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Abstract: Wind turbine blade maintenance is expensive, dangerous, time-consuming, and prone to
misdiagnosis. A potential solution to aid preventative maintenance is using deep learning and drones
for inspection and early fault detection. In this research, five base deep learning architectures are
investigated for anomaly detection on wind turbine blades, including Xception, Resnet-50, AlexNet,
and VGG-19, along with a custom convolutional neural network. For further analysis, transfer
learning approaches were also proposed and developed, utilizing these architectures as the feature
extraction layers. In order to investigate model performance, a new dataset containing 6000 RGB
images was created, making use of indoor and outdoor images of a small wind turbine with healthy
and damaged blades. Each model was tuned using different layers, image augmentations, and
hyperparameter tuning to achieve optimal performance. The results showed that the proposed
Transfer Xception outperformed other architectures by attaining 99.92% accuracy on the test data of
this dataset. Furthermore, the performance of the investigated models was compared on a dataset
containing faulty and healthy images of large-scale wind turbine blades. In this case, our results
indicated that the best-performing model was also the proposed Transfer Xception, which achieved
100% accuracy on the test data. These accuracies show promising results in the adoption of machine
learning for wind turbine blade fault identification.

Keywords: deep learning; convolutional neural networks; small wind turbine blades; damage
detection; transfer learning; VGG-19; Xception; AlexNet; ResNet-50; aerial imaging; turbine inspection

1. Introduction

In 2021, roughly 77% of the energy produced within the United States came from fossil
fuels such as coal, oil, and natural gas [1,2]. While the implementation and fulfillment
vary from region to region, the overall trend in recent years indicates a shift as the world
moves toward adopting renewable sources [3]. Multiple reasons exist for this shift in
energy production, such as climate change and unsustainable fuel extractions [4,5]. While
renewable energy offers an alternative to destructive fossil fuels, its widespread adoption
is hindered by some inherent challenges.

As efforts are made to combat climate change, wind turbines have helped alleviate the
problem. In 2022, wind-powered energy accounted for nearly 7.33% of electricity generation
worldwide [6] and remains the leading non-hydro renewable technology, generating over
2100 TWh [7]. With the increasing number of wind turbines globally, the maintenance and
upkeep of these systems have introduced a large capital barrier to investment. For example,
in addition to wind turbine blade replacement costing up to USD 200k, further losses are
incurred during blade inspection and replacement, as the turbine needs to be halted, thus
hindering power production [8]. This downtime results in average losses ranging from
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USD 800 to USD 1600, depending on the wind speed in the area [9]. These factors highlight
the growing need for improved inspection and preventative maintenance methods.

Another area driving investment and improvement in traditional maintenance and
inspection technology is crew safety, which can be dangerous and time-consuming using
traditional inspection and maintenance methods. The height of many commercial wind tur-
bines in the United States averages around 280 feet, with each blade weighing 35 tons [10].
Thus, it can be dangerous for laborers to be exposed to such heights, as well as the elements,
during the inspection of the turbine blades. Furthermore, they face health issues such as
motion sickness on the voyage to offshore wind sites [11,12]. Humans are also vulnerable
to misdiagnosis and missing hard-to-see imperfections. With all these issues in mind,
a solution must be able to detect faults and damages at early stages, reduce the overall cost
involved with inspection, and improve the accuracy of fault diagnosis.

Current wind turbine fault diagnosis and identification systems fall roughly into two
categories: visual-based inspection systems and sensor-based Supervisory Control And
Data Acquisition (SCADA) modeling systems. Prior to the explosion of deep learning re-
search and the application of deep learning to computer vision, traditional machine learning
methods were applied to the large data streams fed by SCADA systems. SCADA systems
are commonly integrated into wind turbines to monitor multiple sensors, including internal
temperatures, wind speed, and power generation. With this information, researchers have
deployed several algorithms and optimization methods to model and predict the failure of
wind turbine components. In a study by Liu et al. [13], an innovative approach was intro-
duced employing extreme gradient boosting to establish a predicted normal temperature
for gearbox oil. Subsequently, a weighted average was utilized to quantify the deviation
between the predicted and measured temperatures. The authors demonstrated that with
the proposed system alongside a dynamic fault threshold, errors could be identified with
advance notice of 4.25 h for generators and 2.75 h for gearboxes [13].

Recognizing the intricate relationships inherent in SCADA data streams, Khan and
Byun proposed a stacking ensemble classifier that leverages the strengths of AdaBoost, K-
nearest neighbors, and logistic regression [14]. Their approach yielded enhanced accuracy
in anomaly detection within SCADA data. Similarly, a comprehensive comparison of
feature selection methods, architectures, and hyperparameter optimization was conducted
by researchers in [15]. Their findings indicated that employing K-nearest neighbors with a
bagging regressor and Principal Component Analysis (PCA) for feature extraction enabled
a four-week advance in fault detection [15]. Further exploiting the time-series data from
SCADA systems, an approach making use of nonlinear auto-regressive neural networks
was deployed. Once signals were denoised with wavelet transforms, it was shown as
a possible early warning solution for wind turbine maintenance [16]. While leveraging
SCADA data has proven effective for early warning systems, it is noteworthy that such
data inherently suffer from imbalance [17]. Velandia-Cardenas et al. investigated the
imbalanced data from real SCADA systems and proposed preprocessing techniques along
with RUSBoost, which increased overall accuracy [17].

