
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations, Fall
2023 to Present Graduate Studies

8-2024

Creating a Virtual Hierarchy From a Relational Database Creating a Virtual Hierarchy From a Relational Database

Yucong Mo
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd2023

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mo, Yucong, "Creating a Virtual Hierarchy From a Relational Database" (2024). All Graduate Theses and
Dissertations, Fall 2023 to Present. 212.
https://digitalcommons.usu.edu/etd2023/212

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations, Fall 2023 to Present by an authorized
administrator of DigitalCommons@USU. For more
information, please contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd2023?utm_source=digitalcommons.usu.edu%2Fetd2023%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd2023%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd2023/212?utm_source=digitalcommons.usu.edu%2Fetd2023%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

CREATING A VIRTUAL HIERARCHY FROM A RELATIONAL DATABASE

by

Yucong Mo

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Curtis Dyreson, Ph.D. Shuhan Yuan, Ph.D.
Major Professor Committee Member

Steve Petruzza, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2024

ii

Copyright © Yucong Mo 2024

All Rights Reserved

iii

ABSTRACT

Creating a Virtual Hierarchy from a Relational Database

by

Yucong Mo, Master of Science

Utah State University, 2024

Major Professor: Curtis Dyreson, Ph.D.
Department: Computer Science

JOIN operations in relational databases are generally considered expensive. Although

there are many strategies to improve JOIN’s performance, most of these strategies are

applied at runtime which can be costly. This thesis explores another approach to improve

the overall efficiency of databases by revisiting the hierarchical model. We introduce a set

of algorithms to impose virtual hierarchies on relational schemas. Our method shows full

preservation of data integrity and relationships and constraints among tables. To accurately

represent these relationships in hierarchies, we will need to manufacture additional nodes

which leads to extra space costs. We also show that the algorithm minimize the cost to a

modest level.

(44 pages)

iv

PUBLIC ABSTRACT

Creating a Virtual Hierarchy from a Relational Database

Yucong Mo

In data management and modeling, the value of the hierarchical model is that it does

not require expensive JOIN operations at runtime; once the hierarchy is built, the relation-

ships among data are embedded in the tree-like hierarchical structure, and thus querying

data could be much faster than using a relational database. Today most data is stored in

relational databases, but if the data were stored in hierarchies, what would these hierarchies

look like? And more importantly, would this transition lead to a more efficient database?

This thesis explores these questions by introducing a set of algorithms to convert a relational

schema to a hierarchy, that is, a tree-like structure. We show that our algorithms minimize

space cost for creating tree nodes while preserving all the relationships and constraints in

the schema. Finally, we evaluate the hierarchies on a native XML DBMS with a set of

queries.

v

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my major professor Dr. Curtis Dyreson,

for his invaluable guidance throughout my Master’s journey, and for his expertise in this

research project. He was always available when I had questions about the thesis. His

support and encouragement have helped me through many challenges. I could not imagine

a better mentor and advisor.

I would also like to thank the rest of my committee members: Dr. Shuhan Yuan

and Dr. Steve Petruzza. Their insightful feedback and constructive criticism have been

indispensable to the development of this thesis.

Lastly, I express my heartfelt thanks to my family back in China. Their endless love

and support have been my source of motivation and strength.

Yucong Mo

vi

To my family

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF FIGURES . viii

1 INTRODUCTION . 1
1.1 Background . 1
1.2 Research Objectives . 2
1.3 Related Work . 3
1.4 Contribution . 3

2 ALGORITHM AND EXAMPLES . 4
2.1 Constraints for Input Relational Schema and Output Hierarchy 4
2.2 Conversion Algorithm . 6

2.2.1 Schema Graph Mapping Algorithm 7
2.2.2 Conversion Algorithm . 10

2.3 Example Walk Through . 20

3 IMPLEMENTAION . 24
3.1 Schema Parser . 24
3.2 Schema Mapping Algorithm . 26
3.3 Conversion Algorithm . 27

4 EVALUATION . 30
4.1 Testing Database . 30
4.2 Completeness and Accuracy . 30
4.3 Query Performance . 32

5 CONCLUSIONS . 34

REFERENCES . 36

viii

LIST OF FIGURES

Figure Page

2.1 Node Duplicates Scenario . 6

2.2 Simple Schema Mapping to a multi-graph 10

2.3 A more complex Schema Mapped to a multi-graph 11

2.4 Edge Node as Leaf Node for Recording M-N Relationship 13

2.5 Promoting Px to the LCA of Px and Py . 14

2.6 Minimizing Dummy Nodes . 16

2.7 Minimizing Duplicate Nodes . 17

2.8 Algorithm 2 output for the Complex Schema 20

2.9 Executing Step 3 . 22

2.10 Executing Step 4 . 23

3.1 Program workflow . 25

3.2 E-R Diagram for Sakila Database . 26

3.3 Truncated Output XML for Sakila Database 29

4.1 Virtual Hierarchy for Sakila Database . 31

CHAPTER 1

INTRODUCTION

This thesis explores the concept of virtual hierarchies in database management, focusing

on the transformation of relational data into hierarchical models to enhance performance

and data management efficiency. The introduction outlines the theoretical background, the

research objectives, related work in the field, and the contributions made by this research.

The introduction section begins with a discussion on the relational model of databases,

highlighting its widespread use and the inherent challenges associated with JOIN operations.

It contrasts this with the hierarchical model, which, by embedding relationships directly

within its structure, offers significant performance advantages for certain applications. This

sets the stage for a deeper exploration into merging these two models to leverage the benefits

of both.

1.1 Background

The relational model has been the center of database research ever since E. F. Codd

introduced it about 50 years ago. One critical advantage of modeling the data in the

relational model is that the data is logically separated into relations of tuples. Tuples in

relations are related dynamically in a query by a JOIN or Cartesian product operation that

combines relations. These operations are in general expensive to perform, even though there

are many strategies to improve them [1–3].

The hierarchical model, on the other hand, statically embeds relationships in a tree-

like structure. Each child datum in the tree is related to a single parent datum. Once

the hierarchy is built, there is no need to dynamically combine or JOIN data at runtime

to construct parent/child relationships because these relationships are embedded in the

hierarchy. Transitively data items are connected through the hierarchy to ancestors and

descendants. The hierarchical model is still very popular in applications that require very

2

high performance and availability such as banking, health care, and telecommunications,

especially encoded as JSON or XML.

