averaging. The average operation helps to

constrain the error to an acceptable level.
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4.1.3 Literature Review

Approximate communication has been applied in various domains, such as network-on-

chip (NoC) design and media transmission. The principle of applying approximate commu-

nication to the NoC design is to improve energy efficiency with less computation. In [64],

approximate communication was used to design the photonic NoC to reduce the overhead

laser and turning power. A 56.4% reduction in power consumption is obtained. In [65]

a quality control method is introduced that reduces the size of the packet and reduces

power consumption and transmission latency. Quality requirements determine the error

resilience levels and error threshold. In [66], packet production and reduction of errors for

NoC are proposed as approximate communication solutions. For media transmissions, such

as images or video, errors are allowed if the error level is acceptable for human eyes. The

approximate communication was introduced in [67] to reduce the usage of spectroscopy in

wireless media delivery. The significant bits in the packets are put in protected positions

while the insignificant bits are approximately transmitted. Video quality is improved by

5 to 20 dB. In [68], approximate communication is used in distributed optimization with

a Newton-type method. These works demonstrate the broad application of approximate

communication to reduce communication overhead and transmission latency.

4.1.4 Contribution and Organization

Motivated by the work mentioned above, we introduce an approximate communication

framework to reduce latency in FL training and speed up the learning process. The FL

model parameters are transmitted with errors caused by channel noise. No FEC or packet

retransmission is executed on the transmitter side to help correct errors on the receiver side.

Sacrificing accuracy provides low latency, reduced communication overhead, and decreased

computation.

The principal contributions can be summarized as follows:

• A mathematical analysis of ML gradient is given. The backpropagation could result

in gradient vanishing and gradient exploding problems.
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• Prior knowledge of the gradients is utilized to confine the received gradients in a small

range. The errors are constrained to a small range, making them acceptable to the

FL system.

• The gradients are transmitted approximately without FEC and packet retransmission.

Additionally, gray coding with high-order modulation protects the most significant

bits.

• Extensive simulations are performed to show the effectiveness of the proposed approx-

imate communication protocol for transmitting the FL model.

In Section 4.2, the system model is presented, including the FL model and the wireless

channel model. Section 4.3 provides the mathematical analysis of gradients in fully con-

nected networks and convolutional neural networks. The proposed method for FL model

transmission is demonstrated in Section 4.4. The simulation settings and results are pre-

sented in Section 4.5. And finally, the chapter conclusions are given in Section 4.6.

4.2 System Model

4.2.1 FL System

The FL model is similar to the model in Chapter 1. M clients are connected to

the server to train global models. Here, the gradients instead of weights information are

uploaded from the client to the server. The local gradient at each client can be calculated

as follows:

gmt = ∇Fm(wt). (4.1)

Then, the global gradient after aggregation at the server is

gt =
M∑

m=1

|Dm|
|D|

gmt . (4.2)
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The server stores the global weight information of the previous round and calculates the

current global model as follows:

wt+1 = wt − ηgt. (4.3)

The calculated global model is sent back to the clients for the next round of training.

4.2.2 Wireless Channel Model

FL operates at the application layer without knowing the details of implementing the

lower-layer gradient transmission. It accepts data from the lower layers, assuming reliable

transmission. Here, we consider a wireless transmission with the time division multiple

access (TDMA) scheme. The received signal at the server can be written as:

rmt =
√
pmt (dm)−αhmt g

m
t + nmt , (4.4)

where rmt denotes the received signal from client m at round t. p is the transmission power,

d is the transmission distance, α is the path loss exponent, h denotes the fading factor, g

is the gradient, and n represents the Gaussian noise. cmt =
√
pmt (dm)−αhmt is the channel

gain, which is assumed to be known by both the transmitter and the receiver. The noise

resulted in transmission errors.

The quadrature amplitude modulation (QAM) scheme is applied. Gradients are con-

verted into bits, then mapped to symbols, and transmitted through the wireless fading

channels. The signal is decoded with maximum likelihood estimation on the receiver side

and then demodulated with the QAM constellation. Then, the bits are transformed back

to the gradients. The demodulation process can be represented as follows:

ĝmt = argḡmt ∈G min ||rmt −
√
pmt (dm)−αhmt ḡ

m
t ||2, (4.5)

where G is the set of points on the constellation diagram. ḡmt denotes a possible symbol

point within G, while ĝmt denotes the optimal one.

The main notation used in the article is summarized in Table 4.1.
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Table 4.1: Summary of Notations

Notation Definition

M ; m The total number of clients connected to the server; the client
index

L; l The last layer of the neural network; the neural network layer
index

x; y; ŷ Features of a data point sample; corresponding true label of the
data point; the predicted label

w; g; b Model weight; model gradient; neural network bias

η; δ Learning rate; intermediate quantity as “error”

C; σ(·) Loss function; activation function

z; a Intermediate output of neuron; neuron output

Nl; Ng; N The number of neurons in the l-th layer; the number of gradients
in neural network; the number of data samples

i; j; k; p; q Index

s; t; u, v Index

t Time (round) index

h; α; n; r Channel factor; path loss exponent; noise; received signal

pmt ; dm The transmission power of the clientm at time t; Distance between
the client m and the server

4.3 Gradient Analysis with Back-propagation

ML problems are optimization problems. ML model training aims to find the optimal

point to minimize the loss functions. Since neural networks are usually non-convex, SGD

and back-propagation are typical methods for model training. However, gradient vanishing

or exploding problems can occur in deep neural networks, preventing model learning. The

transmission of gradients with errors can cause the gradient to change in random directions.

The received gradients can be substantial, making the model unstable. Or they can be

tiny. And nothing is learned. Studying the gradient behavior and the existing method to

prevent gradient vanishing/exploding helps to design the method to perform approximate

communication.

4.3.1 Gradient in Fully Connected Neural Networks

In neural networks, the neuron is the fundamental unit for processing input and deliv-

ering the information to the next layer [69]. The diagram is illustrated in Fig. 4.1. It shows
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the j-th neuron in the l-th layer.
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Fig. 4.1: Artificial neuron diagram

The feedforward equation for this neuron can be written as

zlj = blj +

Nl−1∑
k

wl
jka

l−1
k ,

alj = σ(zlj).

(4.6)

The activation function σ(·) provides a non-linear generalization ability to the model. Nl−1

is the number of neurons in the (l − 1)-th layer, which is the adjacent layer in front of the

l-th layer. a is the output of the activation function. The neuron accepts data inputs when

it is located in the first layer. And equation (4.6) becomes

z1j = b1j +

N0∑
k

w1
jkx

0
k,

a1j = σ(z1j ).

(4.7)
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Since backpropagation is applied in the model optimization, the four fundamental

equations for a fully connected neural network are [70]:

δLj =
∂C

∂zLj
=

∂C

∂aLj

∂aLj

∂zLj
=

∂C

∂aLj
σ′(zLj ), (4.8a)

δlj =
∂C

∂zlj
=

Nl+1∑
k

∂C

∂zl+1
k

∂zl+1
k

∂alj

∂alj

∂zlj
=

Nl+1∑
k

δl+1
k wl+1

kj σ
′(zlj), (4.8b)

∂C

∂blj
=
∂C

∂zlj

∂zlj

∂blj
= δlj , (4.8c)

∂C

∂wl
jk

=
∂C

∂zlj

∂zlj

∂wl
jk

= δlja
l−1
k . (4.8d)

L is the final layer in neural networks. δlj represents the “error”. It is introduced as

an intermediate quantity for the calculation of partial derivatives in Equations (4.8c) and

(4.8d). Then the weight update can be written as

wl
jk = wl

jk − ηδljal−1
k . (4.9)

Calculating the gradient gljk = ∂C
∂wl

jk

= δlja
l−1
k involves two terms δlj and al−1

k . The

output of the activation function al−1
k depends on the selection of the activation function.

For the sigmoid function, al−1
k ∈ (0, 1) regardless of the input value zl−1

k . A more detailed

analysis of the activation function can be found in [71].

Another term δlj is calculated in equation (4.8b). It is a summation of the products

of three terms, error in the next layer δl+1
k , weight wl+1

kj , and derivative of the activation

function σ′(zlj). The summation runs through all neurons in the (l + 1)-th layer.

First, the value of σ′(zlj) depends on the specific activation function. It ranges from

(0, 0.25) for the sigmoid function and {0, 1} for ReLU. The weight value wl+1
kj depends on

the initialization of the model, the learning rate η, and the previous round gradients based

on equation (4.3). The model initialization usually generates the initial weight randomly

within the range of (−1, 1) [72] from Gaussian or uniform distribution [73]. The recent

initialization method improves initialization. In [74], the weight is initialized with a uniform
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distribution considering the number of neurons, w ∼ U [ 1√
Np
, 1√

Np
], Np is the number of

neurons in the previous layer. The weight is initialized with a Gaussian distribution in [75].

The w ∼ N (0,
√

(2/Np)), where 99.7% of the weights are within [3∗
√
(2/Np), 3∗

√
(2/Np)].

Lastly, the error δl+1
k can be expressed as in Equation (4.8b) with elements in the (l+2)-th

layer as follows:

δl+1
k =

∂C

∂zl+1
k

=

Nl+2∑
i

∂C

∂zl+2
i

∂zl+2
i

∂al+1
k

∂al+1
k

∂zl+1
k

=

Nl+2∑
i

δl+2
i wl+2

ik σ′(zl+1
k ).

(4.10)

The error in the previous layers is related to the subsequent layers, and the relationship

ends at the final layer.

For classification problems, softmax is applied to normalize the prediction probability.

Cross-entropy is the common loss function. It can be written as:

C = −
∑
i

yi log(ŷi), (4.11)

where yi is the input label, ŷi is the softmax probability, i.e.,

ŷi = σs(zi) =
ezi∑
k e

zk
. (4.12)

The derivative of ŷi is

∂ŷi
∂zj

=


ŷi(1− ŷj), if i = j;

− ŷj · ŷi, if i ̸= j.

