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ABSTRACT 

Exploring the role of near channel geospatial attributes to predict Suspended Sediment 

Concentration patterns across the CONUS region 

by 

Aaron J. Sigman, Master of Science 

Utah State University, 2023 

Major Professor: Dr. Colin B. Phillips 

Department: Civil and Environmental Engineering 

High concentrations of suspended sediment (SSC) in a river can represent a 

critical water quality concern, reduce the storage capacity of reservoirs, and impact 

aquatic habitat. The flux of suspended sediment is a complex function of river hydraulics 

controlling the available shear stress and the concentration of fine sediment supplied by 

the watershed. Local hydraulic controls can be reliably measured at the reach scale, 

however untangling SSC requires determining which factors may impact sediment 

supply. To understand the role of geospatial watershed processes on sediment supply, we 

utilized SSC data from over 1,000 US Geological Survey stations. We find that SSC at a 

site is generally well described by a lognormal distribution with median concentrations 

spanning over five orders of magnitude across the continental United States. Similar SSC 

values are clustered throughout the continental US indicating a potential dependence on 

regional watershed properties. Here we utilize readily available geospatial watershed and 

network scale attributes (topography, soil, vegetation, land use, and climate) to explore 
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how geospatial attributes extracted at the near channel network and the watershed scale 

impact average SSC patterns throughout the country. Through principal component 

analysis and multiple non-linear regression, we reduce a wide variety of geospatial 

attributes down to seven key predictors. Combined these predictors provide a reasonable 

explanation of the mean SSC pattern across the CONUS region. The combination of a 

common probability distribution and geospatial estimation of the mean and standard 

deviation sets the basis for probabilistic predictions and forecasts of SSC within the 

CONUS region. 

 (60 pages) 
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PUBLIC ABSTRACT  

Exploring the role of near channel geospatial attributes to predict Suspended Sediment 

Concentration patterns across the CONUS region 

Aaron J. Sigman 

High concentrations of suspended sediment (SSC) in a river can represent a critical water 

quality concern, reduce the storage capacity of reservoirs, and impact aquatic habitat. The 

total amount of sediment is calculated from a combination of river properties, including 

the amount of available sediment and the flow of water carrying the sediment. Water 

flow properties can be found using local information about the channel, however 

understanding the concentration of sediment in the river requires understanding the 

supply of sediment from the watershed. To understand where sediment is coming from, 

we examined over 1000 United States Geological Survey sites with SSC data. Across the 

country there is an extraordinary range in the measured values for SSC, however, the 

median value of SSC for a site generally describes the regional concentration. Similar 

concentrations are grouped within certain regions of the continental United States, 

showing areas of higher or lower concentrations highlighting the importance of local 

watershed properties. For this research, we use maps of elevation, soil properties, 

vegetation, land use, and climate to explore how the geospatial information alongside and 

upstream of the river affects SSC. With multiple types of data processing, the most 

important mapping factors can be extracted and used to predict SSC. Combined these 

datasets provide a reasonable explanation of the regional SSC patterns across the 
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continental United States. Understanding and reliably estimating SSC is an important first 

step for predicting and managing physical water quality. 
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INTRODUCTION 

The suspended sediment concentration (SSC) within a river is a function of the 

sediment particles, turbulent stresses within the flow, and sediment availability within the 

channel and watershed (Garcia, 2008; Garcia & Parker, 1991). Sediment transport is a 

natural process and plays an important role in the geomorphic, biological, and ecological 

functioning of fluvial systems. Excessive amounts of suspended sediment can negatively 

impact water quality, harm stream ecosystems, and alter water chemistry and temperature 

(Bilotta & Brazier, 2008; Boano et al., 2014; Drummond et al., 2022). Chronically high 

concentrations of sediment can cause siltation, affecting the abundance of fish food 

organisms and salmonid spawning beds (Cederholm, 1979; Schwartz et al., 2011). 

Suspended sediment loads with higher concentrations of silt or clay can represent 

environmentally significant carriers of nutrients and contaminants due to physical and 

chemical properties that allow them to bind or encapsulate other particles (Gottselig et 

al., 2014; Milligan & Loring, 1997; Phillips et al., 2019). Suspended sediment represents 

one of the primary mode through which rivers transport eroded sediment out of 

watersheds (Merritt et al., 2003; Shen & Julien, 1992) and a major source of reservoir 

infilling reducing their overall storage capacity and operational lifetimes (Dutta, 2016; 

Einsele & Hinderer, 1997; Wohl & Cenderelli, 2000). Identifying non-point source 

mechanisms contributing to SSC remains an outstanding challenge as watersheds possess 

a large spatial range in erosional and climatic factors as well as temporal changes to land 

use and frequent disturbances (e.g., floods, landslides, and wildfire). Understanding how 

watershed processes affect the sources of sediment and the transport mechanisms of 
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sediment within a river system is essential in predicting how changes to and within 

watersheds will impact water quality and management decisions.  

A variety of natural factors are hypothesized to influence the amount and size of 

sediment supplied to watersheds that may show up in suspended sediment records. Local 

characteristics of the watershed, such as lithology, precipitation, slope and relief, and land 

use and land cover are all reported to impact catchment erosion and the supply of 

sediment within a river network (Czuba & Foufoula-Georgiou, 2014; Langbein & 

Schumm, 1958; Merritts et al., 1994). Short term high-resolution measurements of 

suspended sediment highlight significant variability in both concentration and flux (Jung 

et al., 2020; Lana-Renault et al., 2007; Topping et al., 2003), whereas longer-term 

averaging of suspended sediment flux measurements reveal a relatively steady erosional 

process and can even dilute the signal of large disturbances such as landslides, wildfires, 

or flooding from large storm events (Coombs & Melack, 2013; Lin et al., 2008; Sadler & 

Jerolmack, 2015). For such a highly variable process, watershed-scale characteristics 

provide good explanation of suspended sediment yield on annual to decadal timescales 

with models such as SPARROW, BQART, WBMsed all utilizing regional and watershed 

attributes to estimate sediment flux (Anderson & Macdonald, 1998; Cohen et al., 2013, 

2022; Schwarz et al., 2006; Syvitski & Milliman, 2007). However, near-channel sediment 

sources and local characteristics show more importance for understanding regional 

patterns in suspended sediment concentrations (Belmont et al., 2011; Stout et al., 2014; 

Vaughan et al., 2017). Regional properties, such as precipitation, soil erodibility, 

elevation, and land use change  (e.g. timber harvests), have been shown to affect 

sediment rating curves (Fisher et al., 2021; Karwan et al., 2007; Vaughan et al., 2017; 
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Zabaleta et al., 2007). Significant progress has been made on the prediction of suspended 

sediment flux; however, this may primarily be due to our ability to predict discharge at 

large scales. Discharge scales nearly linearly with catchment area (Burgers et al., 2014; 

Frasson et al., 2019; Galster, 2007) once gradients in rainfall are accounted for. However, 

suspended sediment concentration remains remarkably challenging to accurately predict. 

