Sensitivity and Specificity of Sex for Detecting Differences in the Kinetics of Depth Jumps Performed by NCAA Athletes

Alex Woster, Dr. Talin Louder

Introduction

- 1. Females are observed to perform the depth jump with greater scores on the Landing Error Scoring System, and with kinematics that are commonly associated with a greater risk for ACL injury in comparison with males¹
- 2. To the best of our knowledge there has not been a comprehensive study on the effects of sex on the landing kinetics of depth jumping

Methods

- 1. 9 males and 11 female NCAA Division I Student Athletes performed depth jumps from drop heights of 0.51, 0.66, and 0.81 meters
- 2. The following dependent measures were estimated from vertical ground reaction force data collected using an in-ground tri-axial force platform (Figure 1): Peak Force (N), Rate Force Development (N*s⁻¹), Reactive Strength Index(m*s⁻¹), Jump Height (m), Ground Contact Time (s), and Peak Force Reduction (N)
- 3. The sensitivity and specificity of dependent measures to sex was evaluated using Receiver Operating Characteristic curve analysis

Results

1. There was significant area under the curve for Jump Height from a height of 0.81m but no other variable had significant area under the curve

Conclusions

- 1. A larger sample size is needed to detect greater sensitivity for the variables to sex
- An acceptable area under the curve is 0.7 and above² and multiple variables approached this value

Original Research

Sensitivity and Specificity of Sex for Detecting Differences in the Kinetics of Depth Jumps Performed by NCAA Athletes

Variable	Male (r
Peak Force 0.51m	3496 ±
Peak Force 0.66 m	4289 ±
Peak Force 0.81m	5000 ±
Rate Force Development 0.51m	42457 ±
Rate Force Development 0.66m	69602 ±
Rate Force Development 0.81m	85711 -
Reactive Strength Index 0.51m	1.2 ± 0.
Reactive Strength Index 0.66m	$1.1 \pm 0.$
Reactive Strength Index 0.81m	1.2 ± 0.
Jump Height 0.51m	0.48 ± 0
Jump Height 0.66m	0.47 ± 0
Jump Height 0.81m	0.52 ± 0
Ground Contact Time 0.51m	0.45 ± 0
Ground Contact Time 0.66m	0.46 ± 0
Ground Contact Time 0.81m	0.45 ± 0
Peak Force Reduction 0.51m	1327 ±
Peak Force Reduction 0.66m	2065 ±
Peak Force Reduction 0.81m	2715 ±

UtahStateUniversity

mean ± SD) Female (mean ± SD) 2982 ± 441 1047 1395 3582 ± 472 1290 4538 ± 788 ± 26684 41514 ± 9326 50994 ± 6098 ± 30090 70535 ± 18113 ± 27487 0.9 ± 0.17 .50 1.1 ± 0.26 .52 0.96 ± 0.18 .38 0.34 ± 0.07 0.15 0.38 ± 0.10 0.11 0.35 ± 0.05 0.10 0.15 0.37 ± 0.07 0.14 0.37 ± 0.07 0.11 0.38 ± 0.08 862 1012 ± 509 1135 1593 ± 319 2077 ± 1278 1289

Figure 1: Tri-Axial Force Platform

OTHER RESOURCES USED:

- MatLab (The Mathworks, Natick, MA)
- R Studio (open source, version 1.1.456)

AUC	P-Value
0.6162	0.93
0.6566	0.69
0.6263	0.86
0.5253	1
0.6869	0.5
0.6566	0.68
0.6869	0.5
0.5152	1
0.6768	0.56
0.8081	0.08
0.7071	0.4
0.9798	<0.001
0.6818	0.53
0.7626	0.19
0.7374	0.27
0.6364	0.8
0.6869	0.5
0.6061	0.5
	0.6162 0.6566 0.6263 0.5253 0.6869 0.6566 0.6869 0.5152 0.6768 0.6768 0.8081 0.8081 0.7071 0.9798 0.9798 0.07374 0.6818 0.7374

References

- Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic test assessment. Journal of Thoracic Oncology, 5(9), 1315-1316.
- Beutler, A. I., Sarah, J., Marshall, S. W., Padua, D. A., & Boden, B. P. (2009). Muscle strength and qualitative jumplanding differences in male and female military cadets: The jump-ACL study. Journal of sports science & medicine, 8(4), 663.

Alex Woster Utah State University Biology Department alex.woster@aggimail.usu.edu

