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ABSTRACT

Implementing general moment equations for parallel closures in NIMROD

by

Hankyu Lee, Doctor of Philosophy

Utah State University, 2024

Major Professor: Jeong-Young Ji, Ph.D.
Department: Physics

Implementing an advanced closure module significantly extends the capability of magne-

tohydrodynamics (MHD) fluid codes such as NIMROD. This module solves non-Maxwellian

parallel moment equations to obtain parallel closures. These equations are derived by tak-

ing moments of the first-order drift kinetic equation with orthogonal velocity polynomials.

We solve the system of parallel moment equations using two-dimensional finite elements in

the poloidal plane, considering an axisymmetric magnetic field. The results indicate that

high-resolution meshes and substantial memory capacity are essential. To address this, a

hybrid method is implemented to solve the system in Fourier space over the poloidal angle

of a tokamak and transforms results back to finite element space. The closures demonstrate

convergence with an increasing number of moments and accurately solve the drift kinetic

equation, making this approach suitable for studying kinetic effects in fluid simulations for

nuclear fusion devices.

(77 pages)
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PUBLIC ABSTRACT

Implementing general moment equations for parallel closures in NIMROD

Hankyu Lee

Understanding how magnetic fields impact plasma transport is essential for improving

the efficiency of thermonuclear fusion power plants. To address the transport problem, both

plasma fluid equations and Maxwell’s equations must be solved. To solve these equations,

it is necessary to derive closure relations that allow the system to be closed. Previous

closure models are useful for describing the behavior of high-collisionality plasma but are

not effective at low collisionality. To obtain closure relations valid for low collisionality, the

first-order drift kinetic equation must be solved.

This study presents methods for numerically obtaining parallel closures for NIMROD

code by deriving a system of parallel moment equations from the drift kinetic equation in an

axisymmetric magnetic field. Two methods are introduced: one uses two-dimensional finite

elements in the poloidal plane of a tokamak. The other is a hybrid method that reduces

memory burden by using the Fourier method over the poloidal angle of the tokamak to

obtain closures, and then converting them back to the finite element basis. The obtained

closures show convergence with an increasing number of moments and accurately resolve the

drift kinetic equation, making this approach effective for incorporating kinetic effects into

fluid simulations for nuclear fusion devices.
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Figure 8 Ion ĥh closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 9 Ion π̂π closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 10 Equilibrium ion temperature and number density across flux surfaces
at θ = π

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 11 Equilibrium ion temperature around a flux surface calculated by using
linear and quadratic basis functions. . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 12 Ion parallel heat flux (left) and viscosity (right) closures driven by
constant ∂∥T (top) and W∥ (bottom). . . . . . . . . . . . . . . . . . . . . . . 35

Figure 13 Ion parallel heat flux (left) and viscosity (right) closures driven by
∂∥T = sin θ (top) and W∥ = sin θ (bottom). . . . . . . . . . . . . . . . . . . . 36

Figure 14 Ion parallel heat flux (left) and viscosity (right) closures driven by
∂∥T = cos θ (top) and W∥ = cos θ (bottom). . . . . . . . . . . . . . . . . . . . 37

Figure 15 Ion parallel closures due to dT0/dψ for (numL, numK) = (4, 8) , and
nfo = 1 (red,dotted), 2 (greed, solid), 3 (blue, solid), 4 (cyan, solid), 5 (black,
dash-dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



ix

Figure 16 Ion parallel closures due to T1 = sin θ for (numL, numK) = (4, 8) , and
nfo = 1 (red, dotted), 2 (greed, solid), 3 (blue, solid), 4 (cyan, solid), 5 (black,
dash-dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 17 Ion parallel closures due to T1 = cos θ for (numL, numK) = (4, 8) , and
nfo = 1 (red, dotted), 2 (greed, solid), 3 (blue, solid), 4 (cyan, solid), 5 (black,
dash-dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 18 Ion closures including all drives in (115) using nfo = 4, calculated
by solving (numL, numK) = (10, 20) , (20, 40) , (40, 80) , (80, 160) system at ϵ =
0.03, 0.06, 0.09. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 19 Fluid quantities ∇·V∥, ∇·V⊥, ∇·
(
V∥ +V⊥

)
(left), p0∇·V∥, p0∇·

V⊥, p0∇ ·
(
V∥ +V⊥

)
(right) calculated by solving (numL, numK) = (4, 8)

system at ϵ = 0.03 (blue), 0.06 (purple), 0.09 (red). . . . . . . . . . . . . . . 51

Figure 20 Fluid quantities ∇·V∥, ∇·V⊥, ∇·
(
V∥ +V⊥

)
(left), p0∇·V∥, p0∇·

V⊥, p0∇ ·
(
V∥ +V⊥

)
(right) calculated by solving (numL, numK) = (40, 80)

system at ϵ = 0.03 (blue), 0.06 (purple), 0.09 (red). . . . . . . . . . . . . . . 52

Figure 21 Fluid quantities ∇ · h∥ (top), ∇ · h⊥ (middle), and ∇ ·
(
h∥ + h⊥

)
(bottom) calculated by solving (numL, numK) = (4, 8) (left) and (numL, numK) =
(40, 80) (right) systems at ϵ = 0.03 (blue), 0.06 (purple), 0.09 (red). . . . . . 53

Figure 22 Fluid quantities T0∂∥n1 (top left), n0∂∥T1 (bottom left), b · ∇ · π∥
(top right), and the sum of all terms (bottom right) calculated by solving the
system (numL, numK) = (4, 8) at ϵ = 0.03 (blue), 0.06 (purple), 0.09 (red). . . 54

Figure 23 Fluid quantities T0∂∥n1 (top left), n0∂∥T1 (bottom left), b · ∇ · π∥
(top right), and the sum of all terms (bottom right) calculated by solving the
system (numL, numK) = (40, 80) at ϵ = 0.03 (blue), 0.06 (purple), 0.09 (red). . 55

Figure 24 Computation time in minutes for solving the systems with (numL, numK) =
(10, 20) , (20, 40), and (40, 80) using serial (blue) and parallel (orange) algo-
rithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 25 Time slices (starting from green to red) of perturbed number density
(top), ∇ ·V1 (middle), and an enlarged image of ∇ ·V1 (bottom, inside the
black circle) at ϵ = 0.03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure A.1 Zones for determining the status of a trial point. . . . . . . . . . . . . 64



INTRODUCTION

The distribution function of a plasma plays a pivotal role in the study of plasma physics,

serving as a fundamental descriptor of the statistical properties of plasma particles in phase

space. This function, typically denoted as f (t,x,v), represents the probability density

of finding a particle at a position x with velocity v at time t. By integrating over this

distribution, one can derive macroscopic plasma properties such as density, velocity, and

temperature, thereby linking microscopic particle dynamics to observable plasma behavior.

Understanding the distribution function and its evolution in phase space is essential for an-

alyzing various plasma phenomena, from basic wave-particle interactions to complex kinetic

behaviors in thermonuclear devices such as tokamaks.

In tokamaks, neoclassical transport theory provides a framework for understanding the

transport and confinement of plasmas with inhomogeneous magnetic fields. This theory,

which considers the effects of collisions and magnetic field configurations on particle motion,

is essential for studying the physical properties of plasmas and improving the efficiency of

thermonuclear fusion reactions. One objective of neoclassical transport theory is to develop

advanced methods for obtaining parallel closures aligned with magnetic field directions.

These closures, such as heat flux and viscosity, are essential for solving fluid equations

related to number density, temperature, and flow velocity; thus named because they "close"

these equations. Traditional models like Braginskii’s (Braginskii, 1965) fail to capture kinetic

effects in low-collisional plasmas. Solving the drift kinetic equation (DKE) is essential to

obtain closures that accurately describe kinetic effects even in such plasmas.

Many previous studies have attempted to solve the DKE. Helander and Sigmar summa-

rized a framework for analytically solving the DKE (Helander & Sigmar, 2005). Numerous

computational codes have been developed for this purpose, and Held et al. solved it on ve-

locity grids using the finite element method (Held et al., 2015). However, obtaining parallel

closures using the DKE still requires considerable research.

Ji et al. proposed using the parallel moment approach (Ji et al., 2023) to solve the



2

DKE, aiming to obtain parallel closures. This method involves decomposing the gyro-

averaged distribution function into moments and solving for these moments, allowing for

a more nuanced understanding of plasma behavior under the influence of electromagnetic

forces. The parallel moment approach promises a more robust and scalable solution to the

complexities of the DKE, potentially leading to more accurate simulations that can inform

both theoretical research and practical applications in plasma physics.

