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Abstract

In this paper we study a design problem to tune the robustness of a membrane by changing its vulnerabil-
ity. Consider an energy functional corresponding to solutions of Poisson’s equation with Robin boundary
conditions. The aim is to find functions in a rearrangement class such that their energies would be a
given specific value. We prove that this design problem has a solution and also we propose a way to
find it. Furthermore, we derive some topological and geometrical properties of the configuration of the
vulnerability. In addition, some explicit solutions are found analytically when the domain is an N -ball.
For general domain we develop a numerical algorithm based on rearrangements to find the solution.
The algorithm evolves both minimization and maximization processes over two different rearrangement
classes. Our algorithm works efficiently for various domains and the numerical results obtained coincide
with our analytical findings.

Keywords: Laplacian Operator, Robin Boundary Condition, Rearrangement, Design Problem
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1. Introduction

Rearrangement design problems arise naturally in many applications such as fluid mechanics and
mechanical vibrations, just to name a few [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. In
many of these problems we consider an energy functional depending on solutions of a partial differential
equation where its design coefficients are in a rearrangement class of functions. For example, in the
design of mechanical vibration that explore the possibility to control the total displacement we have
an energy functional which depends on the solution of a Poisson’s equation where the right-hand side
function is in a rearrangement class. Moreover, to find a stationary and stable flow in the planar motion
under an irrotational body force of an incompressible, inviscid fluid contained in an infinite cylinder of
uniform cross-section we should find the extremizer of an energy functional corresponding the solutions
of a Poisson’s equation [1, 2, 3, 16].

In this article, we study an intermediate problem arising in the design of mechanical vibration that
explore the possibility to control the total displacement. The governing elliptic partial differential equation
(PDE) is {

−∆u (x) = f (x) in Ω,
∂u(x)
∂n + βu (x) = 0 on ∂Ω,

(1.1)

where ∆ is the Laplace operator acting on the function u (x) defined on a bounded smooth domain
Ω ⊂ RN , f ∈ L2(Ω), β is a given positive constant, and ∂

∂n is the outward normal derivative along the
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boundary ∂Ω. As the solution u depends on f , we use the notation uf to emphasize this dependence.
For a given f ∈ L2(Ω), u = uf ∈ H1(Ω) is a (weak) solution of (1.1) if and only if we have∫

Ω

∇uf · ∇φdx + β

∫
∂Ω

ufφdS =

∫
Ω

fφdx, ∀φ ∈ H1(Ω). (1.2)

It is noteworthy that the solution uf of (1.1) corresponding to f is the unique maximizer of the following
problem

sup
u∈H1(Ω)

G(f, u, β), (1.3)

where

G(f, u, β) = 2

∫
Ω

fudx−
∫

Ω

|∇u|2dx− β
∫
∂Ω

u2dS,

and the maximum value is J(f) =
∫

Ω
fufdx.

In mechanical vibration, (1.1) models the steady state of a vibrating membrane with a constant force,
e.g. the gravity force of earth, applied to it. Moreover, let the magnitude of the tension be a constant.
Accordingly, the function f(x) in (1.1) can be considered as an external force such that the quantity∫

Ω

f(x)dx,

measures the mass of the membrane. The Robin condition would be considered to imagine that the
membrane at its boundary points are free to move along a track but are attached to a coiled spring or
rubber band obeying Hooke’s law which tends to pull it back to the equilibrium position. In that case
the membrane would exchange some of its energy with the coiled spring [19].

The objective function

J(f) =

∫
Ω

fufdx, (1.4)

which is called the total displacement, measures the robustness of the membrane from the physical point of
view. The following shape optimization problem has been considered by several authors [1, 2, 3, 16, 20, 21]:
Assume that we want to build a membrane with a prescribed total mass γ > 0 and consists of two given
materials with densities M and m (M > m > 0). The aim is to distribute these materials in such a
way that the total displacement of the resulting membrane is optimal or desired. This means that the
function f(x) should be considered in the following admissible set

Am,M,γ = {f | f(x) = MχD +mχDc where D ⊂ Ω, |D| = A < |Ω|},

where A is a prescribed constant. The set Am,M,γ which is called a rearrangement class of function is a
subset of L2(Ω) and its weak closure is

Bm,M,γ = {f | m ≤ f(x) ≤M,

∫
Ω

f(x)dx = γ},

where γ := MA + m(|Ω| − A), see [1, 2, 22]. The difference between functions in two sets Am,M,γ and
Bm,M,γ is whether f takes values between m and M .

The following shape optimization problems have been studied

J̌A := min{J(f) : f ∈ Am,M,γ}. (1.5)

ĴA := max{J(f) : f ∈ Am,M,γ}, (1.6)

previously in [20, 21] and the optimal forces are found from all possible external forces in Am,M,γ which
minimize or maximize the total displacement, correspondingly. The distribution of materials in the
membrane which leads to external forces with minimum and maximum vulnerability are obtained. For
the minimization problem Liu and Emamizadeh have established the existence and uniqueness of the
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solution and showed that the solution is a non-decreasing function when the domain is an N -ball [20].
Kao and Mohammadi studied both minimization and maximization problems and obtained analytical
solutions for N -balls. In addition, the properties of the extremizers on general domains including topology
and geometry of the optimizers have been derived. Moreover, efficient algorithms based on finite element
methods and rearrangement techniques are proposed to determine the extremizers in just a few iterations
on general domains [21].

In this paper we consider the following design problem

Jc := {J(f) = c : f ∈ Am,M,γ}, (1.7)

where c ∈ (J̌A, ĴA). Instead of searching for external forces with minimum and maximum vulnerability,
we address the question whether it is possible to tune the robustness of the membrane by changing its
vulnerability in c ∈ (J̌A, ĴA). It is noteworthy that an intermediate value problem has been considered
in [20] for a linear energy functional.

In this paper, we first prove an existence result for (1.7). After that we provide a formula to derive
a solution of (1.7) by dividing it into two separate rearrangement optimization problems. This formula
allows us to determine an analytical solution to (1.7) when the domain is an N -ball. Moreover, we prove
that the solution inherits some kind of Steiner symmetry while our domain is Steiner symmetric with
respect to hyperplanes. For general domains, a numerical algorithm based on rearrangement techniques
and the formula is developed to determine the solution of (1.7). The algorithm is capable to obtain
the solution efficiently for domains with different geometries. The numerical results coincide with our
analytical findings.