(4.13)

Then, the equation (4.8a) can be written as:

δLj =
∂C

∂ŷLi

∂ŷLi
∂zLj

= −
∑
i

yi
∂ log(ŷi)

∂ŷi

∂ŷi
∂zj

= −
∑
i

yi
1

ŷi

∂ŷi
∂zj

,

= −yj(1− ŷj)−
∑
i ̸=j

yi
1

ŷi
(−ŷj · ŷi),

= ŷj ·
∑
i

yi − yj .

(4.14)
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And, equation (4.8d) becomes:

∂C

∂wl
jk

= δlja
l−1
k

= [

Nl+1∑
p

δl+1
p wl+1

pj σ′(zlj)]a
l−1
k

= {
Nl+1∑
p

[

Nl+2∑
q

δl+2
q wl+2

qj σ′(zl+1
j )]wl+1

pj σ′(zlj)}al−1
k

= · · ·

=

Nl+1∑
p

· · · [
NL∑
i

δLi w
L
ijσ

′(zL−1
j )]× · · · × al−1

k

(4.15)

When l = 1, it becomes

∂C

∂w1
jk

=

Nl+1∑
p

· · · [
NL∑
i

δLi w
L
ijσ

′(zL−1
j )]× · · · × x0k. (4.16)

From equation (4.15), the gradient calculation involves multiplication and summation.

When
∑Nl+1

p δl+1
p wl+1

pj σ′(zlj) for each layer is greater than 1, the multiplication increases

the gradient even further. This could result in gradient problems. Conversely, when the

summation is close to 0, gradient vanishing problems could occur.

4.3.2 Gradient in Convolutional Neural Networks

CNN is powerful in extracting local features from images. A typical CNN consists

of compromised convolutional layers followed by grouping layers for feature learning and

fully connected layers for classification [76]. Without loss of generality, we consider a CNN

network with two convolutional layers, two max-pooling layers, and two fully connected

layers. The diagram is shown in Fig. 4.2.
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SoftmaxInput Pool1Conv1 Conv2 FC1Pool2 FC2 Output

Fig. 4.2: Convolutional neural networks architecture

The feedforward process can be written as [77]:

z1j,k = b1j,k +
∑
p

∑
q

w1
p,qx

0
j+p,k+q, (4.17a)

a1j,k = σ(z1j,k), (4.17b)

a2j,k = max(a12j,2k, a
1
2j+1,2k, a

1
2j,2k+1, a

1
2j+1,2k+1), (4.17c)

z3j,k = b3j,k +
∑
p

∑
q

w3
p,qa

2
j+p,k+q, (4.17d)

a3j,k = σ(z3j,k), (4.17e)

a4j,k = max(a32j,2k, a
3
2j+1,2k, a

3
2j,2k+1, a

3
2j+1,2k+1), (4.17f)

z5i = b5i +
∑
j,k

w5
i;j,ka

4
j,k, (4.17g)

a5i = σ(z5i ), (4.17h)

z6i = b6i +
∑
k

w6
i,ka

5
k, (4.17i)

a6i = σ(z6i ). (4.17j)

Here, the 2 × 2 max-pooling layers follow the convolutional layer. The backpropagations

for equation (4.17) are



51

δ6i =
∂C

∂z6i
=
∂C

∂a6i

∂a6i
∂z6i

=
∂C

∂a36
σ′(z6i ), (4.18a)

δ5i =
∂C

∂z5i
=

N6∑
k

∂C

∂z6k

∂z6k
∂a5i

∂a5i
∂z5i

,

=

N6∑
k

δ6kw
6
kiσ

′(z5i ), (4.18b)

δ3j,k =
∂C

∂z3j,k
=

∑
i

∂C

∂z5i

∂z5i
∂a4s,t

∂a4s,t
∂z3j,k

,

=
∑
i

δ5iw
5
i;s,t

∂a4s,t
∂a3j,k

∂a3j,k
∂z3j,k

,

=
∑
i

δ5iw
5
i;s,t

∂a4s,t
∂a3j,k

σ′(z3j,k),

=


∑

i δ
5
iw

5
i;s,tσ

′(z3j,k), if case 1;

0, otherwise;

(4.18c)

δ1j,k =
∂C

∂z1j,k
=

∑
u

∑
v

∂C

∂z3u,v

∂z3u,v
∂a2s,t

∂a2s,t
∂z1j,k

,

=
∑
u

∑
v

δ3u,vw
3
u−s,v−t

∂a2s,t
∂a1j,k

∂a1j,k
∂z1j,k

,

=
∑
u

∑
v

δ3u,vw
3
u−s,v−t

∂a2s,t
∂a1j,k

σ′(z1j,k),

=


∑

u

∑
v δ

3
u,vw

3
u−s,v−tσ

′(z1j,k), if case 2;

0, otherwise;

(4.18d)

∂C

∂w6
i,k

=
∂C

∂z6i

∂z6i
∂wi, k6

= δ6i a
5
k, (4.18e)

∂C

∂w5
i;j,k

=
∂C

∂z5i

∂z5i
∂w5

i;j,k

= δ5i a
4
j,k, (4.18f)

∂C

∂w3
p,q

=
∂C

∂z3j,k

∂z3j,k
∂w3

p,q

= δ3j,ka
2
j+p, k+q, (4.18g)

∂C

∂w1
p,q

=
∂C

∂z1j,k

∂z1j,k
∂w1

p,q

= δ1j,kx
0
j+p, k+q. (4.18h)
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The softmax function is also applied in the final layer, and the cross-entropy function

is used as the loss function. There are two types of gradients: ∂C
∂w6

i,k
, ∂C

∂w5
i;j,k

in the fully

connected layer, and ∂C
∂w3

p,q
and ∂C

∂w1
p,q

in the convolutional layer.

∂C
∂w6

i,k
can be calculated from equation (4.18a). As mentioned above, it is identical to

calculating in fully connected neural networks. For ∂C
∂w5

i;j,k
,

∂C

∂w5
i;j,k

= [

N6∑
k

δ6kw
6
kiσ

′(z5i )]a
4
j,k. (4.19)

The summation counts all neurons in layer 6.

For ∂C
∂w3

p,q
and ∂C

∂w1
p,q

, only the non-zero conditions are considered.

∂C

∂w3
p,q

= {
∑
i

δ5iw
5
i;s,tσ

′(z3j,k)}a2j+p, k+q

= {
∑
i

[

N6∑
k

δ6kw
6
kiσ

′(z5i )]w
5
i;s,tσ

′(z3j,k)}a2j+p, k+q

(4.20)

∂C

∂w1
p,q

= {
∑
u

∑
v

δ3u,vw
3
u−s,v−tσ

′(z1j,k)}x0j+p, k+q

= {
∑
u

∑
v

[
∑
i

δ5iw
5
i;s,tσ

′(z3j,k)]w
3
u−s,v−tσ

′(z1j,k)} × x0j+p, k+q

= {
∑
u

∑
v

[
∑
i

(

N6∑
k

δ6kw
6
kiσ

′(z5i ))w
5
i;s,tσ

′(z3j,k)]w
3
u−s,v−tσ

′(z1j,k)} × x0j+p, k+q

(4.21)

The gradient calculation in convolutional layers also involves multiplication and sum-

mation, while the gradient in the front layers involves more arithmetic operations.

4.3.3 Gradient in Deep Neural Networks

When the neural networks get deeper, and the number of neurons in each layer in-

creases, the summation and multiplication operations accumulate in backpropagation. This

would result in gradient exploding problems [78]. The trained model becomes unstable and

produces random results. It has been well-studied that gradient clipping, proper weight
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initialization, and batch normalization can prevent gradient exploding. Specifically, gra-

dient clipping helps to constrain the gradient with a predefined threshold. The threshold

is introduced as an additional hyperparameter. If the threshold is too small, the learning

ability is restricted. If it is too large, the clipping effects may be affected.

When
∑Nl+1

p δl+1
p wl+1

pj σ′(zlj) is small in all layers, the gradient vanishing problem can

occur [79]. The most effective method to mitigate the risk of gradient vanishing is using

the ReLU activation function to replace the Sigmoid function. The ReLU function and its

derivative is

σ(x) =


0, x ≤ 0;

x, x > 0.

(4.22)

σ′(x) =


0, x ≤ 0;

1, x > 0.

(4.23)

This results in the derivative of the activation function in (4.8b) being 0 or 1. It contributes

to the stabilization of the neural network.

4.4 Proposed Method

Motivated by the effectiveness of gradient clipping in mitigating gradient exploding

problems, we first present a received bit masking scheme to constrain the received gradient

values to a small range. Then, the error is also restricted to a small range. Approximate

communication is applied to transmit the gradients with errors. No FEC or packet retrans-

mission is used. The error level is measured with a l2 norm. Small transmission errors

produce better learning performance. Gray coding with high-order modulation protects

the most significant bits to enhance learning performance. Finally, gradient compression is

added to further reduce the communication costs in gradient transmission.

4.4.1 Received Bits Masking

In section 4.3, we provided the mathematical analysis of the gradient calculation in

fully connected neural networks and CNN. Backpropagation can cause gradient exploding
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or vanishing problems. However, the gradient should be distributed in a small range in a

good learning procedure. This section uses bit-masking to constrain the gradient in a small

range.

In ML, gradients are usually represented with 32-bit floating-point numbers, defined

by the IEEE-754 standard. The first bit is the sign bit, followed by 8 bits for the exponent

part and 23 bits for the fraction part. In wireless transmission, an error can occur at any

position. Interleaving can help disperse errors and avoid block corruption.

b 0 b bb b b b b b b bb b b b b b b bb b b b b b b bb b b b

sign exponent(8 bits) fraction(23 bits)

Fig. 4.3: Received gradient bit masking

As shown in Fig. 4.3, we mask the second bit, i.e., the first bit in the exponent part,

of the received gradient as 0 at the receiver side. Other received bits are kept as is. This

constrained the received gradient value in the (−2, 2) range. And the magnitude of the

transmission error is smaller than 2. The error level is restricted to an acceptable level.

