i | University
OPEN ’ACCESS e of Dundee

University of Dundee

Radiomics-based machine learning approach for the prediction of grade and stage in
upper urinary tract urothelial carcinoma

Algahtani, Abdulsalam; Bhattacharjee, Sourav; Almopti, Abdulrahman; Li, Chunhui; Nabi,
Ghulam

DOI:
10.1097/359.0000000000001483

Publication date:
2024

Licence:
CcCBY

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):

Algahtani, A., Bhattacharjee, S., Almopti, A., Li, C., & Nabi, G. (2024). Radiomics-based machine learning
approach for the prediction of grade and stage in upper urinary tract urothelial carcinoma: a step towards virtual
biopsy. International journal of surgery (London, England), 110(6), 3258-3268.
https://doi.org/10.1097/3S9.0000000000001483

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2024


https://doi.org/10.1097/JS9.0000000000001483
https://discovery.dundee.ac.uk/en/publications/b7982c6d-bdd4-4fb6-b6cd-3eae7972d158
https://doi.org/10.1097/JS9.0000000000001483

187ZIMNZ[DBPpXZOBBAROATOAEIOYIASALLIAIPOOAEIEAHIOIN/AD AUMY TXOMADYOIANX ZOHISABZIY 10 +8

PNIOITWNOTZTARYHASSHANAYF Ag A1aBins-Jo-[eulnol-jeuoneusaiul/wod’ mm| sfeulnoly:diny woly papeojumoq

¥20¢/2T/90 uo

.y -y
{ 1;

INTERNATIONAL JOURNAL OF SURGERY

[ OPEN J

Radiomics-based machine learning approach for
the prediction of grade and stage in upper urinary
tract urothelial carcinoma: a step towards virtual
biopsy

Abdulsalam Algahtani, MSc*¢, Sourav Bhattacharjee, MBBS, PhD, Abdulrahman Almopti, MSc?, Chunhui Li, PhD®,
Ghulam Nabi, PhD**

I Diagnostic Study

Objectives: Upper tract urothelial carcinoma (UTUC) is a rare, aggressive lesion, with early detection a key to its management. This
study aimed to utilise computed tomographic urogram data to develop machine learning models for predicting tumour grading and
staging in upper urothelial tract carcinoma patients and to compare these predictions with histopathological diagnosis used as
reference standards.

Methods: Protocol-based computed tomographic urogram data from 106 patients were obtained and visualised in 3D. Digital
segmentation of the tumours was conducted by extracting textural radiomics features. They were further classified using 11 predictive
models. The predicted grades and stages were compared to the histopathology of radical nephroureterectomy specimens.
Results: Classifier models worked well in mining the radiomics data and delivered satisfactory predictive machine learning models.
The multilayer panel showed 84% sensitivity and 93% specificity while predicting UTUC grades. The Logistic Regression model
showed a sensitivity of 83% and a specificity of 76% while staging. Similarly, other classifier algorithms [e.g. Support Vector classifier
(SVC)] provided a highly accurate prediction while grading UTUC compared to clinical features alone or ureteroscopic biopsy
histopathology.

Conclusion: Data mining tools could handle medical imaging datasets from small (< 2 cm) tumours for UTUC. The radiomics-based
machine learning algorithms provide a potential tool to model tumour grading and staging with implications for clinical practice and the
upgradation of current paradigms in cancer diagnostics.

Clinical Relevance: Machine learning based on radiomics features can predict upper tract urothelial cancer grading and staging
with significant improvement over ureteroscopic histopathology. The study showcased the prowess of such emerging tools in the set
objectives with implications towards virtual biopsy.

Keywords: CT urogram, machine learning, radiomics, texture analysis, virtual biopsy

ureteric ones'*. Multifocal lesions are also noted in 10-20% of
cases!’!, while 11-36% of cases are carcinoma i situ of the upper
urinary tract'®!,

Introduction

Upper tract urothelial carcinoma (UTUC) comprises 5-10% of
all urothelial carcinomas!'!, has an incidence of 2/100 000 in the

western population!?!, and is reported mostly in the age group of
70-90 years. While 95% of the urothelial carcinomas, growing
from the inner lining of the urinary tract, relate to the urinary
bladder!!, they also originate in the renal pelvis and ureters, with
the incidence of pelvicalyceal tumours almost twice that of

Ureteroscopic biopsy and urine cytology are known tools for
confirming UTUC before surgical intervention!”!. In conjunction
with biopsy, ureteroscopy provides crucial cues on tumour
architecture, location, size, and focality® %!, Collectively, this
information helps the surgeons decide on the management
options. The diagnostic accuracy of ureteroscopic biopsy depends
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on the cancer grade, as reported in a recent systematic review! '/,

The study reported an undergrading in 32% and an understaging
in 46% of cases. Similarly, a recent multicentre study confirmed
that tumour grading and staging are often inaccurate and vul-
nerable to understaging, including an inability to comment on
grading in 31.5% of cases!'?!.