The paper is organized in the following way. In section 2, we report the analytical results including
existence of a solution (1.7) and some geometrical and topological properties of our solutions. Moreover,
the explicit solutions of N -balls are provided. Section 3 is devoted to our numerical method and we
illustrate several numerical examples.

2. Analytical Results

Considering f ∈ Bm,M,γ , we have uf (x) > 0 and uf ∈ H2
loc(Ω) ∩ C1,θ where θ ∈ (0, 1). Moreover,

function uf attains its minimum only on ∂Ω and its maximum at an interior point of Ω.
As we will see later, Problem (1.7) does not have a unique solution in general. Here, we address the

question of existence for Problem (1.7). Without loss of generality in this section we can assume that
m = 1 and set ε = (M − 1). Then, a function f in Am,M,γ is of the form f = 1 + εχD such that |D| = A.

Theorem 1. Problem (1.7) has a solution fc ∈ Am,M,γ .

Proof. In view of Theorem 5.1 in [20] and Theorem 3 in [21], we know that Problems (1.5) and (1.6)

have solutions f̌ and f̂ in Am,M,γ respectively. It is known that the set Am,M,γ is path connected using
Lemma 2.11 in [2]. Hence, there is a continuous function η ∈ C([0, 1], Am,M,γ) such that

η(0) = f̌ , η(1) = f̂ .

Define function ξ : [0, 1]→ [J̌A, ĴA] where

ξ(t) = J(η(t)) =

∫
Ω

η(t)uη(t)dx.

Recall that functional J(·) is continuous, see [20, Lemma 5.2], and so ξ is a continuous function. Employing
the intermediate value theorem one can find t̄ ∈ [0, 1] such that ξ(t̄) = c and then fc = η(t̄) is a solution
for (1.7).

In what follows, we determine a solution of (1.7) by using solutions of two rearrangement optimization
problems. To do so, we need the following lemma.
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Lemma 2.1. Let D1 be a measurable subset of Ω. Then maximization problem

max
D⊂Dc1, |D|=t

J(1 + εχD1
+ εχD),

has a solution D2. Moreover, this solution is uniquely defined by

D2 = {x ∈ Dc
1 : u1+εχD1

+εχD2
(x) ≥ θ}, with θ = sup{s : |{x ∈ Dc

1 : u1+εχD1
+εχD2

(x) ≥ s}| ≥ t}.
(2.1)

Proof. Let us recall here that ∫
Ω

fugdx =

∫
Ω

gufdx, (2.2)

for all f, g ∈ L2(Ω), [20]. Setting f = 1 + εχD1
, this symmetry property and the fact that D is a subset

of Dc
1 yields

J(f + εχD) =

∫
Ω

fufdx + ε

∫
Ω

fuχDdx + ε

∫
Dc1

χDufdx + ε2
∫
Dc1

χDuχDdx

=

∫
Ω

fufdx + 2ε

∫
Dc1

χDufdx + ε2
∫
Dc1

χDuχDdx. (2.3)

Hence, J(f + εχD) can be considered as a functional where χD belongs to the rearrangement set A0,1,t ⊂
L2(Dc

1) and our maximization problem is an optimization of this functional over A0,1,t. In order to prove
the existence of a maximizer let consider the maximization problem over the weak closure set B0,1,t. It is
well-known that B0,1,t ⊂ L2(Dc

1) is a convex weakly sequentially compact set with A0,1,t as its extreme
points [1, 2]. Due to the weak continuity of the functional J(f + εχD), see [20, Lemma 5.2], we deduce
that there is a maximum for the functional over the weakly compact set B0,1,t. Moreover, the maximum
have to be in A0,1,t in view of the convexity of the functional, see [20, Lemma 5.2]. So far, we have shown
that the maximization problem has a solution D2.

In order to establish the next assertion in the theorem, we claim that∫
Dc1

χD2
uf+εχD2

dx ≥
∫
Dc1

χD uf+εχD2
dx, for every D ⊂ Dc

1, with |D| = t. (2.4)

To prove the claim, we argue by contradiction. Assume there is a set D ⊂ Dc
1 with |D| = t such that∫

Dc1

χD2 uf+εχD2
dx <

∫
Dc1

χD uf+εχD2
dx. (2.5)

This inequality reveals that∫
Ω

(f + εχD2
)uf+εχD2

dx <

∫
Ω

(f + εχD)uf+εχD2
dx, (2.6)

in view of (2.3). Then, using (2.6) we have∫
Ω

(f + εχD2)uf+εχD2
dx = G(f + εχD2 , uf+εχD2

, β) < G(f + εχD, uf+εχD2
, β) ≤ sup

u∈H1(Ω)

G(f + εχD, u, β)

=

∫
Ω

(f + εχD)uf+εχDdx,

which contradicts the maximality of f + εχD2
and the claim is proven.

From (2.4) we deduce that
∫
Dc1
χD2uf+εχD2

dx is a maximizer for the functional L(χD) :=
∫
Dc1
χDuf+εχD2

dx

over the rearrangement class A0,1,t ⊂ L2(Dc
1). On the other hand, due to Lemma 2.1 in [21], we infer

that uf+εχD2
satisfies −∆u = f + εχD2

almost everywhere in Ω and so employing Lemma 7.7 in [23] we
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observe that its level sets have measure zero. Now, Lemma 2.9 in [2] yields that there is a non-decreasing
function η : R → R such that η(uf+εχD2

) is in the rearrangement class A0,1,t. Moreover, Lemma 2.4 in

[2] reveals that η(uf+εχD2
) is the unique maximizer of the functional L(χD) =

∫
Dc1
χD uf+εχD2

dx over

A0,1,t ⊂ L2(Dc
1) and so χD2

= η(uf+εχD2
). This yields the second assertion of the theorem and (2.1).