This work focuses on providing the advanced closure module based on the parallel

moment approach into the NIMROD code (Sovinec et al., 2003), a well-regarded computa-

tional tool used in the study of magnetohydrodynamic (MHD) stability and the evolution

of plasmas. The simulation tool enables detailed analysis by allowing adjustments and

enhancements to meet specific research needs, such as investigating fluid dynamics under

varying magnetic field conditions.

In the following chapters, we delve into the numerical implementation of parallel mo-

ment equations designed to apply the advanced closure model for plasma transport. In

chapter 2, we introduce the kinetic theory of a plasma. In chapter 3, we overview a frame-

work by solving the first-order drift kinetic equation in an axisymmetric magnetic field by

using the moment approach. In chapter 4, we introduce the finite element method and

describe the numerical framework for implementing this method in the NIMROD code. We

present the closure results calculated by NIMROD and discuss some numerical challenges

encountered. In chapter 5, we introduce the moment-Fourier equation, which is numerically

beneficial for solving the parallel moment equations, and show calculated closure results. In

chapter 6, we discuss time advance scheme of fluid equations and parallelism to enhance the

time efficiency of the simulation. In chapter 7, we conclude and discuss future plans.
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KINETIC DESCRIPTION OF A PLASMA

Kinetic and fluid equations

A distribution function f(t,x,v) contains the necessary information to describe trans-

port phenomena of a plasma. In a given electric E (t,x) and magnetic field B (t,x), the

distribution function for a plasma species a with mass ma and charge qa is governed by the

kinetic equation:

[
∂

∂t
+ v · ∂

∂x
+

qa
ma

(E+ v ×B) · ∂
∂v

]
fa = C(fa), (1)

where C (fa) is the collision operator. Using this equation, we can derive equations for fluid

quantities such as number density na(t,x), temperature Ta(t,x), and flow velocity Va(t,x):

∂na
∂t

+∇ · (naVa) = 0, (2)

3

2
na

(
∂Ta
∂t

+Va · ∇Ta
)
+ naTa∇ ·Va +∇ · ha +∇Va : πa = Qa, (3)

mana

(
∂Va

∂t
+Va · ∇Va

)
− naqa(E+Va ×B) +∇pa +∇ · πa = Ra. (4)

These fluid quantities can be considered as moments of the distribution function. The

number density, temperature, and flow velocity are defined as follows:

na (t,x) ≡
∫
dvfa (t,x,v) , (5)

naVa (t,x) ≡
∫
dvvfa (t,x,v) , (6)

3

2
naTa (t,x) ≡

∫
dv

1

2
maw

2
af (t,x,v) , (7)

where the random velocity wa = v − Va. By multiplying 1,mawa,
1
2maw

2
a to the kinetic

equation and integrating it over the velocity space, we can obtain (2-4). Equations (2-4)
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are considered open (incomplete for solving) due to closure quantities such as heat flux ha

and viscosity πa, highlighted in red. To close the set of equations, these quantities must be

expressed in terms of n, T, and V.

When deriving moments of the kinetic equation, we need to calculate the moments of

the collision operator. These collisional moments can be considered as rates of change due

to collisions. For example, the integral

∫
dvC (fa) = 0 (8)

indicates that the collisional effects are assumed not to change the density (Gurnett &

Bhattacharjee, 2017). Other collisional moments, such as

∫
dvmawaC (fa) = Ra, (9)∫
dv

1

2
maw

2
aC (fa) = Qa, (10)

are considered as the collisional momentum exchange rate and collisional heat exchange rate,

respectively.

In local thermodynamic equilibrium, the lowest order terms of collisional moments

vanish when all plasma species share the same flow velocity and temperature (Helander

& Sigmar, 2005). Subsequently, the distribution function is described by the Maxwellian

distribution function,

fMa (t,x,v) =
na0

π3/2v3a0
e−((v−Va0)/va0)

2

, (11)

where subscript 0 denotes the equilibrium quantity and the thermal speed va0 =
√

2Ta0
ma

.

Here, na, Ta,Va, which are included in (11), are often referred to as Maxwellian moments.

Collision operator

The Boltzmann collision operator describes the binary collisions between plasma species

a and b:
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C(fa, fb) =

∫
dv′
∫
dΩσ

∣∣v − v′∣∣ [fa(v∗)fb(v
′
∗)− fa(v)fb(v

′)
]
, (12)

where v∗ denotes the velocity after the collision, Ω is the solid angle, and σ is the differen-

tial cross section. However, a simpler form of the collision operator is required for analytic

methods in neoclassical transport theory. Previous studies have developed simplified forms

of operators based on observations from binary elastic collisions involving Coulomb inter-

actions, known as Rutherford scattering. In these interactions, most collisions result in

particles being deflected at small angles. The Rutherford scattering angle θ is determined

by an impact parameter ρ as follows (Goldstein et al., 2017):

sin
θ

2
=

1√
1 +

(
ρ
ρ0

)2 , (13)

where

ρ0 =
|α|

mabu2
, (14)

α =
qaqb
4πϵ0

, (15)

mab =
mamb

ma +mb
, (16)

and u = v − v′. The differential cross section σ is

σ ≡ dΣ

dΩ
, (17)

=

∣∣∣∣ ρdρdφ

sin θdθdφ

∣∣∣∣ , (18)

=
ρ20

4 sin4
(
θ
2

) , (19)

where dΣ = ρdρdφ and dΩ = sin θdθdφ. Fig. 1 illustrates a diagram for understanding

the differential cross section. A small impact parameter ρ results in the solid angle Ω

encompassing nearly all directions, leading to a minimal differential cross section σ. On the

other hand, a large ρ means Ω encompasses only a narrow range of directions, causing σ to
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increase. Fig. 2 illustrates that in the majority of the cross section, most collisions between

between deuterium and tritium deflect particles at small angles, with the moving deuterium

having a kinetic energy of 10 keV.

Therefore, the distribution function after the collision can be approximated using a

Taylor series

f(v∗) ≈ f(v) + ∆v · ∂f
∂v

+
1

2
∆v∆v :

∂2f

∂v2
(20)

where ∆v = v∗ − v. By using the center-of-mass frame, ∆v can be changed to:

∆v =
mab

ma
∆u, (21)

where ∆u = u∗ − u. Then, equation (12) can be expressed as (Ji, 2014a):

C (fa, fb) =

∫
dv′u

[
mab

ma
⟨∆u⟩Σ · ∂fa

∂v
fb −

mab

mb
fa ⟨∆u⟩Σ · ∂fb

∂v′

+
1

2
fb

(
mab

ma

)2

⟨∆u∆u⟩Σ :
∂

∂v

∂

∂v
fa

−mab

ma

mab

mb
⟨∆u∆u⟩Σ :

∂fa
∂v

∂fb
∂v′ (22)

+
1

2
fa

(
mab

ma

)2

⟨∆u∆u⟩Σ :
∂

∂v′
∂

∂v′ fb,

where ⟨∆u⟩Σ ≡
∫
dΣ (∆u) and ⟨∆u∆u⟩Σ ≡

∫
dΣ (∆u∆u). In calculating ⟨∆u⟩Σ and

⟨∆u∆u⟩Σ, it is necessary to apply a cutoff at the lower bound of the integrals to avoid

divergent values. This cutoff occurs at the angle θmin where ρmax equals the Debye length

λD (Gurnett & Bhattacharjee, 2017). During this process, we also have defined a parameter

Λab = λD/ρ0 , where ln Λab is called the Coulomb logarithm.