Furthermore, visualising and accessing the upper urinary tract
by ureteroscopy requires expertise and training'"*!. The proce-
dural challenges during ureteroscopic biopsy render many of the
obtained samples unfit for histopathological evaluation due to
contamination with crushed artefacts, making a pathological
assessment difficult™®. The sensitivity of urine cytology in
detecting high-grade UTUCs can be high (84%), although it falls
drastically to 16% in low-grade tumours**. Such limitations
of biopsy and urine cytology in diagnosing the UTUCs risk
overestimation or underestimation.

Computed tomography (CT) urogram can effectively diagnose
UTUCs with sensitivity and specificity of 92 and 95%,
respectively!'®!, It is also more sensitive and specific in diagnosing
UTUC:s than the contrast magnetic resonance urogram, which
has 75% sensitivity in detecting UTUCs <2 cm in sizel'”). A CT-
based visualisation of UTUCs demonstrates the microscopic
overview of tumour anatomy in both 2D and 3D, with infor-
mation on the extent of the tumour margin and its invasion
towards adjoining tissues''®,

Radiomics is an emerging field of medical imaging that involves
extracting and analysing quantitative features from medical images,
such as CT and magnetic resonance urogram, using machine
learning algorithms that help to extract a large number of features
and provide analyses!"”). Gathering such a large dataset of features
allows modelling with implications for prognosis, progress review
after radiotherapy or chemotherapy, and developing predictive
models on clinical outcomes, including metastasis?!. Furthermore,
it identifies important diagnostic and therapeutic cancer bio-
markers, including prediction of grade and stage!*'l.

The present study evaluated the scope of radiomics analyses
combined with machine learning in predicting the grade and stage
of UTUCs compared to ureteroscopic biopsies. The correspond-
ing histopathological data from radical nephroureterectomy were
used as a reference standard.

Patients and methods
Patients

CT urogram and clinicopathological data of patients with

UTUCs were obtained from the Tayside Urological Cancers

(TUCAN) database. The data included UTUC patients who

underwent surgical resection (radical nephroureterectomy) at a

tertiary care hospital from January 2000 to December 2022 with

a mean follow-up of 40 (+12-120) months. The study received

approval from the East of Scotland Research Ethical Service

(Approval No. IGTCAL12952). Access to patient medical

healthcare data was granted under the Caldicott Approval, and

the requirement for informed consent was waived. The study
inclusion criteria were:

(i) Availability of protocol-based CT urogram images.

(ii) Pathologically confirmed UTUC with uniform criteria for
determination, specifically obtained after surgical resection
and all patients underwent ureteroscopic biopsy prior to
surgery.

HIGHLIGHTS

e Computed tomographic imaging of upper tract urothelial
carcinoma patients who underwent surgical radical
nephroureterectomy were obtained. Images were segmen-
ted and data was extracted. The data were analysed using
various algorithms.

e Data mining enabled virtual biopsy and predicted tumour
grading and staging better than ureteroscopy biopsy. The
reference standard was histopathology from radical
surgery.

e The gained insights and knowledge have multiple implica-
tions for clinical practice and future research.

(iii) No prior endoscopic treatment of UTUC before CT
examination.

Of the 256 patients subjected to nephroureterectomy for
UTUCs in the TUCAN database, 106 (consecutive cases) met the
inclusion criteria. Concurrently, 150 patients were excluded from
the study due to various criteria, including nonenhanced scans
(114), inadequate image quality (12), prior CT treatment (5), and
19 for lacking comprehensive clinicopathologic data (Fig. 1). The
tumour histological grades in the dataset were categorised into
low-grade (I-II) in 31 cases and high-grade (III-1V) in 75 cases.
Similarly, the tumour histological stages were classified as early-
stage (Ta-T1) in 59 cases and advanced-stage (T2-T4) in 47
cases. The pathology data was verified by a uropathologist with
more than 10 years of experience, and each case was discussed in
a tumour board meeting. For further details and CT protocol,
please see Supplementary Material S1 (Supplemental Digital
Content 1, http:/links.lww.com/]S9/C474). The study was con-
ducted in line with the Standards for the Reporting of Diagnostic
Accuracy Studies (STARD) criteria**?*! (Supplemental Digital
Content 2, http:/links.lww.com/JS9/C475).

