Simultaneous Simulation of Microgravity and **Ionizing Radiation in a Laboratory Environment**

Achal Duhoon and JR Dennison

Materials Physics Group, Utah State University, Logan, UT

INTRODUCTION

- Astronauts suffer significant cellular damage during spaceflight.
- Main causes-
 - Simultaneous exposure to microgravity, and Ionizing radiation
- Goal- Design a mini-rotary cell culture system (mRCCS) that can-
 - Simulate microgravity
 - \succ Be used in combination with a radiation source, and
 - Is biologically compatible and autoclavable

RADIATION EXPOSURE

UtahState

University

Fig. 2 (a) Cut away view of SST chamber experimental setup. (b) Image of the SST chamber with the mini-RCCS seated within the beam path of the ⁹⁰Sr source

Fig.1 Space Survivability Test Chamber

METHODS

- gravity conditions for 200 μm Reduced microcarrier beads suspended in a media were achieved when-
 - \succ Beads reached terminal settling velocity v_s , as the centripetal force (F_C) is balanced when they fall with near zero net forces from gravity (F_q) , buoyancy (F_B) , viscous drag (F_v) .
 - $\succ v_s = 2g(\rho_b \rho)(R_{bead})^2/9\mu$ where $\rho_b =$ density of the beads, ρ = density of the media, R_{head} = radius of the beads, μ = dynamic viscosity of the media.
- For rotation calibration, different density liquids were chosen and vessels were rotated from 1 rpm to 55 rpm.
- Another measure of an effective mRCCS \longrightarrow low radial acceleration.

Fig.3 Microbeads cluster tracking inside the media.

Fig.4 Balance of external forces from Stoke's law

• C. Gilles, "The Musculoskeletal System in Space," in Fundamentals of Space Medicine, New York: Springer, 2011, pp. 181–216. • T. P. Stein, "Space flight and oxidative stress," Nutrition, vol. 18, no. 10, pp. 867–871, Oct. 2002, doi: 10.1016/S0899-9007(02)00938-3. • J. G. Cwikel, Y. Gidron, and M. Quastel, "Low-dose environmental radiation, DNA damage, and cancer: The possible contribution of psychological factors," Psychol. Health Med., vol. 15, no. 1, pp. 1–16, Jan. 2010, doi: 10.1080/13548500903431493 • E. Vargis and J. Dennison, "Development of a Low-Cost, Open Source Miniature Rotary Cell Culture System to Simulate Microgravity Within an Irradiated Environment," https://digitalcommons.usu.edu/all_datasets/94, 2019.

• Johnson, R.H., L.D. Montierth, J.R. Dennison, J.S. Dyer, and E. Lindstrom, "Small Scale Simulation Chamber for Space Environment Survivability Testing," IEEE Trans. on Plasma Sci., vol. 41, No. 12, 3453-3458, 2013.

RESULTS

- The range of rotational speeds for microbeads undergoing microgravity was confirmed for the media.
 - \blacktriangleright Lower limit = 6 rpm
 - \blacktriangleright Upper limit = 42 rpm
- Reduced gravity environments were reached from $^{-1*10^{-5}}$ g to $^{-2*10^{-2}}$ g
- The combined mini RCCS and SST chamber system can provide average effective dose rates for the cells controlled over a broad range 900 X).

— Single Vessel

38-		
	Vessel	ra
	Rotationa	al sj
	Effective	g
	accel	era
325	* Rot	atio

Fig. 7 Differential electron flux for five typical space environments. ⁹⁰Sr source electron emission spectrum is also shown..

Merrill-Cazier Librarı

04.12_13 | *10:00-3:00*

CONCLUSIONS AND FUTURE WORK

• A novel, versatile, cost-effective system is developed that can-

- > Model cellular damage from microgravity and ionizing radiation
- Provide stable, simultaneous space-like radiation and reduced gravity environments
- Be used to model microgravity at the same level as the commercially available systems.
- Further analysis of rotation calibration will be done for salt water, IPA etc.

	Four vessel RCCS (Synthecon)	Single vessel RCCS (Synthecon)	Mini - RCCS	ISS	Moon	Mars
lius (mm)	21.5	44.1	17.1	170	5	-
eed (rpm)	39.4	27.8	44.4 *	5.3 *	311 *	470 *
avitational ion (g)	3.3x10-3	3.4 x10 -3	3.4 x10 -3	4.84x10 -5	0.165	0.376

Table 1 Comparison of effective gravitational force of mRCCS to
 gravitational force on the ISS, Moon, and Mars

	Density (g/cm³)	Rotation Speeds (rad/s)	Average Radius (cm)	Radius Amplitude (cm)
	0.99	4.35	0.550	0.0343
ohol	0.79	4.79	0.317	0.0241
(57655) (57655)	1 18	4.42	1.15	0.0013
	0.98	4.33	0.312	0.0351

Table 2 Rotation speeds of different density liquids.

Achal Duhoon Utah State University Physics achal.duhoon@usu.edu