With the breakthroughs in deep learning, these networks have been applied to a vari-
ety of problems with increasing accuracy. In the area of computer vision, these architectures
have been leveraged for tasks such as medical imaging analysis [18], image reconstruction
and sharpening [19], crack detection in new building construction [20], and many more.
Additionally, deep learning can be utilized for speech signal analysis, allowing for advance-
ments in voice detection and control [21]. Another emerging sector making use of these
algorithms is wearable technology. One such application utilized wearable sensors and
multi-layer perceptron to classify different postures [22].

The application of deep learning architectures to fault diagnosis and detection over
traditional machine learning methodology has also increased in recent years. Lui et al. pro-
posed a clustering and dimensionality reduction preprocessing technique prior to inputting
data into a deep neural network [23]. Another novel approach, utilizing advances in deep
learning, introduced an attention-based octave convolution. This approach reduces the
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computations of traditional convolutional layers by separating low- and high-frequency
channels. By altering the ResNet50 architecture with this convolution, it was shown to pro-
vide an accuracy of 98% in wind turbine converter failure detection [24]. Finally, a controlled
experiment over 11 years was conducted to investigate the suitability of SCADA-based
monitoring for fault diagnosis. Murgia et al. developed a custom convolutional neural
network (CNN) architecture and indicated that SCADA-based monitoring is a possible
solution, allowing early warning of critical internal component failure [25].

While SCADA systems provide a solution to the early detection of critical internal
failures through sensor analysis and prediction, the diagnosis of external faults remains a
concern. In this case, a visual-based inspection and monitoring system provides a better
solution. One approach made use of a CNN with pretrained weights transferred from Ima-
geNet to form the feature extraction base. These deep features were then fed into an SVM
for classification [26]. Similarly, Moreno et al. conducted a proof-of-concept simulation
on the ability of a custom CNN architecture to classify wind turbine blade faults. In this
case, the proposed model was trained on real-world turbine data, and a scaled 3D-printed
blade with manufactured defects was used for verification. The approach achieved 81.25%
accuracy, showing promising improvement in visual-based systems [27]. To address the
low accuracy in current visual-based systems, Chen et al. proposed an attention-based
CNN architecture that allowed feature maps to be re-weighted according to an attention
algorithm. Through ablation experiments of this method with ResNet50 and VGG16 net-
works, it was concluded that VGG16 provided the best accuracy of 92.86% [28]. Another
architecture was proposed in [29], where attention mechanisms were deployed accompa-
nied by Enhanced Asymmetric Convolutional (EAC) blocks, reducing the computational
complexity of the model. This model outperformed other formidable architectures like
MobileNet and ShufflenetV1 [29]. Leveraging the complementary strengths of RBG and
thermal imaging, a comprehensive fault classification analysis of 35 diverse architectures
was performed on small wind turbine blades [30].

Another emerging area of blade fault diagnosis research is the use of object detection
models. An example is the modified You Only Look Once (YOLO) version 5 that was
proposed in [31]. The attention module, loss function, and feature fusion were modified to
create an improved small-defect detection algorithm that outperformed the base YOLOv5
by 4% [31]. Analogously, a modified YOLOv4 architecture was presented in [32]. The
authors replaced the backbone with MobileNetv1, reducing computation and complexity.
The proposed model was also pretrained on the PASCAL VOC dataset, a popular dataset for
object detection and classification commonly used to benchmark computer vision models,
allowing faster learning convergence [33]. While the detection speed increased, it became
marginally less accurate [32]. Improving the data and information that these models can
provide, a two-stage approach for crack and contour detection was investigated, utilizing
Haar-like features and a novel clustering algorithm in [34]. This approach showcases the
direction of current research and the breadth of information these novel deep learning
algorithms can provide with sufficient data.

An important aspect of wind turbine fault analysis is the investigation of dataset
creation and the inspection method. Due to the height and remote nature of wind turbine
farms, drones are often deployed to gather sufficient data for training deep learning
models. However, through drone path-planning research, drones possess the capability
of autonomously flying to wind turbines to capture images of the blades. In this area,
smaller-scale experiments have been conducted to verify the concept and implement the
algorithms in a controlled environment [35,36].

Recent works have used drone inspection and machine learning to analyze wind
turbine blade damage. Previous approaches to blade fault detection include the use of
residual and wavelet-based neural networks, feature detection using Haar-like features,
SVM with fuzzy logic, etc. [37–39]. In China, an alternate approach to the problem was
recently employed via Unmanned Aerial Vehicles (UAVs) to first capture images of wind
turbine blades and then use a cascading classifier algorithm to identify and locate wind
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turbine blade cracks [34,40]. ResNet-50, pretrained with ImageNet weights and with custom
fully connected top layers, has been used in other works to provide high test precision and
recall on identifying small blade chips and cracks [41].