1.2 Research Objectives

Despite the advantages of the hierarchical model in specific applications, most data are

still stored in relational databases. We are interested to see if we can improve the overall

efficiency of databases, whether they are relational or non-relational, by creating virtual

hierarchies directly from well established relation schemas. This conversion seeks to bridge

the gap between the relational and hierarchical data models.

This thesis aims to develop and evaluate a comprehensive algorithm capable of con-

verting relational database schemata. There are two primary objectives.

1. Algorithm Development:

To design an algorithm to construct a virtual hierarchy from a relational schema. The

virtual hierarchy accurately represents the relationships and constraints of a relational

schema within a hierarchical model ensuring data integrity and query compatibility.

2. Performance Evaluation:

To evaluate the performance of the virtual hierarchical structures generated by the

algorithm within eXist-db, a native XML database system, in order to demonstrate

the viability of the conversion in terms of query efficiency and data accessibility.

The research uses three sample relational database: Sakila, Northwind, and airportDB.

These databases are used due to their complexity and widespread recognition within the

database community. The evaluation will focus on specific aspects of the hierarchical model,

including accuracy, completeness, and query performance.

3

1.3 Related Work

Previous work on data model transformation has mainly revolved around converting hi-

erarchical databases to relational databases or storing hierarchical data directly in relational

databases [4–7].

The first paper that attempted to create a hierarchical view for relational databases

uses a universal relation for the data, essentially joining all the data into a single, large

relation [8]. The universal relation approach suffers from massive space blow-up. The

paper does not investigate the mapping in terms of data completeness and minimizing

space cost. In contrast, our methods pay particular attention to full schema preservation

and relationship conversion.

With the advent of XML in the 2000s, several methods for converting relational data

to XML documents were proposed [9–11]. These approaches bridge the gap between the

two models but still largely rely on complex relational engines for the transformation. Our

algorithms introduce a simpler way to represent hierarchies without using additional sys-

tems.

1.4 Contribution

This thesis makes the following contributions.

• We propose an algorithm that correctly converts relational data into hierarchical data

without losing relationships and constraint between tables.

• We show the algorithm minimizes the duplication of nodes when handling mapping

from one-to-many and many-to-many relationships in hierarchy.

• We explore the nuances of data model transformations and offered insights into opti-

mizing hierarchical structures for performance and storage efficiency.

4

CHAPTER 2

ALGORITHM AND EXAMPLES

In this chapter, we introduce the algorithm for creating a virtual hierarchy from a

relational database. The chapter is organized into three main sections. First, we outline

the design principles and goals of the algorithm. Next, we present the algorithm as a

detailed guide for creating a virtual hierarchy from a relational schema, which is abstracted

as a multi-graph. Finally we run the algorithm with example schema graph from a relational

database.

2.1 Constraints for Input Relational Schema and Output Hierarchy

Creating a hierarchy from a relational schema requires several correct and meaningful

constraints on the input relational schema and the output hierarchy.

• Relational Abstraction and Terminology : The first constraint we will enforce is

the abstraction of the input relational schema. We model a schema as a multi-graph.

Each node represents a relation from the schema. Inside the graph, the edges and

their directions are used to denote foreign-key relationships between nodes. Namely,

in the multi-gragh, if there is an edge coming from node A to node B, we read it as

relation B borrows a foreign key from relation A, at the schema level. Since there

may be more than one foreign key between tables, the graph can have multiple edges

between nodes.

Nodes in the graph can be categorized into four types in looking at foreign keys:

1. No foreign keys going into or out of: These are independent entities without

any foreign key relationships. They are often standalone tables, and these nodes

mean the graph does not have to be connected.

2. Source Nodes: Entities that have only outgoing foreign key references. These

typically represent associative entities in relationships, capturing many-to-many

5

relationships in relational databases. We call this source node and it occurs with

any table representing a relationship type (in the ER model). Relationship type

tables never have their keys borrowed as foreign keys.

3. Sink Nodes: Entities with only incoming foreign keys, representing strong entity

types that are often primary tables in the database schema.

4. Nodes with both incoming and outgoing edges. These are also always (weak or

strong) entity types, multivalued attribute types, or subclasses in the ER model.

Cycles in the graph are possible when the relation borrows a key from itself, but would

be rare in well-designed schemas in other situations. We remove reflexive foreign keys

from the graph to create the multi-graph.

• Completeness and Accuracy : The second and most important constraint is com-

pleteness and accuracy. The inferred hierarchy should preserve all nodes, and correctly

record edge information that indicates different types of relationships among relations,

including one-to-one, one-to-many, and many-to-many.

• Dummy Nodes in Hierarchy : In a hierarchy, a child node exists only if its

parent does. In scenarios where the database design allows null values for foreign

keys, a supposed child node may not have an associated parent node. To maintain

hierarchical integrity, we need to create dummy nodes for those supposed child nodes.

For example, in a Customer and Order scenario, and CustomerID is the parent of

Order, if an Order record has a null CustomerID, but the hierarchical model requires

every Order to have a Customer parent, then a dummy Customer node must be

generated to maintain structural integrity in the hierarchy. Suppose nodes of type A

are parent nodes of nodes of type B. We can calculate the exact number of dummy

nodes needed by subtracting the number of distinct non-null foreign key values in B

(which point to A) from the total number of A nodes. This calculation helps identify

how many A-type records are actually referenced by B-type records. If all B-type

nodes reference an A-type node, no dummy nodes are needed.

6

Fig. 2.1: Node Duplicates Scenario

• Node Duplication in Hierarchy : Node duplicates in a hierarchy represent a

duplication of a relation. Sometimes they are unavoidable in order to ensure the com-

pleteness of many to many relationships. For example, in Figure 2.1, if Customer

(type A nodes) and Product (type B nodes) are connected through a Purchase

(type C nodes) table where each Customer can buy multiple Products and each

Product can be bought by multiple Customers, each product purchased by multiple

customers needs to appear under each customer in the hierarchy. If Product 1 is

bought by both Customer A and Customer B, then Product 1 will need to be du-

plicated in the hierarchy under both customers. We can also calculate the number

of duplicates with: total number of B to A pointers - number of distinct B

to A pointers. We will also show our algorithm introduces the construction of edge

nodes and relationship type of nodes (source nodes) which help minimizing the man-

ufacturing of these duplicates.