Tumour segmentation using 3D Slicer

The methodology employed in this study included a series of
procedures to effectively handle Digital Imaging and
Communications in Medicine (DICOM) images, perform 3D
segmentation®*! utilising the ‘grow-from-seeds’ tool of the 3D
Slicer (version 5.2.2), and convert the DICOM slices into the
widely adopted 3D Neuroimaging Informatics Technology
Initiative (NIfTI) format. The segmentation task was performed
by an experienced radiologist (Reader 1) and an expert uro-
surgical oncologist (Reader 2). To ensure the precision of seg-
mentation, a Dice similarity coefficient was applied, maintaining
a 0.8 threshold as the benchmark to ensure a minimum of 80%
overlap accuracy. Segmentations satisfying this criterion pro-
gressed to subsequent analyses. In scenarios where segmentations
fell short of the threshold, a collaborative discussion was initiated
between Readers 1 and 2 to identify areas that required refine-
ment to arrive at a consensus. If such a mutual agreement
remained elusive, the case was excluded. The histopathological
evaluation following nephroureterectomy was considered the
reference standard (Supplementary Materials S1, Supplemental
Digital Content 1, http:/links.lww.com/JS9/C474 and S2,
Supplemental Digital Content 1, http:/links.lww.com/JS9/
C474).
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256 patients from TUCAN database who
underwent nephroureterectomy
procedures for UTUCs from
(January 2000 - December 2022)

Included (n=106)

- Availability of protocol-based CT
urogram images

- Pathologically confirmed UTUC

- No prior endoscopic treatment of UTUC
before CT examination

Excluded (n=150)

- Only non-enhanced scan (n=114)

- Poor image quality (n=12)

- Patient received any treatment before
the CT examination (n=5)

- Incomplete clinicopathologic data (n=19)

iPatients enrolled in the retrospective study (n=106)

I

Tumour histological grades
- Low-grade (n=31)
- High-grade (n=75)

[

Tumour histological stages
- Early stage (n=59)
- Advanced stage (n=47)

Figure 1. Workflow showing the flow of patient selection strategy followed in this study.

Feature extraction

Quantitative features were extracted from segmented regions of
interest using the PyRadiomics library in Python software
(v. 3.7.9). An in-house algorithm was scripted for radiomics

analyses and model building. It allowed the extraction of quan-
titative features, feature selection, and integration of radiomics
data with clinical variables to create a predictive model.
Additionally, it facilitated performance evaluation and feature

A Image acquisition

F Model evaluation

. | ROC analysis

/

et .
~ Learning
curve

Feature
importance

Feature extraction

Radiomics features

featu

Filters Classes
SIROKED Laplacian/Gaussian s il
Cytology p GLCM
Location Logarithm GLSZM
Laterality Exponential NGTDM
Metastasis Square SHAPE
E  Model building D  Feature selection
:,j ROC,aﬁ‘aIysis

i SHAP and CV

Hierarchical
clustering

_’
ﬁ
—

Figure 2. The workflow of the radiomics analysis and machine learning. (A) High-quality CT urogram images were acquired and preprocessed; (B) A ROl was
segmented, encompassing the entire tumour, and rendered in 3D; (C) Feature extraction; (D) Feature selection; (E) Combined model development based on
radiomics features and multiple clinical variables; (F) Model evaluation. ROI, region of interest.

3260



¥202/2T/90 uo =[971ZIMNZIDBPpXZOBBAROATIAEIOPIASALLIAIPOOAEIEAHIOI/AD AUMY TXOMADYOINXYOHISABZIY T +B

PNIOITWNOTFZTARY HJBSHNAYG Aq A18B1ns-jo-feuinol-feuoieusaiul/wiod mm| sfeulnoly/:dny wouy papeojumoq

Algahtani et al. International Journal of Surgery (2024)

A Backwards Feature Elimination using SHAP & CV
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Figure 3. Radiomics models for tumour grading. (A) The utilisation
of RFECV with SHAP feature importance and cross-validation;
(B) Box plot demonstrating that the combined-grade dataset out-
performed other datasets with the highest mean score; (C) Bar chart
enabling comparison of UTUC grade dataset performance across
multiple classification models providing valuable insights while assessing
the ureteroscopic biopsy dataset with UTUC grades. RFECV, recursive
feature elimination with cross-validation; SHAP, Shapley additive
explanations.

contribution analysis of the optimal prediction model. A sig-
nificance level of P<0.05 was considered statistically significant
(Fig. 2).