This research investigates the use of CNNs for the detection of faults within small
wind turbine blade images. The CNN models are trained on a newly created dataset
containing images of small wind turbine blades. This unique dataset contains multicolored
images of wind turbine blades of the Primus AirMax turbine, rather than just white,
monochromatic blades, and the damage on these blades includes cracks, holes, and edge
erosion. The additional faults in the created dataset used here are not included in other
datasets utilized in other works in this area.

The main contributions of this research include the following:

• The creation of a novel fault identification dataset named Combined Aerial and Indoor
Small Wind Turbine Blade (CAI-SWTB), utilizing images of healthy and damaged blades
on a Primus AirMax wind turbine with a power output range of 0–0.425 kW.

• The development, training, and testing of a new custom CNN architecture and transfer
learning models, making use of pretrained backbone networks to detect anomalies
and damage on small wind turbine blades.

• The investigation of transfer learning techniques in wind turbine fault classification.
• Hyperparameter tuning and testing for optimal performance on the newly created

CAI-SWTB dataset.
• A comparison of Xception, ResNet-50, VGG-19, and AlexNet against the custom

architecture and proposed transfer learning methods.

The rest of this paper is organized as follows. Section 2 discusses the deep learning
architectures deployed in our research of anomaly detection. The newly created dataset,
Combined Aerial and Indoor Small Wind Turbine Blade CAI-SWTB, is detailed in Section 4, fol-
lowed by simulations, results, and a discussion. Finally, some conclusions and suggestions
for future work are presented in Section 5.

2. Deep Learning Architecture Overview

The architectures discussed in this research are derived from CNNs. CNNs are a
type of neural network that uses kernels of differing sizes to determine the next layer’s
connection. This reduces the number of computations compared to a traditional fully
connected neural network, vital for large image classification. These kernels are comprised
of weights and biases that can be trained through backpropagation to produce regional
feature-extracting capabilities. A typical architecture of a CNN is illustrated in Figure 1.
Here, the convolutional kernels and final fully connected layer are depicted alongside
the pooling layers, which provide downsampling while maintaining important features.
A further detailed explanation of CNN architectures and their creation can be found
in [42,43].

Figure 1. Structure of a CNN [43].
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2.1. Visual Geometry Group-19

Visual Geometry Group (VGG) is a CNN architecture developed in 2014 by Karen
Simonyan and Andrew Zisserman [44]. This architecture includes a pattern of convolu-
tion and max-pooling blocks followed by fully connected layers at the end of the model.
The number after VGG denotes the number of trainable weighted layers in that specific
variant. VGG-19 has a total of 16 convolutional layers, 4 max-pool layers, and 3 fully
connected layers that are trainable. Figure 2 shows the outputs from each layer.

Figure 2. VGG-19 model.

2.2. Custom Convolutional Neural Network

The second model that is proposed here is a custom CNN network. This architecture
replicates the properties of VGG-19. It contains six convolutional layers, three max-pool lay-
ers, a dropout layer, varying dense layers, activation functions, and optimization functions.
The size of the input image is 300 × 300. Each convolutional layer uses a ReLU activation
function and a 3 × 3 kernel size. The first two 2D convolutional layers use a filter size of
16, the next two use a filter size of 32, and the last two use a filter size of 64. This filter is
chosen to be smaller in the first convolutional layers so the model can detect simpler/larger
features. Once those are detected, the filter size is increased so the model can detect the
smaller or more complex features in the images. Each max-pool layer has a size of 2 × 2.
The learning rate for this architecture is set to 0.001 to reduce the number of parameters
being tuned. The model is illustrated in Figure 3, which depicts how the shape and size of
the data change as they progress through each layer.

Figure 3. Custom CNN model.

2.3. Xception

Xception, also known as Extreme Inception, was developed by Google in 2017 [45].
Xception takes the properties of its predecessor, the Inception model, and enhances them
significantly, utilizing features such as depthwise separable convolutional layers and skip
connections. Depthwise separable convolution reduces processing time and accounts for
most input features by first performing convolution on each of the three color channels in an
RGB image separately and then concatenating each output [45]. Within each convolutional
layer, kernels of varying sizes are used to perform convolution, each followed by a 1 × 1
pointwise convolution. Then, each result is combined through filter concatenation. Using a
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variety of kernel sizes allows for more features to be extracted from each input. Overall,
Xception contains a total of 74 separable convolutional, activation, pooling, and fully
connected layers.

2.4. AlexNet

AlexNet was developed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton
in 2012 to participate in the ImageNet competition [46]. The architecture takes a unique
approach to CNNs by using unconventional filters and kernel sizes for the convolutional
layers. Figure 4 shows the output of each layer in the architecture. AlexNet was chosen
to assess how the dataset would perform on an earlier convolutional neural network
architecture.