• Transferable Data Format: The resulting hierarchy should be in JSON or XML

format that is widely used in practice.

2.2 Conversion Algorithm

In this section we present the main steps of conversion algorithm that creates the

virtual hierarchy from a relational schema, followed by detailed examples on its use. The

idea of minimizing the manufacturing of dummy nodes and duplicate nodes are applied in

the algorithm.

7

Before introducing conversion algorithm, we first need to map input relational schema

to a multi-graph. which leads to Schema Graph Mapping Algorithm, as given in algorithm 1.

2.2.1 Schema Graph Mapping Algorithm

The Schema Graph Mapping Algorithm is designed to transform a relational database

schema into a graph representation, where nodes represent relations and directed edges sym-

bolize foreign key relationships among these relations. The six main steps of the algorithm

are given below.

1. Obtaining the Schema: Depending on the database management system (DBMS)

in use, relational schema can be acquired through various methods.

• Data Definition Language (DDL) Scripts: DDL scripts provide a textual

representation of the schema through SQL statements that define relations, re-

lationships, and constraints. These scripts can be generated by most DBMSs as

part of their schema export functionality.

• Database Metadata Queries: The schema can also be generated by direct

querying on database metadata. We can achieve this by executing specific SQL

queries or API calls that retrieve schema details from the DBMS’s systems.

• Manual Extraction: In the case where automated tools are not available, the

schema may also be derived manually. This method, while time consuming and

requires careful maintenance to ensure accuracy, allows for custom documenta-

tion and flexible schema representation.

2. Schema Parsing: After the schema has been obtained the algorithm parses the

schema, creating nodes for each relation and identifying primary and foreign key

constraints, as well as total and partial participation relationships among relations

if an entity-relationship (ER) diagram is available or the cardinality of foreign key

relationships is computed through queries.

8

3. Identifying Nodes with Null Foreign Key Value: Dummy nodes typically arise

when a child node in a hierarchy doesn’t have a corresponding parent node due to

null foreign keys. We find all tuple records with null foreign key value and deal and

pay special attention to them when constructing the hierarchy later.

4. Node Creation: A node is created in the graph for each relation. This node includes

detailed information about the relation’s structure and constraints.

5. Edge Creation: A directed edge is added between nodes for each foreign key re-

lationship. Each edge is directed from the child relation (foreign key holder) to the

parent relation (key source). As mentioned earlier, multi edges are allowed between

nodes to denote more than one foreign key between nodes.

We introduce weights in graph to represent two cases, one where tuple records of the

database are available, and second where we only have the schema and no access to

the actual population of tuples. In the former case, edges with same directions are

merged and a weight, i.e, the number of edges used for merging, is assigned to the

new edge. The latter case is common in practice, and weights are considered 0.

6. Handling Associative Relations: Relations identified as associative (junction re-

lations) for many-to-many relationships are represented by nodes with only outgoing

edges, i.e. source nodes.

7. Output Generation: The final multi-graph is then available for visualization, anal-

ysis, or further processing to transform to a hierarchy. This graphical representation

can be used to identify root relations (without incoming edges), leaf relations (without

outgoing edges), and the overall structure and dependencies within the schema.

Figure 2.2 shows the output multi-graph after running the schema mapping algorithm

on a simple relational schema. Figure 2.3 shows the output multi-graph on a more complex

schema.

9

Algorithm 1: Generate Weighted Multi-Graph from Relational Schema

Input: Relational database schema S
Output: Weighted Directed Multi-Graph G with edges weighted according to

relationship type and participation
/* Initialization */

1 Create an empty Directed Multi-Graph G
2 Initialize an empty dictionary EdgeWeights to store the weights of edges based

on relationship type and participation
/* Schema Parsing */

3 Parse the schema, identifying primary and foreign key constraints
4 Determine the classification of each relation (sink, source, or intermediate nodes

based on foreign key relationships)
/* Node Creation and Classification */

5 for each relation R in schema S do
6 Create a node in G for R
7 if R has no outgoing foreign keys and no incoming foreign keys then
8 Mark R as a standalone node
9 else

10 if R has only outgoing foreign keys then
11 Mark R as a source node
12 else
13 if R has only incoming foreign keys then
14 Mark R as a sink node
15 else
16 Mark R as a regular node
17 end

18 end

19 end

20 end
/* Edge Creation and Weight Assignment */

21 for each foreign key relationship FK between relations Ri and Rj in S do
22 Add a directed edge from the child relation Ri (foreign key holder) to the

parent relation Rj (key source)
23 if tuple records are available then
24 Merge edges with the same direction between Ri and Rj , assigning a

weight equal to the number of merged edges

25 else
26 Assign a default weight of 0 to each edge as a placeholder, indicating the

absence of tuple records

27 end

28 end
/* Post-processing to Finalize the Multi-Graph */

29 for each edge (Ri, Rj) in G do
30 Label edge (Ri, Rj) with its weight from EdgeWeights[(Ri, Rj)]
31 end
32 return G

10

Fig. 2.2: Simple Schema Mapping to a multi-graph

2.2.2 Conversion Algorithm

The conversion algorithm given in Algorithm 2 includes a helper Algorithm 3. This

helper algorithm is for handling the mapping of many-to-many relationship.

The design of Algorithm 2 is based on three core principles aimed at ensuring a faithful

transformation at low space cost.

1. Hierarchical Clarity: By converting the multi-graph into a hierarchy, the algorithm

aims to present the relational schema in a more intuitive and comprehensible format.

2. Preservation of Relationships: Critical to the algorithm’s design is the retention

of the schema’s intrinsic relationship details, including complex n-nary relationships,

within the hierarchy.

3. Adaptability: The algorithm is designed to handle both connected and disjoint

graphs, ensuring robustness and versatility in varying schema complexities.

4. Minimizing Dummy Nodes and Duplicate Nodes: The algorithm is designed

to reduce space cost of dummy nodes duplicate nodes in the output hierarchy.

If the input multi-graph given by algorithm 1is weighted, we have access to tuple records

in original database. In this case the conversion has the following eight steps:

11

Fig. 2.3: A more complex Schema Mapped to a multi-graph

1. Definition and Removal of Source Nodes: Initially, nodes in the multi-graph

that represent n-nary relationship types (source nodes), denoted as P , are identified.

