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Introduction
In 1935, Ronald Fisher published 
The Design of Experiments, 
establishing classical designs for 
various types of experiments. With 
the rise of computing power came 
optimal design, where statisticians 
are able better customize designs 
according to the needs of the 
researchers running the experiment. 
Now, designs can be generated 
based on various criterions and 
metrics instead of simply selecting a 
design from a catalog. 

Methods
Partial Swarm Optimization (PSO) 
—a clustering algorithm created by 
biologists in 1997—was used to 
generate optimal space-filling 
designs. Although new to the 
experimental design world, this 
algorithm is much better at finding 
optimal designs than the popular 
Coordinate Exchange algorithm. 
Space filling designs are able to fit 
high-ordered models because they 
seek to best “fill” the design space 
with experimental runs. In this 
research, the MaxMin objective 
was used, which seeks to maximize 
the minim distance between 
experimental points in the design 
(Wu). Designs were generated in 
Julia using PSO for the hypercube 
and simplex geometries for two 
and three factors (k = 2, 3) and 
various numbers of design points 
(n = 10, 20, 30). The distance 
metrics used include the 
Manhattan, Euclidean, Chebyshev, 
and Aitchison geometries. 

Conclusions
Interestingly, changing the distance 
metric in the objective function had a 
very small effect on the design, 
except for when using Aitchison 
geometry on the simplex, where 
points tended to cluster to the 
vertices. Investigating this strange 
behavior is an area of further 
research. There is only a small 
sacrifice in prediction variance with a 
space-filling design (compared with 
CCD with N = 10). Space-filling 
designs are the way to go for 
researchers wanting to support a 
higher-order model! 
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PSO running on a simple 2-D 
objective function (below).
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Particle Search Optm.
This optimization algorithm is 
extremely popular and used in 
applications such as neural networks, 
and signal processing. This meta-
heuristic algorithm makes no 
assumptions about the nature of the 
objective function and does not use 
gradient techniques. It excels at 
finding global optimal on non-convex 
functions, making it an excellent 
choice for finding optimal designs. 
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Fraction of Design Space plot 
comparing the SF-design (N = 10)
prediction variance profile over 
study space indicates marginal 
tradeoff relative to classical design
(face-centered CCD) for supporting
Second order model.

N = 10 SF-design vs. FCCD
Model Support: 

Data Analysis Options for 
Competing Designs

N  = 10
Model SF-Design Face Centered CCD

main-effects yes yes
main-effects + interactions yes yes

second-order yes yes
third-order yes no

fourth-order yes no

Model Support?
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