Despite the challenge in predicting SSC, we find that there is a geographically clustered 

spatial pattern evident across the United States indicating that regional watershed or 

climatic factors may provide a first order predictor on the mean SSC. 

To understand SSC, it is useful to understand both how the data are collected and 

the available mechanics-based models that describe SSC locally. Suspended sediment 

measurements from natural rivers within the US Geological Survey’s (USGS) National 

Water Information System (NWIS) represent depth integrated water samples composed 

of a collection of particle sizes whose size composition depends on both the flow strength 

of the river and the availability of the particle. To further explore and separate the impact 

of flow strength from particle availability or sourcing we first consider the Rouse profile 

as it represents a useful mechanistic framework for understanding suspended sediment 

transport. 

The concentration profile of suspended sediment with depth tends to follow an ‘S’ 

shape or Rouse profile with higher concentrations and larger particle sizes near the bed of 

the river (Garcia & Parker, 1991; Lamb et al., 2020; Rouse, 1937). For the theoretical 

Rouse profile, sediment in suspension is sourced from the riverbed without supply 

limitations (Garcia & Parker, 1991). For such a profile to exist within a reach of a river, 
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there must be ample suspended sediment available to transport from sources near the 

sampling location, which would indicate significant storage of sand and silt sized 

particles (the coarse fraction of suspended sediment) within the riverbed or near the 

channel. The finest particles are commonly attributed to nonlocal sources via the concept 

of ‘washload,’ particles that are typically characterized to be less than 62 microns in 

diameter whose concentrations within the bed are insufficient to explain their 

concentrations within the water column (Einstein & Chien, 1953) or alternatively 

particles whose accumulation do not change the morphology and structure of the riverbed 

(Hill et al., 2017). For washload, we might expect that SSC within rivers is controlled 

primarily by watershed factors, whereas for larger particles SSC may be a function of 

local storage and reach scale hydraulics. However, due to flocculation even the finest 

particles aggregate to larger sizes (Lamb et al., 2020) such that their transport and  

sample concentration may depend on reach-scale hydraulics in the short term 

(hydrograph to sub-annual timescales). As such understanding short term SSC dynamics 

may remain the role of calibrated physics-based models and frequent sampling (Rubin et 

al., 2020; Rubin & Topping, 2001), whereas exploring the role of geospatial watershed 

characteristics may be better suited to disentangling cumulative loads (Brakebill et al., 

2010) which integrate over short term fluctuations and annual flux models (Cohen et al., 

2013).  

The USGS water quality database represents the largest collection of sites with 

SSC measurements to date. The USGS has established numerous sites across the United 

States where measurements of suspended sediment are or were collected within the past 

50 years (Fig. 1). When observed in aggregate, high and low values of the geometric 
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mean SSC are spatially clustered within specific geographic regions within the USA (Fig. 

1), which suggests that spatial attributes within these regions may be able to predict the 

observed pattern. However, despite the spatial pattern there are not yet an agreed upon set 

of watershed attributes necessary to predict the pattern across and within regions. Are 

there a collection of geospatial attributes watershed or near-channel attributes that can 

explain the observed pattern? Here we seek to utilize publicly available geospatial data to 

determine if the time-averaged SSC pattern can be determined from watershed 

characteristics near and upstream the sample location. An understanding of how 

watershed attributes combine to predict the geometric mean for SSC represents a critical 

path forward for understanding how landscape and spatial climate attributes impact 

physical water quality. Additionally, understanding which watershed factors and at what 

scale they impact SSC can help determine how historical and future change scenarios 

(variability or change in space and time in land use and climate) within a watershed have 

or may impact SSC and therefore impair water quality. Further, this information could be 

used to inform policy, management and restoration of stream and river networks on 

issues including infrastructure, water security, reservoir sedimentation and hydropower 

supply, and aquatic biodiversity (Dutta, 2016; Huettel et al., 1998; Palmer et al., 2000; 

Schleiss et al., 2016; Vörösmarty et al., 2003).  

The overarching goal of this research is to determine if local watershed properties 

can be used to determine the time averaged concentration of suspended sediment within a 

watershed. We sought to answer the following questions: (1) how do watershed 

properties relate to suspended sediment concentrations and ultimately impact a river’s 

sediment water quality? and (2) at what scale (point, local, or basin) do these watershed 



6 

 

properties best contribute to suspended sediment? To address these questions, a method 

to extract river corridor properties at different scales was created to collect statistics for 

each watershed attribute. This geospatial extraction allows for comparison between the 

watershed attribute descriptive statistics and each stream gage’s historically averaged 

suspended sediment concentration. 
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METHODS 

All discharge and SSC data for each stream gage was collected from the USGS 

NWIS. From the NWIS database we utilize 1272 sites, each with discretely sampled 

partial time series for discharge and suspended sediment concentration. Water quality 

data within the NWIS system are collected for specific purposes and therefore do not all 

have the same sampling frequency or quantity. The data quality at all sites is not 

equivalent as some sites contain too few measurements or highly biased temporal 

sampling to reliably estimate the descriptive statistics. We have conservatively chosen to 

limit our analysis to sites with greater than 100 unique samples to increase the likelihood 

that descriptive statistics (i.e. the average) will describe the underlying data. At a small 

number of sites (124) the time series may represent sporadic sampling, only low or high 

flows, and highly discontinuous sampling (periods of brief intense sampling spread 

across multiple decades). We further exclude sites with main channel lengths under 5 km 

as these areas are too small to effectively differentiate between the point and basin scale 

for many of the geospatial variables. We also focused on the continental United States, 

removing sites from Alaska, Hawaii, Puerto Rico, and other US territories. For the 

methods, USGS web data retrieval was used, so all sites were tested to check for valid 

and working web links. These filtering steps result in the exclusion of 124, 51, 18, and 37 

sites for improperly sampled time series, extracontinental origin, broken web links, and 

small basin sizes, respectively. Following the aforementioned filtering we are left with 

1042 sites (Fig. 1). 
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Of the 1042 remaining sites, 76 were selected to run an initial training analysis. 