Consequently, by introducing the Landau tensor (Landau, 1936):

U =
u2I− uu

u3
, (23)

the collision operator (22) is transformed into the Landau collision operator:
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Figure 1: Diagram of differential cross section.
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C (fa, fb) =
γab
2

∂

∂v
·
∫
dv′U ·

(
1

ma

∂fa
∂v

fb − fa
1

mb

∂fb
∂v′

)
, (24)

where

γab =
q2aq

2
b ln Λab

4πϵ20ma
. (25)

Additionally, it is convenient to introduce the Rosenbluth potentials (Rosenbluth et al.,

1957):

Gb (v) =

∫
dv′fb

(
v′) ∣∣v − v′∣∣ , (26)

Hb (v) =

∫
dv′fb

(
v′) ∣∣v − v′∣∣−1

, (27)

to express (24) in a simpler form:

C (fa, fb) =
γab
ma

[
1

2

∂

∂v

∂fa
∂v

:
∂

∂v

∂Gb
∂v

+

(
1− ma

mb

)
∂fa
∂v

· ∂Hb

∂v
+ 4π

ma

mb
fafb

]
. (28)

Many analytic studies employ a linearized collision operator. When the distribution function

is separated into Maxwellian
(
fM
)

and non-Maxwellian
(
fN
)

components, the collision

operator C
(
fNa , f

N
b

)
can often be disregarded when f is very close to fM. This form of

the collision operator has been used to calculate the collisional moments in the moment

approach (Ji & Held, 2006) which we discuss in the next chapter.
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NEOCLASSICAL TRANSPORT AND PARALLEL MOMENT EQUATIONS

Axisymmetric magnetic field

Neoclassical transport theory was developed under the condition of an axisymmetric

magnetic field. To describe a plasma in such a field, we introduce a cylindrical coordinate

system (R,Z, φ). The toroidal direction is defined as clockwise, with φ̂ = R̂ × Ẑ. The

magnetic field can be expressed in poloidal and toroidal directions as

B = I∇φ+∇φ×∇ψ, (29)

where φ is the toroidal angle and ψ is referred to as the poloidal flux function (Helander &

Sigmar, 2005). The function I can be understood by applying Ampere’s law in the toroidal

direction,

∮
B · dℓφ =

∮
(I∇φ+�����∇φ×∇ψ) · dℓφ, (30)

2πI = µ0Ip, (31)

where Ip is the poloidal current passing through the area enclosed by the loop of dℓφ (Ji,

2014b).

A flux surface is a hypothetical surface on which the magnetic field vector lies. The

poloidal flux function ψ serves as a label for these flux surfaces, where each value of ψ

corresponds to a different flux surface. In an axisymmetric magnetic field, the nesting of

these surfaces forms a toroidal structure, with each surface being toroidally symmetric. The

innermost line of this structure is called the magnetic axis. Fig. 3 presents a diagram of the

tokamak, which is the focus of this work. Within a poloidal plane, green concentric circles

depict various flux surfaces, each can be labeled by a constant ψ (R,Z). In this thesis, the

configuration of the magnetic field is modeled as a circular field on a flux surface ψ, given
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Figure 3: Tokamak model used in this study, featuring a major radius of 5 m and a minor
radius of 0.5 m. Nested flux surfaces are indicated as the green circles in the poloidal cross
section at the right. The magnetic axis is indicated by the blue line with the arrow.
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by

B (θ, ψ) =
B0 (ψ)

1 + ϵ cos θ
, (32)

where θ is the poloidal angle, B0 represents the constant reference field, ϵ is the inverse

aspect ratio, defined as the ratio of the minor radius r to the major radius R of the the flux

surface ψ.

Diamagnetic flow in an axisymmetric magnetic field

In neoclassical transport theory, a plasma is assumed to be in a strong magnetic field.

Particles in this magnetized plasma have very fast gyro-frequencies, as exemplified by elec-

trons and ions with their respective frequencies Ωe = qeB/me for electrons and Ωi = qiB/mi

for ions. Consequently, naqa(Va × B) in (4) can be considered the dominant term in the

equation. Many analytic studies assume a negligible electric field, a distribution function

that is very close to the Maxwellian, and V ≪ v0. They calculate the perpendicular flow

velocity as follow:

∇pa − naqa(Va ×B) = 0, (33)

Va⊥ =
B×∇pa
naqaB2

, (34)

where V⊥ = −b× (b×V) and b = B/B.

The perpendicular heat flux can be calculated in a similar manner. From the heat flux

equation, which can be derived by taking the 1
2mawaw

2
a moment of (1), we have:

5pa
2ma

∇Ta −
qa
ma

(ha ×B) = 0, (35)

resulting in:

ha⊥ =
5pa

2qaB2
B×∇Ta. (36)
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Taking the parallel component of (33,35), the parallel gradients of pressure and temperature

are zero

∂∥pa = 0, (37)

∂∥Ta = 0, (38)

where ∂∥ = b · ∇. Since magnetic field lines lie on flux surfaces, pressure p (ψ) and temper-

ature T (ψ) are constant on a flux surface. It is notable that the perpendicular heat flux,

as described in equation (36) is not related to the collisionality of the plasma. In this work,

we are interested in calculating the parallel component of closure quantities. The parallel

closures are strongly related to the collisionality of the plasma.

Since V = V∥ +V⊥ and h = h∥ + h⊥, it is useful to calculate ∇ ·V⊥, and ∇ · h⊥ for

(2-3) in the axisymmetric magnetic field (29):

∇ ·V⊥ = ∇ ·
(
B×∇p
nqB2

)
, (39)

= ∇ ·
(
B×∇ψ
nqB2

dp

dψ

)
. (40)

Using (29), one can derive another form of the equation (40):

B×∇ψ = I∇φ×∇ψ + (∇φ×∇ψ)×∇ψ, (41)

= I∇φ×∇ψ −∇φ |∇ψ|2 , (42)

where |∇ψ|2 can be expressed using the magnitude of B:

B ·B = (I∇φ+∇φ×∇ψ) · (I∇φ+∇φ×∇ψ) , (43)

= I2 (∇φ)2 + |∇φ|2 |∇ψ|2 , (44)

|∇ψ|2 = R2B2 − I2. (45)
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Using (42) and (45), (40) becomes:

B ×∇ψ
B2

=
I

B
b−Rφ̂, (46)

∇ · b = −∂∥ lnB, (47)

∇ ·
(
B×∇ψ
nqB2

dp

dψ

)
= ∇ ·

[
1

nq

(
Ib̂

B
−�

�Rφ̂

)
dp

dψ

]
, (48)

∇ ·V⊥ = − 2I

nqB
∂∥ lnB

dp

dψ
. (49)

In a similar manner, the divergence of the perpendicular heat flux becomes:

∇ · h⊥ = −5pI

qB
∂∥ lnB

dT

dψ
. (50)

Drift kinetic equation

In a strong magnetic field, the gyro-frequency of each charged species Ωa = qaB/ma is

significantly faster than other frequencies in the system. To derive the DKE, one can average

the kinetic equation (1) over the rapidly changing gyroangle using new coordinates for the

phase space (x, y, z, U, µ, γ). Here, U = 1/2mv2 + qΦ, where Φ is the electric potential,

µ = mv2⊥/2B is the magnetic moment and γ is the gyroangle in the velocity space, which

will be averaged out. By introducing a small parameter δ which represents the ratio of

another frequency to Ωa, we express the distribution function expansion as:

f = f0 + δf1 + δ2f2 + · · · , (51)

to solve the gyro-averaged kinetic equation with the perturbation method. The gyro-

averaging operator is defined as

Ā (v) ≡ 1

2π

∫ 2π

0
A (v) dγ. (52)
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The zeroth-order solution of the distribution function f̄0 is the Maxwellian distribution

function,

f̄0 (ψ, s) =
n0

π3/2v30
e−s

2
, (53)

where s = v
v0

. Note that f0 is independent to the gyro-angle and f0 = f̄0.

Previous studies have employed the perturbation method to solve the δ1-order equation

as follows:

v∥ · ∇f̄1 + vD · ∇f0 = C
(
f̄1
)
, (54)

where the drift velocity vD is defined by (Hazeltine & Meiss, 2003):

vD =
1

Ω
b×

[(
v2∥ +

1

2
v2⊥

)
∇B
B

+
q

m
∇Φ

]
+
v2∥

Ω

µ0J⊥
B

, (55)

with Φ representing the electric potential and J indicating the current density. The vD ·∇f0

term in (54) can be expressed by using the relation as below:

U =
1

2
mv2∥ + µB + qΦ, (56)

mv∥∇
(
v∥
)
U,µ

= −µ (∇B)U,µ − q (∇Φ)U,µ , (57)

where the subscript U, µ denotes the partial differentiation at fixed U and µ. With equation

(57), vD · ∇f0 is written as:

vD · ∇f0 = (vD · ∇ψ) df0
dψ

, (58)

vD = v∥∇
(v∥
Ω

)
U,µ

× b+
v2∥

Ω

µ0J⊥
B

, (59)

vD · ∇ψ = v∥

[
∇
(v∥
Ω

)
U,µ

× b

]
· ∇ψ +

v2∥

Ω

µ0 (J⊥ · ∇ψ)
B

, (60)

= v∥ (b×∇ψ) · ∇
(v∥
Ω

)
U,µ

. (61)
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Using the relation (46), vD · ∇ψ becomes,

vD · ∇ψ = v∥∂∥

(
Iv∥

Ω

)
. (62)

The final form of the first-order ion drift kinetic equation is expressed as

v∥∂∥
(
f̄1 − F

)
µ,w

= C
(
f̄1
)
, (63)

where we introduce a new coordinate (x, y, z, w, µ, γ) and w = U − qΦ. The neoclassical

driving term F is given by

F = −
Iv∥

Ω

df0
dψ

= −
Iv∥

Ω

[
d ln p0
dψ

+

(
s2 − 5

2

)
d lnT0
dψ

]
f0, (64)

with p0, T0 the equilibrium pressure and temperature. In this work, ion-electron collisions

are ignored when calculating the ion parallel closures.