Three feature classes were computed: first-order statistics,
texture-based, and shape-based features. First-order statistics
reflected intensity distribution; texture-based features represented
textural properties using matrices like Grey-Level Co-occurrence
Matrix, Grey-Level Run-Length Matrix, and Grey-Level Size-
Zone Matrix, while shape-based features assessed geometric
properties. All feature classes were calculated using various filters
in the PyRadiomics package, resulting in 1324 features. To
address the class imbalance issue, the Synthetic Minority Over-
sampling Technique (SMOTE) was utilised to oversample the
low-grade class. The study workflow is summarised in Figure 2.

Feature stability and selection

This study commenced with a meticulous data preparation phase,
where certain variables, particularly clinical and non-numeric ones,
were identified and exempted from normalisation. The remaining
numeric variables underwent Z-score normalisation for setting the
standards. A crucial step involved performing a correlation analysis
to eliminate highly correlated variables (>0.9 threshold) and
ensure statistical independence. The dataset was then categorised
and segmented into two distinct groups: clinical and radiomics
variables, facilitating targeted analyses for each group. A compre-
hensive dataset overview was presented, including detailed variable
listings for both clinical and radiomics datasets.

In the initial phase, attributes derived from segmentations
performed by Readers 1 and 2 were subjected to an inter-rater
reproducibility ~assessment. Attributes demonstrating an
Intraclass Correlation Coefficient (ICC) of <0.75 were filtered,
resulting in 163 features for further analysis. The backward
feature elimination using shape and cross-validation (CV) was
employed to select the optimal feature set. The process involved
estimating SHapley Additive exPlanations (SHAP) feature
importance, removing low-importance features, and visualising
the results through plots. This approach facilitated effective fea-
ture selection based on the impact on model performance (Fig. 2).

Evaluation of the constructed prediction model and
statistical analysis

A power analysis, using a Goodness-of-fit Chi-square power ana-
lysis suitable for the binary nature of our target variables (high-
grade vs. low-grade), was conducted to validate the sample size. An
effect size of 0.5 (Cohen’s w), a significance level of 0.05, and a
power level of 80% were assumed. Multiple machine-learning
models were evaluated. In each model, five-fold CV (k=35) with
hyperparameter optimisation was performed. Performance metri-
ces such as area-under-curve (AUC), sensitivity, specificity, 95 % CI,
classification accuracy, F1 score, precision, and recall were used to
assess model performance. Receiver Operating Characteristic
(ROC) curves were plotted for model comparison. One-way
ANOVA determined the best-performing dataset. Box plots and
bar charts were used to compare the performance of different
UTUC grade and stage models. Further analysis included ROC
AUC, confusion matrices, learning curves, feature importance
ranking using SHAP values, and Beeswarm plots to examine the
performance of the best model within the best dataset.
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Figure 4. Performance of the proposed model in the testing set. (A) ROC curve of the proposed model in pathological grade prediction; (B) Confusion matrix
showing the performance of the MLP model in classifying two classes: H and L; (C) The learning curve for predicting high and low-grade UTUCs with AUC scores on
the y-axis and number of training samples on the x-axis; (D) Feature importance ranking based on SHAP values generated from the test set; (E) A Beeswarm plot
displaying the Shapley values of features in the final model. Each feature value is represented by coloured dots: red for high-grade and blue for low-grade tumours.
H, high; L, low; ROC, receiver operating characteristic.
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Figure 5. Radiomics models for tumour staging. (A) RFECV with SHAP feature
importance and cross-validation was used to identify optimal features and
feature sets; (B) Box plot demonstrating that the combined-stage dataset
performed best, with the highest mean score across the evaluated metrices; (C)
Bar chart enabling comparison of UTUC stage dataset performance across
multiple models. RFECV, recursive feature elimination with cross-validation;
SHAP, Shapley additive explanations.

Results

Patient characteristics

The study included 106 patients, and Table 1 shows a detailed
characterisation of the patient cohort.

Radiomics feature selection

The selection of radiomic features for tumour grading and staging
leveraged diverse families derived from CT imaging to detail the
tumour’s complexity. This encompassed features from image
transformations such as wavelet, square, and gradient—
alongside metrices of shape and texture.