These sites were selected from seven basins across the contiguous United States 

highlighting an array of geospatial and climatic attributes. In the selection of these basins, 

the goal was to identify sites with a diverse range of climatic values, suspended sediment 

concentrations, and multiple land uses. This initial step was implemented to reduce the 

processing time required in developing tools to batch process the extraction of geospatial 

and climatic attributes within all basins upstream of the broader set of NWIS gages used 

in this study. The reduced set of sites used in this preprocessing step produced stronger 

statistical trends between the average SSC and geospatial attributes than when 

considering the full collection of sites. This pre-analysis highlights an important 

cautionary note in that sample site selection can strongly bias your resulting trends and 

inferences. From each selected NWIS site, we compute descriptive statistics for the 

suspended sediment concentration, flux and water discharge.  

All datasets for land use, hydrology, topography, precipitation, air temperature, 

and evapotranspiration represent nationally continuous data products for the continental 

United States (CONUS) and were accessed from publicly available sources. Rainfall and 

temperature data were collected from the PRISM Climate Group ((Daly et al., 2008; 

PRISM Climate Group, 2014). This data provides 30-year normal values (1990-2020) for 

precipitation in millimeters and average minimum, mean, and maximum temperatures in 

degrees Celsius at an 800x800m grid scale for the CONUS region. Elevation data was 

accessed from the USGS’s 3D elevation program (U.S. Geological Survey, 2019). This 

dataset covers the entire CONUS region at scales from approximately 30 meters to 1 

meter in resolution. The data extraction method for elevation accesses the highest 
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resolution elevation data available for the study area. The land cover map was 

downloaded at a national scale from the Multi-Resolution Land Characteristics 

Consortium (Dewitz & U.S. Geological Survey, 2021). This is a group of federal 

agencies who coordinate and generate consistent and relevant land cover information at 

the national scale for a wide variety of environmental, land management, and modeling 

applications (Dewitz & U.S. Geological Survey, 2021). We utilized the most recent 

dataset available at the time of access which was the 2019 National Land Cover Dataset 

(NLCD). The NLCD is available at a scale of 30×30 meters and separates each pixel into 

one of multiple possible categories, including but not limited to: water, developed 

(urban), forest, agriculture, and shrublands. The 2019 NLCD map represents land 

attributes at a significantly later date than the majority of SSC timeseries, however, as we 

seek to understand the general CONUS wide patterns the mismatch in dates is unlikely to 

significantly alter the trends as NLCD datasets typically remain regionally consistent 

while undergoing changes at a more local scale. Lastly, a worldwide evapotranspiration 

dataset was collected from the Global Aridity Index and Potential Evapotranspiration 

Climate Database (Trabucco & Zomer, 2018). This dataset provides a measure of 

evapotranspiration worldwide at a 30-arc-second, or approximately 1km, scale updated in 

2022. Aridity was derived by dividing the spatial precipitation data by the estimated 

spatial evapotranspiration following Trabucco & Zomer (2018). 

To perform the spatial extraction of watershed attributes we utilize the HyRiver 

software libraries within Python (Chegini et al., 2021). The HyRiver package allows for 

the extraction of upstream river basin and network attributes utilizing National 

Hydrography Dataset plus (NHD+) data through the USGS Hydro Network-Linked Data 
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Index and WaterData web services (Moore et al., 2019). For each USGS stream site used, 

the upstream river basin and the main channel of the river at a specified distance can be 

extracted and buffered by a set distance to create a spatial polygon. This buffer can then 

be used to extract the values from each of the aforementioned geospatial data products at 

a predefined distance from the mainstem channel (Fig. 2). For numerical quantities, 

statistics of the spatial layer are extracted including minimum, maximum, average, 

median, standard deviation, range, and inner quartile range. Spatial raster layers 

consisting of classified categorical data were summarized to record the percentage of 

each category within the buffered stream network. For the following analysis, we utilize a 

10 km buffer distance to define the stream corridor (5 km on both sides) and extract 

geospatial attributes at the point, 20%, 40%, 60%, 80% and full basin scale (Fig.2). Here 

the percentage of the mainstem attributes extracted is determined as the length of the 

polygon upstream along the streamline divided by the total length of the mainstem within 

the basin. We recognize that rivers are more than their mainstem channel and that a fuller 

analysis of geospatial attributes should likely consider a fraction of the full stream 

network rather than a fraction of the mainstem, however, as a first step we stick to the 

main channel and incorporate tributaries within the buffer distance. We note that in many 

of the sites we examined, the geospatial attributes do not necessarily change dramatically 

throughout the basin laterally. 

Following geospatial data extraction, we compiled a database where each gage 

and its associated NWIS attributes (statistics for SSC and discharge) are further 

associated with a host of geospatial attributes for varying buffer distances from the main 

channel and fractions of the mainstem stream network from the point to basin scale.  We 
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explore the potential dependence of SSC metrics on geospatial attributes through 

multivariate regression and principal component analysis (PCA), which allow for 

substantial explanatory variable reduction through iterative application of the method. 

This variable reduction stage is essential to limit the number of total variables necessary 

to understand the spatial pattern of average SSC.  
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RESULTS 

We utilize 1042 sites (Fig. 1), each with discretely sampled time series for 

discharge and suspended sediment concentration. Exploratory analysis of these records 

reveals that the distribution of SSC at each site is non-normally distributed. We find that 

a natural log transformation of the data provides a more symmetric distribution which is 

generally well described by a lognormal distribution. Such a transformation and the 

nonnormality of the data is not unexpected because water discharge time series are 

typically lognormally distributed as well (Helsel et al., 2020).  For the majority of sites, 

the USGS provides a suite of whole watershed scale attributes including: number of 

samples, drainage area, 30-year normal average precipitation, soil characteristics (particle 

size, R and K factor), land use (restricted to forest, agriculture, and developed), and 

statistics on upstream dams (number of large dams and total storage capacity). 

Examinations of individual sites within the database reveal that that the majority 

(approximately 90%) of the probability density functions are unimodal skewed 

distributions. Following a natural log transformation, the distributions become nearly 

symmetric indicating that the appropriate statistical descriptors for the central tendency 

and dispersion are the geometric mean and geometric standard deviation, respectively 

(Helsel et al., 2020). Throughout the following results and discussion references to the 

mean SSC refer to the geometric mean. Across the CONUS region at the selected sites 

the values for mean SSC range by five orders of magnitude, while the standard deviation 

ranges by one order of magnitude. Regions of high concentration are clustered into the 

arid Southwest and the Midwestern plains, specifically the western plains.  
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We begin our analysis by exploring relations between basin characteristics and 

mean SSC. Comparing drainage area to average values of SSC and suspended sediment 

flux (Qs), we can see a positive trend in loglog space for both SSC and flux (Fig. 3). 