Figure 4. AlexNet model.

2.5. ResNet-50

ResNet-50 is the 50-layer version of the residual CNNs proposed by He et al. [47]. This
family of networks is characterized by skip and residual connections. Skip connections were
created to correct the issue of backpropagation loss in deep networks by providing a path
for backpropagation to reach earlier layers and eliminate the vanishing gradient problem.
Solving this gradient problem allows for more convolutional layers to be processed with
less computational time per layer. Residual connections are also used, which allows for the
residual function of the input layer to be incorporated.

2.6. Transfer Learning

Transfer learning (TL) is the process of using pretrained neuron weights from one
model and applying them to another model to be trained for a different purpose [48]. These
pretrained weights are used so that a model has a reasonable starting point for training,
rather than starting from scratch with default neuron weights.

One transfer learning approach is to freeze the pretrained feature extraction layers
and then only train the remaining top dense layers on the desired dataset. The idea is that
the frozen layers will already be trained for general image classification. Thus, only the
top layers need to be fine-tuned for the specific purposes of the transfer learning model.
Training only the top layers significantly reduces training time. An alternative approach is
to use the pretrained layers as a base and further train all layers of the model, including
the pretrained layers, on the new desired dataset. Since in this approach, every layer is
updated, it takes more time compared to the first approach to reach high test and validation
accuracies, but it is still faster than training the model completely from scratch.

For this research, the pretrained Keras ImageNet weights for VGG-19, Xception,
and ResNet-50 were applied to each of these architectures. The pretrained layer-freezing
approach was implemented for all three models. The second approach, where the pre-
trained layers were not frozen, was also implemented with various top layers. Each model
benefited from the unfrozen pretrained layer approach, which achieved better accuracy
and quicker convergence compared to the frozen-only approach.
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3. Simulation Results and Discussion

In this section, the simulation environment for the training and comparison of each
model is described. The newly created dataset utilized for this research is introduced in
detail, and the evaluation results are discussed. Here, the created dataset simulates the dam-
age that can occur in large-scale wind turbine blades, including cracks, holes, and erosion,
which are commonly caused by environmental factors such as storm conditions, freezing
and thawing, air pollutants, etc. [49]. Lightning strikes can also cause immense damage
to wind turbines, leading to holes and scorching of the material [49,50]. Edge erosion,
especially that of the leading edge, can cause decreases in energy production performance
and a reduction in blade service expectancy [51]. Finally, a large-scale wind turbine dataset
is examined to further evaluate the performance of these models in this application [52].

3.1. Hardware Specifications

Four computers were used to run the simulations. The first computer consists of
GPU hardware obtained from Google Colaboratory, containing an Intel Xeon CPU and an
NVIDIA Tesla T4 GPU. The second computer uses an Intel I9-11900k CPU and an NVIDIA
3070 with 10 GB of VRAM. The third computer contains an Intel I7-12700k CPU paired
with an NVIDIA 4070 GPU with 12 GB of VRAM. The fourth computer accessed Center
for High-Performance Computing (CHPC) resources from the University of Utah, which
utilizes varying GPUs.

3.2. Hyperparameter Tuning

Hyperparameter tuning is the process of changing model parameters to find a com-
bination for optimal performance. This includes the optimization algorithm, number of
epochs, dropout layer rates, and optimizer learning rates. Here, hyperparameter tuning
was implemented using custom functions during the building of each architecture to incor-
porate the parameters required for the current model. The parameters considered in our
simulations included the epochs, dropout rate, activation function, optimization algorithm,
batch size, pooling layer, and learning rate. In each simulation, the loss function was
consistent with binary cross-entropy, as was the image size and dataset split, as noted in
Table 1. Through exhaustive searching of these different parameters, optimal configurations
were found.

Table 1. Small wind turbine dataset split (CAI-WTB).

Image Label Training Set Validation Set Test Set Total Number of Images

Indoor Faulty 1400 200 400 2000

Indoor Healthy 1400 200 400 2000

Outdoor Faulty 700 100 200 1000

Outdoor Healthy 700 100 200 1000

Total 4200 600 1200 6000

3.3. Combined Aerial and Indoor Small Wind Turbine Blade Dataset Results

Due to the unavailability of sufficient public images of damaged commercial-grade
large-scale turbine blades, a Primus Air Max wind turbine was deployed to create the
small wind turbine dataset used in this research. A total of six blades were used to create
a set of healthy blades and a set of faulty blades for the purpose of dataset generation.
The faults inflicted on the blades were intended to simulate those that affect commercial-
grade turbines, such as cracks, holes, and edge erosion. These anomalies were applied to
both the front and back surfaces of the blade. Following the creation of these simulated
faults, images were collected to create the dataset.