Theorem 2. There is a solution f = 1 + εχD1
+ εχD2

for (1.7) such that

1 + εχD1 = arg min
D⊂Ω, |D|=A−t

J(1 + εχD), 1 + εχD1 + εχD2 = arg max
D⊂Dc1, |D|=t

J(1 + εχD1
+ εχD), (2.7)

where t is a number in (0, A).

Proof. Recall that the minimization problem in (2.7) is a rearrangement optimization problem on rear-
rangement classes A1,1+ε,γt with γt = |Ω| + ε(A − t). Then applying Theorem 5.1 in [20], we observe
that minimization problem in (2.7) is uniquely solvable. Moreover, using Lemma 2.1, we know that the
maximization problem in (2.7) has a solution. Let us define ξ(t) = J(1 + εχD1

+ εχD2
) for t ∈ (0, A) then

it is inferred that ξ(t) is well-defined. Moreover, it is easy to check that

ξ(0) = J̌A ξ(A) = ĴA.

In order to employ the intermediate value theorem, we show that ξ is continuous.
Consider {tn}∞1 in (0, A) such that tn → t̄ as n→∞. We establish that ξ(tn)→ ξ(t̄) when n→∞.

At first, we show that the solution of the minimization problem in (2.7) corresponding to tn converge
to the solution corresponding to t̄. It is noteworthy to mention here that a similar question has been
investigated in [24].

For each tn, problems in (2.7) have solutions 1+εχDn1 and 1+εχDn1 +εχDn2 respectively. Furthermore,
1 + εχD̄1

and 1 + εχD̄1
+ εχD̄2

are the solutions of the problems in (2.7) corresponding to t̄. There are
sub-sequences (still denoted by {χDn1 }

∞
1 , {χDn2 }

∞
1 ) such that

χDn1 ⇀ η1, χDn2 ⇀ η2, in L2(Ω), (2.8)

as n→∞. It is easy to check that 1 + εη1 belongs to B1,1+ε,γt̄ . Consider an arbitrary function 1 + εχD in
the rearrangement class A1,1+ε,γt̄ . We claim that there is a sequence of functions {χEn}∞1 where En ⊂ Ω
with |En| = A− tn and χEn → χD in L2(Ω). The sets {En}∞1 can be constructed in the following way.
If A− tn > A− t̄, then set En = D ∪ Fn where Fn ⊂ Dc with |Fn| = t̄− tn. If A− tn <= A− t̄, then we
set En = D \ Fn where Fn ⊂ D with |Fn| = tn − t̄. Now in view of weak continuity of J and (2.7), we
observe that

J(1 + εχD) = lim
n→∞

J(1 + εχEn) ≥ lim
n→∞

J(1 + εχDn1 ) = J(1 + εη1). (2.9)

Let us recall here that due to the weak continuity and strict convexity of the functional J , see [20, Lemma
5.2] , the minimizer in (2.7) is uniquely solvable even considering the minimization problem over the weak
closure of the rearrangement class, B1,1+ε,γt . This fact and (2.9) reveal that 1+ εη1 is the unique solution
of the minimization problem in (2.7) when t = t̄ and so we have η1 = χD̄1

.
So far, we have shown that the solution of the minimization problems in (2.7) corresponding to tn

converge to 1+εχD̄1
, the solution of the minimization corresponding to t̄. Since ‖χDn1 ‖L2(Ω) → ‖χD̄1

‖L2(Ω)

and in view of (2.8), we have
χDn1 → χD̄1

, in L2(Ω), (2.10)

invoking a special case of the Radon-Riesz theorem. This yields that

χDn1 (x)→ χD̄1
(x), a.e. (2.11)

Next, we show that the support of function η2 is a subset of D̄c
1. Consider an entire point x0 ∈ D̄1.

Then applying (2.11), we observe that x0 ∈ Dn
1 for large n and so χDn2 (x0) = 0 for such n since

Dn
2 ⊂ (Dn

1 )c. Hence, we obtain
χDn2 (x)χD̄1

(x)→ 0, a.e. (2.12)
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Then we see that ∫
Ω

η2χD̄1
dx = lim

n→∞

∫
Ω

χDn2 χD̄1
dx = 0, (2.13)

employing (2.8), (2.12). Therefore, we observe that the support of η2 is a subset of D̄c
1.

Consider an arbitrary set D ⊂ D̄c
1 with |D| = t̄. One can find a sequence of sets {Dn}∞1 where

Dn ⊂ (Dn
1 )c with |Dn| = tn and also χDn → χD in L2(Ω). The sequence of sets {Dn}∞1 is constructed

in the following way. For each n, set En = (Dn
1 )c ∩D. Remember that χ(Dn1 )c → χ(D̄1)c a.e. applying

(2.11) and so χEn → χD in L2(Ω). But, the problem is that may be |En| = θn 6= tn. If θn > tn then we
consider a set Fn ⊂ En with |Fn| = θn − tn and Dn = En \ Fn. If θn < tn then set Dn = En ∪ Fn with
|Fn| = tn− θn such that Fn ⊂ (Dn

1 )c and |Fn ∩D| = 0. Now it is easy to check that χDn → χD in L2(Ω).
Using this, the weak continuity of J , (2.7) and (2.10), we have

J(1 + εχD̄1
+ εχD) = lim

n→∞
J(1 + εχDn1 + εχDn) ≤ lim

n→∞
J(1 + εχDn1 + εχDn2 ) = J(1 + εχD̄1

+ εη2). (2.14)

Let us recall here that the maximizer in the maximization problem of (2.7) is also a solution when
considering the problem over the weak closure of the rearrangement class due to the weak continuity
of J . We have shown that the support of η2 is a subset of D̄c

1 and so it belongs to B0,1,t̄ ⊂ L2(D̄c
1).

Expression (2.14) reveals that indeed η2 is a solution of the maximization problem in (2.7) considering it
over the weak closure of the corresponding rearrangement class and so we have

J(1 + εχD̄1
+ εη2) = J(1 + εχD̄1

+ εχD̄2
).

In summary, we have shown

lim
n→∞

ξ(tn) = lim
n→∞

J(1 + εχDn1 + εχDn2 ) = J(1 + εχD̄1
+ εη2) = J(1 + εχD̄1

+ εχD̄2
) = ξ(t̄).