These data cover over six orders of magnitude in drainage area. The overall trend makes 

sense for flux as discharge grows with drainage area (Galster, 2007; Leopold & 

Maddock, 1953) and flux is the product of discharge and SSC. However, SSC and flux 

differ in the degree to which they scale with drainage area. In comparing the regression 

trends between mean SSC (SSC = 17.8DA0.15, R2=0.058, Pval < 0.001) and mean flux 

(Qs = 3.7e-7DA0.83, R2=0.53, Pval < 0.001) it is evident that SSC only weakly depends 

on drainage area. Both trends are statistically significant, however the SSC-drainage 

relation is far from predictive as the variability in SSC for a given drainage area (roughly 

three orders of magnitude) is larger than the observed dependence on drainage area (one 

order of magnitude, Fig. 3a). Variation in Qs for a given drainage area is also 

approximately three orders of magnitude, however the trend covers over seven orders of 

magnitude in flux. Variation about the Qs drainage area trend correlates strongly with the 

SSC values, indicating that understanding the controls on SSC will lead to improved flux 

predictions. 

The spatial pattern (Fig. 1) across the CONUS region highlights the potential 

importance of a climatic gradient and indeed we observe that sediment concentration 

declines with basin scale precipitation (Fig. 3b). All things being equal within a 

catchment, that concentration declines with increased precipitation is not unexpected. The 

median trend between the average basin precipitation (30 year normal) is remarkably well 

described by a power function (Fig. 3 b & c), however, this function has limited 
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predictability beyond the median concentration due to the high degree of variability 

within the SSC data. We don’t believe this trend should be discounted as it certainly 

explains a first order continental scale relation, however, it also indicates that other 

variables are likely equally or potentially more important.  

We utilized principal component analysis (PCA) to explore a larger collection of 

basin scale averaged attributes including: drainage area, number of large dams upstream, 

percentage of the basin with forest, urban or agriculture land use types, 30-year normal 

rainfall, and the percentage of sand, silt and clay within the basin soils. We combine these 

variables with the natural log transformed SSC and the number of SSC samples per site. 

Drainage area and rainfall were log transformed prior to analysis to account for their non-

normal distributional shape. The first four principal components describe 65.5% of the 

variance within the dataset with ~44% accounted for by the first two principal 

components. The PCA (Fig. 4a) highlights how SSC varies across a gradient of land use, 

soil composition, and rainfall. Specifically, higher concentrations occur for sites with 

higher drainage areas, low rainfall, more clay rich soils, and agricultural land use; while, 

lower concentrations occur for sites with higher rainfall, more forest and sandy soils (Fig. 

4a). It is important to note here that PCA does not provide a physical relation or suggest 

that these variables are the only important predictors. Many of these variables are 

naturally co-varying in that smaller catchments are likely to be more forested and 

agricultural land use occurs within favorable soils for farming. However, the basin scale 

results do not reveal how the geospatial attributes are arrayed throughout the catchment 

or even if a particular land use variable is located near the river. The basin scale PCA 

reveals that with these particular variables the SSC pattern is not randomly arrayed across 
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these sites, rather it forms a gradient of lower to higher concentrations. Here we leave the 

basin scale geospatial results to bring in a wider array of geospatial attributes extracted 

from near and upstream of the river channel. 

For the near-channel analysis, we limit our geospatial extraction to 20% of the 

mainstem channel length upstream of the sample site with a buffer distance of 5 km 

adjacent to the channel on either side. Within the near-channel analysis we can extract 

topographic features like local elevation, relief and channel gradient, and soil properties 

adjacent to the channel. For each site, many statistical outputs of each dataset were 

collected. These included major quantiles, percentiles, maximums, minimums, and 

ranges. Near-channel properties have been identified as reasonable predictors of SSC 

within regional settings (Stout et al., 2014; Vaughan et al., 2017). The number of 

variables expanded at the local scale as we computed a range of descriptive statistics 

within each buffer distance for each variable including the: mean, median, minimum, 

maximum, range, interquartile range, and standard deviation. For each variable (see 

Appendix for a complete list of variables) we explored correlations and bivariate plots to 

understand if and how the variables were interrelated and relate to SSC. The majority 

contained either no relation or power relations with considerable scatter. No single 

variable emerged as a particularly strong predictor. Iterative PCA at the near-channel 

scale allows for the reduction in total dataset dimensionality. We performed an initial 

PCA with all attributes, and iteratively removed attributes with the lowest correlation 

coefficients between either of the first two principal components. Our final PCA resulted 

in the inclusion of 16 variables (see Fig. 4b for list) and mean SSC, with the first four 

principal components explaining 63.1% of the total variance with 41.8% accounted for by 
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the first two components. The overall pattern indicates that higher SSC values are 

correlated with sites with larger temperature and temperature ranges, high elevations, 

higher evapotranspiration rates, agricultural land use, and higher frequencies of potential 

flooding. Lower SSC values correlate with sites with wetter climates with increased 

vegetation. We note though that the addition of more geospatial datasets in the near-

channel scale PCA doesn’t increase the overall explained variance compared to the basin 

variables (63.1 to 65.5%) but did reveal relations between variables and highlighted 

climatic and topographic variables over land use as larger drivers of variance within the 

data. 

The switch from a basin scale analysis to the near-channel analysis highlights a 

few fundamental differences. Near-channel relief highlights bluffs and canyons, while 

basin scale relief would reveal the presence or absence of high relief (e.g., mountains), 

and potentially, the proximity to mountains. Some basin scale parameters are ambiguous, 

in that a site within the mountains would have lower relief than a site downstream on the 

same river, while near-channel relief can distinguish between the two. We highlight the 

change from basin to near-channel through the use of the three land use categories (Fig. 

5). Similar to the PCA, higher SSC values tend to occur in regions with larger 

percentages of agriculture (Fig. 5). At the basin scale, land use is primarily a gradient 

between agriculture and forest, while at the near-channel scale there is a greater mix 

across land use types including a growth in the percent of the urban land use type (Fig. 5 

a & b). In general, moving from basin descriptions of land use to the near-channel values 

increases the percentages of the urban land use type or eliminates it. For the near-channel 

scale description of land use we combined multiple NLCD classification categories to 
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limit the analysis to the three urban, agriculture, and forest. Urban consists of the four 

developed categories, open space, low intensity, medium intensity, and high intensity. 