Radiomics models for tumour grading

The range for tumour volume and size (7=106) varied between
0.03-167.52 cm® and 7 mm—13 cm, respectively. The power analysis
confirmed the adequacy of our sample size. With 106 patients, the
study exceeded the minimum requirement of ~32 patients per group to
achieve the desired statistical power of 80%. Eleven classification
models were used to differentiate high-grade from low-grade tumours
and early TNM stages from the advanced ones. Features were selected
using Recursive Feature Elimination, identifying 11 informative fea-
tures for radiomics and combined datasets (Fig. 3A). Mean scores of
metrices across datasets were compared. The combined-grade dataset
had the highest mean score (M =0.85), followed by the radiomics-
grade (M =0.83) and clinical-grade datasets (M =0.8). No significant
difference was found between radiomics-grade and combined-grade
datasets (P=1.0) or between radiomics-grade and clinical-grade
datasets (P=0.27). However, a significant difference was noted
between combined-grade and clinical-grade datasets (P=0.02;
Fig. 3B). In assessing the effectiveness of 11 predictive models for
UTUC tumour grading, the study delineated them into three groups
based on statistical performance metrics. Notably, the SVC and mul-
tilayer panel (MLP) exhibited superior performance, showcasing
exceptional precision, recall, F-score, and ROC AUC values. SVC
demonstrated remarkable sensitivity at 96.3%, highlighting its
potential for accurate high-grade tumour identification. MLP, on the
other hand, demonstrated an ROC AUC value of 0.94, indicating its
overall predictive accuracy and reliability. Meanwhile, CatBoost,
ExtraTrees, Quadratic Discriminant Analysis (QDA), and Gradient
Boosting offered moderate efficacy, showcasing a reliable balance in
sensitivity and specificity. Conversely, models including Logistic
Regression, KNeighbors, Decision Tree, Random Forest, Light
Gradient Boosting Model (LGBM), and AdaBoost revealed areas
requiring improvement, underscoring the potential for enhanced
model performance through further advancements in UTUC grading
methodologies (Table 2). Ureteroscopic biopsies predicted histological
grade with an accuracy of 77.27%, sensitivity of 72.73%, and spe-
cificity of 86.36%. The match rates for low-grade and high-grade
cases were 61.29 and 91.43%, respectively, Supplementary Material
S2 (Supplemental Digital Content 1, http:/links.lww.com/JS9/C474).
Using a combined dataset effectively discriminated between high-grade
and low-grade tumours (Fig. 3C). For hierarchical clustering of the
cohort, please consult Supplementary Materials S3 (Supplemental
Digital Content 1, http:/links.lww.com/JS9/C474).

Performance evaluation of features and building prediction
model

The MLP Classifier model showed high accuracy with 92.86%
sensitivity and 84.29% specificity on the testing set (Fig. 4A). It
demonstrated excellent discrimination and generalisation abil-
ities with an AUC of 0.99 on the training and 0.94 on the testing
set (Fig. 4B). The learning curve indicated convergence and
potential performance improvement with more training data
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Figure 6. Performance of the proposed model in the testing set. (A) Confusion matrix showing the performance of the logistic regression model in classifying two
classes: Hand L; (B) ROC curve of the proposed model in pathological stage prediction; (C) The learning curve for predicting high and low-stage UTUCs with AUC
scores on the y-axis and number of training samples on the x-axis; (D) Feature importance ranking based on SHAP values generated from the test set; (E) A
Beeswarm plot displaying the Shapley values of features in the final model. Coloured dots represent each feature value: red for an advanced-stage and blue for
early-stage tumours. H, high; L, low; ROC, receiver operating characteristic.
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Table 1

106).
Deceased (%)

Y
N

Overview of patient characteristics and tumour features in the entire cohort (n

T-stage (%)

Ta/M

Histology grade (%)

Location (%)

Laterality (%)

Left

CTU findings (%)

Metastasis (%)

Cytology (%)

BMI (%)

Smoker (%)
Normal

Sex (%)
M 585

Mean age

55.7

29.2

Low

40.6  Renal pelvis 56.6

11.3 100

54.7

20.8

Positive

33

23.6

Never
Smoker

74 yrs. (49-93 yrs.)

17.9

Ureter 62.3 High 70.8 T2

59.4

Right
T3/T4

0

88.7

453

29.2

Negative
Suspected

30.2 Overweight 34

F 415

26.4

9.4

33

Obese

Ex-smoker 46.2

23.6

Cis

Undiagnosed 40.6

CIS, carcinoma in situ; CTU, CT urogram.

(Fig. 4C). SHAP analysis provided insights into feature sig-
nificance, with stage and BMI having notable impacts (Fig. 4D,
Supplementary Materials S2, Supplemental Digital Content 1,
http://links.lww.com/JS9/C474).

Comparative analysis of classifier models for UTUC stage
prediction

Eleven classification models were applied to clinical variables,
radiomics, and combined datasets. Using recursive feature elim-
ination with SHAP and CV (Fig. 5A), the combined stage dataset
showed a superior ability to differentiate between early and
advanced stages compared to clinical-based and radiomics-based
staging. The clinical stage had the highest mean score (M =0.72),
followed by the combined (M =0.72) and the radiomics stages
(M=0.68). No significant difference was noted between the
combined and radiomics stages (P=0.34) or combined and
clinical stages (P =1.0), although significance between radiomics
and clinical stages (P =0.1; Fig. 5B) was identified.