Consequently, we obtain that ξ : [0, A] → [J̌A, ĴA] is a continuous function and the intermediate value
theorem yields that (1.7) has a solution in the form asserted in this theorem.

Remark 2.2. In view of Theorem 1 in [21], it is noteworthy that the minimizer in (2.7) has the following
form

D1 = {x ∈ Ω : u1+εχD1
(x) ≤ τ}, τ = inf{s : |{x ∈ Ω : u1+εχD1

(x) ≤ s}| ≥ A− t}. (2.15)

Also, there is a connected component D0 of the interior of D1 hits the boundary, i.e., D̄0 ∩ ∂Ω 6= ∅.
Moreover, if A − t is large enough then D1 contains a tubular neighborhood of the boundary ∂Ω and
∂Ω ⊂ ∂D1. In particular, if Ω ⊂ R2 is simply connected, then D1 is connected when A − t is large
enough.

The next two theorems determine a geometrical property of a solution of (1.7).

Theorem 3. Let f = 1 + εχD1
+ εχD2

be a solution of (1.7) derived from Theorem 2 and u1+εχD1
+εχD2

is not constant on ∂Ω. If t is large enough, then both D1 and D2 touch the boundary ∂Ω.

Proof. In view of Remark 2.2 we know that D1 touches the boundary. When t is large enough then due
to (2.1) we infer that D2 touches the boundary using a method similar to that for proof of Theorem
4-(iv) in [21].

Theorem 4. Let f = 1 + εχD1
+ εχD2

be a solution of (1.7) obtained in Theorem 2 when β = ∞, the
Dirichlet boundary conditions. If Ω is a simply connected subset of R2, then D1 is a connected tubular
neighborhood of the boundary ∂Ω.

Proof. In view of Remark 2.2 and the Dirichlet boundary conditions we see that ∂Ω ⊂ ∂D1. This shows
that D1 contains a tubular neighborhood of the boundary ∂Ω. In order to establish that D1 is connected
we argue by contradiction. Assume there is an open subset D0 of D1 = {x ∈ Ω : u1+εχD1

(x) ≤ τ} such

6



that ∂D0 ⊂ {x ∈ Ω : u1+εχD1
(x) ≥ τ}. Then we see ∂D0 ⊂ {x ∈ Ω : u1+εχD1

(x) = τ}. Consequently,
u1+εχD1

has a minimum in D0 and also{
−∆u1+εχD1

(x) = 1 + ε in D0,
u1+εχD1

(x) = τ on ∂D0,
(2.16)

which contradicts the maximum principle [25].

Next theorem reveals a symmetry property for solutions of problems in (2.7).

Theorem 5. Let Ω be a Steiner symmetric domain with respect to a hyperplane T and β = ∞, the
Dirichlet boundary conditions. Assume 1 + εχD1

is the unique solution of the minimization problem in
(2.7). Then, Dc

1 is a Steiner symmetric domain with respect to hyperplane T . Moreover, the maximization
problem in (2.7) has a solution 1 + εχD1

+ εχD2
where D2 is Steiner symmetric with respect to T .

Proof. Let w = u1+εχD1
. Then it is known that w is the unique minimizer of the following functional

over H1
0 (Ω)

I(u) =
1

2

∫
Ω

|∇u|2dx +

∫
Ω

ζ(u)dx, (2.17)

where ζ : R→ R is a convex and so continuous function [20]. Assume that w∗ is a Steiner symmetrization
of function w with respect to the hyperplane T . It is known that w∗ ∈ H1

0 (Ω), and also∫
Ω

|∇w|2dx ≥
∫

Ω

|∇w∗|2dx,
∫

Ω

ζ(w)dx =

∫
Ω

ζ(w∗)dx, (2.18)

see [2, 26, 27]. Consequently, we observe that

I(w) =
1

2

∫
Ω

|∇w|2dx +

∫
Ω

ζ(w)dx ≥ 1

2

∫
Ω

|∇w∗|2dx +

∫
Ω

ζ(w∗)dx

= I(w∗),

using (2.18). This shows that w = w∗ since w is the unique minimizer of I(u). Employing (2.15), we
know that there is τ > 0 such that Dc

1 = {x ∈ Ω : w(x) > τ}. This yields that Dc
1 is Steiner symmetric

since w is Steiner symmetric with respect to T .
Now we turn to the second assertion of the theorem. Using (2.3), we see that

J(f + εχD2
) =

∫
Ω

fufdx + 2ε

∫
Dc1

χD2
ufdx + ε2

∫
Dc1

χD2
uχD2

dx, (2.19)

where indeed f = 1 + εχD1 and uf is w. Then, uf is Steiner symmetric. In the second integral of (2.19),
invoking (2.2) and Hardy-Littlewood inequality we have∫

Dc1

χD2ufdx =

∫
Ω

χD2ufdx ≤
∫

Ω

χD∗2ufdx =

∫
Dc1

χD∗2ufdx, (2.20)

where D∗2 is the Steiner symmetrization of the set D2. In the last equality we have used the fact that
D∗2 ⊂ Dc

1 since Dc
1 is Steiner symmetric with respect to T .

For the third integral of (2.19), let us recall that we have{
−∆uχD2

= χD2
in Ω,

uχD2
= 0 on ∂Ω,

and by using a method similar to that in the proof of Theorem 5 in [21] one can say∫
Dc1

χD2
uχD2

dx =

∫
Ω

χD2
uχD2

dx ≤
∫

Ω

χD∗2u
∗
2dx, (2.21)
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where u∗2 is the solution of (1.1) corresponding to χD∗2 . Applying (2.20) and (2.21), we deduce that

J(f + εχD2
) ≤

∫
Ω

fufdx + 2ε

∫
Dc1

χD∗2ufdx +

∫
Ω

χD∗2u
∗
2dx = J(f + εχD∗2 ),

and hence D∗2 is a solution of the maximization problem in (2.7).

Due to the Steiner symmetry property of Dc
1 and its subset D2 we obtain the following theorem.