Parallel moment equations

This section presents an overview of the moment approach employed to solve Eq. (63),

introduced in (Ji et al., 2023). In this approach, the first order distribution function f̄1 is

expanded in terms of the orthogonal velocity polynomials P̂ lk(v∥, v)

f̄1(t,x,v) = f0
∑
lk

P̂ lk(v∥, v)M̂
lk(t,x). (65)

The polynomial P̂ lk(v∥, v) is given by

P̂ lk
(
v∥, v

)
=

1√
σ̄lk

P lk, (66)

P lk
(
v∥, v

)
= slPl (ξ)L

(l+1/2)
k

(
s2
)
, (67)

where Pl (ξ) is a Legendre polynomial of the variable ξ = v∥/v, and L
(l+1/2)
k

(
s2
)

is an as-

sociated Laguerre polynomial of the variable s = v/v0. The normalization constants σ̄lk are
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(j, p) M̂ jp Fluid quantity

(0, 0)
n1
n0

Number density

(0, 1) −
√

3

2

T1
T0

Temperature

(1, 0)

√
2u

v0
Parallel flow velocity

(
u = V1∥

)
(1, 1) −

√
4

5

h∥

p0v0
Parallel heat flux

(2, 0)

√
3

4

π∥

p0
Parallel viscosity

Table 1: Several lowest order moments

introduced through the orthogonality relations of the polynomials

σ̄lk = σ̄lλlk, (68)

where σ̄l =
1

2l + 1
and λlk =

(l + k + 1/2)!

k! (1/2)!
. Here, σ̄l and λlk denote the normalization

constants of Pl and L(l+1/2)
k polynomials as

∫ 1

−1
dξPj (ξ)Pl (ξ) = 2σ̄jδjl, (69)

1

π3/2v30

∫
dve−s

2
s2jLj+1/2

p L
j+1/2
k = δpkλ

j
p. (70)

The coefficient of the expansion M̂ lk is called the parallel moment. Several lowest order

moments are listed in the Table 1. The (0, 0) , (0, 1) ,and (1, 0) moments are called the fluid

moments.

The neoclassical drive in (63) can also be expanded in the polynomials as

v∥∂∥

(
Iv∥

Ω

)
µ,w

df0
dψ

=
vT∂∥ lnB

B/B0
f0

[(
2P̂ 00 − 2

√
2

3
P̂ 01 +

1√
3
P̂ 20

)
p̂0,ψ (71)

+

(
−5

√
2

3
P̂ 01 + 2

√
10

3
P̂ 02 +

1√
3
P̂ 20 −

√
7

6
P̂ 21

)
T̂0,ψ

]
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where

p̂0,ψ =
I

qv0B0n0

dp0
dψ

, (72)

T̂0,ψ =
I

qv0B0

dT0
dψ

. (73)

By taking the P̂ jp moment of (63), we can obtain a parallel moment equation for the

(j, p) moment ∫
dvP̂ jp

(
v∥∂∥f̄1 − v∥∂∥F

)
=

∫
dvP̂ jpC

(
f̄1
)
, (74)

∑
lk

ψjp,lk∂∥M̂
lk + ψjp,lkB

(
∂∥ lnB

)
M̂ lk =

1

λC
cjp,lkM̂ lk +

∂∥ lnB

B/B0

(
gjpp p̂0,ψ + gjpT T̂0,ψ

)
, (75)

where λC = v0τii denotes the ion mean free path and τii is the ion collision time. The

constant coefficients ψjp,lk, ψjp,lkB , cjp,lk (Ji & Held, 2014) are defined by

∫
dvv∥P̂

jpP̂ lkf0 = n0v0ψ
jp,lk, (76)

∫
dvv∥P̂

jp
(
∂∥P̂

lk
)
f0 = n0v0

(
∂∥ lnB

)
ψjp,lkB , (77)

∫
dvv∥P̂

jpC
(
f0P̂

lk
)
=
n0
τii
δjlc

j
pk. (78)

Note that the collision coefficients cjpk are applied to M̂ jk moments which share the same j

index. The coefficients ψjp,lk and ψjp,lkB are applied to M̂ lk moments which have l = j + 1

or l = j − 1. Nonvanishing coefficients gjp for the neoclassical drive are

g00p = 2, g01p = −2

√
2

3
, g20p =

1√
3

(79)

and

g01T = −5

√
2

3
, g02T = 2

√
10

3
, g20T =

1√
3
, g21T = −

√
7

6
. (80)
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A system of equations for j = 0, 1, · · · , L− 1 and p = 0, 1, · · · ,K − 1 as given by (75)

can be expressed in matrix form as:

[ψ] ∂∥

[
M̂
]
+ [ψB]

(
∂∥ lnB

) [
M̂
]
=

1

λC
[c]
[
M̂
]
+
(
∂∥ lnB/B/B0

) [
gpp̂0,ψ + gT T̂0,ψ

]
. (81)

Equation (81) has a solution that depends on the dimensions of the system (L,K). The

validity of this solution can be verified by checking the convergence of solutions with an

increasing size of the system. The converged solution can be considered as the solution of

(63).

Obtaining ion closure relations

In this work, we implement a set of moment equations to obtain ion parallel closures for

fluid equations in the NIMROD code. For this purpose, the rows and columns corresponding

to fluid moments in (81) must be removed. When some rows and columns are removed from

a system of equations, the corresponding columns become drives in the system. For example,

when we remove the first row and column of (82), the equivalent system should be (83):



a00 a01 · · · a0N

a10 a11
...

. . .

aN0 aNN





x0

x1
...

xN


=



b0

b1
...

bN


, (82)


a11

. . .

aNN



x1
...

xN

 =


b1
...

bN

− x0


a10
...

aN0

 . (83)

Therefore, the system of equations for obtaining closure relations can be expressed as follows:

[
ψ′∂∥ + ψ′

B

(
∂∥ lnB

)
− 1

λC
c′
] [
M̂ ′
]
=
[
g∥
]
+
[(
g′pp̂0 + g′T T̂0

)
(B0/B)

(
∂∥ lnB

)]
(84)

where ′ denotes the removal of rows and columns of fluid moments from their original form
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in (111). Only rows correspond to (1, 1) and (2, 0) moments in the driving term g∥ are

nonvanishing as

g1,1∥ =

√
5

2
∂∥T̂ , (85)

g2,0∥ = −
√
3

2
W∥,W∥ =

4

3

(
∂∥ +

3

2
∂∥ lnB

)
û (86)

where T̂ = T1/T0 and û = u/v0.
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IMPLEMENTING PARALLEL MOMENT EQUATIONS USING FINITE ELEMENT

METHOD

Finite Element Method

The finite element method (FEM) is a powerful numerical technique widely used in

engineering and mathematical modeling to approximate solutions to complex problems. It

is closely linked to the method of weighted residuals, a fundamental concept that minimizes

the residuals of differential equations across the entire domain to enhance the accuracy of

approximations. A popular variant of this is the Galerkin method, which specifically chooses

weight functions that are the same as the trial functions in the finite element formulation.

This selection simplifies the integration process and often enhances the stability and con-

vergence of the solution, making the Galerkin method a preferred approach in many FEM

applications (Karniadakis & Sherwin, 2005). In this chapter, we introduce the Galerkin

method as used in NIMROD and discuss our results from implementing the parallel mo-

ment equations using this method.

Basis functions

In this study, we use the NIMROD code to solve (75) and the plasma fluid equations

on a grid using the finite element method. A scalar physical field on the grid is represented

by using polynomial basis functions αi(R,Z),

A(R,Z) =
∑
i

Aiαi(R,Z). (87)

In (87), the i index is summed over the nodes of the grid, and the αi are referred to as trial

basis functions. Multiplying a differential equation by test basis functions and integrating

over the domain converts the differential equation to a matrix equation for the coefficients

of the trial basis functions. If the trial and test basis functions are chosen from the same set,
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as they are in NIMROD, the finite element method is referred to as the Galerkin approach.