This study aimed to evaluate eleven predictive models for UTUC
staging and categorised them into three groups. The study revealed
that the Logistic Regression model emerged as the top performer
with an F-score of 0.8 and an impressive ROC AUC of 0.86,
demonstrating an optimal balance between precision and recall.
The model achieved sensitivities and specificities of 83 and 76.2%,
respectively, highlighting its robustness for clinical use in UTUC
staging (Fig. 5C). The second group included MLP, SVC, and
ExtraTrees classifiers, with MLP exhibiting a notable ROC AUC of
0.84 and SVC being highlighted for its precision in identifying
tumour stages with 77.6% sensitivity and 77.9% specificity. The
ExtraTrees classifier also demonstrated adequate predictive pro-
wess, with 83% sensitivity. However, the third group, which fea-
tured models such as Decision Tree, Random Forest, Light
Gradient Boosting Model (LGBM), and AdaBoost, indicated a need
for improvement in sensitivity, specificity, or ROC AUC scores,
suggesting areas for potential refinement (Table 3).

Performance evaluation and features contribution analysis

The Logistic Regression classifier showed high accuracy, with a
sensitivity of 75.33% and specificity of 83.33% (Fig. 6A). It
demonstrated excellent discrimination and generalisation, achieving
an AUC of 0.91 on the training and 0.88 on the testing set (Fig. 6B).
Additional training data could improve its performance (Fig. 6C).
SHAP analysis highlighted their significance and the impact of other
features on data modelling (Fig. 6D, Supplementary Materials S3,
Supplemental Digital Content 1, http:/links.lww.com/JS9/C474).

Discussion

Like many other cancers, early detection is key to a better prog-
nosis and devising more effective treatment options in UTUCs!**,
However, histopathological evaluation, considered the gold
standard in cancer detection, suffers from a paucity of data,
empirical variation, and a lack of 3D visualisation. Advanced
imaging techniques, such as CT and MRI, provide a wealth of
information otherwise impossible by traditional 2D histo-
pathology. It is prudent to note here that the complex datasets
delivered by such advanced imaging modalities also need thor-
ough analysis, and that is where a radiomics-based machine
learning approach holds its major advantages'?®.
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Performance of classification models of the combined grade dataset.

Classifier model Precision Recall F-score ROC AUC 95% CI Sensitivity Specificity
Logistic Regression 0.83 0.83 0.83 0.9 0.84-0.95 80% 86.6%
KNeighbors 0.84 0.83 0.83 0.87 0.8-0.92 73.3% 92.5%
Decision Tree 0.75 0.75 0.75 0.77 0.69-0.84 70.6% 78.6%
Random Forest 0.83 0.83 0.83 0.92 0.87-0.97 80% 86.6%
LGBM 0.8 0.81 0.8 0.88 0.82-0.94 78% 81.3%
CatBoost 0.85 0.85 0.85 0.91 0.86-0.96 80% 89.3%
SvVe 0.9 0.89 0.89 0.92 0.87-0.96 96.3% 81.3%
MLP 0.9 0.89 0.89 0.94 0.9-0.98 84% 93.3%
AdaBoost 0.81 0.81 0.81 0.85 0.79-0.91 77.3% 84%
ExtraTrees 0.85 0.85 0.85 0.93 0.89-0.97 78.6% 90.6%
QDA 0.89 0.89 0.89 0.91 0.87-0.96 86.6% 90.6%
Gradient Boosting 0.86 0.86 0.86 0.92 0.87-0.97 82.6% 89.3%

LGBM, light gradient boosting model; MLP, multilayer panel; QDA, quadratic discriminant analysis; SVC, support vector classifier.

The effectiveness of a machine learning model in predicting
the tumour grade and stage of UTUC was demonstrated by a
notable improvement in sensitivity of 84% and specificity of
93% compared to traditional biopsy methods. This enhance-
ment can be attributed to several factors. Clinically, UTUC
presents unique challenges for biopsy due to its anatomical
and pathological characteristics, such as its multifocality and
potential for small, scattered lesions, leading to sampling
errors. Our approach integrates advanced radiological tech-
niques with a sophisticated machine learning algorithm,
enabling a more comprehensive analysis of the CT data. This
combination allows for the detection of subtle tissue differ-
ences and provides a global assessment of the area, surpassing
the localised insight offered by biopsy samples. The model
leverages a variety of data inputs, including texture features
and patient demographics, processed through algorithms, and
had undergone rigorous training and testing to ensure reliable
predictions. Our findings are further supported by a review of
existing literature, highlighting the limitations of biopsies in
accurately staging and grading UTUC and similar cancers.