These nodes, also called source nodes, are characterized by having only outgoing edges,

signifying an in-degree of zero. Subsequent to their identification, these nodes are

temporarily removed from the multi-graph. This is to simplify the initial construction

phase of the hierarchy by focusing on the mapping of one-to-many and one-to-one

relationships first. Source nodes will be reintegrated to hierarchy later.

(Note: The removal of P nodes may result in a disjoint or connected graph, necessi-

tating separate handling strategies for each scenario.)

2. Longest Path Identification:

12

Following the simplification of the multi-graph, the algorithm then identifies the

longest weighted path(s) within the graph. In a rare case where there are multi-

ple longest paths, any one can be selected. The chosen path is used to form the

backbone of the resulting hierarchy, T . The reason for choosing the longest path is

we want to capture most relations for initial hierarchy construction and to branch out

from nodes in the path. The longest path is the best candidate for this regard and it

has the same runtime as finding the shortest path.

3. Backward Path Traversal and Hierarchy Construction:

The traversal begins from the last node of the chosen path, designated as the root

of T . The last node from the path is guaranteed to only have incoming edges, which

makes it an ideal root node for our hierarchy. Each other node encountered during this

backward traversal, termed I, is then integrated into T through rigid rules detailed

as follows:

• Nodes E directly connected to I are made children of I in T , with a an edge

node, Q, instantiated beneath E to document this connection.

• For each edge in multi-graph that has been visited, we remove that edge, and if

the removal causes the node degree drops to 0, we remove the node as well.

By doing so, every node that is 1 degree away from I is added to the hierarchy.

If the graph is not exhausted after backtracking, we run the algorithm again on the

reduced graph. We chose to only add one node at a time instead of a chain of nodes(for

example, nodes that are not in the longest path and are n degrees away from I) because

we want to minimize the destruction of relationships between nodes while removing

them from multi-graph. As adding nodes to hierarchy requires removing nodes from

multi-graph, the removal of a chain of nodes may commit greater semantics error to

the original relational schema, which makes it harder to trace when completing our

hierarchy.

13

Fig. 2.4: Edge Node as Leaf Node for Recording M-N Relationship

4. Reintegration of Relationship Type Nodes:

This step adds back the relationship type of nodes P removed in step 1. First we

identify the nodes that P connected to in the original multi-graph, termed Pi. Notice

after previous steps all Pi are now added to T . Next we find the Pi of deepest level

in T , termed Px, and make P a child node of Px. We make P as leaf node because

it shows the relationships between P ’s parent, termed U , and U ’s parent, termed

V , and in this case, U and V are in a many-to-many relationship. We observe the

pattern for creating leaf nodes to record relationships between concrete nodes(nodes

that represent relations) rather simple and easy to use: by going only two levels up

from itself to show relations, and we continue to apply this pattern when recording

other types of relationship, as detailed in further steps. Figure 2.4 shows an example

transformation for a simple relationship.

For all the other Pis, if there exist a Py, such that Py does not share a parent-child(P-

C) relationship with Px, we promote the tree rooted as Px to be a sub-tree of the

lowest common ancestor(LCA) of Py and Px, termed Pz(Notice Pz can be Px or Py)

. For the original parent node that Px connected to, and nodes along the path before

14

Fig. 2.5: Promoting Px to the LCA of Px and Py

reaching Py, create duplicates under Px after the promotion. The primary reason

for this promotion is to maintain a direct many-to-many connection of nodes in the

hierarchy, because otherwise when Pz needs to visit nodes under Px it has to travel

through the nodes between Px and Pz, which is not reflected in the original multi-

graph schema. Another advantage of this promotion is we shorten the tree height.

Creating duplicates are for respecting original schema and former hierarchy, as shown

in Figure 2.5: After the promotion, if node B needs to visit node C or X, it will have

to go through node A and Px as required before the promotion, and this is accurately

recorded in our hierarchy because now node B can travel from its duplicate, B′, going

upwards to visit X, which yields the same path in original multi-graph and previous

hierarchy. Finally in the cases where Px and Py are in different sub-tree, we promote

both trees rooted as Px and Py to be a sub-tree of Pz. This is a result from removal

of P in step 1, yielding disjoint sub-graphs.

If Py and Px are in a P-C relationship, and they are both total participation or partial

participation we put the one with more join selectivity as the parent. If one of them is

different from the other in participation type, we put the one that is total participation

at the top.

When considering which node should be put on top, total vs. partial participation

15

and join cardinality are most important factors. This is because the former indicates

which entity(relation) is more central or essential in the relationship and the latter

informs which the ones with more data has a higher degree of connections from one

side. Therefore entities in total participation and greater join cardinality are should be

placed higher in the hierarchy. There other factors to be considered such as semantic

meanings and query patterns and use cases, but they are more difficult to infer from

input schema.

5. Edge Nodes for Minimizing Node Duplicates:

As discussed previously, the placement of relational type nodes inspires the introduc-

tion of edge nodes. Edge nodes are created as leaf nodes for the node with deeper level

in T , and they exist only for tracking relationship between exact two nodes. Each edge

from multi-graph is mapped to exact 1 edge node in T . This means at worst scenario

we miss documenting a relationship rather than recording existing ones again. There

are two case where duplicates are necessary: one is when a node in multi-graph has

more than 2 out-degrees, whether it is a concrete node or relational type node, this

is because a hierarchy forbids a node to have more than one parent; the second case

is in promotion placement of Px copying chain of nodes is unavoidable as showed in

previous step. For the first case, edge node helps setting the upper bound of node

duplicates to exactly the node’s out-going degree. It ensures self-copying are only

needed when it is pointing to more than one node, and the number of copies we need

is less than or equal out− degree− 1 by the construction of these edge nodes, this is

because otherwise there will be edge nodes recording non-existing relationship in the

hierarchy.

6. Iterative Process and Finalization:

The outlined steps above are reiterated until the original graph is fully exhausted,

returning the hierarchy T .

16

The algorithm ends here if the input multi-graph given by algorithm 1 is unweighted.

We have created a hierarchy where each node represents a type of data rather than

actual tuple records in relational database.