Simulating a traditional snapshot of damage taken during human inspection, images of
the newly created faulty and healthy Primus AirMax wind turbine blades were taken using
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a smartphone within an indoor environment. In total, 4000 RGB images were collected
within this environment, containing a 50% faulty and 50% healthy distribution. Figure 5
illustrates a sample of the images collected in this environment. To introduce more realistic
environmental features into our dataset, the small wind turbine was also placed outside on
a balcony, and images were taken utilizing DJI Mini 3 Pro and Mini SE drones, as illustrated
in Figure 6. This allowed for a more diverse set of features to be present in the dataset,
including environmental variables such as clouds and sunlight. Samples from the dataset
of these outdoor images are shown in Figure 7. A total of 2000 RGB aerial images were
captured, with the fixed distribution of faults being 50%.

By merging both sets, the final dataset comprised 4000 indoor and 2000 outdoor
images, yielding a cumulative total of 6000 images, each with a size of 300 × 300 × 3.
These images were then divided into faulty or healthy classes to enable binary classification.
The name of this dataset is the Combined Aerial and Indoor Small Wind Turbine Blade
(CAI-SWTB) dataset. These images were split into 70% for training, 20% for testing, and 10%
for validation. The total number of images in each class is detailed in Table 1. To access the
created dataset, please see the Data Availability Statement on page 18.

(a)

(b)
Figure 5. Sample blade images from the created dataset (CAI-SWTB) taken in an indoor environment.
(a) Sample images of healthy blades in an indoor environment. (b) Sample images of damaged
(faulty) blades in an indoor environment.

Figure 6. Drones used for aerial imaging. From left to right: DJI Mini SE and DJI Mini 3 Pro.
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(a)

(b)
Figure 7. Sample blade images from the created dataset (CAI-SWTB) taken in an outdoor environment.
(a) Sample images of healthy blades in an outdoor environment. (b) Sample images of damaged
(faulty) blades in an outdoor environment.

Here, each model outlined in Section 2 is trained and tuned on the CAI-SWTB dataset,
followed by a comparison and discussion. To investigate model performance in each
environment present in the dataset, the evaluation is performed in three stages. First, each
model is trained and evaluated on the full dataset containing indoor and outdoor images.
This is followed by an evaluation and discussion of the performance on the indoor test
images. Finally, the results of the aerial images are discussed. The metrics utilized in our
comparisons include accuracy, precision, recall, and F1-score. These values are obtained
by having the model make predictions on each test image in the dataset and comparing
them to the actual labels using scikit-learn’s metrics model. In the subsections that follow,
the augmentation scheme utilized in the training is discussed, leading to the analysis of the
performance on the evaluation set in each respective environment.

3.3.1. Preprocessing and Image Augmentation

To assist with model training and convergence, image augmentation was deployed to
increase the number of unique images seen by a model. This process applied different filters
to the dataset, such as tilting, zooming, and shearing. Before the images were augmented,
they were first normalized by dividing the pixel values by 255. Image augmentation
was implemented using Keras’s preprocessing Image Data Generator. Table 2 shows the
utilized parameters, including random variations in zoom, shear, rotation, and flipping.
Here, the values were chosen conservatively to maintain the fault features of the images.
While the number of images in the training set remained fixed, the number of unique image
variations seen by the model increased.

Table 2. Image augmentation parameters.

Augmentation Parameter Setting

Shear range 0.0–0.2

Zoom range 0.0–0.2

Rotation range 0.0–0.4

Horizontal flip True

Fill mode Nearest
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3.3.2. Results on the Combined Indoor and Outdoor Images from CAI-SWTB: Full Dataset

The tuning of each model was conducted according to the hyperparameter search
space discussed in Section 3.2, with the corresponding results of the tuning illustrated
in Table 3. Following training on the CAI-SWTB dataset using the best-found hyperpa-
rameters, each model was evaluated on the unseen test set. The performance of each
model is presented in Table 4. In this table, it is shown that the transfer learning technique
provided consistent improvements over the base variants for each model. The TL-Xception
model achieved the highest accuracy of 99.92%. This was followed by TL-VGG-19 and
Base Xception, with accuracies of 99.83% and 99.33%, respectively. The custom CNN
created in this research achieved an accuracy of 96.67% which is notable considering it is
12 layers deep compared to the larger models of Xception with 71 layers and ResNet-50
with 50 layers.

Table 3. Best model parameters. AF and LR denote the activation function and learning rate,
respectively.

Architecture Epochs Batch Size Optimizer AF LR Dropout Pooling

(TL)-Xception 50 32 RMSprop Sigmoid 0.001 0.6 Avg

(TL)-VGG-19 25 20 Adamax Softmax 0.0001 0.0 -

Base Xception 100 20 Adam Sigmoid 0.0015 - -

(TL)-ResNet-50 50 32 RMSprop Sigmoid 0.001 0.6 Avg

Base ResNet-50 100 20 RMSprop Sigmoid 0.0002 0.0 -

Base VGG-19 75 20 Adamax Softmax 0.0001 0.2 -

Custom CNN 50 0 Adam Sigmoid 0.001 0.0 Max

AlexNet 75 20 Adam Softmax 0.0001 0.0 -

- Not added to the model.

Table 4. Comparison of model performance on combined indoor and outdoor test data.