CT scan data provide both 2D and 3D textural analysis of the
tumour parenchyma and the geometric attributes or other fea-
tures now routinely extracted as part of data mining on medical
datasets?”?8!, It is necessary to appreciate the prowess of data
mining that can find patterns ingrained within the imagery data

and then inform predictive models based on it!*’]. Progress on the
fronts of artificial intelligence-based platforms has brought fresh
hopes that such emerging modalities will be able to replace
human errors in cancer diagnostics in alliance with improved
accuracy. Moreover, an advanced textural assessment can reveal
the nascent foci of metaplasia or dysplasia within tissue fabric
that are difficult to detect by routine histopathology!>%31!,
Comparable previous studies on UTUC radiomics and textural
analyses are scarcely reported. Although not entirely comparable
to ours, a recent study reported the use of texture analysis in
evaluating tumour tissue heterogeneity in 86 UTUC cases based
on CT datasets®?. Interestingly, the histogram from CT
attenuation from the tumours showed a single peak for non-
invasive tumours, whereas multiple peaks were detected in
tumours that were invasive towards the neighbouring muscular
tissue. Such discrepancy may be attributed to the tumour micro-
environment in UTUCs that evolves with its invasive potential.
The rarity of UTUCs is a challenge for such a study, as it is
difficult to gather an adequately large cohort of patients for data
analysis®®!. For the same reasons, the dataset used here, despite
being collected over 22 years, is also insufficient and renders
external validation difficult—an undeniable weakness of the
present study. Moreover, the UTUC tissue often casts similar
grayscale values to the adjoining healthy renal tissue in CT
investigations, making a digital segmentation of the tumour out

Performance of classification models of the combined stage dataset.

Classifier model Precision Recall F-score ROC AUC 95% CI Sensitivity Specificity
Logistic Regression 0.8 0.8 0.8 0.86 0.8-0.93 83% 76.2%
KNeighbors 0.75 0.74 0.73 0.73 0.64-0.82 83% 64.4%
Decision Tree 0.62 0.62 0.62 0.57 0.47-0.67 62.7% 61%
Random Forest 0.69 0.69 0.69 0.74 0.66-0.83 711% 66.1%
LGBM 0.69 0.69 0.69 0.73 0.65-0.83 71.1% 66.1%
CatBoost 0.7 0.69 0.69 0.74 0.65-0.83 77.9% 61%
SVC 0.78 0.78 0.78 0.79 0.71-0.87 77.6% 77.9%
MLP 0.82 0.81 0.81 0.84 0.77-0.92 86.4% 76.2%
AdaBoost 0.64 0.64 0.63 0.67 0.56-0.76 59.3% 67.7%
ExtraTrees 0.76 0.75 0.75 0.75 0.66-0.84 83% 67.7%
QDA 0.73 0.73 0.73 0.78 0.69-0.86 79.6% 66.1%
Gradient boosting 0.68 0.68 0.68 0.69 0.6-0.79 11% 64.4%

LGBM, light gradient boosting model; MLP, multilayer panel; QDA, quadratic discriminant analysis; SVC, support vector classifier.

3266



¥202/2T/90 uo =[971ZIMNZIDBPpXZOBBAROATIAEIOPIASALLIAIPOOAEIEAHIDIN/AD AUMY TXOMADYOINXYOHISABZIY T+

PNIOITWNOTFZTARY HJBSHNAYG Aq A18B1ns-jo-feuinol-feuoieusaiul/wiod mm| sfeulnoly/:dny wouy papeojumoq

Algahtani et al. International Journal of Surgery (2024)

of the renal mass or extracting radiomics features cumbersome.

Using contrast CT may be a strategy to address the issue, as was

done in the present study.

It utilised advanced machine learning techniques to select
radiomic features, bypassing subjective bias and emphasising
features most relevant to the underlying tumour biology. Most
selected features, predominantly second-order statistics and those
pertaining to shape and other distinct families, offered a profound
representation of the tumour’s biological complexity. These fea-
tures are instrumental in capturing the textural and geometric
heterogeneity of tumours and are critical in assessing tumour
grade and stage. This selection process aligned with radiomics
research principles that recommend limiting feature inclusion to
one feature per 10 subjects. Such constraint ensures that only the
most discriminative features are included, enhancing the model’s
ability to maximise the ROC curve while minimising the risk of
overfitting. Various classification models were used in this study,
and overall, their performances were comparable, with some
having an edge over others. It reiterates the primordial caution
while developing any prediction model that the prediction quality
is only as good as the training data. The present study included
patients with a prior agreed CT urogram protocol.