If the input multi-graph is weighted, we expand nodes in hierarchy with tuple records

and execute the following steps:

7. Creating and minimizing Dummy Nodes: For nodes of type B and their parent

nodes of type A in T , if a B node has a null foreign key value to its supposed parent

node of an A node, then a dummy A has to be created to record this relationship in

T .

To minimize these dummy nodes, instead of creating one dummy node for every node

with null foreign key value, termed L, we create a generic dummy node for L, and

link L nodes of same type to their respective dummy nodes, as shown in Figure 2.6,

effectively reducing creations of dummy nodes.

Fig. 2.6: Minimizing Dummy Nodes

8. Creating and minimizing Duplicate Nodes: Suppose again nodes of type B and

their parent nodes of type A in T . If their relationship are introduced by source node

C, i.e, M-N relationship types. In order to represent C every association of an A with

a B has to be present in the hierarchy (with a C child). So if nodes 1 and 2 of type

A are related to nodes 3 and 4 of type B, then the B nodes have to be duplicated

17

since 3 and 4 must be a child of 1, and 3 and 4 must also be a child of 2. Moreover,

the entire tree rooted at 3 and 4 must be duplicated to preserve data and relational

integrity.

To minimize the impacts of creating duplicate nodes to T , we push these nodes as

far down the tree as possible. By doing so, the duplication is restricted to the deeper

parts of the hierarchy where it is less disruptive and more contextually appropriate.

Moreover, it keeps the upper levels of the hierarchy clean and minimize redundancy

at these levels can improve the performance of operations that involve traversing or

manipulating the hierarchy. Figure 2.7 shows this process. Notice the duplicated C

nodes record relationships of duplicated B3 and B4 with A2, instead of the nodes 2

level above C.

Fig. 2.7: Minimizing Duplicate Nodes

Figure 2.8 shows a virtual hierarchy after running Algorithm 2 on Figure 2.3. It records

all the information in original schema accurately. The nodes marked red are duplicated and

edges marked blue are edge nodes.

18

Algorithm 2: Creating a Virtual Hierarchy from Relation Multi-Graph

Input: Weighted Directed Acyclic Graph multi-graph representing a relational
schema

Output: A Virtual Hierarchy T representing the schema
/* Initialization */

1 Initialize an empty hierarchy T
2 Identify and set aside n-nary relationship nodes, termed P , within the multi-graph
/* Simplify multi-graph by removing source nodes first */

3 Remove P nodes from multi-graph, noting their connections for later reintegration
4 (Note: This may result in disjoint or connected graphs)
5 if Step 4 yields connected Graphs then

/* Identify the foundational structure of T */

6 Find the weighted longest path in multi-graph Select the path’s end node as
T ’s root
/* Integrate nodes into T */

7 for each node I in the longest path, starting from the root, going backwards do
8 add I to T .
9 for every node E that connects to I do

10 if E is I’s parent and E is in T then
11 skip E.
12 end
13 add E as a child node of I, create an edge node Q under E to record

the relationship of E and I.
14 end

15 end
16 Remove all the edges that were added to T .
17 Remove nodes whose degree become 0.

/* Reintegrate n-nary relationship nodes */

18 for each n-nary relationship node P do
19 execute algorithm 3.
20 end
21 if multi-graph is not empty then
22 run step 6 to step 27
23 end
24 for every graph G in disjoint Graphs do
25 run steps 6 to step 27.
26 end

27 else
28 Merge disjoint graphs by number of non-relationship type of nodes by

descending order.
29 end
30 return virtual hierarchy T

19

Algorithm 3: Relationship Type Nodes Integration and Optimization Algorithm

Input: Source Node P , Virtual Hierarchy T , multi-graph from Algorithm 2
Output: Optimized Virtual Hierarchy T

1 (This is a helper algorithm for Algorithm 2.)
2 Identify the list of nodes that P connects to in the multi-graph, termed Pi.
3 Find the Pi of deepest level in T , termed Px, and add P as a child node of Px.
4 if No other Pi is in a parent-child relationship with Px then
5 Find Pi with the highest level in T , termed Py

6 Promote Px to be a child of Py and Px’s lowest common ancestor, termed, Pz.
7 Move the sub-tree of Pz that includes P under Px.

8 end
/* Creating and minimizing Dummy Nodes */

9 for each sink node with a missing parent due to null foreign keys do
10 Create a generic dummy node for each type where the foreign key is null.
11 Link all nodes of the same type with null foreign keys to their respective

dummy node.
12 end

/* Creating and minimizing Duplicate Nodes */

13 for each source node P in T do
14 Identify two types of nodes that P references to(by going two levels up from

itself), termed A and B, with A being the parent of B.
15 for each B node that associates with an A node through a P do
16 Duplicate tree rooted under node B .
17 Modified node P in duplicate tree to record relationship of A and A.
18 Set duplicate trees the children of an A node of deepest level in T .

19 end

20 end
21 return optimized virtual hierarchy T

20

Fig. 2.8: Algorithm 2 output for the Complex Schema

2.3 Example Walk Through

In this section we will present a detailed walk through on executing Algorithm 2 on

Figure 2.3.

Step 1. Remove Relationship Type of Nodes To initialize, we remove nodes that only

has out-degrees. These nodes are called relationship type of nodes and they serve as

connecting nodes for many-to-many relationship among other nodes. In our example,

node 1 and node 9 are these type of nodes.They are temporarily removed to simplify

our graph structure. If this removal results in disjoint graphs, at the end we will

merge these graphs after processing them separately.

Step 2. Identify Weighted Longest Path We need to find the weighted longest path

in this multi-graph. If there are multiple candidates, which is a rare case, we can

choose any one of them to go on with our algorithm. If multiple longest paths exist

after first iteration, we select the one that includes the most nodes in our hierarchy

T . In Figure 2.3, 2− 3− 6− 4− 10 is longest path. We set node 10 as the root node.

Step 3. Backtracking from Root Node Next we go backwards from root node and

process each node in the path. For each node, we add them to hierarchy T if it

21

is not already in T , and set all other nodes that it connects to as its child node. To

record the relationship of existing nodes and newly added node in T , an edge node

is created as a leaf node under the newly added node. Since a newly added node is

created under an existing node, the edge node effectively documents and shows their

relationships by going at most two levels up from itself. For all the nodes that are

added to T , remove the edges that are used to traverse to them. If the nodes’ degree

become 0, we remove those nodes.