4.4.2 Approximate Wireless Communication

Since the error is restricted to an acceptable level, the gradient can be transmitted

without FEC and packet retransmission. The received gradients have errors and are not

perfectly accurate. The error level is measured in [80] with a relative difference. Here, the

relative error is defined as:

Erg =
|g − g̃|
g

, (4.24)

where g represents the original gradient value, g̃ denotes the received value after bit masking.

Given the multitude of gradients present within the neural network, we employ the l2-norm

of errors instead of relative error to evaluate the impact of errors. The l2-norm of errors is
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written as:

||Er||2 =

√√√√ Ng∑
i=1

|gi − g̃i|2, (4.25)

where Ng is the number of gradients in the neural network.

4.4.3 Most Significant Bit Protection

Furthermore, the gray coding can protect MSBs from erroneous wireless transmission.

For example, when 16-QAM is employed with gray coding. The constellation map can be

shown in Fig. 4.4.

Scatter plot

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

s15

s1

s0

s15s14s12 s13

s3

s6 s7s4

s2

s8

s5

s11s10s9

s0

Fig. 4.4: Gray coding in 16-QAM constellation map

In Fig. 4.4, each symbol s represents 4 bits. The most left bit (underlined) represents
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the MSB, while the most right bit represents the least significant bit (LSB). Assume that

the transmission probability for each symbol is identical. The error probability of MSB is

smaller than that of LSB. For example, if symbol s0 is transmitted and an error occurs due

to noise. The decoded symbol can be s1, s4, or s5 when the noise power is subordinate.

For simplicity, we assume that the error symbol can only be s1, s4, s5. The MSB remains

constant, while the LSB changes when the decoded symbol is s4 or s5. The error appears

twice. Assuming that the symbol error probability (SEP) of s0 to s1 is ρ, then the SEP for

s0 to s4 is ρ and
√
2ρ for s5. This is summarized in Table 4.2.

Table 4.2: Gray Coding with 16-QAM MSB/LSB Error Count

Symbol Potential Error
Symbol

MSB Error Count/
Probability

LSB Error Count/
Probability

s0 s1, s4, s5 0 / 0 2 / (1 +
√
2)ρ

s1 s0, s2, s4, s5, s6 2 / (1 +
√
2)ρ 3 / (1 + 2

√
2)ρ

s4 s0, s1, s5, s8, s9 0 / 0 2 / (1 +
√
2)ρ

s5
s0, s1, s2, s4,
s6, s8, s9, s10

3 / (1 + 2
√
2)ρ 3 / (1 + 2

√
2)ρ

In the IEEE-754 standard, the exponent part determines the integer and fraction, while

the fraction part only determines the fraction. The exponent part, located on the left, is

more significant. Gray coding protects the exponent part, which reduces error levels.

4.4.4 Gradient Compression

As mentioned in the previous chapters, gradient compression can reduce communication

costs. However, this would cause a slight loss in the final learning performance. Gradient

sparsification is applied here. The gradients with the largest gradient magnitude and their

position information are transmitted, specifically in an accurate method.

The entire process is summarized in Algorithm 3.

4.5 Simulation

We present extensive simulation results to verify our proposed methods. First, we
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Algorithm 3 Approximate Wireless Communication for Federated Learning

1: Initialization: Server initializes w0 and broadcasts to all Clients.
2: while not converge do
3: Client:

Receives the most recent aggregated global model.
Performs local computation as Eq.(4.1).
Sends local gradient directly without error correction coding through wireless chan-

nels.
4: Server:

Receives the local gradient with errors.
Sets the second bit in the 32-bit gradient representation as 0, leaving the other bits

as received.
Sends the aggregated global model to clients.

5: end while

give the bit error rate (BER) versus the SNR under the specific wireless channel conditions.

Lower-order modulation exhibits better BER at the same SNR level. Specifically, QPSK gets

better BER than 16-QAM and 256-QAM. Then, we show the FL learning performance with

the proposed method and the classical error correction and packet retransmission (ECRT)

method. Three public image datasets are applied under different wireless conditions. Then,

the learning performance is given under different SNRs. Better channel conditions can

achieve better learning performance. Then, the error level is measured at a fixed SNR in

various rounds and across SNR. Learning performance versus time is given to evaluate the

time efficiency of the proposed method. Learning performance at different BERs is also

shown. Finally, the result with added gradient compression is presented.

4.5.1 Simulation Settings

The simulation considers an FL system with M = 100 clients. Three different datasets

are applied: MNIST, Fashion-MNIST, and Cifar. The IID and non-IID data distributions

are considered. CNNs with varying architectures of the model are employed. CNN for

the MNIST, Fashion-MNIST, and Cifar-10 datasets has 21,840, 65,558, and 62,006 model

parameters, respectively. ReLU is used as an activation function. The learning rate η is

0.01, and the training batch size is 10.

For the communication model, the path loss exponent is α = 3, and the distance
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between the server and the clients is 10 meters. Client transmission power is normalized to

1. Unless otherwise specified, QPSK modulation is applied in the simulation.

4.5.2 Simulation Results

0 5 10 15 20 25 30 35 40 45
SNR (dB)

10 3

10 2

10 1

BE
R

QPSK
16 QAM
256 QAM

Fig. 4.5: BER

The BER results of QPSK, 16-QAM, and 256-QAM at different SNRs are given in Fig.

4.5. QPSK achieves the lowest BER. The BER at 0 dB, 10 dB, and 20 dB is summarized

in Table 4.3.

Table 4.3: BER Summary

SNR QPSK 16-QAM 256-QAM

0 dB 2.11× 10−1 3.28× 10−1 4.26× 10−1

10 dB 4.36× 10−2 1.23× 10−1 2.79× 10−1

20 dB 4.91× 10−3 1.90× 10−2 1.12× 10−1

First, the convergence of the proposed method is presented in Fig. 4.6. Compared
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with the ECRT scheme, the proposed scheme achieves similar convergence points under a

high SNR regime while experiencing a marginal reduction under a low SNR regime. In Fig.

4.6(a), the learning performance with our proposed method experiences significant fluctua-

tion compared to the transmission of ECRT. This variance is attributed to the transmission

errors introduced by the approximate communication. Except for Cifar-10, the learning

performance converges closely with ECRT transmission for MNIST and Fashion-MNIST.

In a high SNR regime, that is, SNR = 20 dB, the fluctuation becomes smaller, as shown

in Fig. 4.6(b). Owing to the non-IID data distribution, the proposed method presented a

better learning performance at specific points.
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(a) Test accuracy of IID data at SNR=10 dB
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Fig. 4.6: Test accuracy under different scenarios

Wi-Fi transmission targets the SNR range of 10-30 dB [81] in a good transmission.

When SNR=0 dB, there will be no valid packet due to transmission errors and packet

retransmission. Our proposed method still achieves about 60% test accuracy when SNR=0

dB, as shown in Fig. 4.7. The proposed method is superior to the ECRT method at a very

low SNR. Also, the high SNR gets better test accuracy than the low SNR.

To quantify the error impacts, the l2-norm is applied. Fig. 4.8(a) shows the l2-norm gra-

dient error with 256-QAM on the MNIST dataset under non-IID conditions at SNR=10dB.

The error accumulates linearly. The average error is used to evaluate the impact of the SNR
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Fig. 4.7: Test accuracy of MNIST, non-IID with different SNR

on transmission errors, which is calculated in 100 rounds in each SNR. Fig. 4.8(b) presents

the average error decrease with SNR increasing. This explains why learning performance is

better in a high SNR regime.

The ECRT scheme ensures reliable gradient transmission through FEC and packet

retransmission. On the contrary, native error transmission transmits the gradient without

any protection, resulting in a flat learning curve, i.e., random guessing. Our proposed

scheme leverages knowledge of gradient and gradient clipping. It outperforms naive error

transmission, yielding significantly enhanced outcomes.

Communication time is compared in different transmission schemes. For the ECRT

scheme, a practical IEEE 802.11 protocol with LDPC code is applied. The coding rate

is set as 1/2. As reported in [82], for a code rate of 1/2 with a code length of 648, the

minimum Hamming distance is 15. The error correction capability is 7 bits. The packet

retransmission rate is 3.4% and 23% at SNR=20 dB and SNR=10 dB, respectively. The

packet retransmission affects TCP throughput [83]. In Fig. 4.9, it takes 2× time for the

ECRT scheme to achieve 80% test accuracy than the proposed scheme at SNR=20 dB.
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Fig. 4.8: l2 error norm

When SNR = 10 dB, it spends 3× time. Compared to the ECRT scheme, the proposed

scheme saves time.

The gray coding in high-order modulation can protect the MSBs. The Fashion-MNIST

dataset is used. In Fig. 4.10(a), the learning results with different modulations at the same

SNR = 10 dB are presented. The learning results are similar. This underlines the resilience

conferred by gray coding across varying modulation schemes.

Table 4.4: SNR for Target BER

BER QPSK 16-QAM 256-QAM

4.36× 10−2 10 dB 16 dB 26.1 dB

4.91× 10−3 20 dB 26.1 dB 36.5 dB

Table 4.4 presents the SNR values for the target BER for different modulations. In Fig.

4.10(b), the learning performance with gray coding and 256-QAM surpasses both QPSK

and 16-QAM when the BER is identical. The MSBs get better protection with 256-QAM

modulation.

In FL, weighted averaging is used for model aggregation. The effects of the number of

users are presented in Fig. 4.11. 20, 50, 80, or 100 users are selected in each FL round.

In Fig. 4.11(a), the ECRT transmission is used, producing similar learning outcomes. In
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Fig. 4.9: Test accuracy of MNIST under non-IID

Fig. 4.11(b), it is simulated with QPSK modulation at SNR=20dB. When 20 users par-

ticipate in the learning with transmission errors, the learning result experiences significant

fluctuations. When 50, 80, or 100 users engage in learning, the test accuracy mirrors the

ECRT transmission. The learning outcomes are enhanced by involving more users in the

approximate communication.