Architecture Test Accuracy Test Precision Test Recall F1-Score

(TL)-Xception 0.9992 0.9983 1.0000 0.9983

(TL)-VGG-19 0.9983 0.9983 0.9983 0.9983

Base Xception 0.9933 0.9966 0.9900 0.9933

(TL)-ResNet-50 0.9867 0.9950 0.9787 0.9868

Base ResNet-50 0.9841 0.9841 0.9783 0.9841

Base VGG-19 0.9742 0.9766 0.9617 0.9741

Custom CNN 0.9667 0.9600 0.9730 0.9664

AlexNet 0.9508 0.9456 0.9567 0.9511

To further visualize the performance of each model during training, their accuracy
and loss values were plotted against the epochs, as shown in Figures 8–15. The transfer
learning variants achieved the highest accuracy at earlier epochs (see Figure 8) compared
to the base architectures. This is due to the leveraged weights providing a better starting
point for model convergence on this dataset. Subsequently, each transfer learning model
also achieved minimized loss in fewer epochs. The custom CNN model required more
epochs to converge (see Figure 14); however, it was similar to the base VGG-19 and AlexNet
(see Figures 13 and 15) due to the similar layer size and architectural features. Consequently,
the loss value also followed this pattern.
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Figure 8. Best run results from the proposed transfer learning-based Xception, i.e., (TL)-Xception.

Figure 9. Best run results from the proposed transfer learning-based VGG-19, i.e., (TL)-VGG-19.

Figure 10. Best run results from base Xception.

Figure 11. Best run results from the proposed transfer learning-based ResNet-50, i.e., (TL)-ResNet-50.

Figure 12. Best run results from base ResNet-50.
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Figure 13. Best run results from base VGG-19.

Figure 14. Best run results from custom CNN.

Figure 15. Best run results from base AlexNet.

Model size and layer count are important features of CNNs, as smaller models provide
quicker inference and training time. However, lower layer counts can reduce the feature
extraction capability of the model, leading to lower accuracy. AlexNet contains only
12 layers, including the feature extraction and fully connected layers. Subsequently, AlexNet
achieved the worst accuracy among the base architectures with a test accuracy of 95.08%.
This was followed by the custom CNN, which achieved an accuracy of 96.67% and had a
similar layer count to AlexNet. The trend in our data correlates with the deeper architectures
by layer count, achieving higher accuracy in the classification of wind turbine faults.
The model with the highest accuracy in our research, TL-Xception, contains 71 layers and
is the largest in our research.

In the investigation of commonly miscategorized images, as shown in Figure 16,
it was found that the reflective surface of the blade was the primary cause of incorrect
categorization. The reflections of the indoor lighting can be seen in Figure 16b and appear
similar to the simulated cracks on the blade in shape, size, and placement. This led to an
increase in false positives, where the model prediction was faulty and the true label was
healthy, in the majority of model predictions. Figure 16a depicts common false negatives,
which were predicted healthy when the true label was faulty, from the top-performing
architectures. Similar to the indoor reflections, the sun reflections in the outdoor images
obscured the faults in a manner that led the architectures to perceive them as healthy.
Another factor included dark cracks, which blended in with the dark-blue portion of the
turbine blade. The theorized cause for this is the difference in the lighting conditions for
the indoor vs. outdoor images. When the blade was not illuminated, the cracks became
difficult to discern in the blue region of the blade. This is an important factor in the adoption
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of the proposed fault analysis method and can be solved in the following ways. Most
wind turbine blades are a solid white color rather than the multicolored one in our dataset,
so images like the ones shown in Figure 16 would be less often mislabeled as healthy in
commercial applications.

(a)

(b)
Figure 16. Samples of commonly misclassified images using the implemented deep learning architec-
tures. (a) Samples of false-negative images. Boxes indicate fault locations in the images. (b) Samples
of false-positive images.

3.3.3. Results on Indoor Images from CAI-SWTB Dataset

For further analysis of the trained models, here, we study how they performed on just
the indoor portion of the dataset. It is important to note that these models were trained on
the combination of indoor and outdoor images together prior to being evaluated on the
test data from the indoor subsection, totaling 800 images, as seen in Table 1. The model
performance on the indoor test images is shown in Table 5. The results show that the
TL-Xception model exhibited the highest accuracy, achieving 100% accuracy on the indoor
image test set. This was followed by TL-VGG-19 and the base Xception, with accuracies
of 99.88 % and 99.5%, respectively. The proposed custom CNN also exhibited notable
performance on this set of data, achieving 98.62% accuracy. Each model achieved above
90% accuracy on this subset of data, showing promise for synthesizing faults.

Table 5. Comparison of model performance on indoor test data.