In our multi-graph, node 4 is connected to 6 and 10. Since 10 is already in T , and

that its relation with 4 would be recorded by edge node right after 4 is added to T ,

we skip 10 and set the other nodes as a child for 4, and we also create corresponding

edge nodes. We then go backwards to node 6 again and apply the logic: Add 6 to T ,

create 3 and 8 as children nodes for 6, and spawn edge nodes recording relationships.

Notice nodes 1 and 9 were removed in step 1. When it’s time to examine node 3, it

is showed to be connected to node 10, which is already added to T , but that addition

was contributed by edge m from node 4. In order to record the relationship of node

3 and 10 given by edge g, we duplicate 10 as a child for 3, and spawn an edge node

for them.

Figure 2.9 shows the result of running step 3.

Step 4. Iterating Graphs and Edge Nodes After processing every node in the longest

path in step 3, if there still nodes existing in multi-graph, we run step 2 and step 3

again until every node and edge are visited. We create edge nodes for every new

relations added to T .

The result of step 4 is showed in Figure 2.10

Step 5. Reintegrating Relationship Type Nodes Now we add back the relationship

type nodes that were removed in step 1. Relationship type nodes introduce many-to-

many relationships to the nodes they point to only.

22

Fig. 2.9: Executing Step 3

In our example node 9 points to 5 and 6. We first add node 9 to T under the deeper

level between 5 and 6, in this case, node 5. Next we notice 5 and 6 do not have direct

parent-child relationship, in our case this means node 6 is at least 2 levels above node

5. To effectively reduce the height of T (tree) without losing correct interpretation

of node relationships, we promote the tree rooted as node 5 as a new sub-tree under

node 6. Now node 9 is recording the relationship of 5 and 6 in the same fashion as an

edge node: it shows what is happening between the nodes two levels above itself. For

node 5’s original parent, node 3, we create a duplicate of it under the new position of

node 5.

We continue to process node 1 the same way. Since Node 2 and 3 are already in a

parent-child relationship in T , we do not need to adjust the structure.

The algorithm exists here if there is no disjoint graphs after step 1. Figure 2.8 shows

the final result of T .

23

Fig. 2.10: Executing Step 4

24

CHAPTER 3

IMPLEMENTAION

This chapter describes the implementation details for the virtual hierarchy conversion

system. The overall workflow of the program is shown in Figure 3.1. Our program first uses

a schema parser to extract the relational schema from a RDBMS with SQL queries and its

metadata. Then Algorithm 1 comes in and maps the schema to a directed acyclic graph.

Next Algorithm 2 takes in the multi-graph and outputs our virtual hierarchy. Finally we

put the virtual hierarchy into eXistDB, an open source XML databases (hierarchical) for

experiments.

3.1 Schema Parser

Many relational database management system provides tools for extracting schema

from a database. The output of these tools is usually an SQL script to recreate the database.

The script accurately records all the tables and foreign key constraints between the tables.

The downside is it does not directly provide the relationships between these tables, which

is essential for our Schema Mapping Problem. For this, we need to develop our own parser

to document the tables as well as relationships between tables. MySQL provides a reverse

database engineering option and it allows us to view the Enhanced Entity Relationship dia-

gram generated from an example database called Sakila in MySQL, as shown in Figure 3.2.

This is helpful for checking the correctness of parsing and mapping of multi-graph.

• Table Identification : The parser scans the SQL script to find every CREATE TABLE

statement and records these tables as nodes in a list.

• Relationship Mapping: Next the parser identifies the FOREIGN KEY constraints

embedded within the table definitions. These constraints are the edges of our multi-

graph, representing the pathways and connections between the tables. Each foreign

key relationship adds a directed edge in our multi-graph.

25

Fig. 3.1: Program workflow

The output of the parser is a structured representation of the database schema in a

Python dictionary, where each table name serves as a key, and its values are the names of

tables to which it has foreign key relationships. The following are sample outputs from our

parser:

Tables and Their Relationships:

actor

Primary Key: actor_id

No foreign key relationships.

country

Primary Key: country_id

No foreign key relationships.

city

Primary Key: city_id

Foreign Keys:

country_id references country(country_id)

address

Primary Key: address_id

Foreign Keys:

city_id references city(city_id)

store

Primary Key: store_id

Foreign Keys:

manager_staff_id references staff(staff_id)

address_id references address(address_id)

26

Fig. 3.2: E-R Diagram for Sakila Database

3.2 Schema Mapping Algorithm

Once the schema is parsed and structured, Algorithm 1 transforms this representation

into a multi-graph. This process iterates through the dictionary output from the parser,

creating nodes for each table and directed edges for each relationship. The creation of the

multi-graph is crucial as it lays the groundwork for the next step in our system workflow.

The key methods in this algorithm are:

• calculate edge weight Function : This function assigns weights to edges based on

the relationship type and participation level. The weights reflect the complexity and

significance of the relationships, adhering to the algorithm’s specification.

• generate graph Function : This is the core function that iterates through the

defined schema, initializing nodes for each table and creating directed edges with

weights for each relationship. The resulting multi-graph is a Python dictionary where

27

each table (node) maps to a list of dictionaries representing its outgoing relationships

(edges) and their weights.

3.3 Conversion Algorithm

Next, Algorithm 2 takes in the output multi-graph then produces a virtual hierarchy.

The key implementation details include the findings of longest path, back-tracking depth

first search approach from the root node, handling disjoint graphs after removal of rela-

tionship type of nodes, and reintegration of relationship type of nodes, which is given in

Algorithm 3.

• Longest Path Identification: A foundational step in Algorithm 2 involves iden-

tifying the longest path within the multi-graph. This process determines the hierar-

chy’s backbone, providing a structured approach to laying out the primary lineage of

nodes. By pinpointing the longest path, we establish a starting point for the hierar-

chy, ensuring that the most substantial relationships are prioritized in the hierarchical

construction.

• Depth-First Search with Back-Tracking: Following the identification of the

longest path, Algorithm 2 employs a depth-first search (DFS) strategy, along with

back-tracking, to traverse from the identified root node. This approach enforces a

thorough exploration of the graph, and it allows a systematic construction of the

hierarchy by progressively building out branches based on the relationships between

tables.