In Fig. 4.12, the gradients are sparsified to 10%, 30%, 50%, 70% and 90%, respectively.

10% means that only 10% of the gradients are kept, and the best learning performance

is achieved. Under approximate communication, the gradients with errors can also be

destructive rather than constructive. From a time perspective, when the sparsification rate

is 10%, while the indices of the kept gradients need to be transmitted in accurate channels,

compression still saves close to 10× time.

4.6 Chapter Conclusion

This chapter introduces a novel approach for transmitting the parameters of the FL

model in wireless networks. Unlike the existing transmission methods, which rely on forward
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Fig. 4.10: Test accuracy of Fashion-MNIST under IID
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Fig. 4.11: Test Accuracy of Cifar-10 under non-IID

error correction and packet retransmission to ensure reliable transmission, the proposed

scheme involves gradient masking and approximate communication with transmission errors.

Extensive simulations demonstrate the effectiveness of the proposed method, which is more

time-efficient. A number of users participating in the learning process can reduce the effects

of transmission errors. Gradual sparsification can further reduce communication costs and

mitigate the side effects of approximate gradient transmission.
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CHAPTER 5

User Scheduling for Federated Learning Through Over-the-Air Computation

5.1 Introduction

In the last chapter, we applied approximate communication in FL model transmission.

The gradient distribution and gradient clipping method to mitigate the gradient exploding

problems motivated us to mask the received bits and constrain the received gradient values.

The controlled error with the error resilience of the ML system makes the FL system obtain

great learning performance with at least half of the time saved. This chapter explores

different user scheduling policies in the transmission of FL models. Rather than using

NOMA in Chapters 2 and 3, we use over-the-air computation (AirComp) as the transmission

protocol in the uplink from clients to the server. It not only reduces communication time

by allowing multiple clients to transmit the signal in the same channel simultaneously, as

NOMA does, but also reduces computation time by aggregating the local model to build

the global model in the air.

In [20], FL is presented through AirComp. AirComp uses the superposition nature of

a wireless multiple-access (MAC) channel to compute multiple signals in the air. The FL

system aggregates the received local models, constructs the global model, and distributes the

global model to clients. The server only cares about the aggregated model rather than the

individual local model. So AirComp is a good fit for FL model transmission. Since AirComp

computes the global model in the air, the server cannot decode and get the individual local

model. Therefore, it is computation-efficient and provides extra privacy protection for the

clients.

The power control for AirComp in the fading channel is presented in [84] and [85].

The objective is to minimize the computation error caused by the analog transmission.

The mean square error (MSE) of the received and transmitted signals is used to measure
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the computation error. Power control can significantly reduce MSE. In [39], the authors

evaluated the FL learning performance under AirComp in both the digital and analog

approaches. The analog approach learns faster and achieves better learning results than the

digital one. Under the IID data distribution, the analog AirComp almost gets the learning

performance as the error-free shared link. In [86], the FL learning rate in AirComp is

optimized. The MSE and test accuracy are used to measure learning performance. However,

no existing work has considered the user scheduling scheme for FL under AirComp, which

can significantly affect learning performance.

This chapter considers FL via AirComp to reduce communication and computation

time. The transmitter power control and receiver beamforming design are employed to

minimize MSE. Three different user scheduling schemes are explored to study their ef-

fects on FL learning performance. One scheme considers the channel conditions from the

communication perspective, another considers the significance of model parameters from

the computation perspective, and the third is hybrid, which considers both the channel

conditions and the significance of model parameters.

5.2 System Model

This chapter describes the AirComp communication protocol for FL. The FL system

is considered to have a server and M clients. The server has N antennas, and each client

has only one antenna. Under AirComp, multiple clients can transmit the model parameters

simultaneously in the same channel, like in NOMA. Since channel conditions affect AirComp

performance, poor client conditions can degrade MSE and FL learning performance. Implied

by [20], a maximum number of clients can transmit via AirComp, which is assumed to be

K here. Table 5.1 summarizes the main notation used.

The FL system is described in Chapter 1. Clients send local model parameters to the

server for aggregation. The server performs the model aggregation to obtain the global

model. With AirComp, computation and communication happen simultaneously in the air.

The client waveforms are superposed to get the aggregated model.
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Table 5.1: Summary of Notations

Notation Definition

M; K; W The total number of clients connected to the server; the maximum
number of clients participating FL in each round; the intermediate
number of clients when considering both the channel condition and
the significance of the model.

N; T The number of antennas in the server; the total number of com-
munication rounds

xk; yk; wk; Features of a data point sample on client k; corresponding label
of data point; parameter set describe the mapping from xk to yk

F (·); f(·); η Global loss function; local loss function; learning rate

Dk; |Dk| Dataset on user k; cardinality of the dataset Dk

hk; bk; sk Channel vector of user k; transmitter scaling factor of user k;
normalized local update at one time slot

P0; ϕk(·); ψ(·) Maximum transmit power; pre-processing function of user k; post-
processing function at PS

r; a; n Received signal vector; receiver beamforming vector; additive
noise

g; ĝ; τ summation result before post-processing; estimation of g; normal-
ization factor

SK Selected client set

The received signal at the server is given by

r =
K∑
k=1

hkbksk + n, (5.1)

where ||sk||22 = I, n ∼ CN (0, σ2I) is the noise vector. The transmit power constraint at

client k is

E(|bksk|2) = |bk|2 ≤ P0, (5.2)

where P0 is the maximum transmit power.

The target function on the server side can be written as v = ψ(
∑K

k=1 ϕ(sk)), where

ϕk(x) = |Dk|x is the pre-processing function on the client k, and ψ(x) = 1
|D|x is the post-

processing function on the server side. Then, the summation of the transmitted signal is as

follows.

g =

K∑
k=1

ϕk(sk). (5.3)
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Since beamforming is used on the receiver side, the value after beamforming is

ĝ =
1√
τ
aHr =

1√
τ
aH

K∑
k=1

hkbksk +
aHn√
τ
. (5.4)

MSE is used to measure the distortion of ĝ with respect to g,

MSE(ĝ, g) = E(|ĝ − g|2)

=
K∑
k=1

| 1√
τ
aHhkbk − ϕk|2 +

σ2||a||2

τ
.

(5.5)

The transmitter power control parameter bk and the receiver beamforming parameter a are

optimized to minimize MSE. First, it is assumed that a is given and bk can be optimized

with a uniform forcing method such as [87]:

bk =
√
τϕk

(aHhk)
H

||aHhk||2
. (5.6)

Then, the normalization factor τ can be calculated as

τ = P0min
k

||aHhk||2

ϕ2k
. (5.7)

Now, the MSE problem (5.5) can be written as

MSE =
||aH||2σ2

τ
=
σ2

P0
max
k

ϕ2k||aH||2

||aHhk||2
. (5.8)

To get the best learning performance, the MSE needs to be minimized. The problem can

be further written as

min
a

max
k

ϕ2k||aH||2

||aHhk||2
. (5.9)
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This min-max problem can be reformulated as:

min
a

||a||2

s.t.
||aHhk||2

ϕ2k
≥ 1.

(5.10)

Eq. (5.10) is a quadratically constrained quadratic programming problem (QCQP) with

non-convex constraints, which is a hard NP problem [88]. In [87], semidefinite programming

(SDP) is applied to solve the QCQP problem to find the initial solution. Then, successive

convex approximation (SCA) is employed to improve the solution. The beamforming factor

a can be solved this way, and all other parameters can be obtained. Minimum MSE can be

achieved.

Algorithm 4 Beamforming Optimization by SDP and SCA

1: Initialize a
2: SDP method to obtain A∗

3: if rank(A∗) ̸= 1 then
4: ã∗ =

√
λ1u1

5: Set ck = [ℜ(ã∗Hhk),ℑ(ã∗Hhk)], ∀k
6: repeat

7: SCA method to solve ||ck||2
ϕ2
k
≥ 1 to obtain a and ck

8: until criteria satisfied
9: else

10: a =
√
λ1u1

11: end if

Algorithm 4 describes the SDP and SCA methods to optimize the receiver vector.

Here, A∗ = minATr(A), where Tr(A) is to obtain the trace of A, A = a ∗ aH . λ1 is

the largest eigenvalue of A∗ and u1 is the corresponding eigenvector. ck is the auxiliary

variable. ℜ(·) and ℑ(·) are to get the real and imaginary parts of the complex value.

5.3 User Scheduling Policies

Three different user scheduling policies are considered. One is the channel condition-

based scheduling. The clients with the highest channel gains will be selected. Another is
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the model-significance-based scheduling. Clients with the most significant model parameters

will be selected. Hybrid scheduling first considers channel conditions to save energy, and

only selected clients will begin local training. Then, the clients with the most significant

model parameters will be scheduled to upload their local models.

5.3.1 Channel Condition Based Scheduling

The channel condition-based scheduling selects the K users with the highest channel

gains, i.e.,

SK = max
[K]
{||h1(t)||2, . . . , ||hM (t)||2}, (5.11)

where, ||hk(t)||2 =
√∑N

i=1 |hik(t)|2 is the l2-norm channel gain of client k. Each client needs

to send a small amount of information to the server for channel estimation. Compared with

the transmission of the model parameters, the time for channel estimation can be ignored.

From equation 5.8, when the channel gain hk is the only variable, other parameters

are fixed. The higher the channel gain, the smaller the MSE value. Channel condition-

based scheduling selects clients with the highest channel gains to upload their local model

parameters. Unselected clients can skip local training in this round and save computational

energy.

5.3.2 Model Significance Based Scheduling

In model significance-based scheduling, model significance is used as a criterion to select

clients. The l2-norm of the model parameter is applied to evaluate the significance of the

model. Each client first performs local training and obtains the local model parameters wt
k.

And then sends its l2-norm ||wt
k||2 to the server. The server selects the clients with the

largest ||wt
k||2 values,

SK = max
[K]
{||w1(t)||, . . . , ||wM (t)||}. (5.12)

This scheme requires all clients to execute local training and send their l2-norm of the

model parameter to the server. This causes extra energy waste for the clients that will not
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be selected later. Additionally, stragglers in the FL system can take a long time to complete

local training, increasing the overall learning time of the FL.