Architecture Test Accuracy Test Precision Test Recall F1-Score

(TL)-Xception 1.000 1.000 1.000 1.000

(TL)-VGG-19 0.9988 0.9975 1.0000 0.9988

Base Xception 0.9950 0.9950 0.9950 0.9950

Custom CNN 0.9862 0.9974 0.9750 0.9861

(TL)-ResNet-50 0.9862 0.9974 0.9750 0.9861

Base ResNet-50 0.9813 0.9811 0.9725 0.9898

Base VGG-19 0.9700 0.9677 0.9725 0.9701

AlexNet 0.9363 0.9309 0.9425 0.9366
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3.3.4. Results on Outdoor Aerial Images from CAI-SWTB Dataset

Following the evaluation of the indoor test data, the impact of the environmental
features introduced in the outdoor aerial image portion of the dataset was investigated.
The total test allocation of the aerial images included 200 healthy and 200 faulty images.
The performance on the aerial image subset of the test data is illustrated in Table 6. Here,
it can be seen that the highest accuracy of 99.75% was achieved by both TL-Xception and
TL-VGG-19. This was followed by the base Xception and base ResNet-50, both achieving
99% accuracy on this set. The custom CNN’s performance dropped on the outdoor data;
however, it still achieved 95% accuracy. Overall, each model achieved above 90% accu-
racy, showing a promising trend in the ability to determine faults in the domain of wind
turbine blades.

Table 6. Comparison of model performance on outdoor test data.

Architecture Test Accuracy Test Precision Test Recall F1-Score

(TL)-Xception 0.9975 0.9950 1.0000 0.9975

(TL)-VGG-19 0.9975 1.0000 0.9950 0.9975

Base Xception 0.9900 1.0000 0.9800 0.9899

Base ResNet-50 0.9900 0.9900 0.9900 0.9900

(TL)-ResNet-50 0.9875 0.9899 0.9850 0.9875

Base VGG-19 0.9825 0.9801 0.9850 0.9825

AlexNet 0.9800 0.9752 0.9850 0.9801

Custom CNN 0.9500 0.9327 0.9700 0.9510

3.4. Performance on Large-Scale Wind Turbine Dataset

To further compare model performance and gauge performance on large-scale turbines,
the Drone-Based Optical and Thermal Videos of Rotor Blades Taken in Normal Wind
Turbine Operation dataset was utilized [53]. This dataset contains images of faulty and
healthy turbine blades in a variety of formats, including thermal, RGB, and low light, taken
with DJI drones. For a fair comparison between our dataset and this dataset, the daytime
RGB images from this dataset were selected for analysis. To preserve model input size and
overall parameters, the images were also downscaled from their original size of 853 × 480
to 300 × 300, allowing the data to match the size of the data in the CAI-SWTB dataset.
Additionally, to address the imbalance in representation between faulty and healthy turbine
blades in this dataset, a random selection was made to ensure an equal split of faulty and
healthy images. This resulted in a total of 516 images, with 258 images in each class,
representing both faulty and healthy turbine blades. These images were then randomly
split into training, validation, and test sets, using the same split used for the CAI-SWTB
dataset: 70% training, 20% testing, and 10% validation. These split totals are shown in
Table 7. Samples from this dataset are shown in Figure 17, with the healthy blades shown
in Figure 17a, and the faulty blades shown in Figure 17b. Here, the positions of the faults
are highlighted with a box. The faults included in this dataset consist of cracks at various
positions in the blade lengths, captured through drone aerial imagery.

Table 7. Split for Drone-Based Optical and Thermal Videos of Rotor Blades Taken in Normal Wind
Turbine Operation dataset [53].

Image Label Training Set Validation Set Test Set Total Number of Images

Faulty 181 25 52 258

Healthy 181 25 52 258

Total 362 50 104 516
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(a)

(b)
Figure 17. Sample blade images from the large-scale wind turbine dataset [53]. (a) Sample images of
healthy blades on a large wind turbine. (b) Sample images of faulty blades on a large wind turbine.
Boxes indicate fault locations in the images.

To ensure a fair comparison, each model underwent hyperparameter tuning on this
new dataset, consistent with the simulations conducted on the CAI-SWTB dataset, using
the search space defined in Section 3.2. The resulting tuned hyperparameters are illustrated
in Table 8. Since many of the cracks in these images appear near the image border, the
image augmentation parameters for the models using this dataset had to be modified
for the augmented images to ensure the existence of blade cracks. For example, if an
image contained a crack near the edge and the image was stretched, zoomed, and/or
rotated, the crack in the image would likely be moved out of the image window. However,
horizontal flipping maintained the image contents while providing more variations to
help reduce overfitting and result in better generalization. Thus, in order to maintain
the intended features of the dataset, the augmentation parameters described in Table 9
were applied.

Table 8. Best model parameters on large-scale turbine data. AF and LR denote the activation function
and learning rate, respectively.

Architecture Epochs Batch Size Optimizer AF LR Dropout Pooling

(TL)-Xception 50 32 RMSprop Sigmoid 0.001 0.6 Avg

(TL)-VGG-19 25 8 Adagrad Sigmoid 0.001 0.0 -

(TL)-ResNet50 50 16 Adam Sigmoid 0.001 0.2 Avg

Custom CNN 100 16 Nadam Sigmoid 0.001 0.2 Max

AlexNet 100 20 Nadam Softmax 0.0001 0.2 -

- Not added to the model.

