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Abstract
The geometry and topology of the region in which a director field is embedded impose limitations
on the kind of supported orientational order. These limitations manifest as compatibility
conditions that relate the quantities describing the director field to the geometry of the embedding
space. For example, in two dimensions the splay and bend fields suffice to determine a director
uniquely (up to rigid motions) and must comply with one relation linear in the Gaussian
curvature of the embedding manifold. In 3D there are additional local fields describing the
director, i.e. fields available to a local observer residing within the material, and a number of
distinct ways to yield geometric frustration. So far it was unknown how many such local fields are
required to uniquely describe a 3D director field, nor what are the compatibility relations they
must satisfy. In this work, we address these questions directly. We employ the method of moving
frames to show that a director field is fully determined by five local fields. These fields are shown to
be related to each other and to the curvature of the embedding space through six differential
relations. As an application of our method, we characterize all uniform distortion director fields,
i.e., directors for which all the local characterizing fields are constant in space, in manifolds of
constant curvature. The classification of such phases has been recently provided for directors in
Euclidean space, where the textures correspond to foliations of space by parallel congruent helices.
For non-vanishing curvature, we show that the pure twist phase is the only solution in positively
curved space, while in the hyperbolic space uniform distortion fields correspond to foliations of
space by (non-necessarily parallel) congruent helices. Further analysis of the obtained
compatibility fields is expected to allow to also construct new non-uniform director fields.

1. Introduction

Liquid crystals are a state of matter characterized by the presence of an orientational order but no, or only
partial, positional order. In many cases, the ordering can be described in terms of a unit vector field n,
called the director [1, 2]. Liquid crystals pervade our daily lives, from computer and smart-phone displays
to optical switches enabling fast and efficient communication. In recent years, liquid crystals also found
applications as controllable and responsive materials [3–6], and similar phases were identified outside of
soft matter systems, for example in the nematic order observed in iron based superconductors [7, 8].

The liquid crystalline orientational ‘texture’ often manifests the shape and interactions between its
constituents. Elongated and straight constituents with steric interactions favor the nematic phase in which
the director’s orientation is uniform in space. In contrast, chiral constituents may favor a twisted director
field, while elongated and curved constituents may favor a bent director. However, not all such locally
preferred tendencies can be globally realized by a director field in a finite domain. For example, the
two-dimensional straight nematic texture with vanishing splay and bend cannot be realized on any open
region on the surface of a sphere [9]. Here, the splay and bend of a director field n are given by s = ∇ · n
and b = ‖(n · ∇)n‖, respectively, and constitute the basic distortion modes of any two-dimensional director
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field. Similarly, the phase of constant non-vanishing bend and vanishing splay cannot be realized in the
plane [10]. It is thus natural to ask what local tendencies could be realized by a director texture, and
conversely how many such local descriptors are required to uniquely determine a texture.

Recently, it was shown that any two-dimensional director field is fully described by its bend and splay
fields, and that the values these scalar fields obtain for any realizable texture satisfy K = −b2 − s2 − n · ∇s
+ n⊥ · ∇b [9], where K is the Gaussian curvature of the surface S in which the field is embedded and n⊥ is
the field in S normal to n. The identification of the class of all admissible textures also allowed addressing
the notion of optimal compromise for unrealizable frustrated states. These results are, however, presently
limited to two-dimensional systems. For three-dimensional liquid crystals there are additional distortion
fields, such as the twist and saddle-splay that do not have corresponding fields in two-dimensional systems.
Moreover, the three-dimensional geometry is associated with additional compatibility conditions; while for
two-dimensional Riemannian geometry there is only one local geometric charge, in three dimensions there
are three independent scalar Riemannian charges. Thus, the three-dimensional case is expected to lead to a
larger set of relations involving a greater number of fields. Presently, it is unknown how many fields are
required to uniquely determine a director field in three dimensions, nor how many relations these fields
must satisfy to correspond to a realizable texture.

Many frustrated assemblies, in which the constituents locally favor an arrangement that cannot be
globally realized, exhibit a super-extensive ground state energy for isotropic domains; i.e. the energetic cost
of the optimal compromise in these systems increases faster than linearly with their mass. Recently, it was
shown that the exact order and structure of the compatibility conditions completely determine this
super-extensive behavior and can be used to predict the exponent related to the super-extensive growth of
the ground state energy [11]. The purpose of the work presented here is to further advance recent efforts
aimed at understanding and quantifying frustration in three-dimensional liquid crystals. We provide a
definitive answer to the above questions by writing explicitly the six differential relations that form the
compatibility conditions relating the five fields that describe a director field in three dimensions. These six
equations relate the fields and their derivatives to each other and to the curvature tensor of the 3D manifold
where the director field lives. As an application of our results, we also characterize all uniform distortion
fields in the three-sphere, S3, and hyperbolic space, H3, showing in particular that in hyperbolic space
uniform distortion fields also correspond to a foliation of space by (non-necessarily parallel) helices1. Thus,
together with the results of reference [12], we complete the characterization of uniform distortion fields for
all the three homogeneous and isotropic geometries.