In the present study, the clustering tools (Supplementary
Material S3, Supplemental Digital Content 1, http:/links.lww.com/
JS9/C474) and algorithms (MLP for grading and Logistic
Regression for staging) could segregate the high-grade UTUCs from
the low-grade and early-stage tumours from the advanced ones. It is
an exciting observation because of the following reasons:

(i) The methodology showed the individual clusters along with
their memberships that, in a way, created a data matrix where
the similarity, or its lack thereof, between different patients
became apparent;

(ii) It provided a necessary template where outliers could be
traced, for example, a seemingly odd appearance of high-
grade tumour in a cluster mostly populated by low-grade
ones and vice versa, raising warning flags for the medical
team to trace back and cross-check the sample;

(iii) An offshoot of the clustering modules was the grading
prediction in unknown UTUCs, where it would be interest-
ing to note how the algorithm clustered the unknown
instances, that is, high-grade or low-grade and early-stage
or advanced-stage tumours.

To our knowledge, this study is the first systematic study investi-
gating the scope of implementing a radiomics-based approach and
machine learning tools in UTUC: for predicting the grade and stage.
In a multicentre study, prenephroureterectomy biopsy histopathol-
ogy correctly matched grade only in 43.4% of the histology findings.
A significant number of cases (39.1%) were upstaged!"?!. Such mis-
match was much lower in the radiomics-based machine-learning
approach reported here. With the current challenges faced by the
healthcare sector, including a lack of resources and trained personnel,
embracing the fruits of such emerging diagnostic modalities is a call
of time to provide cancer diagnostics that are reliable, affordable,
robust, brisk, high-throughput, and reproducible. Moreover, such
tools and the digitisation of datasets enable the sharing of wisdom
over continental stretches, with its influence spread across the planet
and benefits shared by the entire humanity. The study findings—
noninvasive prediction of UTUC aggressivity through radiomics and
machine learning approach—have significant implications for clin-
ical practice and lead to a new area of knowledge that has enormous
benefits due to quicker and better decision-making for patients with

upper tract urothelial cancers. As these technologies integrate into
clinical practice, they may eventually replace traditional diagnostics,
advancing the field towards personalised medicine in UTUC care.

To counter the challenge posed by a limited dataset of 106 cases,
methodological strategies were deployed to enhance model relia-
bility and mitigate overfitting. Employing k-fold CV optimised data
during training and validation, while regularisation (L1 and L2)
and early stopping minimised model complexity and prevented
overtraining. Feature selection was confined to a maximum of 12,
based on stability through the ICC, alongside normalisation and
imbalance adjustments. The application of binary classification and
hyperparameter tuning across diverse models ensured the robust-
ness of the findings, avoiding model-specific bias. These precautions
substantially mitigate overfitting, with future work to include
external dataset for validating model effectiveness.

This study’s retrospective nature introduces potential biases,
such as selection and information bias, which might impede the
generalisation of our findings. These biases emerge from relying
on pre-existing records and may not fully represent the broader
UTUC patient population. Additionally, the quality and com-
pleteness of historical data can vary, potentially affecting the
study’s accuracy. Our findings underline the importance of pro-
spective multicentre trials for validation across diverse and larger
datasets to curb these biases. A significant limitation of this study
is the modest sample size, constrained by the rarity of UTUC. To
strengthen our radiomics-based model, future research should
focus on larger, prospective studies with standardised data that
reflect a wider clinical spectrum.

Conclusion

This study introduces a radiomics-based machine learning
approach for UTUC, offering a method to accurately predict
tumour grade and stage noninvasively. It demonstrates that
classifier models can reliably differentiate high and low grades, as
well as advance from the early stages of UTUC—thus providing a
level of precision akin to traditional biopsies. The implementation
of enhanced CT urogram and machine learning advancements
marks the advent of ‘virtual biopsies’, providing a safer and more
efficient tumour characterisation method. This noninvasive
technique holds the potential to revolutionise oncology patient
management and treatment planning, particularly for UTUC. By
enabling precise tumour grading and staging presurgery, clin-
icians can customise treatment plans more effectively, potentially
enhancing patient outcomes. The integration of these diagnostic
tools could also improve the detection of small or indistinct
tumours, facilitating earlier intervention.

Ethical approval

The diagnostic study used images of patients stored in a hospital
archives. The permission to use was granted by Caldicott
approval (no IGTCAL12952 dated 25/10/2021).

Consent

The Caldicott approval covers consent and hence no separate
consent was necessary.
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