5.3.3 Hybrid Scheduling

The channel conditions and the significance of the model can both affect the FL learning

performance. Therefore, both are considered in the hybrid scheduling. The server selects

W clients according to channel conditions as in channel condition-based scheduling. Then,

K clients with the highest model significance are selected from the selectedW clients. Here,

K ≤W ≤M . In this way, only W clients need to do local training to get the local model.

Channel-based scheduling reduces the extra energy costs for unselected clients, while

model significance-based scheduling helps directly improve FL learning performance. Hy-

brid scheduling takes advantage of both.

5.3.4 Time Complexity Analysis

The end-to-end time to complete learning performance is critical for latency-constrained

applications. We analyze the communication and computation time to complete one FL

round. For simplicity, the computational capacity for each client is assumed to be identical.

The local computation time to complete the ML task is tp. The communication time to

transmit a small amount of information to the server for channel estimation is to, and

the communication time to upload model parameters is tu. Table 5.2 summarizes the

corresponding time complexity.

Table 5.2: Complexity Analysis

Channel Based
Scheduling

Model update
Based Scheduling

Hybrid
Scheduling

Communication Time M ∗ to +K ∗ tu K ∗ (to + tu) M ∗ to +K ∗ tu
Computation Time K ∗ tp M ∗ tp W ∗ tp
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5.4 Simulation

This section presents the FL simulation under AirComp with different user scheduling

schemes. Learning performance is evaluated using test accuracy.

5.4.1 Simulation Settings

The channel parameters are given as follows. The total number of clients in the FL

system isM = 1000. Clients are uniformly distributed in a disk area with a radius of 500 m.

The transmit signal to noise ratio P0
σ2 is fixed at 42 dB, and the channel path loss exponent

is α = 3. The channel is assumed to be constant during one FL round but varies across

rounds. The number of antennas on the server is N = 4. The number of clients who can

participate in AirComp uplink in each round is K = 10. And the intermediate number of

clients scheduling in hybrid scheduling is W = 20.

MNIST dataset is applied for ML tasks with LeNet-300-100 neural networks. Hyper-

parameters are summarized in Table 5.3. The data are distributed non-IID to make the

proposed scheme more convincing.

Table 5.3: Hyperparameters

Learning
rate size (η)

Batch
size (B)

FL
Round (T )

Training
set size

Testing
set size

0.01 10 60 90% 10%

5.4.2 Simulation Results

Fig. 5.1 presents the FL test accuracy under channel condition-based scheduling and

random channel scheduling. Random channel scheduling randomly selects clients with dif-

ferent channel conditions uniformly. Channel condition-based scheduling achieves higher

test precision during the learning process than random channel scheduling. However, it ex-

periences more significant fluctuations. The MSE obtained in the channel condition-based

scheduling can be much smaller than that obtained by random scheduling: the non-IID
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Fig. 5.1: Test accuracy under channel condition-based scheduling

data distribution results in large fluctuations. For random channel scheduling, learning

performance is dominated by channel conditions rather than data distribution. Therefore,

it experiences less fluctuation.

In Fig. 5.2, the test accuracy of the model significance-based and random model

scheduling is given. Model significance-based scheduling is smoother than random model

scheduling. The difference between model significance-based scheduling and random model

scheduling is smaller than channel-based scheduling.

Fig. 5.3 shows three different user scheduling schemes. Hybrid scheduling achieves

the learning performance between channel-based scheduling and model significance-based

scheduling. Hybrid scheduling balances learning performance and energy costs.

5.5 Chapter Conclusion

AirComp can further reduce the communication and computation time needed to trans-

mit the FL model. Three different user scheduling schemes are used to investigate the effects

of user scheduling on FL performance. The model significance-based scheduling directly af-
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Fig. 5.2: Test accuracy under model significance based scheduling
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fects learning performance and achieves the best test accuracy. Channel condition-based

scheduling saves energy while experiencing higher learning fluctuations. Taking into account

both the channel condition and the significance of the model, hybrid scheduling achieves a

good trade-off.
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CHAPTER 6

A New Implementation of Federated Learning for Privacy and Security Enhancement

6.1 Introduction

In previous chapters, we studied the method to reduce communication time and speed

up the learning process in FL. Different communication protocols have been used, including

NOMA, approximate communication, and AirComp. Adaptive gradient compression is

used to satisfy channel capacities. User scheduling and power allocation schemes are also

considered to improve FL learning performance. AirComp can also provide better privacy

protection by hiding the individual local model from the server and eavesdroppers.

This chapter will focus on security and privacy issues in FL. FL is designed to provide

privacy protection for client data by sharing models rather than sharing raw data. However,

several problems have occurred that make the FL system insecure. First, FL is a distributed

system with multiple clients. Some clients may be attacked and controlled by malicious

parties. Malicious clients can launch Byzantine attacks [89] to send poisoning models to

the server and degrade learning performance. Furthermore, data privacy can still be leaked

even with model sharing. Membership inference attacks [90] can infer the data from the

gradients and the model information. These problems challenge the security and privacy of

FL, especially in wireless networks.

Byzantine attacks refer to attacks initiated by internal nodes of the system. In FL,

malicious clients send the poisoning model parameters to the server. The attack can be a

data poisoning attack or a model poisoning attack. In data poisoning attacks, the labels

are changed, or false data are injected to produce falsified model parameters and mislead

the global model. In model poisoning attacks, malicious clients manipulate local models

and directly affect the global model. It is challenging for the server to examine the local

model parameters of each client and identify the poisoning model. However, malicious
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clients may occasionally send poisoning information to the server to reduce the probability

of identification. When a secure aggregation protocol is applied, and the individual local

client model is invisible to the server, the server has no access to local models and cannot

distinguish the malicious ones.

Various works have been performed to defend against Byzantine attacks in distributed

ML. In [91], the researcher applied the variational autoencoder (VAE) to extract the feature

of the local models and identify malicious clients with a dynamic threshold. However, it can

be challenging to determine the threshold. In other words, they aim to mitigate the adverse

effects rather than identify malicious clients. Krum aggregation [92] selects some clients

as benign and trusted clients and estimates the true center based on the majority and the

squared distance. This may cause the learned global model to be biased, especially when the

data are non-IID distributed. Geometric median aggregation [93] considers compounding

to mitigate the adverse effects. However, it requires knowing the individual client model,

which may arouse membership inference attacks.

Membership inference attacks can cause disclosure of privacy. The attacker can in-

fer the data with only gradient and model information. A classical method to improve

privacy protection is differential privacy (DP) [94]. It typically adds random noise to the

information and hides the real information. In FL, the local model can be uploaded with

random noise added, and the real local model is hidden. Since global aggregation uses

the weighted average, the noise effects can be ignored when the number of clients is large

enough. Another method to protect information privacy is to hide the individual model

from the eavesdroppers, i.e., only the aggregated model is accessible. The server only cares

about the aggregated model, so hiding the individual model does not affect the learning

process. Secure aggregation (SecAgg) [95] applies vector masking to hide the individual

model from the server. AirComp [96] can aggregate the local model in the air and pro-

duce the aggregated model for the server. These methods can protect user privacy from

eavesdroppers and dishonest servers.

This chapter will introduce a novel model update-based (MUB) aggregation method to
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defend against Byzantine attacks and improve FL security. It will be proven to be resilient to

additive noise attacks and sign-flipping attacks. The individual client model initialization

(ICMI) scheme initializes the global model of each client rather than accepting a global

model from the server. By combining the MUB and ICMI schemes, FL’s security and

privacy protection are enhanced.

6.2 System Model

6.2.1 Classical FL

As mentioned in Chapter 1, the FL system considers M clients in total. K clients

can be scheduled each round to upload their local model parameters. When the gradient

information is uploaded, it is called FedSGD. For FedAvg, the local model information is

transmitted to the server. For FedAvg, the local SGD can be written as:

wk
t = wt − η∇Fk(wt). (6.1)

The global aggregation at the server is

wt+1 =

K∑
k=1

|Dk|
|D|

wk
t . (6.2)

In Fig. 6.1, each FL round is divided into two parts: global aggregation and local

training. The server initializes the global model and sends it to clients in the first round.

6.2.2 Model Update

The global aggregation in Equation (6.2) applies a smile arithmetic averaging algorithm.

It is highly efficient. However, it was not robust enough to deal with Byzantine attacks.

The model update is defined as the difference between the current and previous models.

For the local model update

ukt = wk
t − wk′

t , (6.3)
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Round 2Round 1

Local trainingAggregation

Fig. 6.1: FedAvg FL round

where wk
t is the local model after local training, and wk′

t is the local model before local

training. The global model update is then defined as

ut+1 =
K∑
k=1

|Dk|
|D|

ukt . (6.4)

The global model update rather than the global model is sent back to the clients from

the server. So, the local model before local training wk′
t is not identical to the global model.

In addition, local models before local training vary between clients. The local model before

local training wk′
t is calculated based on the local model in the last round wk

t−1 and the

most recent global model update ut as:

wk′
t = wk

t−1 + ut. (6.5)

The distribution of the difference between the model and the update of the model is

given in 6.2 learning in a non-IDD data setting. Compared to the model, the distribution

of the model update is more focused. In Fig. 6.2(a), the distribution of local model update

ukt is close to the distribution of global model update ut. Similarly, the distribution of the

local model wk
t in Fig. 6.2(b) is close to the distribution of the global model wt.

In [97], the authors investigated the model distribution. They proposed the norm-

clipping approach to make the norm of the model parameters small enough so that the
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Fig. 6.2: Distribution of model update and model with non-IID data in FL

server is less susceptible to the poisoning models of backdoor attacks. The norm clipping

can effectively defend against backdoor attacks with little interference from the primary

task. Based on the comparison of the distribution of model update and model, model

update can be a natural substitute for the norm-clipped model. It should work well to

defend against Byzantine attacks.