Theorem 6. Let Ω ⊂ RN be Steiner symmetric with respect to a family of N mutually perpendicular
hyperplanes {Ti}N1 , β =∞ and f = 1 + εχD1 + εχD2 be a solution of (1.7) derived by (2.7) such that Dc

1

and D2 are Steiner symmetric with respect to those hyperplanes. Then,
i) both functions u1+εχD1

(x) and u1+εχD1
+χD2

(x) have a unique maximum point which is the intersection

point of {Ti}N1 .
ii) The sets Dc

1 and D2 are star-shaped domains.

Proof. The proof of (i)-(ii) can be done using a method similar to that for the proof of Theorem 6 in
[21].

One can determine a solution for (1.7) when Ω is an N -ball. Define B(0, a) as a ball in RN centered
at the origin with radius a. Set Dt

2 = B(0, r2) such that |Dt
2| = t and Dt

1 = B(0, a) \ B(0, r1) where the
radius r1 is chosen such that |Dt

1| = A− t. It is easy to check that

r2 = (
t

σN
)

1
N , r1 = (

σNa
N −A+ t

σN
)

1
N , (2.22)

where σN is the volume of unit ball B(0, 1).

Theorem 7. Let Ω = B(0, a) and β =∞. Then there is t̄ in (0, A) such that fc = 1 + εχDt̄1 + εχDt̄2 is a

solution for (1.7).

Proof. We know that Ω is symmetric with respect to all hyper-planes T which pass through the origin.
Employing Theorem 5, Dt̄

1 which is a ring around the boundary is the unique solution of the minimization
problem in (2.7). Moreover, Dt̄

2 is a solution of the maximization problem in (2.7).

Remark 2.3. Indeed, the solution provided by Theorem 2 is one of solutions for (1.7). Although the
minimization problem in (2.7) has a unique solution, the maximization problem may have different solu-
tions. Even for the case that Ω = B(0, a), we do not have a proof that the maximization problem in (2.7)
has a unique solution. However, it has been established that a ball is the only radial maximizer for the
maximization problem in (2.7) [21].

2.1. Explicit Solutions for (1.7)

The explicit solutions for design problem like (1.7) are rare due the fact that we do not have so much
information on the topology or geometry of the solution. This section is devoted for explicit solution of
(1.7) when the domain is a ball.

First we consider the one-dimensional case Ω = (0, 1). In this case we can find a solution for (1.7) for
general β.

Theorem 8. Let Ω = (0, 1). There is t ∈ (0, A) such that

f = 1 + εχ[0,A−t2 ] + εχ[ 1−t
2 , 1+t

2 ] + εχ[1−A−t2 ,1],

is a solution of (1.7).
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Proof. Recall that there is t ∈ (0, A) where (1.7) has a solution in the form (2.7). For one-dimensional
domain Ω = (0, 1), the solution of the minimization problem in (2.7) is available explicitly [21]. Indeed in
the minimization problem we have D1 = [0, A−t2 ] ∪ [1− A−t

2 , 1] and u1+εχD1
is symmetric around x = 1

2

and increasing in [0, 1
2 ].

Now setting f = 1 + εχD1 , recall that

J(f + εχD) =

∫
Ω

fufdx + 2ε

∫
Dc1

χDufdx+ ε2
∫
Dc1

χDuχDdx,

where {
−∆uχD = χD in Ω,

∂uχD
∂n + βuχD = 0 on ∂Ω.

For D ⊂ Ω with |D| = t, it is inferred by using a method similar to that in the proof of Theorem 5 in
[21] that ∫

Dc1

χDuχDdx ≤
∫
Dc1

χD2
uχD2

dx,

where D2 = [ 1−t
2 , 1+t

2 ]. Invoking Hardy-Littlewood inequality and the symmetry of uf , it is observed
that ∫

Dc1

χDufdx ≤
∫
Dc1

(χD)
∗
u∗fdx =

∫
Dc1

χD2ufdx.

Therefore, we can conclude that D2 is a maximizer for the maximization problem in (2.7).

In view of Theorem 8, let

f = 1 + εχ[0,A−t2 ] + εχ[ 1−t
2 , 1+t

2 ] + εχ[1−A−t2 ,1],

and it is easy to check that f ∈ Am,M,γ . Inserting this f into (1.1), we obtain

uf (x) =



−( 1+ε
2 )x2 + (Aε+1

2 )x+ Aε+1
2β , 0 ≤ x ≤ A−t

2 ,

−x
2

2 + x(1+εt)
2 + β ε(A−t)2+4(Aε+1)

8β , A−t
2 ≤ x ≤ 1−t

2 ,

−( 1+ε
2 )x2 + ( 1+ε

2 )x+ βε(A−1)(A−2t+1)+4(Aε+1)
8β , 1−t

2 ≤ x ≤
1+t

2 ,

−x
2

2 + x(1−εt)
2 + β ε(A−t)2+4β ε t+4(Aε+1)

8β , 1+t
2 ≤ x ≤ 1− A−t

2 ,

−( 1+ε
2 )x2 + (−Aε+2ε+1

2 )x+ βε(A−1)+Aε+1
2β , 1− A−t

2 ≤ x ≤ 1.

(2.23)

Using this formula, we derive

J(f) =
1

12β
(−3βε (ε+ 1) (A− 1) t2 + 3βε (A− 1)

2
t+A2 (Aβ + 6) ε2 +A

(
−A2β + 3Aβ + 12

)
ε+ β + 6).

(2.24)
In order to find a solution for (1.7), we should solve quadratic equation J(f) = c with respect to t.

Applying Theorem 8 we know that this equation has a solution t̄ in (0, A). It is noteworthy that (2.24)
is increasing with respect to t in (0, A) since A < 1 and the minimum point of this quadratic equation is
A−1

2(ε+1) . Therefore, t̄ is unique and we have just one solution for (1.7) in the form mentioned in Theorem
8.

Remark 2.4. We do not have the uniqueness property for the solutions of (1.7). Here, we calculate two
other solutions for (1.7) when Ω = (0, 1).