For flat space, satisfaction of the compatibility conditions constitutes a necessary and sufficient
condition for the existence of a corresponding director field. We thus conclude that knowledge of the five
scalar fields that describe the director; namely the twist, t, splay s, bend b, biaxial splay Δ, and relative
orientation between the principal biaxial splay direction and the bend direction φ, suffice for defining a
texture, unique up to rigid motions, provided that they satisfy the compatibility conditions.

2. Background: geometric frustration in three-dimensional director fields

The present work joins ongoing efforts to better understand the underlying geometry of three-dimensional
director fields. Recent insightful interpretations of the basic distortion modes of unit director fields in three
dimensions identified these distortion modes with distinct components of the director gradient, J = ∇n
[13, 14]. The splay corresponds to the trace of J, while the bend is a vector in the space perpendicular to n
and thus contributes two degrees of freedom. The remaining modes contribute to the components of J in
the two-dimensional space normal to n, and are traceless. The twist t = n · (∇× n) corresponds to the
anti-symmetric component, while the biaxial splay is identified with the remaining traceless symmetric
structure and thus contributes two degrees of freedom as well. This yields a total count of six independent
contributions to J [13, 14]. However, the freedom in assigning a base to the space perpendicular to n
eliminates one of these to yield five total intrinsic fields that describe a director. We identify these as the
splay, bend, twist, saddle-splay and the relative orientation between the direction of the bend vector and the
principal direction of the biaxial splay.

These local descriptors of the liquid crystalline order may be associated with non trivial reference values
induced by the structure and relative interactions of their constituents. Considering phases composed of
identical constituents, it is natural to assume that these reference values will be uniform in space and
manifest the underling symmetry of their constituent. However, as was recently shown [12], the space of
phases associated with such constant descriptors, termed ‘uniform distortions’, is very limited, necessitating

1 By a helix we mean a curve of constant curvature and constant torsion.
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more complex textures. For example, chiral constituents favoring the unrealizable uniform double twist
produce the blue phase in which defect lines, separating biaxially twisted columns, are periodically arranged
[1]. Similarly, achiral bent core liquid crystals form chiral meso-phases displaying giant optical activity [15,
16] and heliconical ordering [17]. The constituents in this case locally favor a phase of vanishing twist, splay
and saddle-splay and a constant non-vanishing bend. Such a phase cannot be realized in Euclidean space
and instead the system incorporates a twist in order to accommodate the uniform bend resulting in the
observed heliconical phase [10].

Focusing on uniform distortions Virga showed that all such textures correspond to foliations of the
three-dimensional Euclidean space by parallel helices [12]. His results relied on vector calculus, where the
motion of the frame {n = n1, n2, n3} is described in terms of the so-called connectors vector fields and the
compatibility conditions for the deformation modes associated with a director then follow from the
symmetry of the tensors ni · ∇2nj [12]. In particular, it was shown that the pure bend phase favored by bent
core liquid crystals is indeed frustrated, and predicted the heliconical phase with uniform twist as a
plausible compromise. For small enough domains, however, one might expect other non-uniform
distortions to yield the optimal compromise [11].

Similar arguments show that the attempted pure double twist phase resulting in the blue phase is also
frustrated in Euclidean space [12]. This attempted phase, however, can be accommodated in a
three-dimensional spherical geometry of an appropriate radius [18]. Other examples of uniform distortion
fields have been recently provided for all the eight Thurston geometries [19], where it is shown that each
pure mode of director deformation can fill space without frustration for at least one type of geometry.

In this work we seek to obtain the full compatibility conditions for three-dimensional director fields.
Naturally, one may seek to exploit the same reasoning that was exploited to yield the compatibility
conditions in two dimensions [9]. However, the method employed there relies heavily on the existence of a
natural orthogonal frame of coordinates such that the parametric curves are tangent to n and to the
perpendicular unit vector n⊥. This, however, could not be generalized to three dimensions. A general field
of an orthonormal triad in 3D cannot be associated with the tangents of parametric curves. Instead, one
needs to study the properties of the orthonormal triad field without resorting to coordinates; the
mathematical formalism which achieves this is called the method of moving frames [20], also known as
vielbein formalism in the context of relativity [21]. Given a 3D director field n1 = n and its two normals n2

and n3 = n1 × n2 one can build the corresponding dual frame of differential forms which together with the
so-called connection forms describe the geometry of 3D space using the differential form structure
equations. This formalism also allows for an invariant formulation of vector calculus operators, which
means that quantities and energy functionals used in the description of 3D liquid crystals can be rewritten
as exterior differential systems, i.e., differential equations in terms of differential forms and operations
defined on them.