Agriculture consists of barren land, shrub/scrub, pasture/hay, and cultivated crops. Forest 

consists of deciduous, evergreen, and mixed forests, as well as herbaceous, and the 

wetland categories or woody and herbaceous wetlands. Considering each land use type 

individually (Fig. 6 a-c), SSC possesses a statistically significant though small positive 

trend with agriculture, a negative trend with forest coverage near the channel, and no 

trend with urban land cover. The median trend for both forest and agriculture land covers 

is well fit by an exponential function with a constant variation about the trend, however 

the overall variability remains considerable. Ultimately, these results highlight that land 

use at both the basin and near-channel scale is minimally predictive of the mean site SSC. 

We explore individual relations between geospatial attributes linked to or believed 

to be linked to erosive processes. While we explored a large variety of potential 

geospatial and topographic variables, we focus on the following: precipitation, 

evapotranspiration, annual temperature and temperature variability, elevation, flood 

frequency (flood factor) as determined by topography, river slope, time integrated NDVI 

(TIN), soil erodibility (K-factor), soil tolerance (T-factor), and hydrologic group. The 

variability across all factors remains quite high, however some notable trends emerge. 

Increases in precipitation result in decreases in concentration, while increasing 

evapotranspiration rate within the near-channel region results in high concentrations (Fig. 

7 d & e). As the annual average temperature increases, we observe an increase in the 

mean SSC. Precipitation and evapotranspiration can be combined into an aridity index 

(Trabucco & Zomer, 2018), however the resulting pattern with SSC is nearly a replica of 
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the observed pattern with precipitation. While not captured by the median trend line, 

these three climatic variables do reveal that the highest SSC concentrations occur at sites 

with low rainfall, high ET, and high annual temperatures (e.g., deserts). Slope, elevation, 

and the flood frequency factor all represent different aspects of the topography near the 

SSC sampling site (Fig. 7 a-c). The elevation term represents the median elevation within 

the near-channel buffer. The correlation between elevation and mean SSC is weak, 

however, we note that there is a strong pattern of increasing variability in the data as 

elevation increases. The flood frequency factor represents the frequency at which the near 

overbank area floods. In a sense this term may reveal the frequency at which a river 

deposits and erodes overbank and floodplain material. A positive trend is observed 

indicating that as the near channel area floods at a greater rate there is a higher mean 

SSC. Here the slope represents the linear regression of the upstream elevation along the 

mainstem channel. This slope value is not the hydraulic slope of the river reach except in 

small basins but represents a general steepness of the channel upstream. No trend is 

observed for this along channel slope with SSC (Fig. 7a). 

To further understand how the many geospatial factors may interact to affect the 

mean SSC pattern we performed an iterative multiple nonlinear regression (MNLR). 

Initially, we incorporated over 60 geospatial attributes extracted at the near-channel scale 

(see list of variables in Appendix A). We iteratively performed MNLR on the natural log 

transformed variables and used the significance level of each variable to select which 

variables to keep (a p-value less than 0.05 was utilized as the cutoff for inclusion in the 

next iteration). Seven resulting variables were used to run a final regression to determine 

the leading coefficient and exponents for each variable (Eq 1). 
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(1)   SSC = 7.36E0.39 P-0.85 T1.12 Kf0.67 Tf1.63 Ff1.6 HG0.93 

where the seven variables are: median elevation (E), mean annual precipitation (P), mean 

annual temperature (T), average K-factor (Kf), soil-tolerance factor (Tf), flood factor (Ff), 

and hydrologic group (HG). Predicted values compare favorably with the observed mean 

SSC values with over 50% of the observed data within a factor of two of the predicted 

values (Fig. 8). The multiple nonlinear regression captures the behavior of mean SSC for 

the majority of sites with mean SSC values less than 103 mg/L, however, we find that no 

regression model predicts the highest SSC values. 

 In returning to the spatial motivation for this project, we explore the accuracy of 

the model spatially across the CONUS region (Fig 9). This map highlights regions of 

overprediction (blue), where predicted values for mean SSC are greater than the observed 

values, underprediction (red), where predicted values for mean SSC are less than the 

observed values, and ‘well’ predicted (gray), where predicted values are within a factor 

of two from the observed values. About 39 percent of the sites fall within a factor of two, 

and approximately 91 percent of the sites fall within a factor of ten. This map captures 

the regions of the model’s accuracies and inaccuracies. 
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DISCUSSION 

Accurately estimating the mean SSC at basin-wide scales remains challenging, we 

explored if near-channel geospatial attributes could determine reliable estimates of the 

mean and standard deviation of the site SSC distribution. We focused on SSC over 

suspended sediment flux because SSC is an important water quality indicator. Predictions 

for suspended sediment flux are already reasonably good for larger rivers and capture the 

primary trend of increasing flux with water discharge. As flux is the product of SSC and 

water discharge, it is expected that flux increases with basin area, however any 

improvement in our ability to predict SSC would transfer to an improved prediction of 

flux as well, because the variation about the flux drainage area trend scales with SSC. We 

anticipated that with larger watersheds the basin wide statistics would obscure important 

patterns through the incorporation of significant area away from the channel and that 

point scale attributes would exclude important features upstream of the sample locations. 

For a reduced set of test basins (see green shaded basins in Fig. 1) we explored how 

changing the extraction distance along the mainstem from the point to the basin in 

increments of 20% of the basin length and the orthogonal distance from the channel from 

1 to 10 km. However, moving from the basin to the point scale results in a smaller than 

expected shift in the geospatial attributes overall (Fig 2), while some changes are large in 

practice (a reduction in up to half a meter in 30 year normal rainfall) the trends of the data 

were the same. One potential confounding factor may be that we chose climatic variables 

that represent well average quantities and that many of the topographic variables which 

exhibit more change with distance upstream had only a slight correlation with SSC 

values.  
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Land use variables do exhibit a larger degree of change as we consider different 

extraction distances along and from the channel (Fig. 5), however, our analysis indicates 

that land use is not primarily responsible for the SSC pattern at the CONUS scale. Land 

use was observed to be an important component of the basin scale PCA, however, at the 

near-channel scale with the inclusion of more specific soil data products the importance 

of land use decreased. This likely occurred due to forest and agricultural land use types 

largely reflecting climatic and soil properties, while urban areas represent a smaller 

fraction of the total area within a catchment or near-channel region for most gages. 

