Utah State University DigitalCommons@USU

Fall Student Research Symposium 2021

Fall Student Research Symposium

12-9-2021

Creating Transparent and Accessible Methods For Approximating the Composite Strength of Concrete Sandwich Wall Panels

Ruth Taylor Utah State University, ruth.eloisa.456@gmail.com

Follow this and additional works at: https://digitalcommons.usu.edu/fsrs2021

Part of the Statistics and Probability Commons

Recommended Citation

Taylor, Ruth, "Creating Transparent and Accessible Methods For Approximating the Composite Strength of Concrete Sandwich Wall Panels" (2021). *Fall Student Research Symposium 2021*. 42. https://digitalcommons.usu.edu/fsrs2021/42

This Book is brought to you for free and open access by the Fall Student Research Symposium at DigitalCommons@USU. It has been accepted for inclusion in Fall Student Research Symposium 2021 by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Climate change: The massive CO2 emitter you may not know about

By Lucy Rodgers BBC News

https://www.bbc.com/news/science-environment-46455844

"If the cement industry were a country, it would be the third largest carbon dioxide emitter in the world" [3]

[&]quot;General configuration of an ICWP [...]" [5]

Partially Composite Sandwich Wall Panels (SWPs)

- Original design of *non-composite* insulated concrete wall panels (ICWPs) dated back to 1906
- *Partially composite* ICWPs/SWPs rapidly overtaking design trends
- Stronger and more environmentally efficient
- Construction has outpaced regulation and guidelines on structure

"Stress distributions through panel depth for noncomposite, fully composite, and partially composite panels" [5]

Percent Composite Action

- main method used to design partially composite SWPs
- Relative measure of the strength of the wall on the scale from non-composite (0%) to fully composite (100%)

The need for *approximations* for practicing engineers

- Theoretical formulas for calculating percent composite
- Proprietary software
- Rely on values from manufacturers

Creating Transparent and Accessible Methods for Approximating the Composite Strength of Concrete Sandwich Wall Panels

Variable Candidates

Two ranges of variables

- FULL range
- "COMMON" range

Wall dimension variables

- Span/height (L)
- Wythe 1 thickness (WT1)
- Wythe 2 thickness (WT2)
- Insulation layer thickness (Ins)
- Overall wall width (Width)

Wall characteristic variables

- Elasticity (Ec)
- Tensile strength (fr)
- Connector stiffness (K)

Variable	"Common" Range	Possible Range	Increment
L	240-540 (in)	120-1020 (in)	0.25 in
WT1	3-4 (in)	1-5 (in)	0.25 in
WT2	3-4 (in)	1-5 (in)	0.25 in
Ins	3-4 (in)	1-5 (in)	0.25 in
Width	96-144 (in)	24-192 (in)	1 in
Ec	4,000-5,100 (ksi, ksi=1000*psi)	3,000-10,000 (ksi, ksi=1000*psi)	Any real #
fr	0.53-0.70 (ksi, ksi=1000*psi)	0.30-2.0 (ksi, ksi=1000*psi)	Any real #
к	0-200 (kip/in)	0-3600 (kip/in)	Any real #

Translating code and data simulation

MATLAB code applying ISBT* method on data set Functions in R for any single wall configuration or data set:

Examples: connector_locations() ISBT()

 Multiple data sets ' per range ~1,000,000
observations each

ISBT applied to data

Example: ISBT_randomdata() Data simulation functions:

Example: randomdata()

7

*Iterative Sandwich Beam Theory Method

Data exploration and variable selection

- Penalized regression
- Random forest variable importance plots
- Regression trees
- Variable selection process in GAM package

• Two universally important variables: K (average sheer stiffness) and L (span)

Percent Cracking Composite (CrkCmp)

9

Percent Deflection Composite (DefCmp)

Models for "common" range

• Linear Regression

 $(Def.\%.Cmp)^{1.5} = 2.631294(K) + 1.041109(L - 240)$

 $(Crk.\%.Cmp)^2 = 32.430691(K) + 12.136964(L - 240)$

• Quantile Regression

 $(Def.\%.Cmp)^{1.5} = 2.1493264(K) + 0.8137442(L - 240)$

 $(Crk.\%.Cmp)^2 = 30.58032(K) + 10.99243(L - 240)$

Coefficient Tree: Cracking Composite

Coefficient Tree: Deflection Composite

12

Error Rates

- Overprediction
- Coefficient Tree most accurate

Common Range Data Set						
% Composite	Regression	MSPR	MRPR	Pred/Obs		
	OLS	58.89617	Median: 0.0822,	Median: 1.0238,		
			Mean: 0.452	Mean: 1.397		
	Quantile, $\tau=0.3$	61.81704	Median: 0.0971,	Median: 0.970,		
Deflection			Mean: 0.485	Mean: 1.331		
Composite	Coefficient Tree	25.90623	Median: 0.0772,	Median: 1.0089,		
			Mean: 0.104	Mean: 1.0243		
	OLS	83.34617	Median: 0.0643,	Median: 0.988,		
			Mean: 0.655	Mean: 1.578		
	Quantile, $\tau=0.3$	86.977	Median: 0.0798,	Median: 0.953,		
Cracking			Mean: 0.633	Mean: 1.514		
Composite	Coefficient Tree	41.80993	Median: 0.0663,	Median: 1.0058,		
			Mean: 0.171	Mean: 1.100		

Predicted/Observed Ratio Plots

Def.%.Cmp

Input:

(You may enter decimals for any of the following variables. Example values are shown.) K (the average elastic stiffness of the connectors in kip/in) min=0 kip/in, max=3600 kip/in:

190.005

L (the height/span of the wall panel in inches) min=120 in, max=1020 in:

340.75

120

3.5

3.5

Width (the total width of the wall panel in inches) min=24 in, max=192 in:

Wythe 1 (the thickness of wythe 1 in inches) min=1 in, max=5 in:

Wythe 2 (the thickness of wythe 1 in inches) min=1 in, max=5 in:

Insulation (the thickness of the insulator width in inches) min=1 in, max=5 in:

3.25

Ec (the modulus of elasticity of the concrete in ksi=1000*psi) min=3000 ksi, max=10,000 ksi:

4030.508653

fr (the modulus of rapture of the concrete in ksi=1000*psi) min=0.3 ksi, max=2.0 ksi:

0.530330086

Maximum iterations (the max number of iterations to be used in calculations) default=500:

Tolerance (threshold for the difference between Aslip[2] and Aslipn[2] that determines when to end iterations) default=1 E-9:

0.000000001

500

3

Decimal places (how many decimal places you would like the percent composite values to include) default=3:

Variable Ranges:

ISBT Method:

K: 0-3600 kip/in L: 120-1020 inches

Width: 24-192 inches

WT1: 1-5 inches

WT2: 1-5 inches

Insulation: 1-5 inches

Ec: 3,000-10,000 ksi (1000*psi)

fr: 0.3-2.0 ksi (1000*psi)

Linear, Quantile Regression and Tree Regression:

K: 0-200 kip/in L: 240-540 inches

Width: 96-144 inches

WT1: 3-5 inches

WT2: 3-5 inches

Insulation: 3-4 inches

Ec: 4,000-5,100 ksi (1000*psi) fr: 0.53-0.7 ksi (1000*psi)

Wythe thickness ratio (Wythe 1/Wythe 2):

Deflection Composite Action (%)

Iterative Sandwich Beam Theory (ISBT) Method

69.758

1

Linear Regression Model

71.521

Quantile Regression Model

62.184

Regression Tree

73.258

Cracking Composite Action (%)

Iterative Sandwich Beam Theory (ISBT) Method

88.275

Linear Regression Model

85.935

Quantile Regression Model

83.174

Regression Tree

86.082

Continuing work

Piecewise regression for multiple variables

Asymptotic regression for multiple variables

Updating and releasing R package and app

Questions?

References

- [1] A. M. Omer, "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, vol. 12, no. 9, pp. 2265–2300, 2008.
- [2] L. Rodgers, "Climate change: The massive CO2 emitter you may not know about." https: //www.bbc.com/news/science-environment-46455844, December 2018. Accessed: 2-19-2021.
- [3] J. Watts, "Concrete: The most destructive material on earth." https://www.theguardian.com/cities/2019/feb/25/ concrete-the-most-destructive-material-on-earth, February 2019. Accessed: 2-19-2021.
- [4] F. T. Collins, "Precast concrete sandwich panels for tilt-up construction," in Journal Proceedings, vol. 51, pp. 149–164, 1954.
- [5] M. Maguire and F. Pozo-Lora, "Partially composite concrete sandwich wall panels," Concrete International, October 2020.
- [6] M. J. Gombeda, P. Trasborg, C. J. Naito, and S. E. Quiel, "Simplified model for partially-composite precast concrete insulated wall panels subjected to lateral loading,"

Engineering Structures, vol. 138, pp. 367–380, 2017.

[7] S. Al-Rubaye, T. Sorensen, J. Olsen, and M. Maguire, "Evaluating elastic behavior for partially composite precast concrete sandwich wall panels.," PCI Journal, 2018

References

[8] Eriksson Software. https://www.erikssonsoftware.com/, 2021. Accessed: 5-1-2021.

[9] Losch Software. http://www.loscheng.com/lecwall.html, 2021. Accessed: 5-1-2021.

- [10] R. O'Hegarty and O. Kinnane, "Review of precast concrete sandwich panels and their innovations," Construction and Building Materials, vol. 233, p. 117145, 2020.
- [11] R. O'Hegarty, A. Reilly, R. West, and O. Kinnane, "Thermal investigation of thin precast concrete sandwich panels," Journal of Building Engineering, vol. 27, p. 100937, 2020.
- [12] S. Al-Rubaye, "Experimental and simplified analytical investigation of full-scale sandwich

panel walls," Master's thesis, Utah State University, 2017. Accessed: 5-1-2021.

- [13] S. Al-Rubaye, T. Sorensen, R. J. Thomas, and M. Maguire, "Generalized beam-spring model for predicting elastic behavior of partially composite concrete sandwich wall panels," Engineering Structures, vol. 198, p. 109533, 2019.
- [14] A. Holmberg and E. Plem, Behaviour of load-bearing sandwich-type structures. Byggforskningen, 1965.
- [15] A. S. Nowak and K. R. Collins, Reliability of structures. CRC Press, 2012.
- [16] S. Al-Rubaye, T. Sorensen, and M. Maguire, "Iterative and simplified sandwich beam theory for partially-composite concrete sandwich wall panels," Journal of Structural Engineering, 2021. Forthcoming.

References

[17] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, "Regularization paths for cox's proportional hazards model via coordinate descent," Journal of Statistical Software,

vol. 39, no. 5, pp. 1–13, 2011.

[18] R. N. Rodriguez and Y. Yao, "Five things you should know about quantile regression,"

in Proceedings of the SAS global forum 2017 conference, Orlando, pp. 2–5, 2017.

- [19] R. Koenker, "quantreg: Quantile regression." https://CRAN.R-project.org/package= quantreg, 2021. R package version 5.85.
- [20] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression

trees. CRC press, 1984.

[21] T. Therneau and B. Atkinson, "rpart: Recursive partitioning and regression trees." https://CRAN.R-project.org/package=rpart, 2019. R package version 4.1-15.