For example, to solve a simple equation for A (R,Z)

A =
∂f (R,Z)

∂R
, (88)

we need to multiply test basis functions αj to the equation and integrate it over the entire

domain ∫
dRdZαj

∑
i

Aiαi =

∫
dRdZαj

∂

∂R

∑
i

(fiαi) . (89)

Here the index j runs over the entire set of basis functions. Equation (88) converts to an

matrix equation for coefficients Ai such that

∑
i

(∫
dRdZαjαi

)
Ai =

∫
dRdZαj

∂

∂R

∑
i

(fiαi) , (90)

MjiAi = Fj . (91)

A two-dimensional basis function αi (R,Z) consists of two one-dimensional basis func-

tions. For example, a linear one-dimensional basis function αi (x) is shown in (92)

αi (x) =



0 x < xi−1

x−xi−1

xi−xi−1
xi−1 ≤ x ≤ xi

xi+1−x
xi+1−xi xi ≤ x ≤ xi+1

0 xi+1 < x

(92)

where xi denotes the ith node of the one-dimension grid. Higher order basis functions are

defined not only on a vertex xi, but also at interior points of a finite element cell. A quadratic
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basis function, as shown in Fig. 4, can have two types αi (x) and βi (x) where

αi (x) =



0 x < xi−1

(x−xi−1)

(
x−x

i− 1
2

)
(xi−xi−1)

(
xi−xi− 1

2

) xi−1 ≤ x ≤ xi

(x−xi+1)

(
x−x

i+1
2

)
(xi−xi+1)

(
xi−xi+1

2

) xi ≤ x ≤ xi+1

0 xi+1 < x,

(93)

βi (x) =



0 x ≤ xi−1

(x−xi−1)(x−xi)(
x
i− 1

2
−xi−1

)(
x
i− 1

2
−xi

) xi−1 ≤ x ≤ xi

0 xi ≤ x.

(94)

Note that βi (x) has a maximum at the interior point x = xi− 1
2
. Therefore, two-dimensional

basis functions can be defined at interior points which are located in grid cells.

In the NIMROD code, the coefficients of basis functions are saved in four different

lagr_quad (Lagrange quadrilateral) type arrays called fs, fsh, fsv, fsi. Fig. 6 and 7

illustrate examples of elements stored in the arrays for the case of quadratic basis functions.

The fs(iv,ix,iy) array stores coefficients for grid-vertex nodes, where the index iv denotes

the index of the vector component. The fsh(iv,ib,ix,iy) array stores coefficients for

horizontal-side nodes. In fsh, a basis index ib is introduced for pointing basis functions on

the horizontal side nodes from left to right. The fsv(iv,ib,ix,iy) array stores coefficients

for vertical-side nodes from bottom to top. The fsi(iv,ib,ix,iy) array stores coefficients

for internal nodes from bottom-left to top-right.

Numerical differentiation and integration on the logical coordinates

The physical coordinates (R,Z) which set nodes on a poloidal cross section can be

transformed to the logical coordinates (ξ, η) for various conveniences in numerical imple-

mentation. Figs. 5-7 depict the physical and logical grids used in this study. The colored
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Figure 4: Quadratic basis functions for 1-D finite element with nodes at vertices and interior
points.
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blocks indicate that the block numbering progresses first in the η(poloidal angle)-direction

then ξ(perpendicular to the flux surface)-direction within the logical coordinate system.

These sub-grids in the logical coordinates are called the rblocks (Sovinec et al., 2003),

which are rectangular blocks in the logical coordinates. The Jacobian of this transformation

must be calculated to express results in the physical coordinates.

Differentiating a function is performed over the logical coordinates. NIMROD uses the

chain rule to calculate differentiation over a physical coordinate. This involves using the

derivative of the basis function with respect to the logical coordinates. The equations are

given by:

dα

dR
=

dξ

dR

dα

dξ
+
dη

dR

dα

dη
, (95)

dα

dZ
=

dξ

dZ

dα

dξ
+
dη

dZ

dα

dη
. (96)

The metric related derivatives dξ/dR, dη/dR, dξ/dZ, dη/dZ can be calculated from the

mapping functions R (ξ, η) and Z (ξ, η) where R and Z are expanded using the same set of

basis functions as the fields. This process is referred to as an iso-parametric mapping of the

coordinates.

Integrating a function over the domain is essential for constructing the matrix and the

right-hand side as shown in (90). The integration over a specific interval [x1, x2] can be

approximated by a weighted sum of n function values at Gaussian quadrature points xi

∫ x2

x1

f(x)dx ≈
n∑
i=1

wif(xi), (97)

where the weights wi are given by the Gauss-Legendre integration method (Press, 2007).

Thus, the basis function information at Guassian quadrature points are stored as an array

α (wg, xg, yg) where xg, yg denote the Gaussian quadrature points in the logical coordinates

and wg for the weights. The function value at the quadrature point f (xi) is saved in an

rb_qp_type (rblock quadrature point type) array.
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Figure 5: Poloidal mesh (physical grid) used in this study shows the 2-D finite element
cells in the R-Z plane.
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Figure 6: Logical coordinates used in this study with ix (ξ), moving across constant-ψ
surfaces, and iy (η), moving around in the periodic, poloidal angle.
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Figure 7: lagr_quad type arrays over the red square on Fig. 6.
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Implementing parallel moment equations using finite element method

In the system of equation (84), the moment variable M̂ ′lk is expanded using the basis

functions

M̂ ′lk(R,Z) =
∑
i

M̂ ′
i
lkαi(R,Z). (98)

The dimensions of the variable can be determined by the input parameters numL, numK where

the index l runs from 0 to numL− 1 and the k index is defined as follows:

k =


2, 3, · · · , numK+ 1 l = 0,

1, 2, · · · , numK l = 1,

0, 1, · · · , numK− 1 l > 1.

The operator terms on the left side are constructed by multiplying a test basis function αj

into the equation, resulting in:

∫
dRdZαj

[
ψ′∂∥ + ψ′

B

(
∂∥ lnB

)
− 1

λC
c′
]∑

i

M̂ ′
i
lkαi(R,Z). (99)

The dimension of the equation is number of total nodes in the poloidal plane times numL

times numK. The right side of the equation becomes

∫
dRdZαj

∑
i

[(
g∥
)
i
+
(
g′p (p̂0,ψ)i + g′T

(
T̂0,ψ

)
i

)
(B0/B)i

(
∂∥ lnB

)
i

]
, (100)

where Ai denotes the value of physical quantity A(R,Z) at the ith node.

Benchmarking integral closures in slab geometry

In unsheared slab geometry, the magnetic field does not change in its direction. Under

this condition, where ∂∥ lnB = 0, the solution of (115) can be expressed as follow

[
ψ′∂∥ −

1

λC
c′
] [
M̂ ′
]
= [g∥]. (101)
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The solution of the equation (101) can be calculated analytically using the eigenvector

method, and the closures obtained from the results are referred to as the integral closures

(Ji et al., 2017).

Thermodynamic drives in (116,117) are applied in g∥ without the effect of ∂∥ lnB.

Assuming sinusoidal thermodynamic drives in this system,

T = T0 + T1 sinφ, (102)

V∥ = V1 sinφ, (103)

where φ = 2πℓ/λ and ℓ denotes the length measured along the magnetic field, ion closure

quantities can be expressed as follows:

h∥ (ℓ) = −1

2
nT1v0ĥh cosφ− nT0V1ĥπ sinφ, (104)

π∥ (ℓ) = −nT1π̂h sinφ− nT0
V1
v0
π̂π cosφ. (105)

The dimensionless closures ÂB represent the effect of closure A from drive B, where the

drive h denotes the temperature gradient and π denotes the velocity gradient drives. Figs.

8 and 9 show the results of ĥh and π̂π calculated by solving (101) in NIMROD. In the

graph, the green, blue, and black solid lines depict analytical results derived from solving

moment equations of varying sizes. As the normalized mean free path k = 2πλC/λ increases,

the model requires a greater number of moments to reach a converged solution. At the

collisionless limit, an infinite number of moments is required to obtain a convergent solution.

This solution can be derived by solving a linearized kinetic equation (Ji et al., 2013). The

known asymptotic behavior of these moment solutions is illustrated by a red solid line,

incorporating both the moment solutions and their asymptotic tendencies (Ji et al., 2017).