Though more abstract than the vector calculus method [12], the approach based on differential forms
allows us to obtain manageable equations and to investigate director fields in both Euclidean and curved
Riemannian spaces in an equal foot. This helps in better understanding how the Euclidean space frustrates
the existence of certain phases.

When concluding the writing of this manuscript a parallel effort to obtain the compatibility conditions
using moving frames by Pollard and Alexander came to our attention [22]. We briefly relate to the
similarities and differences between these works in the discussion section.

3. Differential forms and moving frames

Given a coordinate system (x1, . . . , xm) on an open and connected set U ⊆ Rm, the corresponding vector
fields tangent to the coordinate curves are denoted by { ∂

∂xi }, while their dual fields (or covectors) are

denoted by dxi, i.e., when applied to a vector v = vi ∂
∂xi (sum on repeated indices), we have dxi(v) = vi.

The differential of a scalar function f is defined as df = ∂f
∂xi dxi and, consequently, dxi can be

alternatively seem as the differential of the ith coordinate function. From now on, a field of covectors
p ∈ U �→ ηp ∈ (TpU)∗ is called a differential one-form, while a function is a zero-form. Notice that we can
write any one-form as η = aidxi for some scalar fields ai and that there is an isomorphism between vector
fields and one-forms: ai dxi ↔ ai

∂
∂xi . Given two differential one-forms η and ω, we define the exterior

product η ∧ ω as the anti-symmetric bilinear map (η ∧ ω)(u, v) = η(u)ω(v) − η(v)ω(u). We shall refer to
η ∧ ω as a differential two-form. We can define the exterior derivative of a one-form η = aidxi as the
two-form dη = dai ∧ dxi = ∂ai

∂xj dxj ∧ dxi. The vector space of two-forms are generated by
{dxi ∧ dxj}1�i<j�m and, therefore, it has dimension m(m − 1)/2. More generally, a differential k-form is an
anti-symmetric k-linear map and the corresponding vector space is generated by the basis

3
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{dxi1 ∧ . . . ∧ dxik}1�i1<...<ik�m, where (dxi1 ∧ . . . ∧ dxik )(v1, . . . , vm) = det (dxir (vs))rs. The exterior
derivative of a k-form η = ai1 ...ik dxi1 ∧ . . . dxik is the (k + 1)-form dη = dai1 ...ik ∧ dxi1 ∧ . . .dxik . In
addition, d is linear and satisfies the product rule d(η ∧ ω) = dη ∧ ω + (−1)kη ∧ dω, where η is a k-form
and ω is a �-form. A remarkable property of the exterior derivative d is that d2 = 0, i.e., the differential of
the k-form dη always vanishes. (As an exercise, the reader can easily verify this property for zero- and
one-forms.)

Instead of using coordinate fields, we may consider in U any set of orthonormal vector fields
{n1, . . . , nm} along with its set of dual fields {η1, . . . , ηm}, i.e., ηi(nj) = δi

j , where δi
j is the Kronecker delta.

Since each ni is a smooth map from U to Rm, if we write it in coordinates ni = nj
i
∂
∂xj , its differential2 is

dni = (dn1
i , . . . , dnm

i ) = ∂ni
∂x dx, where ∂ni

∂x is the Jacobian matrix acting by matrix multiplication on
dx = (dx1, . . . , dxm). Alternatively, the differential dni acting on a tangent vector v ∈ TpU can be written as
a linear combination

(dni)p(v) = η
j
i(p, v)nj(p). (1)

In what follows, we shall omit the explicit dependence on p and v and simply write dni = η
j
inj. For a fixed

point p, the functions ηj
i are linear and, therefore, each p �→ η

j
i(p, ·) defines a one-form. From the

orthonormality of {ni} it follows that ηj
i = −ηi

j .