• Handling Disjoint Graphs: The removal of relationship type nodes, such as those

representing many-to-many relationships, can result in disjoint graphs. Algorithm 2

addresses this challenge by separately processing each disjoint graph to construct sub-

hierarchies, which are then integrated into the main hierarchy. This ensures that all

relationships, even those temporarily abstracted away, are accurately represented in

the final hierarchical structure.

28

• Reintegration of Relationship Type Nodes: To reintegrate of the relationship

type nodes previously set aside, we introduced Algorithm 3, which involves strate-

gically placing these nodes back into the hierarchy, ensuring that the many-to-many

relationships they represent are accurately depicted. The reintegration is guided by

the hierarchical positions of related entities, maintaining the logical integrity and re-

lational context of the original schema.

The following is the output of the truncated XML file for figure 3.2.

29

...

<database name="Sakila">

<table name="payment">

<parentTable>null</parentTable>

<childTable name="staff">

<duplicate>yes</duplicate>

<relationship>one-to-many</relationship>

<invertedEdge>no</invertedEdge>

</childTable>

<childTable name="customer">

<duplicate>no</duplicate>

<relationship>one-to-many</relationship>

<invertedEdge>no</invertedEdge>

</childTable>

</table>

<table name="address">

<parentTable>customer</parentTable>

<childTable name="city">

<duplicate>no</duplicate>

<relationship>one-to-one</relationship>

<invertedEdge>no</invertedEdge>

</childTable>

</table>

<table name="country">

<parentTable>address</parentTable>

<childTable name="city">

<duplicate>no</duplicate>

<relationship>one-to-many</relationship>

<invertedEdge>no</invertedEdge>

</childTable>

</table>

<table name="city">

<parentTable>country</parentTable>

<childTable name="rental">

<duplicate>no</duplicate>>

<relationship>one-to-many</relationship>

<invertedEdge>no</invertedEdge>

</childTable>

</table>

<table name="rental">

<parentTable>city</parentTable>

<childTable name="staff">

<duplicate>no</duplicate>>

<relationship>one-to-many</relationship>

<invertedEdge>no</invertedEdge>

</childTable>

<childTable name="inventory">

<duplicate>no</duplicate>

</childTable>

</table>

...

Fig. 3.3: Truncated Output XML for Sakila Database

30

CHAPTER 4

EVALUATION

We experimented our algorithms on several sample public databases including Sakila,

Northwind and Airportdb. These databases are available on MySQL’s website. Our exper-

iments include measuring the accuracy and completeness of transformation from relation

schema to virtual hierarchies, and performance benchmarking on a set of queries. These

queries are designed to target the structural relationships and theoretical data distribu-

tion across the hierarchy. The output virtual hierarchies are imported to eXist-db, a fully

functional and open source XML DBMS.

4.1 Testing Database

The main testing databases are the sample ones created by MySQL, such as Sakila,

World and Airportdb. We chose them because of several reasons. First, they are designed

for education and practice. They contain a variety of tables, relationships and database

design, which make them ideal resources to practice and test on different types of quires.

Second, they also are modeled on realistic scenarios. For example, the Sakila database

is modeled after a DVD rental store and Northwind database models a food importing

company. This makes them good candidates for handling data we might encounter in real-

world applications.

4.2 Completeness and Accuracy

Our first experiment is to verify the integrity of nodes (representing database tables)

and their relationships (reflecting foreign key constraints and associations between tables)

in the original database schema. The evaluation was conducted through a set of auto-

mated tests and manual inspection. Automated tests were designed to traverse the virtual

hierarchy using XQuery, checking for the presence of nodes and the accuracy of their rela-

31

Fig. 4.1: Virtual Hierarchy for Sakila Database

tionships. Manual inspection complemented these tests by providing a thorough review of

the hierarchy’s logical structure and the correctness of the relationship mappings.

The experiment finds that our algorithm correctly records all the tables to our virtual

hierarchies if the testing database can be mapped to a connected graph. The algorithm fails

to capture all tables if there are multiple, disconnected groups of tables, for example, when

parts of the database schema do not have direct or indirect relationships with each other. We

also find that the output hierarchy accurately records relationship between nodes because

of the additional creation of edge nodes. However, the more introduction of many-to-many

relationship there is in a complex database like EmployeeDB, the need for edge direction

inversion increases. Edge inversion is not ideal because it might break directionality given

by the original E-R diagram. Figure 4.1 shows the example virtual hierarchy after running

our algorithm. For simplicity reasons we omitted the edge nodes in the hierarchy.

32

4.3 Query Performance

The second experiment focuses on benchmarking the performance of the virtual hi-

erarchies in eXist-db. We crafted a set of Xquery designed to test several aspects of the

hierarchical structure, including simple lookups, complex joins, and aggregation queries.

We will continue to use Sakila database to demonstrate our experiment process.

• Query 1: Simple Retrieval

for $payment in doc("sakila.xml")//table[@name="payment"]/childTable

return $payment/@name

– Purpose: This query tests the function and performance of retrieving direct child

elements of a given node.

– output: name="staff" name="customer"

– observation: The algorithm performs well in direct hierarchical retrieval query.

• Query 2: Deep Hierarchy Navigation

for $actor in doc("sakila.xml")//table[@name="actor"]

let $films := $actor//childTable[@name="film"]

return <result>{$actor/@name}{$films/@name}</result>

– Purpose: Assess the performance of navigating through multiple levels of the

hierarchy.

– output: <result name="actor"/>

– observation: Since there’s no actual data beyond schema level, the query returns

incorrect result.

• Query 3: Aggregate Query Simulation

let $categories := doc("sakila.xml")//table[@name="category"]

return <categories count="{count($categories)}">{$categories/@name}</categories>

33

– Purpose: Evaluate how well the database handles aggregation-like operations

within the hierarchy.

– output: <categories count="1" name="category"/>

– observation: Hierarchy can correctly check parent child relationship.

• Query 4: Path Existence Check

let $exist := exists(//table[@name="inventory"]/childTable[@name="film"])

return <path-exists>{$exist}</path-exists>

– Purpose: Test the performance of checking for the existence of in a parent-child

relationship.

– output: <path-exists>true</path-exists>

– observation: Hierarchy can correctly handle aggregation-like operations.