Implementing parallel moment equations in the circular magnetic field

We tested the results of our implementation of (84) in the high-aspect-ratio tokamak

grid depicted in Fig. 5 using the finite element method. Fig. 10 illustrates the equilibrium
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Figure 8: Ion ĥh closure. The green, blue, black squares represent results calculated in
NIMROD by solving the systems with (numL, numK) = (4, 4), (8, 8), and (16, 16) moment
equations, respectively.
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Figure 9: Ion π̂π closure. The green, blue, black squares represent results calculated in
NIMROD by solving the systems with (numL, numK) = (4, 4), (8, 8), and (16, 16) moment
equations, respectively.
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Figure 10: Equilibrium ion temperature and number density across flux surfaces at θ = π
2 .

profiles for n0 and T0 for this simulation. The equilibrium ion velocity is set to zero. Added

on the equilibrium quantities, we structured the drives ∂∥T and W∥ as three types: constant,

cos θ and sin θ. The outcomes from these simulations were then rigorously compared with

calculations performed purely in Fourier space, which will be introduced in the next section.

This comparison was essential to validate the FEM simulations against a well-established

method, ensuring that the FEM approach produced consistent and reliable results.

It is crucial that the implemented ∂∥T1 drive functioned as intended, and was not

adversely affected by the equilibrium temperature T0. Fig. 11 illustrates the change of T0

around a flux surface in poloidal angle, θ. To satisfy equation (38), the ion temperature

should be constant on a flux surface. When we use the quadratic basis functions, the change

of the ion temperature is negligible compared to the case when using linear basis functions.
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Figure 11: Equilibrium ion temperature around a flux surface calculated by using linear
and quadratic basis functions.
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Figure 12: Ion parallel heat flux (left) and viscosity (right) closures driven by constant ∂∥T
(top) and W∥ (bottom). Results are calculated by using linear (blue), quadratic (red), and
cubic (black) basis functions.

Fig. 12 illustrates the results of parallel ion closures obtained by solving the (numL, numK) =

(4, 8) system, driven by constant drives. For testing purposes, only the collision operator is

included in the moment equations as follows:

[
− 1

λC
c′
] [
M̂ ′
]
= [g∥]. (106)

Since the collision coefficient cjpk is applied to M̂ jk moments, the ∂∥T drive affects only the

heat flux, and the W∥ drive affects only the parallel viscosity. Due to the long mean free

path λC in the simulation, a constant effect of the drives can have a significant impact on

parallel closures.

Fig. 13 and 14 illustrate the closure results tested by sin θ and cos θ drives. In this test,

both the collision operator and the parallel gradient operators are included in the moment

equation as follows: [
ψ′∂∥ −

1

λC
c′
] [
M̂ ′
]
= [g∥]. (107)
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Figure 13: Ion parallel heat flux (left) and viscosity (right) closures driven by ∂∥T = sin θ
(top) and W∥ = sin θ (bottom). Results are calculated by using linear (blue), quadratic
(red), and cubic (black) basis functions.

Since the coefficients ψjp,lk applied to M̂ lk moments which have l = j + 1 or l = j − 1, ∂∥T

can affect the viscosity and W∥ can affect the heat flux. As the polynomial degree of the

basis functions increases, the results from the finite element method for closures more closely

approximate those from solving the moment-Fourier equations. However, using polynomial

basis functions of cubic or higher degrees proves inefficient for time-advance simulations,

particularly when numerous moments are required to achieve a convergent solution. The

next chapter will introduce the moment-Fourier method, which is advantageous for lowering

memory costs.



37

Figure 14: Ion parallel heat flux (left) and viscosity (right) closures driven by ∂∥T = cos θ
(top) and W∥ = cos θ (bottom). Results are calculated by using linear (blue), quadratic
(red), and cubic (black) basis functions.
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IMPLEMENTING MOMENT-FOURIER EQUATIONS

Fourier method of solving moment equations and obtaining closures

In the circular magnetic field (32), the parallel moment equation (75) can be expressed

with respect to the poloidal angle θ. Using the relation ∂∥ =
B · ∇θ
B

∂

∂θ
, (75) can be con-

verted to (108)

∑
lk

ψjp,lk∂θM̂
lk + ψjp,lkB (∂θ lnB) M̂ lk =

B

BθλC
cjp,lkM̂ lk+ (108)

∂θ lnB

B/B0

(
gjpp p̂0,ψ + gjpT T̂0,ψ

)
,

where Bθ = B ·∇θ. Every physical quantity in (108) is periodic with respect to the poloidal

angle θ on a given flux surface. Using the Fourier method in the poloidal direction, we

can convert the differential equations into an algebraic equation. In the Fourier method, a

physical quantity A (θ) is expanded in Fourier series A (θ) =
∑

mA(m)φ(m), where the basis

functions are defined as φ(2n−1) = sin (nθ) for odd terms, and φ(2n) = cos (nθ) for even

terms. An operator is expressed as matrices in the Fourier representation by

O(i,j) =
1

σ(i)

∫
dθφ(i)Oφ(j), (109)

where σ(0) = 2π and σ(i) = π for i > 0. Then the parallel moment equation (108) can be

expressed as a system of algebraic equations:

ψjp,lk (∂θ)(m,n) M̂
lk
(n) + ψjp,lkB (∂θ lnB)(m,n) M̂

lk
(n) = (110)

cjp,lk
(

B

BθλC

)
(m,n)

M̂ lk
(n) +

(
∂θ lnB

B/B0

)
(m)

(
gjpp p̂0,ψ + gjpT T̂0,ψ

)
.
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The system of algebraic equations which includes j = 0, 1, · · · , L−1 and p = 0, 1, · · · ,K−1

as described by (110) can be expressed in matrix form,

Jψ∂θK
r
M̂

z
+ JψB∂θ lnBK

r
M̂

z
=

r
c
(
B/BθλC

)z r
M̂

z
+ (111)

r(
gpp̂0 + gT T̂0

)
(B0/B) (∂θ lnB)

z
.

The dimension of the linear system is numL × numK × nF, where nF denotes the number of

Fourier modes. The operators applied to
r
M̂

z
are tensor products of the corresponding

operators from (81) and (110) such as

Jψ∂θK = [ψ]⊗ (∂θ)F , (112)

JψB∂θ lnBK = [ψB]⊗ (∂θ lnB)F , (113)
r
c
(
B/BθλC

)z
= [c]⊗

(
B/BθλC

)
F
, (114)

where the Fourier matrix(O)F has a component in the ith row and jth column as described

in (109). The structure of the system of equations (111) indicates that the matrix is non-

invertible. The solution can be derived using singular value decomposition (Ji et al., 2023).

The system of equations for obtaining closure relations is given by

q
ψ′∂θ

y r
M̂ ′

z
+

q
ψ′
B∂θ lnB

y r
M̂ ′

z
=

r
c′
(
B/BθλC

)z r
M̂ ′

z
+ JgθK (115)

+
r(
g′pp̂0 + g′T T̂0

)
(B0/B) (∂θ lnB)

z

where ′ denotes the removal of rows and columns of fluid moments from their original form

in (111). The nonvanishing driving terms in gθ are

g1,1θ =

√
5

2
∂θT̂ , (116)

g2,0θ = −
√
3

2
Wθ,Wθ =

4

3

(
∂θ +

3

2
∂θ lnB

)
û. (117)

Obtaining Fourier coefficients of fields for implementing the equations
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To solve (115), it is necessary to obtain the Fourier coefficients of certain fields, such

as ∂θ lnB,B/BθλC, B0/B∂θ lnB. The magnetic field on a flux surface is used to represents

the poloidal angle. To obtain the Fourier coefficients of these fields, the values of each field

are sampled at equal magnetic field length intervals.

The rblock may be separated in the poloidal angle direction for a simulation. In this

case, a single processor cannot obtain the Fourier coefficients of the fields for the entire

poloidal angle region from 0 to 2π. Therefore, the fields needed to calculate the Fourier

coefficients must be gathered from the separated rblock values into one block. The collected

fields in this mapping process are stored in the global rb_cel block.

After obtaining the field values along the same magnetic field interval, they are subjected

to a Fast Fourier Transform (FFT) to obtain the Fourier coefficients. Since the FFT library

provides coefficients of exp [iθ], it is converted to represent the coefficients for sinnθ and

cosnθ.