6.2.3 Initial Client Model Initialization

In classical FedAvg, the server initializes the global model and then sends it to clients.

Thus, each client has the same starting point for learning. The initial client model initial-

ization (ICMI) scheme initializes the model on clients rather than on the server. This helps

to hide the initial model of the clients from the server and eavesdroppers. Since both model

initialization methods randomly initialize the model, the ICMI scheme does not affect the

convergence of learning.

6.3 Proposed Method

This section will first describe the model update-based (MUB) FL for defending against

Byzantine attacks. Then, the ICMI scheme with secure aggregation hides individual client

models to prevent membership-inference attacks. Finally, MUB and ICMI are combined to
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improve FL security and privacy.

6.3.1 MUB FL

Aggregation

Round 1 Round 2

Local model calculation
Local training

Local model update calculation

...

Fig. 6.3: MUB FL round

In classical FedAvg, there are two stages in each FL round: 1) global model aggregation

at the server and 2) local model training at the clients. For the MUB FL, as shown in Fig.

6.3, the aggregation stage aggregates the model update rather than the model, and three

sub-stages are followed, that is, local model calculation, local training, and local model

update calculation. The three substages can be summarized as follows:

wk′
t = wk

t−1 + ut, (6.6a)

wk
t = wk′

t − η∇Fk(w
k′
t ), (6.6b)

ukt = wk
t − wk′

t . (6.6c)

In ML, the gradient is usually defined as g = ∇F (w). Then, the local gradient in FL

can be written as gkt = ∇Fk(wt). According to equations (6.6b) and (6.6c), we can rewrite

ukt = −ηgk′t . This only applies to one local iteration performed in one FL round. However,

multiple local iterations are executed in FL to reduce the communication frequency and
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save bandwidth. Then equation (6.6b) becomes

wk
t (0) = wk′

t , (6.7a)

wk
t (j + 1) = wk

t (j)− η∇Fk(w
k
t (j)). (6.7b)

wk′
t serves as the local learning starting point as in equation (6.7a). Then, multiple local

iterations are executed in Equation (6.7b).

Classical FedAvg sends the global model to clients after global aggregation. The learn-

ing starting point for each client is identical in each round. For MUB FL, the local model

in the first round is wk
1 = wk′

1 − η∇Fk(w
k′
1 ), where wk′

1 = wk
0 + u1. When wk

0 = w1 and

uk = 0, it is identical to the classical FedAvg. However, starting from the second round,

the learning starting point for each client in MUB FL becomes different. In MUB FL, the

global model update ut is sent back to the clients after aggregation. Therefore, the global

model update is identical for all clients. However, the local model wk
t−1 differs across clients.

According to Equation (6.6a), the local learning starting point wk′
t is diverse. This is the

main difference between the classical FedAvg and the MUB FL. Although the local learning

starting point in MUB FL differs between clients, MUB FL can still achieve convergence

similar to classical FedAvg without any attacks.

6.3.2 ICMI FL

As mentioned above, the ICMI scheme hides the initial model to protect user privacy.

However, when ICMI is applied with classical FedAvg, the local client model in the fol-

lowing round is still available to eavesdroppers. Membership inference attacks can still be

executed. Extra operations are needed to hide the individual client models. Secure aggrega-

tion (SecAgg) or AirComp can securely aggregate local models. Only the aggregated model

is available to the server and eavesdroppers. Since the local model is hidden, eavesdroppers

cannot infer the local data.
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6.3.3 MUB-ICMI FL

Rather than combine ICMI with SecAgg or AirComp, ICMI can be combined with

the MUB scheme. In MUB FL, the model update is transmitted rather than the model.

With ICMI, local models in each round are hidden from the server and eavesdroppers. The

MUB-ICMI scheme can improve both security and privacy. The MUB-ICMI algorithm is

summarized in Algorithm 5.

Algorithm 5 MUB-ICMI FedAvg

1: Each client initializes wk
0 , server initializes u1 = 0

2: Server executes:
3: for each round t=1,2,... do
4: K ← max(C ·M, 1)
5: St ← (random set of K clients)
6: for each client k ∈ St in parallel do
7: ukt ← ClientUpdate(k, ut)
8: end for
9: ut+1 ←

∑K
k=1

|Dk|
|D| u

k
t

10: end for
11: ClientUpdate(k, ut): // Run on client k
12: B ← (split Pk into batches of size B)
13: wk′

t ← wk
t−1 + ut

14: wk
t (0)← wk′

t

15: for each local iteration j from 0 to N − 1 do
16: for batch b ∈ B do
17: wk

t (j + 1)← wk′
t (j)− η∇Fk(w

k′
t )(j)

18: end for
19: end for
20: ukt ← wk

t (N)− wk′
t

21: return ukt to server

6.4 Simulation

This section introduces the simulation settings and results. We first show the conver-

gence of the MUB FL, ICMI FL, and MUB-ICMI FL algorithms and the classical FedAvg

algorithm in image classification tasks without attacks. Then, the four schemes are tested
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under Byzantine attacks, i.e., additive noise attacks and sign-flipping attacks. The MUB-

ICMI FL still achieves a good learning performance in defending against Byzantine attacks.

6.4.1 Simulation Settings

The FL system here is considered to have M = 100. For simplicity, we allow all clients

to participate in the learning process in each round. The MNIST image dataset is used for

image classification tasks. Two machine learning models, multilayer perception (MLP) and

convolutional neural networks (CNN), are applied. For MLP, only one hidden layer is used.

For the CNN model, two convolutional layers are followed by the max-pooling layers and two

fully connected layers at the end. The IID and non-IID data distributions will be explored to

verify the effectiveness of the proposed scheme with statistical heterogeneity. The test runs

on the entire test dataset with global models. In MUB FL, the global model is calculated

by accumulating the global model update from the initial training. The hyperparameters

of the learning model are the learning rate η = 0.01, the batch size B = 5, and the local

iteration N = 2.

6.4.2 Simulation Results

First, the convergence of classical FedAvg, MUB FL, ICMI FL, and MUB-ICMI FL

can be demonstrated using MLP and CNN models in IID and non-IID data distributions

without any attacks. In Fig. 6.4, we show the test accuracy of the MNIST non-IID dataset

with the CNN model without any attacks. The four schemes achieve similar convergence

after 200 training rounds. The MUB scheme achieves slightly better learning performance

at the initial learning stage. This may be because the non-IID data cause less impact on

MUB FL than classical FedAvg. The MUB-ICMI FL is slightly worse due to the double

effects of ICMI and MUB. Similar learning performance is achieved when the data is IID

or the model is MLP. All four schemes converge.

Additive noise and sign-flipping attacks are used here to verify the effectiveness of the

proposed algorithm against Byzantine attacks. Additive noise attacks add random Gaussian

noise to the transmitted information before sending it to the server. Malicious clients want
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Fig. 6.4: Test accuracy of non-IID data with CNN model without any attacks

to affect the global model with random noise and large power. However, it can be easily

detected by calculating the l2-norm. So, the random noise power should align with the true

information. The sign-flipping attacks flip the sign of each parameter in the information

transmitted, while keeping the magnitude unchanged. It is difficult to detect and, thus,

more harmful. The number of malicious clients is assumed to be 0, 20%, 30%, and 40% of

the total of clients.

First, we show the classical FedAvg learning performance under these attacks. In Fig.

6.5, the test accuracy of IID data with additive noise attacks using classical FedAvg is

shown in 6.5(a). The test accuracy of non-IID data with sign-flipping attacks is given in

6.5(b). Learning performance worsens with more clients becoming malicious and sending

falsified information to the server. With 40% malicious clients, FL learns nothing under

sign-flipping attacks in non-IID data distributions. Compared to additive noise attacks,

sign-flip attacks can cause worse effects on FL learning. In the following, we will only show

the test result of non-IID data distribution under sign-flipping attacks.

Fig. 6.6 presents the test accuracy of non-IID data with the MLP model using the
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Fig. 6.5: Test accuracy with CNN model using classical FedAvg
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Fig. 6.6: Test accuracy of non-IID data with MLP model using MUB scheme
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Fig. 6.7: Test accuracy of non-IID data with MLP model using ICMI scheme

MUB scheme. Learning experiences large fluctuations. However, it achieves good final test

accuracy even in the worst case with 40% malicious clients after 100 learning rounds. The

ICMI scheme achieves learning performances similar to those of the classical FedAvg, as

shown in Fig. 6.7. It is designed to enhance privacy protection rather than defend against

Byzantine attacks.

Finally, in Fig. 6.8, the test accuracy of the MUB-ICMI scheme under sign-flipping

attacks is given. It is trained with 200 Fl rounds. For scenarios with 20% and 30% malicious

clients, the final test accuracy is comparable to the scenario with “No attack”. Even in the

worst case with 40% malicious clients, the learning result is much better than classical

FedAvg.

6.5 Chapter Conclusion

In this section, we focus on security and privacy issues in FL. The model update-based

(MUB) FL is proposed to defend against Byzantine attacks. An individual client model

initialization (ICMI) scheme is introduced to hide the initial model and enhance privacy.
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Fig. 6.8: Test accuracy of non-IID data with CNN model using MUB-ICMI scheme

The combined MUB-ICMI scheme can effectively improve security and privacy protection

in FL. Tremendous simulations have been performed in different scenarios to prove the

effectiveness of the proposed schemes.
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CHAPTER 7

CSMAAFL: Client Scheduling and Model Aggregation in Asynchronous Federated

Learning

7.1 Introduction

In the previous chapter, we studied the method for improving the security and privacy of

the FL system. Model update-based (MUB) aggregation can improve the system’s resilience

against Byzantine attacks. The individual client model initialization (ICMI) scheme can be

combined to hide the individual local model and enhance the privacy of local data.

This chapter introduces asynchronous FL to solve heterogeneous problems in the FL

system. The FL system is a distributed ML system with many clients performing real

training. And the server only aggregates the locally trained models and sends the global

model back. The server has no control over the client’s participation in the learning pro-

cess. The server waits for a specific time duration or for a specific number of clients to

upload their model parameters, then performs the aggregation. The clients in the FL sys-

tem are equipped with various computing, memory, and storage capabilities. Computing-

constrained clients may experience delays and become stragglers when processing large

volumes of data. This would significantly affect learning performance or speed during the

learning process.