Consider the following function

gt = χ[0,t] + (1 + ε)χ[t,t+A
2 ] + χ[t+A

2 ,1−(t+A
2 )] + (1 + ε)χ[1−(t+A

2 ),1−t] + χ[1−t,1], t ∈ [0,
1

2
− A

2
], (2.25)
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in the rearrangement class Am,M,γ . Theorem 5.1 in [20] and Theorem 4 in [21] tell us that

f̌ = 1 + εχ[0,A2 ] + εχ[1−A2 ,1], f̂ = 1 + εχ[ 1
2−

A
2 ,

1
2 +A

2 ],

are the unique minimizer and maximizer of J(f) over the set Am,M,γ corresponding to the cases g0 and

g 1
2−

A
2

respectively. Hence, gt is a continuous path in Am,M,γ connecting f̌ to f̂ . Consider

J(t) =

∫
Ω

gtugtdx,

then, we have

J(t) =
1

12β
(6Aβεt (−2t+ 2−A+Aε) t+A2 (Aβ + 6) ε2 +A

(
−A2β + 3Aβ + 12

)
ε+ β + 6). (2.26)

Since t ∈ [0, 1
2 −

A
2 ], we have (−2t+ 2−A+Aε) > 0. Then J(t) is a monotone function in t. This

shows that the equation J(t) = c has a unique solution t̄ ∈ [0, 1
2 −

A
2 ]. This yields that problem (1.7) has

a solution in form (2.25).
The solution in form (2.25) has a symmetry around point x = 1

2 and one can find an asymmetric
solution as well. Consider

g1
t = (1 + ε)χ[0,A2 ] + χ[A2 ,t]

+ (1 + ε)χ[t,t+A
2 ] + χ[t+A

2 ,1], t ∈ [
A

2
, 1− A

2
], (2.27)

this is a path connecting the decreasing rearrangement of f̌ which is f∆ = (1 + ε)χ[0,A] + χ[A,1] and f̌ .
On the other hand, set

g2
t = χ[0,t−A2 ] + (1 + ε)χ[t−A2 ,t+

A
2 ] + χ[t+A

2 ,1], t ∈ [
A

2
,

1

2
], (2.28)

which defines a path connecting f∆ and f̂ . Consequently, if c ∈ (J̌A, ĴA) then (1.7) has a solution which
is in the form g1

t or g2
t where none of them are symmetric.

Now we derive a solution for (1.7) when Ω = B(0, a) and β =∞. In view of Theorem 7, we know that
fc is a radial function such that fc(r) = 1+εχ[0,r1](r)+εχ[r2,a](r), 0 ≤ r ≤ a with r1 < r2. This explicit
formula allows to determine the value of Jc and the solution of (1.1) corresponding to fc(r). Although
Theorem 7 is valid when β =∞, we derive ufc and J(fc) for the general Robin boundary condition. This
is because of the fact that our numerical experiments suggest that fc(r) is also the solution of (1.7) when
β <∞.

Since fc is radial, ufc should be a radial function and indeed it satisfies the following boundary value
problem

− 1

rN−1
(rN−1u′)′ = fc(r), u′(0) = 0, u′(a) + βu(a) = 0. (2.29)

Now, integrating this equation we obtain

ufc(r) =
1

βaN−1

∫ a

0

sN−1fc(s)ds+

∫ a

r

1

tN−1

∫ t

0

sN−1fc(s)dsdt. (2.30)

Then, one can calculate ufc(r) explicitly for different N . Using integration in polar coordinates, we have

Jc =

∫
Ω

fcufcdx = NσN

∫ a

0

rN−1fc(r)ufc(r)dr. (2.31)

Let us set N = 2 and derive the explicit formula for fc when Ω is a circle. Indeed, we only should
calculate the parameter t̄ in the formula of fc mentioned in Theorem 7. Consider fc(r) = 1+ εχ[0,r1](r)+
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εχ[r2,a](r) where t in formula (2.22) is an arbitrary number in (0, A). Now employing formulas (2.22) and
(2.30) for this fc, we obtain

uf (r) =


u1

4πβa , 0 ≤ r ≤ r1,
u2

4πβa , r1 ≤ r ≤ r2,
u3

4πβa , r2 ≤ r ≤ a,
(2.32)

where

u1 = ε
(
(πa2 −A+ t) ln(πa2 −A+ t)− (πa2 −A) ln(πa2)− ln(t)t

)
aβ + πa2 (aβ + 2) + (−r2(ε+ 1)π + εA)aβ + 2εA,

u2 = β((πa2 −A+ t) ln((πa2 −A+ t)/π)− 2(πa2 −A) ln(a)− 2 ln(r)t)εa+ πa2 (aβ + 2) + ((A− t)ε− πr2)aβ + 2εA,

u3 = 2aβε ln
( r
a

) (
πa2 −A

)
+ a

(
β (ε+ 1)

(
a2 − r2

)
+ 2a

)
π + 2εA.

Now, employing formula (2.31), it is obtained that

J(t) = (
1

8πaβ
)(−2aβε2

(
(A− πa2)2 − t2

)
ln
(
πa2 −A+ t

)
+ 2aβε2

(
A− πa2

)2
ln
(
πa2
)
− 2 ln (t) aβε2t2

+ π2a4 (aβ + 4)− 2 ((A− t) ε− 2t)πβεa3 + 8εAπa2 + ((3A− 2t) ε+ 2A− 4t) εAaβ + 4A2ε2).
(2.33)

Solving non-linear equation J(t) = c with respect to t, we derive t̄.
Now we assume N = 3 and derive the explicit formula for fc when Ω is a sphere. Again, we only

should calculate the parameter t̄ in the formula of fc mentioned in Theorem 7. Similar to that of N = 2,
we consider fc(r) = 1 + εχ[0,r1](r) + εχ[r2,a](r) where t in formula (2.22) is an arbitrary number in (0, A).
Then using formulas (2.22) and (2.30), we have

uf (r) =



v1

6βa2 , 0 ≤ r ≤ r1,

v2

6a2βr , r1 ≤ r ≤ r2,

(a3+r1
3−r23)ε+a3

3βa2 + v3

6ar , r2 ≤ r ≤ 1,

(2.34)

where

v1 = β (1 + ε) a4 + 2 (ε+ 1) a3 − β
((
r2 − 3r1

2 + 3r2
2
)
ε+ r2

)
a2 + 2ε

(
r2

3 − r1
3
)

(aβ − 1) ,

v2 = a3r (1 + ε) (aβ + 2)− a2β
(
r3 + 3εrr2

2 − 2εr3
1

)
+ 2ε

(
r2

3 − r1
3
)

(aβ − 1) r,

v3 = (a− r)
(
ar (a+ r) (1 + ε) + 2ε

(
r1

3 − r2
3
))
.