Shifting from basin to the near-channel scale results in numerous sites gaining in the 

urban land use type as indicated by the increased spread of sites across the ternary 

diagram (Fig. 5 b). The largest changes in land use were observed as tradeoffs between 

forest and agriculture, however these do not appreciably change the observed patterns in 

the ternary diagrams. These methods could still be utilized within more regionalized 

studies where land use may represent a more definitive feature, as drastic changes in land 

use such as deforestation and urbanization are known to result in substantial increases in 

SSC (Lewis et al., 2001; Wolman, 1967). The near-channel extraction methods could also 

be useful when considering basins with point sources or hot spots of erosion. At the 

CONUS scale, these behaviors are likely transitory or obscured within the larger 

variability within the full dataset. Additionally, there may be some extended utility at the 

more regional scale to break up land use categories as not all agriculture or forest types 

behave similarly in terms of erosion. For this study 20 land use categories were reduced 

into four categories (urban, forest, agricultural, and water), which may oversimplify what 

is seen in each region, possibly resulting in an increased degree of variability in the 
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dataset. If this project were to be repeated, the entire NLCD range could be included to 

identify how this simplification impacts the results. A potential extension of this method 

could explore extraction of geospatial attributes based on a percentage of the full 

tributary network, as the current method is restricted to the main channel.  

A challenge with many of the existing geospatial attributes is that they inherently 

are covarying or redundant. The variable reduction steps within both the PCA and the 

multiple nonlinear regression reinforce the idea of the covariation as numerous variables 

provided minimal explanatory power to the methods. Land use in particular covaries with 

many climatological and soil properties and is therefore potentially redundant within this 

analysis, however, land use may be a more valuable explanatory variable for 

understanding changes in SSC for studies exploring pre and post land use change or 

utilizing paired watersheds with similar climatic and soil properties.  

A limiting aspect of the analysis presented here are the widely available 

geospatial products. Datasets that uniformly provide coverage across the CONUS region 

are often simplified in many regions, however the CONUS wide coverage and more 

standardized methods are important for any data comparison across sites. Datasets of 

higher resolution such as rainfall intensity, are often hyperlocal and missing large swaths 

of the CONUS region rendering them less useful for intercomparison at this point. 

Climate variables (precipitation, ET, temperature) were collected as 30-year normals to 

identify the historical trend for these climates, however, CONUS wide rainfall data 

beyond annual means remains a key area needed for exploration as erosion scales with 

rainfall intensity (Berger et al., 2010; Cammeraat, 2004; Römkens et al., 2002). A 
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limitation of the 30-year normal approach to climate in this particular study is that the 

SSC data for a site often do not cover the entire or for some sites even the same 30-year 

range. However, we are not convinced that a more closely aligned 30-year normal 

precipitation would reveal stronger trends as the difference between 30-year normal 

periods does not appreciably change the CONUS wide rainfall pattern. A potential 

alternative approach could be to create rainfall statistics based strictly on the basin or 

near-channel region for the periods when sediment was actively sampled. This approach 

should be verified within high-resolution data where a clear signal could be extracted and 

used as a guide when interpreting CONUS wide results.  

The most significant data limitations for this research are related to the national 

soil and lithology data products. Data for soils and land use were collected from 

SSURGO and the NLCD and lithology was examined from USGS sources, however, 

each dataset necessarily represents a statewide compilation of data. Different states may 

have different collection methods for these datasets, possibly resulting in increased 

variability in watersheds that span over multiple states, particularly in the case of 

lithology where rock types can inexplicably change at state boundaries. A further limiting 

aspect of the soil and lithology data is the inherent categorical nature of the data and the 

absence of a reliable method to convert each into relevant erosion metrics such as 

fractions of grain size present and erodibility. Existing metrics for soils data utilized here 

were important factors representing four of seven statistically significant components 

within the multiple nonlinear regression. This highlights how more accurate soils data 

may be key in predicting SSC and unraveling spatial water quality patterns more broadly. 
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The SSC data themselves represent an additional potentially limiting factor, while 

we are fairly confident in the distributional shapes for each site a more stringent test 

should be employed to remove sites that do not accurately capture the true mean and 

standard deviation. A stricter filtering of sites based on their temporal coverage over their 

sampling record could reduce the overall variability within many of the bivariate 

regressions, however, we do not believe that this would necessarily result in different 

trends as the computed statistics for sites used here are independent of the sample size. 

We performed a quality control analysis where we restricted our correlation analysis to 

only sites where the discharge values sampled at the same time as the SSC samples 

matched the distributions of the full hydrograph for that period. This filtering resulted in 

reduced scatter for lower mean SSC values but did not appreciably change the overall 

patterns or trends. That the trends generally remain the same may not be surprising given 

the variability across site mean SSC values. Values for the mean SSC range across over 

five orders of magnitude naturally, the estimated mean SSC values would have to be off 

by more than an order of magnitude or be systematically biased for the resulting observed 

trends to change. Nonetheless the limited temporal sampling of SSC across the CONUS 

region remains a challenge for making broad management or operational decisions. 

Variability in space across the CONUS region represents another potential pitfall of these 

data. While there are a large number of sample sites, especially for sediment transport, 

they are not evenly spread across the CONUS region. We address this spatial sampling 

issue by resampling the data (Fig. 2 & 4-6) when making correlations between climatic or 

geospatial variables. For example, this resampling by number of sites for a given climatic 

value is necessary as the uneven spatial sampling does not guarantee that the predictor (x-
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axis variable) is representatively sampled across the CONUS region. These binned 

medians generally represent robust trends through the data though with limited range in 

terms of prediction of the highest and lowest values. Because we have resampled the 

data, the regression equations fit to the data contain unrealistic explanatory statistics but 

do represent a more realistic trend within the data. 

Many of the quantiles and percentages were well fit around the median and mean 

values, and often the range values had little to no explanatory information. Since most of 

the datasets fit best with log-scaling, we found that the median value for most datasets 

best described their value and correlation with mean SSC. The only dataset with a 

variable outside of median or mean, was temperature range. This value of mean annual 

maximum minus mean annual minimum seemed to show a prominence among the rest of 

the variable statistics (Appendix 4, Fig 10). 