In [1], the researchers proposed to select a subset of clients in each round, and it is not

necessary to wait for all clients to complete their local training. However, straggler issues

are not fully addressed as user scheduling schemes are not specified. When the aggregation

strategy is to select a fixed number of clients, the waiting time is not yet determined. A

predefined synchronous window was proposed in [98] to aggregate as many clients as possible

in a given time. However, slow clients may not be able to contribute to the global model.

In [99], an adaptive computation scheme was proposed in a resource-constrained system
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where clients can perform local computations based on local computational capabilities.

The server still needs to wait for the clients to upload their locally trained models.

Asynchronous FL (AFL) [100] can be applied to deal with straggler problems. The local

model computation at the clients and global aggregation at the server can be decoupled.

The local computation becomes a non-blocking step for the global aggregation. In [25], an

online AFL algorithm with non-IID data is proposed. The server starts the aggregation

once it receives the local model parameter from a single client. There is no waiting time

for other clients to complete their local computations and upload the model. The newly

aggregated model is then returned to the clients who consider it “ready”. However, the

“ready” clients are not defined. And there is no user scheduling to select which client can

upload its local model. Similarly, in [101], scheduling and aggregation are decoupled, but

the selection criteria for user scheduling are not defined. AFL over wireless networks is

considered in [102], where the aggregated global model is broadcast to all clients. Clients

need to determine whether to continue local training using the previous global model or stop

local training and apply the latest global model. This can cause significant energy and time

waste for the clients who decide to continue their local computation with previous global

models. The AFL may cause model stale problems due to the training being asynchronous.

Some clients may start the local training with the latest global model, while others may

train with an old model. The staleness is measured using the distance between the current

and stale global models. In [103], a Euclidean distance-based adaptive federated aggregation

method was presented to solve the model stale problems in AFL. This requires the server

to store all global models, resulting in high storage consumption.

This chapter introduces a new AFL framework with client scheduling and model aggre-

gation. Unlike the existing work, the aggregated model is exclusively returned to the client,

who just uploads the local model. This eliminates the need to select the “ready” clients or

broadcast them to all clients. We introduced a client scheduling scheme to consider com-

putational capabilities and client fairness. A model aggregation algorithm is developed to

address the model staleness problem in AFL. The global iteration difference is used here as
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the metric for staleness. And only one hyperparameter is introduced to include time and

other factors. Also, a detailed analysis of the time complexity of AFL and synchronous FL

(SFL) is given.

7.2 System Model

The FL system in previous chapters is a synchronous communication system in which

the server performs aggregation after receiving local models from a fixed number of clients

or after a fixed time has elapsed. In AFL, the server aggregates once the local model is

received from a single client. This allows the server to be updated continuously without

waiting.

7.2.1 Synchronous Federated Learning

Client 1 Client 2 Client M

Wait

Model 

update

Client 1 Client 2 Client M

Model 

update

Synchronous FL Asynchronous FL

S1

S2

S3

S4

Fig. 7.1: Synchronous vs asynchronous FL

In 7.1, the system model for SFL (left) and AFL (right) is given. In SFL, there are four

steps, as mentioned in Chapter 1. In step (S4), the aggregation of local models to obtain

the global model will wait for multiple clients to complete the local training and uploading

of the model in Step (S3). There is a “wait” stage in SFL to block global aggregation until
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the conditions are met.

The server initializes the global model as w0. The clients perform local training as

follows:

wm
t = wt − η∇Fm(wt), t = 0, 1, 2, ..., (7.1)

where wt
m is the local model of client m at round t after local training, wt is the global

model and learning starting point for all clients at round t. This occurs in step (S2).

The global aggregation is defined as follows:

wt+1 =

M∑
m=1

αmw
m
t , (7.2)

where we assume the server received local models from M clients during the waiting time,

and αm is the aggregation coefficient of client m. αm is usually calculated as αm = |Dm|∑
c |Dc| ,

where |Dm| is the data size at client m, and
∑M

m=1 αm = 1.

7.2.2 Asynchronous Federated Learning

In previous works, the AFL aggregates the local model once the server receives it from a

single client. However, the aggregation detail varies in different implementations. Here, we

use the global aggregation number to track the learning process. The term “iteration” rep-

resents the global aggregation number to distinguish the “round” in SFL. The aggregation

model is defined as follows:

wj+1 = βjwj + (1− βj)wm
i , (7.3)

where i and j are global iterations in AFL. wj and wj+1 represents the global model in

iterations j and j + 1 on the server. wm
i is the local model of the client m after local

training using the global model at iteration i. The client m may use a new or an old global

model to train the local model. It appears in Equation (7.3), meaning it was selected in

iteration j. βj ∈ (0, 1) is the aggregation coefficient in AFL. While uploading the local

model to the server by the client m, other clients can perform local training or wait for the



93

channel to idle. After global aggregation, the updated global model wj+1 will return to the

client m. This is a complete global iteration in AFL, including 1) local training, 2) global

aggregation, and 3) receiving an updated global model. Only one client participates in each

global iteration. The client m will continue to conduct local training as follows:

wm
j+1 = wj+1 − η∇Fm(wj+1). (7.4)

AFL allows the server to always perform the aggregation rather than waiting for a fixed

number of clients to complete the local training and model uploading.

7.2.3 Time Comparison

Client 1

Client 2

Client M

Downlink Computation Uplink Idle

Client 1

Client 2

Client M

SFL

AFL

Fig. 7.2: Time comparison between SFL and AFL

In Fig. 7.2, the learning procedure of SFL (top) and AFL (bottom) is given. There

is idle time for some clients in SFL while clients continue learning in AFL. Clients in
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AFL take full advantage of the time to perform local training. To understand the AFL

quantitatively, the performance of SFL and AFL is compared from the time perspective.

Two scenarios are considered. In the homogeneous scenario, each client is considered to

have identical computational capability. In the heterogeneous scenario, the computational

capability varies between clients.

In the homogeneous scenario, it is assumed that the computation time of each client

is τ . We also assume that channel conditions and power allocations have been omitted

for simplicity. The model transmission time in the uplink is assumed to be τu. Model

transmission in the downlink is assumed to be τd. The total completion time for one round

in SFL is τ synho = τd + τ +M · τu when using TDMA. The global model updates every τ synho

time. To give a fair comparison, the client can be scheduled to upload the local model again

only when other clients are scheduled in AFL. Therefore, it takes τasynho =M ·τu+M ·τd+τ

time for AFL to finish the same operations. AFL takes (M − 1) · τd more time than SFL

due to the global model download. However, the global model is updated every τu + τd

time in AFL rather than waiting τd + τ +M · τu time as in SFL.

In the heterogeneous scenario, the computation time for the fastest client is assumed to

be τ , while the a · τ time for the slowest client with a≫ 1. Typically, computation is faster

than communication, which makes communication a bottleneck for the system. However,

when slow clients also execute other tasks, a ·τ can be larger thanM ·τu. In SFL, the global

model waits τ synhe = τd + a · τ +M · τu time to update. The slowest client dominates the

computation time. The faster clients remain idle in the waiting time. In AFL, it takes τasynhe

time to complete the same operations, withM ·τd+τ+M ·τu ≤ τasynhe ≤M ·τd+a·τ+M ·τu.

However, the global model is updated every τu+τd time. As shown in Fig. 7.2, the vertical

dashed lines represent the global model update time. The global model gets updated more

frequently in AFL than in SFL.

The time comparison is summarized in Table 7.1.

From the above analysis, the AFL does not guarantee better learning performance

than the SFL. The global model is updated faster, so the learning pace is faster. However,
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Table 7.1: Time Comparison

Homogeneous Scenario Heterogeneous Scenario

SFL τ synho = τd + τ +M · τu τ synhe = τd + a · τ +M · τu
AFL τasynho =M · τu +M · τd + τ M · τd + τ +M · τu ≤ τasynhe ≤ M ·

τd + a · τ +M · τu

the local model learned from a very old starting point may have a destructive rather than

constructive effect on the global model. Model staleness could hinder the global model’s

convergence. It is critical to have the aggregation coefficient β to control the contribution

of the local model to the global model. Client scheduling also plays a key role in promoting

learning convergence and providing fairness of client access.

7.3 Proposed Algorithm

In this section, the global aggregation of AFL is analyzed. First, the SFL aggregation

coefficient is applied to the AFL to understand its behavior. Then, an AFL aggregation

algorithm is designed to attain a learning performance comparable to that of SFL. Finally,

a client scheduling and model aggregation framework in AFL (CSMAAFL) is proposed.

7.3.1 SFL Aggregation Coefficient in AFL

In SFL, the global aggregation coefficient α is predetermined and fixed in each round.

It is determined by considering each client’s relative number of data samples. Given a

specific client scheduling ϕ(1), ϕ(2), . . . , ϕ(M), where ϕ(i) is the client scheduled in global

iteration i, Equation (7.3) when using SFL aggregation coefficient, can be written as:

wj+1 = (1− αϕ(j))wj + αϕ(j)w
ϕ(j)
i

= (1− αϕ(j))((1− αϕ(j−1))wj−1 + αϕ(j−1)w
ϕ(j−1)
k )

+ αϕ(j)w
ϕ(j)
i .

(7.5)

Here, αϕ(j) = 1 − βj , ϕ(j − 1) is the client scheduled in iteration j − 1, and k is the last

iteration when client ϕ(j−1) was scheduled. Similarly, the aggregation coefficient for client

ϕ(j − 1) is αϕ(j−1)(1 − αϕ(j)). And for the first client scheduling ϕ(1), the aggregation
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coefficient is αϕ(1)(1 − αϕ(2))(1 − αϕ(3)) · · · (1 − αϕ(j)). Since α ∈ (0, 1), the aggregation

coefficient in AFL increases over time, which violates the intuition that the contribution of

the individual client decreases over time.