Now, applying formula (2.31), it is obtained that

J =
4π

45a2β
(a6 (aβ + 5) (1 + ε)

2
+ 5ε (1 + ε) (aβ + 2)

(
r1

3 − r2
3
)
a3 + 3ε2

(
2r1

5 − 5r1
3r2

2 + 3r2
5
)
βa2

+ 3a2εβ
(
r2

5 − r1
5
)
− 5ε2

(
r2

3 − r1
3
)2

(aβ − 1)).

Substituting the values of r1 and r2 according to formula (2.22) into J we arrive at J(t) which is
non-linear with respect to t. Solving J(t) = c we obtain t̄.

3. Numerical Discretization, Rearrangement Algorithms, and Numerical Results

As analytical solutions of the intermediate value problem (1.7) can be found only on domains with very
simple geometry such as an interval, a disk, and a sphere, we propose an iterative algorithm to compute
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Algorithm 1 A pseudo code to find the solution f of Problem (1.7)

Given Ω,m,M,A and c.
(1) Find J̌A := min{J(f) : f ∈ Am,M,γ} and ĴA := max{J(f) : f ∈ Am,M,γ}.
(2) If c < J̌A or c > ĴA then stop and report that no such f exists;
else

use bisection algorithm to find t ∈ [0, A] which satisfies J(f)− c = 0
where f = 1 + εχD1

+ εχD2
and

1 + εχD1
= arg min
D⊂Ω, |D|=A−t

J(1 + εχD), 1 + εχD1
+ εχD2

= arg max
D⊂Dc1, |D|=t

J(1 + εχD1
+ εχD).

end

solutions on general domains. The algorithm consists of several essential calculations: the forward solver,
the minimum solver, and the maximum solver. Here we will discuss each one in detail.

The forward solver is to find the solution u of Poisson’s equation (1.1) when f , β, and Ω are specified.
We use a finite element approach which is based on the variational form of (1.1) and approximate u by a
piecewise polynomial function. For simplicity, we use polynomial of degree one which leads to a second
order convergence for the solution u. Our calculation is implemented by MATLAB partial differential
equation toolbox.

We have shown in Theorem 2 that there exists a t ∈ (0, A) such that f can be found to satisfies the
conditions (2.7). We use a bisection algorithm to find this particular t. Thus, we just need to focus on
how to determine D1 and D2 such that conditions (2.7) are satisfied for a given t.

The minimum solver is to determined D1 such that

1 + εχD1
= arg min
D⊂Ω, |D|=A−t

J(1 + εχD), (3.1)

for given Ω, t, and A. We use the rearrangement approach, Algorithm 2, proposed in [21] to find the
optimal set D1. The maximum solver is to determined D2 such that

1 + εχD1
+ εχD2

= arg max
D⊂Dc1, |D|=t

J(1 + εχD1
+ εχD), (3.2)

for given Ω, D1, and t. Similarly, we use the rearrangement approach, Algorithm 1, proposed in [21] to
find the optimal set D2. A pseudo code is given in Algorithm 1.

In the following numerical simulations, we choose m = 1 and M = 2 for all examples. The mesh
size will be reported for each individual cases. The stopping criterion is that the absolute value of the
difference between the numerical value of J and c is less that 10−6.

In Figure 1, we show the results on a circle with 2, 097, 152 triangular elements. The radius of the
circle is a = 2, |D| = π and β = 1. The theoretical minimal and maximal values are J̌A ≈ 26.7735
and ĴA ≈ 32.8974 as provided by Formula (2.33) when t → 0 and t = A. The minimizer is achieved
when t = 0 and the set D is a ring which attaches to the boundary while the maximizer is achieved
when t = |A| and the set D is a disk in the center of the domain, as shown in Figure 1 (a) and (b).
We then solve the intermediate value problem (1.7) and choose J to be the mean value of J̌A and ĴA,
i.e. J ≈ 29.8355. A solution fc of (1.7) is a radial function such that D consists of two regions. One
region is a ring attached to the boundary of the circle while the other region is a disk in the center of
the domain. In Figure 2, we show the fc which achieves (1− c)J̌A + cĴA for c = 0.25, 0.5, and c = 0.75,
respectively, with the parameter β = 1 in the Robin boundary condition. When c increases, we observe
that the area of the light gray disk gets larger while the ring becomes thinner. This results match the
analytical radial solution given in Formula (2.32) with r1 and r2 given in Formula (2.22) where t needs
to be determined numerically. Similar results are obtained for β = 10 and β approaching to the infinity
(Dirichlet boundary condition) in Figures 3 and 4, respectively.

In Figures 5, 6, and 7, the fc which achieves (1−c)J̌A+cĴA for c = 0.25, 0.5, and c = 0.75 with β = 1,
β = 10, and Dirichlet boundary conditions are shown on a unit square, respectively. These calculations
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Figure 1: The solutions f and their corresponding u. β = 1 (a) J̌A (b)ĴA (c) J = 0.5(J̌A + ĴA)

are performed on a triangular mesh with 1, 048, 576 elements and |D| = 0.25. The set D of the minimizer
f̌ contains a tubular neighborhood of the boundary and is connected while the set D of the maximizer
f̂ is a disk in the center [21]. When one seeks for fc which takes an intermediate value between J̌A
and ĴA, one can achieve this by interleaving D and Dc. We see that the solutions have Dc (dark gray
region) which looks like a ring. This ring may or may not touch the boundary of the domain. When the
boundary condition is Dirichlet and J 6= ĴA, this ring does not touch the boundary as shown in Figure 7.