Obtaining the closure matrix

To solve (115) on a given flux surface ix, we employ LU decomposition. Equation (118)

illustrates an example of decomposing the system of equations when numL = 4:



−C3 Ψ3− 0 0

Ψ2+ −C2 Ψ2− 0

0 Ψ1+ −C1 Ψ1−

0 0 Ψ0+ −C0


=



R3

Ψ2+ R2

Ψ1+ R1

Ψ0+ R0





1 A3

1 A2

1 A1

1


, (118)

=



R3 A3R3

Ψ2+ Ψ2+A3 + R2 A2R2

Ψ1+ Ψ1+A2 + R1 A1R1

Ψ0+ Ψ0+A1 + R0


. (119)

By comparing this system (as shown in (118)) with (119), we can determine the values of R

and A. Each problem in the process has a size of numK×nF, which reduces both the time and
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memory required compared to solving the full system. The code then solves (120), where G

denotes the drive terms, and finally obtains the moment solution by solving (121)



R3

Ψ2+ R2

Ψ1+ R1

Ψ0+ R0





y3

y2

y1

y0


=



0

G2

G1

G0


, (120)



1 A3

1 A2

1 A1

1





M̂3

M̂2

M̂1

M̂0


=



y3

y2

y1

y0


. (121)

By using the relation between closure quantities and parallel moments in Table (1), we

can obtain a closure matrix. The structure of the closure matrix for parallel heat flux is

illustrated in (122):


hp0 hT0 KhhD KhπDW


. (122)

The number of rows in this matrix is fmax and the number of column is 2fmax + 2. The

number of column can be extended when considering ion-electron collisions. The first two

columns represents the parallel heat flux driven by dp0/dψ and dT0/dψ drives, respectively.

Note that one column is sufficient to describe the heat flux closure since these drives are

assumed to be constant on a flux surface.

The next part of the matrix is KhhD, which means the heat flux driven by ∂θT drive.

The matrix already incorporates the effect of the parallel gradient operator D. Therefore,
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multiplying the Fourier coefficient of the perturbed temperature by the matrix is sufficient

to obtain the closure, as shown in (123):



hh00 · · · hh0,fmax
...

. . .

hhfmax,0 hhfmax,fmax





T̂0

T̂1
...

T̂fmax


. (123)

The last part of the matrix, KhπDW , indicates the heat flux driven by the Wθ drive. Like

the previous part, this matrix already includes the effect of parallel gradient operator DW

(see Equation (117)). Thus, multiplying the Fourier coefficient of the perturbed parallel

velocity by the matrix is sufficient to obtain the closure. The closure matrix for parallel

viscosity has a similar structure.

Representing closures with finite element basis

The closure obtained through the process described in the above section is expressed in

Fourier coefficients. To apply this to NIMROD fluid equations, it needs to be expressed in

the coefficients of FEM basis functions. That is, the jth column of the closure matrix must

be transformed as follows:



h0j
...

hfmax,j


⇒



H0j

...

Hmpy,j


, (124)

where the mpy denotes the total nodes in the poloidal angle direction.

The transformation matrix Γ from vector hj to Hj is shown in 125:
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

Γ0 Γ1 · · · Γfmax





h0j

h1j
...

hfmax,j


=



H0j

H1j

...

Hmpy,j


. (125)

Each column in matrix Γj represents the finite element representation of jth Fourier mode.

For example, Γ0 represents a constant function over the poloidal angle, and Γ1 represents

sin θ over the poloidal angle.

When Γ1 represents sin θiy for every iy node, we need to determine θiy. This can be

achieved by calculating

dθ =
Bθ

B
dℓ. (126)

In cases where Bθ/B is uniform over the flux surface, it simplifies to

θ = 2π
ℓiy
L
, (127)

where ℓiy is the length of the magnetic field to a specific iy node, with ℓ0 = 0 and ℓmpy = L.

The detailed algorithm for calculating ℓiy is provided in Appendix A.

After converting the closure matrix to the finite element space, the Fourier coefficients

of drives are multiplied by the matrix as shown in (128):



Hh
00 · · · Hh

0,fmax

...
. . .

Hh
mpy,0 Hh

mpy,fmax





T̂0

T̂1
...

T̂fmax


= T̂0



Hh
00

...

Hh
mpy,0


+ · · ·+ T̂fmax



Hh
0,fmax

...

Hh
mpy,fmax


.

(128)
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The closures driven by dp0/dψ, dT0/dψ, ∂θT , and Wθ are summed together to construct

the final form of the closure. After obtaining the closure values at every node from 0 to mpy

on every flux surfaces from 0 to mpx, the data are saved in the lagr_quad type arrays for

representing the data as coefficients of basis functions in the fluid simulation.

Fig. 15 illustrates the ion parallel closures due to dT0/dψ as the number of Fourier

modes in equation (115) is increased. For each nfo, nF = 1+2×nfo, which means the system

of equations includes the constant mode and nfo modes of sine and cosine functions. To

represent the Fourier coefficients of the closures using the finite element method, quadratic

basis functions are used over mpx = 128, mpy = 64 nodes in the poloidal plane. Hereafter,

all results are represented on the same finite element grid. The sufficient number of Fourier

modes in a problem is typically determined by the behavior of ∂θ lnB. Fig. 15 shows that

including constant, sin θ and cos θ modes seems sufficient to solve the given system. Figs.

16 and 17 illustrates the ion closures due to T1 sin θ and T1 cos θ drives while increasing the

number of Fourier modes. The more significant the effects of higher modes are, the more

Fourier modes should be included in the system of equations. As the number of moments in

the system increases, the closure approaches the convergent solution as shown in Fig. 18.
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Figure 15: Ion parallel closures due to dT0/dψ for (numL, numK) = (4, 8) , and nfo = 1
(red,dotted), 2 (greed, solid), 3 (blue, solid), 4 (cyan, solid), 5 (black, dash-dotted).
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Figure 16: Ion parallel closures due to T1 = sin θ for (numL, numK) = (4, 8) , and nfo = 1
(red, dotted), 2 (greed, solid), 3 (blue, solid), 4 (cyan, solid), 5 (black, dash-dotted).
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Figure 18: Ion closures including all drives in (115) using nfo = 4, calculated by solving
(numL, numK) = (10, 20) , (20, 40) , (40, 80) , (80, 160) system at ϵ = 0.03, 0.06, 0.09.
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FLUID EQUATIONS AND TIME ADVANCE IN NIMROD

Linear fluid equations and closures

By solving (111), we can obtain the Fourier coefficients of perturbed number density

(n̂)F, temperature
(
T̂
)
F
, and parallel velocity (û)F. These solutions satisfy the fluid equa-

tions below:

∂0+θ û = 2p̂0,ψ
∂θ lnB

B/B0
, (129)

∂0+θ û+ ∂0+θ ĥ =
(
2p̂0,ψ + 5T̂0,ψ

) ∂θ lnB
B/B0

, (130)

∂1−θ n̂+ ∂1−θ T̂ + ∂1+θ π̂ = 0, (131)

where ĥ = h∥/v0p0 and π̂ = π∥/p0.

Using (40) and (50), equations (129-131) are equivalent to the steady-state, linear fluid

equations:

∇ · (n0V1) = 0, (132)

p0∇ ·V1 +∇ · h1 = 0, (133)

n0∂∥T1 + T0∂∥n1 + b · ∇ · π1 = 0, (134)

where the subscript 0 stands for the equilibrium field and 1 stands for the perturbed field.

The parallel component of the divergence of ion viscosity can be calculated as follows (Ji &

Held, 2014):

b · ∇ · π1 =
(
∂∥ −

3

2
∂∥ lnB

)
π1∥. (135)

Figs. 19-23 demonstrate that the implemented fluid quantities satisfy (132-134). In this

implementation, quadratic basis functions are used over mpx = 128, mpy = 64 nodes in the

poloidal plane. To verify the numerical convergence of the error in future studies, it will be
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necessary to either increase the polynomial degree of the basis functions or the number of

nodes in the poloidal plane.

Time advance of fluid equations

To test the time advance of the closure implementation so far, we use these Fourier

coefficients
(
n̂, T̂ , û

)
F
which satisfy (129-131). These coefficients are then converted into

finite element space to set them as the initial condition. Subsequently, NIMROD calculates

V1⊥ and h1⊥ using (34,36) and solves (115) to obtain ion parallel closures. Next, NIMROD

advances fluid quantities starting with the parallel ion velocity, ion number density, and ion

temperature as follows:

mn0

(
∆V1∥

∆t

)
+ ∂∥p1 + b · ∇ · π1 = 0, (136)(

∆n1
∆t

)
+∇ · (n0V1) = 0, (137)

3

2
n0

(
∆T1
∆t

)
+ p0∇ ·V1 +∇ · h1 = 0, (138)

where V1 = V1∥ +V1⊥and h1 = h1∥ + h1⊥. During the simulation, V1⊥ and h1⊥ remain

unchanged since they are constructed from the equilibrium fields. The detailed flow of the

entire closure module is shown in Appendix B.