Within the CONUS wide SSC dataset there are many reasons to be cautious with 

the data. There are generally well described median patterns, but the variability within 

mean SSC strongly limits their utility. However, the multiple nonlinear regression 

analysis provides good estimation of the mean SSC, and highlights the combined role of 

topography, climate and soil properties in describing the spatial pattern of mean SSC 

across the CONUS region. That the pattern is reasonably well described by seven 

variables (median elevation, flood frequency, precipitation, temperature, and soil 

parameters K-factor, T-factor, and soil hydrologic group) all of which are geospatial in 

nature provides an interesting description on sediment supply and potential water quality 

within these basins. Median elevation and flood frequency describe the topographical 
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regions near each site. Increases in SSC with median elevation are slight (exponent of 

0.39 within the MNLR) and indicates a tendency for higher elevation sites like mountains 

and the arid plateaus of the southwest to have higher concentrations. Flood frequency, as 

defined by SSURGO is the likelihood for a region to be flooded during the year and can 

be related to the amount of lowland and or adjacent flood plains surrounding the channel. 

Areas with high flood frequency tend to be regions with high sinuosity or large 

floodplains with high potential for sediment storage and remobilization when river levels 

rise. Median precipitation and temperature range describe the climatological factors used 

in this analysis. Decreasing SSC with increased mean annual precipitation potentially 

results in a direct dilution of the concentration, however, increasing rainfall also results in 

increased overall erosion (Ferrier et al., 2013; Langbein & Schumm, 1958). The inverse 

relation with precipitation could be modulated by vegetation as high rainfall correlates 

with more dense vegetation and increased forest land use percentages, however, median 

NDVI was excluded from the final multiple nonlinear regression due to low explanatory 

power. Nevertheless, it remains reasonable to suggest that high rainfall regions are likely 

to have more vegetation, limiting hillslope erosion. A positive dependence on 

temperature range may highlight either the role of variability in temperature dependent 

erosion processes and/or indicate a more arid location. The soil parameters describe soil 

erodibility (K-factor), availability (T-factor), and infiltration potential (hydrologic group), 

respectively. The first two directly relate to the potential quantities of fine particles that 

can be mobilized, while hydrologic group is a categorical scale which progressively 

defines soils with finer particle sizes and lower infiltration capacity (i.e., higher runoff 

potential). The final MNLR model predictions fall along a one-to-one line with 50 and 
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80% of the predictions within a factor of two and ten, respectively. Maximum and 

minimum variability of the dataset still cover a large range of values, and MNLR model 

does not predict the highest mean SSC values. Model predictions do not exceed mean 

values of 103 mg/L whereas the observed data extends up to 105 mg/L within the 

Colorado River and several arroyos and washes within the arid southwest. Overall, the 

MNLR and variable exploration here demonstrates that mean SSC is predictable across 

the CONUS region based on geospatial attributes alone. However, the vast variability 

within mean SSC across the CONUS region remains a considerable challenge. 

Regionally, this MNLR model has good predictive power, but there are also 

regions of overprediction and underprediction. Regions along the Mississippi and Ohio 

rivers are generally well fit. Some disconnects in prediction accuracy are found within 

state lines, with Oklahoma and Nebraska generally predicting values higher than the 

observed values and Idaho and Virginia generally predicting values lower than the 

observed values, while their neighboring states have a more well fit spread in their site’s 

accuracies. Many of the geological inputs to this regression model are regionally or state-

based datasets, and discontinuities between survey borders may change the results for the 

model’s predictions. Sites of major differences may also be sites at the extreme ends of 

variability within the values for mean SSC, that the model struggles to predict. Arizona is 

a good example of this, as their values for mean SSC fell within the highest and lowest 

values, resulting in the largest differences between predictions and observed values. This 

highlights the importance of the soils data and its state-to-state differences, as well as a 

need to explore the variability of mean SSC and the input datasets. 
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CONCLUSION 

We created a model to predict total suspended sediment concentration using 

publicly available near channel river properties. The properties for each USGS water 

quality gage were gathered at 20% of the length of the channel upstream and buffered 

five kilometers on either side of the river. The final variables used in the model include 

median elevation, median 30-year normal precipitation and temperature, erodibility 

factor, soil tolerance, flood frequency, and hydrologic group. Using these variables 

allows for a reasonable (within factor two) estimation of the mean SSC for 50% and 

within a factor of 10 for 80% of the SSC sampling sites across the CONUS region. 

More work is needed on this method to fully understand its impacts and improve 

its predictions. Further research into the relationships between the near-channel distances 

and river types could draw out more information on sources of variability within these 

results. With a method like this, more datasets (rainfall intensity) and sites could be added 

to continue explore SSC values and their variability. Especially exploration of high 

concentration sites as these are persistently underfit and represent important management 

concerns. By adding more depth and robustness to this method, measurements of 

suspended sediment concentration and flux could be predicted and forecasted with 

geospatial data and potentially track the mean SSC through time as geospatial and 

climatic variables change. This would have implications for sites with no water quality 

gaging equipment or sites experiencing changing climate and anthropogenic alterations to 

the near channel properties. 
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FIGURES 

 

Figure 1. Map of 966 Suspended Sediment Concentration sites from the USGS National 

Water Information Service across the CONUS region. 

The points are shaded by the mean of each site’s natural log transformed concentration. A 

spatial pattern of high and low concentrations can be seen across the CONUS region with 

particularly high concentrations occurring in the plains and southwest. Green regions are 

the initially selected HUC6 basins for exploratory analysis and analysis algorithm 

development. These basins include: Willamette-OR, Little Colorado-AZ, Lower Green-

UT, Loup-NE, Upper White-AR/MO, Altamaha-GA, and Lower Susquehanna-PA (west-

to-east). 
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Figure 2. Example of methods for near-channel extraction of geospatial attributes for the 

basin upstream of the USGS gage 0932850 (San Rafael River near Green River, UT). 

The main channel of the river is the thicker blue line while the tributaries are thinner blue 

lines (A). In this example, the buffered region represents 40% of the total main channel 

length upstream and extends 5 kilometers on either side of the main channel. Geospatial 

attributes are extracted and quantified for datasets within the buffer, with examples 

shown for the mean annual 30-year normal precipitation, land use, lithology, and 

calculated aridity. Scatterplots of precipitation (B) and evapotranspiration (C) against 

mean SSC are shown for the sites within the selected basins (n=76). Points are colored by 

their extraction method, from a point scale, along increments of buffer distances (20%, 

40%, 60%, 80%), and the whole basin. 
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Figure 3. Site mean SSC (n=966) correlates weakly with drainage area while sediment 

flux displays a strong correlation across over eight orders of magnitude of drainage area.  