In Figures 8, 9, and 10, the fc which achieves (1 − c)J̌A + cĴA for c = 0.25, 0.5, and c = 0.75 with
β = 1, β = 10, and Dirichlet boundary conditions are shown on a cross-shaped domain which is Steiner
symmetric with respect to x- and y-axis, respectively. These calculations are performed on a triangular
mesh with 1, 835, 008 elements and |D| = 0.3|Ω|. As discussed in Theorem 5, assuming 1 + εχD1 is the
unique solution of the minimization problem in (2.7), Dc

1 is a Steiner symmetric domain with respect to
x- and y-axis. Moreover, the maximization problem in (2.7) has a solution 1 + εχD1

+ εχD2
where D2

is Steiner symmetric with respect to x- and y-axis. These D1 and D2 are the light gray regions in the
figures. Furthermore, as discussed in Theorem 6, the sets Dc

1 and D2 are star-shaped domains.
In Figures 11, 12, and 13, the fc which achieves (1 − c)J̌A + cĴA for c = 0.25, 0.5, and c = 0.75

with β = 1, β = 10, and Dirichlet boundary conditions are shown on an ellipse with two circular
holes, respectively. These calculations are performed on a triangular mesh with 2, 506, 752 elements and
|D| = 0.37|Ω|. One can see how the topology of dark gray region changes with respect to different β
and c. It is interesting to see that the dark gray region could have one or two holes in these simulation
results. It is likely to expect that the dark gray region could even have three holes when J is chosen to
be very close to ĴA.

The results on an annulus with 2, 752, 512 elements and |D| = 0.5|Ω| are shown in Figures 14, 15,
and 16. These results are interesting as they demonstrate that it is possible to have D1 and D2 being
connected with each other as shown in Figures 14. On an annulus, the set D of the minimizer f̌ contains
two concentric rings with one attached the inner boundary and the other attached the outer boundary
while the set D of the maximizer f̂ is either an interior ring for large β or forms a connected region
which stays on one side of the domain for small β [21]. We see that, when β is small, D1 and D2 are
connected as shown in Figures 14 although they are disjoint sets. When β is large enough, D1 and D2 are
disconnected from each other. The set D1 consists of two concentric rings with one attached the inner
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Figure 2: The solutions f and their corresponding u. β = 1 (a) J = 0.75J̌A + 0.25ĴA (b) J = 0.5(J̌A + ĴA) (c)

J = 0.25J̌A + 0.75ĴA.

Figure 3: The solutions f and their corresponding u. β = 10 (a) J = 0.75J̌A + 0.25ĴA (b) J = 0.5(J̌A + ĴA) (c)

J = 0.25J̌A + 0.75ĴA.
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Figure 4: The solutions f and their corresponding u. Dirichlet boundary condition (a) J = 0.75J̌A + 0.25ĴA (b) J =

0.5(J̌A + ĴA) (c) J = 0.25J̌A + 0.75ĴA.

Figure 5: The solutions f and their corresponding u. β = 1 (a) J = 0.75J̌A + 0.25ĴA (b) J = 0.5(J̌A + ĴA) (c)

J = 0.25J̌A + 0.75ĴA.
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Figure 6: The solutions f and their corresponding u. β = 10 (a) J = 0.75J̌A + 0.25ĴA (b) J = 0.5(J̌A + ĴA) (c)

J = 0.25J̌A + 0.75ĴA.

Figure 7: The solutions f and their corresponding u. Dirichlet boundary condition. (a) J = 0.75J̌A + 0.25ĴA (b)

J = 0.5(J̌A + ĴA) (c) J = 0.25J̌A + 0.75ĴA.
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Figure 8: The solutions f and their corresponding u. β = 1 (a) J = 0.75J̌A + 0.25ĴA (b) J = 0.5(J̌A + ĴA) (c)

J = 0.25J̌A + 0.75ĴA.

boundary and the other attached the outer boundary. The set D2 could be a simply connected domain
(Figures 15 (a-c) and 16 (a)) or an interior ring (Figures 16 (b) and (c)) depending on the choice of β and
c. It is noteworthy that for the annulus we do not have uniqueness obviously in view of our numerical
results. This is due to the fact that in Figures 14, 15, and 16 (a) a rotation of the light gray domain
about the origin by any degree yields another solution.
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Figure 9: The solutions f and their corresponding u. β = 10 (a) J = 0.75J̌A + 0.25ĴA (b) J = 0.5(J̌A + ĴA) (c)

J = 0.25J̌A + 0.75ĴA.

Figure 10: The solutions f and their corresponding u. Dirichlet boundary condition (a) J = 0.75J̌A + 0.25ĴA (b) J =

0.5(J̌A + ĴA) (c) J = 0.25J̌A + 0.75ĴA.
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Figure 11: The solutions f and their corresponding u. β = 1 (a) J = 0.75J̌A + 0.25ĴA (b) J = 0.5(J̌A + ĴA) (c)

J = 0.25J̌A + 0.75ĴA.

Figure 12: The solutions f and their corresponding u. β = 10 (a) J = 0.75J̌A + 0.25ĴA (b) J = 0.5(J̌A + ĴA) (c)

J = 0.25J̌A + 0.75ĴA.
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Figure 13: The solutions f and their corresponding u. Dirichlet boundary condition (a) J = 0.75J̌A + 0.25ĴA (b) J =

0.5(J̌A + ĴA) (c) J = 0.25J̌A + 0.75ĴA.

Figure 14: The solutions f and their corresponding u. β = 1 (a) J = 0.75J̌A + 0.25ĴA (b) J = 0.5(J̌A + ĴA) (c)

J = 0.25J̌A + 0.75ĴA.
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Figure 15: The solutions f and their corresponding u. β = 10 (a) J = 0.75J̌A + 0.25ĴA (b) J = 0.5(J̌A + ĴA) (c)

J = 0.25J̌A + 0.75ĴA.

Figure 16: The solutions f and their corresponding u. Dirichlet boundary condition (a) J = 0.75J̌A + 0.25ĴA (b) J =

0.5(J̌A + ĴA) (c) J = 0.25J̌A + 0.75ĴA.
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