The evaluation of the performance of the investigated models on this dataset is illus-
trated in Table 10 and Figures 18–22. Here, the best accuracy achieved was 100% by the
transfer learning-based Xception model. This was followed by the other two transfer learn-
ing variants in our study, (TL)-VGG-19 and (TL)-ResNet50, achieving accuracies of 98.08%
and 93.27%, respectively. Among the non-transfer learning models, the custom CNN
achieved the highest accuracy of 80.77%. Here, the smaller dataset and limited features rep-
resented proved to be beneficial for the lower layer count. Similarly, AlexNet outperformed
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the larger non-transfer learning models, achieving 78.85% accuracy. The other models in
our study, the base ResNet50, base Xception, and base VGG-19, were omitted due to poor
performance on this dataset. The limited number of images and inability to apply image
augmentation caused these deeper models to overfit quickly and fail to generalize the fault
features. This overfitting trend can also be seen in the loss vs. epoch plots for the custom
CNN (see Figure 21) and AlexNet (see Figure 22). Here, the validation loss became diver-
gent while the training loss continued a downward trend, indicating poor generalization
on unseen data. To address this issue, more images would be required to bolster the image
count for the dataset while introducing variance to the representation presented to the
model. However, with the inherent challenges of this limited dataset, the performance of
the transfer learning architectures showed promising results. Leveraging pretrained model
weights with additional fine-tuning allowed for convergence and provided exceptional
accuracy on this dataset.

Table 9. Image augmentation parameters on large-scale turbine data.

Augmentation Parameter Setting

Shear range 0.0

Zoom range 0.0

Rotation range 0.0

Horizontal flip True

Fill mode -
- Not added to the model.

Table 10. Comparison of model performance on large-scale turbine data.

Architecture Test Accuracy Test Precision Test Recall F1-Score

(TL)-Xception 1.0000 1.0000 1.0000 1.0000

(TL)-VGG-19 0.9808 0.9630 1.0000 0.9811

(TL)-ResNet-50 0.9327 0.8814 1.0000 0.9369

Custom CNN 0.8077 0.8200 0.7885 0.8039

AlexNet 0.7885 0.7885 0.7885 0.7885

Figure 18. Best run results from the proposed transfer learning-based Xception, i.e., (TL)-Xception,
on large-scale turbine data.
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Figure 19. Best run results from the proposed transfer learning-based VGG-19, i.e., (TL)-VGG-19, on
large-scale turbine data.

Figure 20. Best run results from the proposed transfer learning-based ResNet-50, i.e., (TL)-ResNet-50,
on large-scale turbine data.

Figure 21. Best run results from custom CNN on large-scale turbine data.

Figure 22. Best run results from base AlexNet on large-scale turbine data.

4. Conclusions

This study conducted binary fault classification of small wind turbine blades using a
newly created dataset of 6000 RGB images. The created dataset included simulated faults
of cracks, holes, and edge erosion in varying environments. A custom convolutional neural
network was investigated, along with four existing architectures. Leveraging these four
architectures as the feature extraction backbone, three transfer learning approaches were
also developed and compared. Through an exhaustive search of hyperparameters, an opti-
mal set was found for each architecture on the created CAI-SWTB dataset, providing the
best accuracy. Here, it was shown that the proposed transfer learning Xception architecture
outperformed other architectures, achieving 99.92% accuracy. This was followed by the
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transfer learning-based VGG-19 and base Xception models, with accuracies of 99.83% and
99.33%, respectively. An additional study, utilizing a dataset containing faulty and healthy
large-scale wind turbine blades, was also conducted to compare model performance. While
limited in scope and size, this dataset allowed for the testing of the investigated models
on large-scale commercial turbines. This dataset was created using an autonomous drone.
Our results on this limited data showed that the transfer learning-based Xception model
achieved the highest accuracy of 100%.

5. Future Work

Our results show that deep learning is a promising technology for classifying and
identifying faults on wind turbine blades for preventative maintenance. However, further
study is required to improve performance and expand the information extracted from
these images. Our future research will include the investigation of fault localization
and fault size estimation, utilizing object detection architectures and feature detection
techniques to allow more detailed information to be provided to maintenance engineers.
Furthermore, this work mostly focused on stationary wind turbines, which requires halting
the turbine, leading to losses in energy production and output. To address this concern,
our future work will also explore de-blurring the aerial images taken of rotating blades.
Thus, inspections can be performed on turbines in active operation with moderate wind
speed. Additionally, to address the inspection needs of large-scale commercial turbines
and their inherent environmental condition challenges, the deployment of larger industrial-
grade drones will be utilized. In this case, our future work will focus on autonomous
inspections, utilizing vision-based path planning, and inspections using a DJI Matrice 300
RTK. This drone provides stability in wind speeds of up to 15 m/s, allowing usage in these
high-wind environments.
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TL Transfer Learning
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VGG Visual Geometry Group
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