• Query 5: Long Path Existence Check

let $exist := exists(//table[@name="customer"]/childTable[@name="inventory"])

return <path-exists>{$exist}</path-exists>

– Purpose: Test the performance of checking for the existence of two nodes in a

ancestor relationship.

– output: <path-exists>false</path-exists>

– observation: Hierarchy does not recognize long paths between nodes..

In summary, the experiment has demonstrated that the virtual hierarchies generally

provides a functional and efficient framework for data querying at a schema level. The

path existence check query however fails when there is not direct parent-child relationship

between the nodes, even if one node is another node’s ancestor.

34

CHAPTER 5

CONCLUSIONS

We have proposed a set of algorithms to impose virtual hierarchies on existing relational

databases. A virtual hierarchy is a tree-like structural representation of a collection of

relation schemes in which nodes, edges and paths are navigational routes. Our methods

minimize node duplicates when converting one-to-many and many-to-many relationship to

hierarchies. We also introduced edge nodes and relational type of nodes in the construction

of virtual hierarchies. The benefits of these nodes are they record relationships of concrete

nodes at low space cost, and they are always set as leaf nodes to the nodes they associate with

which keeps output hierarchies simple. Finally we evaluated the output virtual hierarchies

in eXistDB, and found the algorithms correctly capture all the tables, relationships and

constraints from relational schema, and can provide a functional hierarchy framework for

simple data querying at schema level. We also observed the system performs poorly against

queries for long path-existence check among nodes.

There are several improvements can be made to this work in the future:

• Reducing Tree Height: The height of output hierarchy T is largely determined by

the longest path searching in Algorithm 1, this may lead T to become a unsatisfactory

tall tree which affects overall efficiency for the databases.

• Data Record Level Mapping: Our algorithms target relational schema rather

than the actual data records insides it. A more robust and comprehensive transition

system should be capable of mapping entire databases from one to another, including

schemata and data.

• Applying Virtual Prefixed Numbering System: As observed in evaluation pro-

cess, the hierarchies are unable to detect long paths relationship when two nodes are

far away. This can solved by applying virtual prefixed number system or vPBN [12]

35

• Optimization for Performance: Optimizing the algorithm for performance, es-

pecially when processing large and complex queries. This could involve refining the

algorithm’s parsing and guard construction processes to reduce computational com-

plexity.

• Integration with Big Data Technologies: Integrating virtual hierarchies with big

data processing frameworks such as Hadoop and Spark could bring new opportunities

for efficient data processing. Further Research could focus on how virtual hierarchies

can improve data querying and aggregation operations in big data systems.

• Testing with Diverse and Complex Database: The testing sets of databases we

used are mostly for educational purposes and therefore the results we gathered might

not provide sufficient insights for use in production environment. Further evaluations

should include using a wider range of databases and testing with practical applications.

36

REFERENCES

[1] L. D. Shapiro, “Proceedings of the 2001 acm symposium on document engineering,”
in ACM Transactions on Database Systems, vol. 11, 1986, pp. 239–264.

[2] P. M. abd PictureMargaret H. Eich, “Proceedings of the 2001 acm symposium on
document engineering,” in ACM Computing Surveys, vol. 24, 1992, p. 63–113.

[3] Y. C. Tay, “On the optimality of strategies for multiple join,” in Journal of the ACM,
vol. 40, 1993, p. 1067–1086.

[4] J.Shanmugasundaram, E.Shekita, J.Kiernan, R. Krishnamurthy, E. Viglas, and I. T.
J. Naughton, “A general technique for querying xml documents using a relational
database system,” in SIGMOD Record, vol. 30, 2001, pp. 20–26.

[5] S. Amer-Yahia, F. Du, and J. Freire., “A comprehensive solution to the xml-to-
relational mapping problem,” in Proceedings of the 6th annual ACM international
workshop on Web information and data management, vol. 30, 2004, pp. 31–38.

[6] N. Yaghmazadeh, X. Wang, and I. Dillig., “Automated migration of hierarchical data
to relational tables using programming-by-example,” in Proceedings of the VLDB En-
dowment, vol. 11, 2004, pp. 580–593.

[7] R. Krishnamurthy, R. Kaushik, and J. F. Naughton, “Xml-to-sql query translation
literature: The state of the art and open problems,” Ph.D. dissertation, University of
Wisconsin-Madison, US, 2007.

[8] Y. E. Lien., “Hierarchical schemata for relational databases,” in ACM Transactions on
Database Systems, vol. 6, 2004, pp. 48–69.

[9] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey, B. G. Lindsay, H. Pirahesh,
and B. Reinwald, “Efficiently publishing relational data as xml documents,” in VLDB
’00: Proceedings of the 26th International Conference on Very Large Data Bases, 2000,
pp. 65–76.

[10] M. Fernández, Y. Kadiyska, D. Suciu, A. Morishima, W.-C. Tan, R. Barr, M. J. Carey,
B. G. Lindsay, and B. R. Hamid Pirahesh, “Efficiently publishing relational data as
xml documents,” in ACM Transactions on Database SystemsVolume, vol. 4, 2001, p.
438–493.

[11] I. Varlamis and M. Vazirgiannis, “Proceedings of the 2001 acm symposium on document
engineering,” in ACM Transactions on Database Systems, vol. 4, 2001, pp. 105–114.

[12] C. E. Dyreson, S. S. Bhowmick, and R. Grapp, “Querying virtual hierarchies using
virtual prefix-based numbers,” in International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, 2014, pp. 791–802. [Online].
Available: http://doi.acm.org/10.1145/2588555.2610506

http://doi.acm.org/10.1145/2588555.2610506

	Creating a Virtual Hierarchy From a Relational Database
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	INTRODUCTION
	Background
	Research Objectives
	Related Work
	Contribution

	ALGORITHM AND EXAMPLES
	Constraints for Input Relational Schema and Output Hierarchy
	Conversion Algorithm
	Schema Graph Mapping Algorithm
	Conversion Algorithm

	Example Walk Through

	IMPLEMENTAION
	Schema Parser
	Schema Mapping Algorithm
	Conversion Algorithm

	EVALUATION
	Testing Database
	Completeness and Accuracy
	Query Performance

	CONCLUSIONS
	REFERENCES