(A) The fitted trend lines are power functions of drainage area for both SSC (mg/L, red 

squares) and flux (Qs, m3/s, blue circles). (B) SSC plotted against 30-year normal 

precipitation (mm/yr) averages across each basin. The trend line is fit to log spaced 

binned median values (red squares) for bins containing more than 10 points. (C) Binned 

median data and the fitted trend line for linear scale axes to highlight the strong curvature 

within the relation between precipitation and SSC. 
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Figure 4. Principal component analysis (PCA) of basin (left) and near-channel (right 

datasets. 

Each PCA is shaded by the mean of the natural log transformed suspended sediment 

concentration (n=966). Variables included in each PCA are listed with their 

corresponding vector components (vector diagrams are offset from the zero-zero point for 

clarity). The vector diagrams below each PCA denote the projected orientation of each 

variable within the data and the length of the vector denotes the overall importance of the 

variable for explaining the variance within the dataset. For the basin (left panels), datasets 

are: percent sand (1), percent forest (2), percent urban (3), annual precipitation (4), 

percent silt (5), percent clay (6), percent agriculture (7), mean SSC (8), number of SSC 

samples (9), number of upstream dams (10), and drainage area (11). The first four 

components of the basin data explain 65.5% of the total variance. For the near-channel 

(right panels), datasets are: slope (1), k-factor (2), NDVI TIN (3), percent forest (4), 

aridity (5), annual precipitation (6), percent urban (7), soil tolerance (8), flooding 

frequency (9), temperature (10), drainage area (11), evapotranspiration (12), SSC (13), 

temperature range (14), percent agriculture (15), hydrologic group (16), and median 

elevation (17). The first four components of the near-channel data explain 63% of the 

variance. 
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Figure 5. Relation between mean SSC across three land use categories for the basin (A) 

and near-channel (B) scales. 

Ternary plots of land use show percentages of the three categories of land use: urban, 

forest and agricultural (Ag). Comparison between the two panels highlights how land use 

changes between the different spatial scales. The points are shaded by the mean of the 

natural log-transformed SSC (n=966). (C) Split violin plots showing the overall change 

within the distributions of land use between basin (lighter shade on left) and near-channel 

(darker shade on right). 
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Figure 6. Individual relations between land use categories and mean SSC at the near-

channel scale. 

Scatterplots of all buffer-extracted points with their land use percentages, urban (A), 

forest (B), agriculture (C), against suspended sediment concentration (mg/L) (n=966). 

The red squares represent the medians of log-spaced binned data for all bins containing 

more than 10 points. An exponential function was fit to the binned medians (red dotted 

line). 
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Figure 7. Relations between mean SSC and selected topographical and climatological 

variables. 

Scatterplots of all buffered points plotted against suspended sediment concentration 

(mg/L) (n=966). The variables are: median slope (A), median elevation (B), flood 

frequency (C), median annual precipitation (D), median annual evapotranspiration (E), 

and annual temperature (F). The red squares represent the binned medians of log-spaced 

bins containing more than 10 points. Each regression is a power function fit to the binned 

medians (red dotted line). 
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Figure 8. Multiple nonlinear regression model prediction against observed mean SSC. 

Black dashed line represents the 1:1 line. Log-spaced bins containing more than 25 points 

show median values (red squares) and contain 875/966 total sites. Data are shaded by the 

interquartile range (dark gray, contains 50% of total data within binned range) and 10th to 

90th percentiles (light gray, contains 80% of total data within binned range) of the data 

along the binning region. Data are binned here to highlight how the center of the data 

accurately follows the 1:1 line. 
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Figure 9. Results of multiple nonlinear regression model across the CONUS region. 

Triangles pointing up are where observed SSC values are a factor of 2 (light blue) or 

factor of 10 (blue) greater than those predicted in the model. Circles (gray) are within a 

factor of 2, and triangles pointing down are where observed SSC values are a factor of 2 

(light pink) and factor of 10 (red) less than the predicted values. 
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APPENDIX 

Appendix A. List of Variables Extracted (78) 

Variables preceded by USGS were calculated by the USGS. 

Latitude, longitude, number of water quality samples, drainage area, basin annual 

precipitation, USGS percent urban, USGS percent forest, USGS percent agricultural, 

USGS number of major dams upstream, USGS percent clay, USGS percent sand, USGS 

percent silt, main channel length. 

The following were calculated based on the SSC data:geometric mean SSC, SSC 

geometric standard deviation, geometric mean sediment flux, sediment flux geometric 

standard deviation  

Near channel elevation mean, median, maximum, minimum, 10th percentile, 90th 

percentile, standard deviation, range, inner quartile range 

Near channel percent urban, forest, agriculture 

Near channel annual precipitation mean, median, maximum, minimum, 10th percentile, 

90th percentile, standard deviation, range, inner quartile range 

Near channel annual evapotranspiration mean, median, maximum, minimum, 10th 

percentile, 90th percentile, standard deviation, range, inner quartile range 

Near channel mean aridity 

Near channel annual temperature mean, median, standard deviation 

Near channel maximum annual temperature mean, median, standard deviation 

Near channel minimum annual temperature mean, median, standard deviation 

Near channel temperature range (maximum annual mean temperature minus minimum 

annual temperature mean) 

Near channel slope 

Near channel TIN (Time integrated NDVI) mean and standard deviation for years 2010, 

2011, 2012, 2013, 2014, and all averaged 

Near channel k-factor mean and standard deviation 

Near channel soil tolerance mean and standard deviation 

Near channel flooding frequency mean and standard deviation 

Near channel hydrologic group  
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Appendix B. List of Variables After PCA (14) 

Drainage Area 

Near channel median elevation 

Near channel percent urban, forest, agricultural 

Near channel median annual precipitation 

Near channel median annual evapotranspiration 

Near channel mean aridity 

Near channel median temperature 

Near channel temperature range 

Near channel slope 

Near channel TIN 

Near channel K-factor 

Near channel soil tolerance 

Near channel flooding frequency 

Near channel hydrologic group 
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Appendix C. List of Final Variables (7) within Multiple nonlinear regression model 

Near channel median elevation 

Near channel median annual precipitation 

Near channel median annual temperature 

Near channel K-factor 

Near channel soil tolerance 

Near channel flooding frequency 

Near channel hydrologic group 
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Appendix D. Supplemental Figures 

 

Figure 10. Relation between mean SSC and temperature range. 

Scatterplot of all buffered points plotted against suspended sediment concentration 

(mg/L) (n=966). The red squares represent the binned medians of log-spaced bins 

containing more than 10 points. Each regression is a power function fit to the binned 

medians (red dotted line). 
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