7.3.2 Baseline

AFL can achieve learning performance comparable to that of SFL with adequate aggre-

gation coefficients. This requires AFL to apply the same client scheduling and aggregation

coefficients. Clients can be scheduled again only when other clients are scheduled in AFL.

The global iteration coefficient β also varies in each iteration. The relationship between the

global iteration coefficient in SFL and AFL can be formulated as follows:

M∑
m=1

αmw
m = wM+1 = βMwM + (1− βM )wϕ(M). (7.6)

The left-hand side (LHS) in equation (7.6) is the aggregation of the global model in SFL,

while the right-hand side (RHS) corresponds to the global model after iterating all clients

once in AFL. Also, the global aggregation of AFL can be further written as

wM = βM−1wM−1 + (1− βM−1)w
ϕ(M−1)

= βM−1(βM−2wM−2 + (1− βM−2)w
ϕ(M−2))

+ (1− βM−1)w
ϕ(M−1)

= β1(. . . ) + (1− β1)wϕ(1).

(7.7)

By jointly considering Equation (7.6) and (7.7), an euqation is formulated as:

αϕ(M) = 1− βM . (7.8)

When client scheduling ϕ(1), ϕ(2), . . . , ϕ(M) is predetermined and the aggregation coeffi-

cients α are known, βM can be calculated. Additionally,

αϕ(M−1) = βM (1− βM−1). (7.9)
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Since βM is now known, βM−1 can also be calculated. Following this approach, βM−2, βM−3

to β1 can be solved.

From the above analysis, we understand the behavior of AFL aggregation and establish

a baseline for AFL to achieve the same learning performance as SFL.

7.3.3 CSMAAFL: Client Scheduling and Model Aggregation in AFL

In SFL, faster clients become idle when they complete their local training and wait

for other clients. To take advantage of the advantages offered by AFL, we apply a client

scheduling and model aggregation scheme. It considers clients’ computational capabilities

and client fairness. The client can request channel access to upload its local model when

local training is completed. The server assigns more local iterations to clients with more

computational capabilities to control the local training time. The clients report the com-

putational capability each time the local models are uploaded. The server uses the slowest

client as a reference to learn the computational capabilities of other clients. A slotted

ALOHA protocol as in [102] is used for clients to request channels. With client fairness,

priority is given to the client with the older model when two clients request the channel

simultaneously. If client m and n apply for channel access at iteration k simultaneously,

client m will grant the channel if (k−m′) > (k−n′) where m′ and n′ represent the iteration

client m and n access the channel the last time.

When some clients are extremely fast or slow, extra consideration is required to ensure

that all clients have a fair opportunity to contribute to the global model. We employ a

policy similar to [99], where faster clients perform more iterations and spend more time on

local training. Now, the contributions of different clients can be balanced regardless of the

computational speed.

The client scheduling problem is addressed above by considering computational capa-

bility and client fairness. The model aggregation needs to balance the current global model

with the local model received in each iteration. The contribution from individual client

models should diminish over time. Also, the model staleness should be considered. We use

j − i to represent the difference between the current iteration and the iteration when the
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client m was scheduled the last time. When j − i is small, the local model of client m is

learned from a “fresh” global model. The moving average µji is introduced to capture the

average value of j − i over time. Let

(1− βj)wm
i = min(1,

µji
γj(j − i)

)wm
i , (7.10)

for equation (7.3), where γ ∈ (0, 1) serves as a hyperparameter to capture the time and other

factors. 1
j denotes the gradual decrease in the contribution of the individual client over time.

µji

j−i represents the staleness effects. When the learning starting point i of client m is recent

(i.e., j − i is small), the value of
µji

j−i will be large. The fresh model will contribute more

than the stale model. The user scheduling algorithm ensures that all clients have a similar

opportunity to contribute to the global model. This makes the value of
µji

j−i always close to

1. The stability of the system can be achieved. The complete algorithm is summarized in

Algorithm 6.

Algorithm 6 Asynchronous Federated Learning with Client Scheduling and Model Aggre-
gation

1: Initialization: Server initializes w0 and broadcasts to all Clients.
2: while not converge do
3: Client:

Receives the most recent aggregated global model.
Performs local computation as Eq. (7.4).
Applies for uploading time slot.
Upload the calculated local model and estimated local computational capacity when

the request is approved.
4: Server:

Approves the first client m requested the time slot.
Receives the local model and computational capability from the client m.
Performs aggregation by Eq. (7.6) and Eq. (7.10).
Sends the aggregated global model and the number of local computation iterations

to the client m.
5: end while

7.4 Simulation
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7.4.1 Simulation Setting

This section executes the simulation of the MNIST and Fashion-MNIST datasets in

both IID and non-IID data settings. We also discussed the impact of the hyperparameter

λ here.

There are 100 clients connected to the server in this FL system. In SFL, all clients

participate in each round’s learning. For AFL, a client is scheduled again only when other

clients are scheduled. To simulate the heterogeneity of the computational capabilities of

clients, the selection of clients is randomized in each iteration. The convolutional neural

network (CNN) with two convolutional layers, two max-pooling layers, and two fully con-

nected layers is employed here. The learning rate η is 0.01, and the value of γ is set as 0.1,

0.2, 0.4, and 0.6, respectively. Four simulation scenarios are considered, incorporating two

datasets, MNIST and Fashion-MNIST, and two data distributions, IID and non-IID.

7.4.2 Simulation Results
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Fig. 7.3: Scenario 1: MNIST IID
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In Fig. 7.5, scenario 1, MNIST with IID is considered. All schemes, except CSMAAFL

with γ = 0.1, achieve similar learning performance. This indicates that the proposed CS-

MAAFL scheme converges and gets similar test accuracy as FedAvg when γ is appropriately

tuned.
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Fig. 7.4: Scenario 2: MNIST non-IID

In Fig. 7.4, MNIST with non-IID is considered. CSMAAFL learns faster than FedAvg,

only after around 25 relative time slots, FedAvg approach, and beyond the CSMAAFL. This

demonstrates the faster learning speed of CSMAAFL.

In Fig. 7.5, CSMAAFL with γ = 0.2 gets the closest results as FedAvg. While in Fig.

7.6, CSMAAFL with γ = 0.4 achieves the best test accuracy. It takes around 55 relative

time slots for FedAvg to reach the same performance as CSMAAFL. All results demonstrate

that CSMAAFL converges faster while maintaining overall learning performance.

The effect of the value of γ varies in different scenarios. In scenarios 1, 2, and 4, γ = 0.1

results in random guessing. This is because the contribution of the individual local model

is over-emphasized. γ = 0.2 achieves the best test accuracy in scenarios 1 and 3 when the
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data are IID. When data is non-IID, as in Scenarios 2 and 4, γ = 0.4 achieves the best

results.

7.5 Chapter Conclusion

This chapter studies system heterogeneity problems in FL. They can be addressed with

asynchronous communication. In AFL, a client scheduling and model aggregation scheme

is introduced to utilize computational capabilities, maintain client fairness, and solve model

staleness. The simulation results demonstrate that the proposed scheme can speed up

convergence while achieving a comparable final learning performance.
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CHAPTER 8

Conclusions

8.1 Summary

This dissertation analyzed the motivation to apply federated learning in modern dis-

tributed learning architecture. Existing problems, including communication costs, system

heterogeneity, statistical heterogeneity, security, and privacy issues, still prevent the appli-

cation of FL in more fields.

Due to the application of FL on mobile devices and other wireless-connected devices,

the communication costs of FL on wireless networks are first analyzed. Wireless channels

are limited and expensive. It is significant for reducing communication time and improv-

ing spectral efficiency. First, we applied NOMA to the FL system to allow multiple users

to simultaneously transmit their model parameters on the same channel. Gradient com-

pression is also used to satisfy channel capacity constrained by channel conditions. Then,

we employ the user scheduling and power allocation in the NOMA FL system. Joint user

scheduling and power allocation help improve learning performance. We further investi-

gated over-the-air computation in FL model transmission. It performs computations in the

air, thus further reducing the computation time. Approximate communication is applied

to transmit the FL model parameters approximately without forward error correction and

packet retransmission. It still achieves comparable learning performance with transmission

errors while the transmission time is significantly reduced.

Security and privacy issues are solved with model update-based aggregation and indi-

vidual client model initiation schemes. The model update distribution is compared with

the model distribution. Model update-based FL is less susceptible to Byzantine attacks.

Individual client model initialization and model update can hide the local model, preventing

membership interference attacks.
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The system heterogeneity is addressed with a novel federated asynchronous client

scheduling and model aggregation learning architecture. In each round, a single client

participates in the learning process. Client scheduling considers both computational capa-

bility and user fairness. The model aggregation balances the contribution of the single-client

local model and the previous global model. Asynchronous FL allows the training to run

faster.

The statistical heterogeneity is considered as all of the above. The non-IID data dis-

tribution assigns the data to clients varying in sample label and number. The proposed

methods also achieve good performance on non-IID data.

8.2 Future Work

The works mentioned above are utilized on clean public data sets. It might be chal-

lenging to train a converged model on practical datasets. So, practical data can be collected

and trained using our proposed methods. In addition, simulations were performed to verify

the effectiveness of the proposed methods. A real deployment on hardware with distributed

devices can further help to demonstrate our proposed methods.
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[24] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. V. Poor, “Convergence of update

aware device scheduling for federated learning at the wireless edge,” IEEE Transac-

tions on Wireless Communications, vol. 20, no. 6, pp. 3643–3658, 2021.

[25] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online federated

learning for edge devices with non-iid data,” in 2020 IEEE International Conference

on Big Data (Big Data). IEEE, 2020, pp. 15–24.

[26] T. Chen, X. Jin, Y. Sun, and W. Yin, “Vafl: a method of vertical asynchronous

federated learning,” arXiv preprint arXiv:2007.06081, 2020.

[27] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with

non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[28] Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized federated learn-

ing,” arXiv preprint arXiv:2003.13461, 2020.
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