To enhance time efficiency for the time loop solving (136-138), we have implemented

parallelism over flux surface indices. Since solving (119) for all ix indices is time-consuming,

we have divided the range of ix so that multiple processors can solve the divided problems

in parallel. Next, during the process described in (128), we gather the divided results to

enable all processors to construct the closure, allowing each processor to utilize the closure

information within its assigned rblock. Fig. 24 illustrates the computation times for solv-

ing the systems with (numL, numK) = (10, 20) , (20, 40) and (40, 80) using both serial and

parallel algorithms. In the parallel implementation, we divide a (mpx, mpy) = (128, 64) grid

using quadratic basis functions into 16 sub-grids in the ix direction. Utilizing the NERSC



51

Re dvp vs. i

0.0 0.2 0.4 0.6 0.8 1.0

-1
5

-1
0

-5
0

5
1
0

1
5

iy/my

d
v
p

Re dvr vs. i

0.0 0.2 0.4 0.6 0.8 1.0

-1
5

-1
0

-5
0

5
1
0

1
5

iy/my

d
v
r

Re dvt vs. i

0.0 0.2 0.4 0.6 0.8 1.0

-5
0

5
x
1
0

-2

iy/my

d
v
t

Re pdvrv vs. i

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4
x
1
0

4

iy/my

p
d
v
rv

Re pdvt vs. i

0.0 0.2 0.4 0.6 0.8 1.0-2
0
0

-1
0
0

0
1
0
0

2
0

iy/my

p
d
v
t

Re pdvpv vs. i

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4
x
1
0

4

iy/my

p
d
v
p
v

Figure 19: Fluid quantities ∇·V∥, ∇·V⊥, ∇·
(
V∥ +V⊥

)
(left), p0∇·V∥, p0∇·V⊥, p0∇·(

V∥ +V⊥
)

(right) calculated by solving (numL, numK) = (4, 8) system at ϵ = 0.03 (blue),
0.06 (purple), 0.09 (red).
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Figure 20: Fluid quantities ∇·V∥, ∇·V⊥, ∇·
(
V∥ +V⊥

)
(left), p0∇·V∥, p0∇·V⊥, p0∇·(

V∥ +V⊥
)

(right) calculated by solving (numL, numK) = (40, 80) system at ϵ = 0.03 (blue),
0.06 (purple), 0.09 (red).
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Figure 21: Fluid quantities ∇ · h∥ (top), ∇ · h⊥ (middle), and ∇ ·
(
h∥ + h⊥

)
(bottom)

calculated by solving (numL, numK) = (4, 8) (left) and (numL, numK) = (40, 80) (right) systems
at ϵ = 0.03 (blue), 0.06 (purple), 0.09 (red).
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Figure 22: Fluid quantities T0∂∥n1 (top left), n0∂∥T1 (bottom left), b·∇·π∥ (top right), and
the sum of all terms (bottom right) calculated by solving the system (numL, numK) = (4, 8)
at ϵ = 0.03 (blue), 0.06 (purple), 0.09 (red).
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Figure 23: Fluid quantities T0∂∥n1 (top left), n0∂∥T1 (bottom left), b·∇·π∥ (top right), and
the sum of all terms (bottom right) calculated by solving the system (numL, numK) = (40, 80)
at ϵ = 0.03 (blue), 0.06 (purple), 0.09 (red).
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(10, 20) , (20, 40), and (40, 80) using serial (blue) and parallel (orange) algorithms.

Perlmutter supercomputing system with 16 processors, each processor solves a divided sub-

problem.

As shown in the figures above, the initial conditions n1, T1,, u1 and parallel closures

h1, π1 satisfy (132-134) well. However, it is essential to address the errors that have arisen

during the numerical implementation. Fig. 25 displays the time evolution of n1 and ∇ ·V1

on a flux surface, where the numerical error in ∇ ·V1 potentially distort the n1 profile as

dictated by (137) unless mitigated in the code. To manage this, an error-diffusion approach

(Sovinec, 2001) was adopted, incorporating an artificial diffusion term into the parallel

velocity equation

mn0

(
∆V1∥

∆t

)
= −∂∥p1 − b · ∇ · π1 + κ∇ (∇ ·V1) . (139)

This approach has demonstrated a reduction in the error of ∇ · V1 and the stabilization

of n1 over time. Further investigation into the validity and impact of this diffusion term is



57

required for future studies.
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ϵ = 0.03. A diffusion term is added to stabilize the simulation.
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CONCLUSION AND FUTURE WORK

We have implemented the non-Maxwellian moment-Fourier equations in NIMROD and

obtained parallel closures that can be used with a finite element basis. The convergence of

the closure solution indicates that we have successfully solved the DKE using the parallel

moment method. In the near future, we expect to compare the results obtained from this

code with those from other numerical DKE solvers.

Further investigation into the numerical stability of this code is required when the

fluid equations are influenced by the parallel closures. Discussing the implementation of a

semi-implicit operator for parallel closures within the fluid equations could be beneficial.

Starting from arbitrary initial conditions, such as n1 = 0, T1 = 0, and u = 0, the simulation

is expected to reach the steady state as obtained by solving (81). Incorporating the parallel

closure module into the perpendicular component of fluid equations and non-linear terms

such as V ·∇V could enhance the simulation by capturing the non-linear effects that cannot

be analyzed solely through the DKE.

By implementing the moment-Fourier equations for electron closures, more realistic

plasma simulations can be achieved. In NIMROD’s extended MHD equations, electron

closures play a key role in the parallel component of Ohm’s law:

E∥ ≈ Re∥ −
1

ne
b · ∇ · πe (140)

where the πe is the electron viscosity tensor and Re is the electron collisional momentum

exchange closure. The Re∥ closure includes the effect of electron parallel moments as

Re∥ =
mevT e
τei

[
−ne

Ve∥ − Vi∥

vT e
+

1√
2

∑
k=1

a10kei N
1k
e||

]
(141)

where a10kei is a collision coefficient (Ji et al., 2016). With these closures, the bootstrap cur-

rent can be calculated and compared to the analytic results for large aspect ratio (Hirshman

& Sigmar, 1976).
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APPENDIX A

Algorithm for measuring magnetic field length between two nodes on a flux surface

This algorithm is designed for calculating the magnetic field length ℓf = ℓi +∆ℓ at the

final point (Rf , Zf , φf) measured from an initial point on a flux surface (Ri, Zi, φi). Using the

LSODE library (Hindmarsh, 1980), we can calculate the change in position along a certain

magnetic field length:

∫ Rf

Ri

dR =

∫ ℓf

ℓi

BR
B
dℓ, (A.1)∫ Zf

Zi

dZ =

∫ ℓf

ℓi

BZ
B
dℓ, (A.2)

This algorithm makes an initial guess for ℓf and employs a trial and error method to find

the best ℓf within the range of tolerance.

Categorizing initial points is useful when assessing the status of a trial point, as illus-

trated in Fig. A.1. The initial point (marked by a black square) is located in the first zone.

In this zone, the code compares the Z-coordinate of the trial point (blue square) Z∗ with the

final point (red circle) Zf . If Z∗ > Zf , the code determines that the trial point has surpassed

the final point, leading to halving the guess for lf . Conversely, if Z∗ < Zf , it sets the trial

point as the new initial point and halves the guess again.

In the second zone, the code assesses whether the trial point has passed the final point,

based on its R-coordinate. A result of R∗ < Rf implies it has passed, while R∗ > Rf suggests

it has not. The third and fourth zones employ similar methodologies to evaluate the position

of the trial point relative to the final one.
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Figure A.1: Zones for determining the status of a trial point.
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APPENDIX B

Data flow for the closure module in NIMROD

FGNIMEQ

1. Retrieve ψ,B0, T0, n0 from an input file

2. Identify the perturbed fields n1, T1,V∥

3. Generate an initial dump file

NIMROD

Closure Module

1. Compute fields for parallel moment equations from the initial dump file

2. Sample field values at the same B interval

3. Obtain Fourier coefficients of the fields

4. Solve the system of parallel moment equations and generate the closure matrix (122)

5. Transform the matrix from Fourier space to real space

6. Obtain closures h∥ and π∥ by applying the Fourier coefficients of drives

7. Store the closure data in the lagr_quad type arrays

8. Compute V⊥ and h⊥



66

Fluid Advance Module

1. Advance ion parallel velocity V∥ with the π∥ closure

2. Advance ion number density n1

3. Advance ion temperature T1 with the h closure. Return to step 1 of the Closure

Module for the next loop.
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