If r : U → Rm denotes the inclusion map, its differential can be written as dr = ηini. Geometrically,
given a moving frame {ni}, the set of one-forms {ηi} describes infinitesimal translations of the moving
frame while the one-forms {ηj

i} describes infinitesimal rotations. Now, using that d2r = 0 and d2ni = 0, we
have the so-called structure equations⎧⎨

⎩
dηi = ηk ∧ ηi

k

dηi
j = ηk

j ∧ ηi
k

, i, j ∈ {1, . . . , m}. (2)

For the Euclidean case, these constitute the integrability conditions for the existence of a moving frame with
dual frame {ηi} and connection forms {ηj

i} [23]. See [24], lemma 2 with k = 0, for an elementary proof.
As an example of these ideas, consider in R3 the moving frame given by the vector fields n1 = (cosφ

cos θ, cosφ sin θ, sinφ), n2 = (− sin θ, cos θ, 0) and n3 = (− sinφ cos θ,− sinφ sin θ, cosφ), where
θ = θ(x, y, z) and φ = φ(x, y, z) are smooth functions on U ⊆ R3. Computing their differential gives

dn1 = dφ(− sin φ cos θ,− sin φ sin θ, cos φ) + dθ(− cos φ sin θ, cos φ cos θ, 0)

= cos φ dθ n2 + dφn3,

dn2 = dθ(− cos θ,− sin θ, 0) = − cos φ dθ n1 + sin φ dθ n3,

dn3 = −dφ(cos φ cos θ, cos φ sin θ, sin φ) + dθ(sin φ sin θ,− sin φ cos θ, 0)

= −dφ n1 − sin φdθ n2.

Therefore, the one-forms ηj
i associated with {n1, n2, n3} are η2

1 = cos φ dθ, η3
1 = dφ, and η3

2 = sin φ dθ. We
leave as an exercise checking the validity of the structure equations dηi

j = ηk
j ∧ ηi

k.

The one-forms ηk
i are also known as connection forms since they determine the connection coefficients of

the covariant derivative. Indeed, given two vector fields u = uini and v = vini in U, the covariant derivative
of u in the direction of v, ∇vu, can be written using moving frames as

∇vu = (du)(v) = d(uknk)(v) =
[
duk(v) + ujηk

j (v)
]

nk. (3)

Therefore, the connection forms can be alternatively computed from the Levi-Civita connection ∇ by using
the relation ηk

j (v) = 〈∇vnj, nk〉. In addition, given two tangent vectors u, v ∈ TpU, the inner product

between them is g(uini, vjnj) = uivjδij = uivi = ηi(u)ηi(v). The metric g in U is then written as
g = (η1)2 + · · ·+ (ηm)2. It follows that the geometry of U ⊆ Rm is entirely contained in the sets of
one-forms {ηi} and {ηj

i}.
To accomplish the goal of doing differential geometry using moving frames, we should be able to

compute differential operators using differential forms. To do that, we need the Hodge star operator 	,
which takes k-forms to (m − k)-forms. Geometrically, we proceed as follows. Given a k-form
ω = ω1 ∧ · · · ∧ ωk, where {ωi} is linearly independent, consider the k-dimensional vector subspace V of

2 The use of the same symbol for both the differential of a map between manifolds and the exterior derivative of a differential form is
justified by the possibility of seeing the differential as a vector-valued one-form, see, e.g. subsection 2.8 of reference [20].
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Rm generated by the vectors {v1, . . . , vk} associated with {ω1, . . . ,ωk}. We then pick a basis {vk+1, . . . , vm}
of the vector space V⊥ orthogonal to V and consider ωk+1, . . . ,ωm, the one-forms associated with the
vectors of this basis. Then, we define 	ω = ±λ ωk+1 ∧ · · · ∧ ωm, where λ is the k-volume of the solid
generated by {vi}k

i=1 and the sign corresponds to the orientation of B = {v1, . . . , vk, vk+1, . . . , vm}, i.e., plus
if B has the same orientation as the canonical basis of Rm and minus if otherwise. Finally, we compute 	 for
a generic linear form by demanding linearity. As an example, in R3 the Hodge star operator acting on
one-forms gives 	dx1 = dx2 ∧ dx3, 	dx2 = −dx1 ∧ dx3, and 	dx3 = dx1 ∧ dx2. Finally, the curl and
divergence of n are associated with differential forms according to

∇× n̂ ↔ 	(dη) and ∇ · n̂ = 	[d(	η)], (4)

where η is the one-form dual to n̂.

4. Compatibility condition for two-dimensional director fields

Director fields n in 2D are fully described by their bend b = ‖n ×∇× n‖ and splay s = ∇ · n. However,
the splay and bend are not independent functions and they are related to the curvature of the ambient
surface by [9]

−K = s2 + b2 + n · ∇s − n⊥ · ∇b.

In this section we provide an alternative proof for the 2D compatibility equation via moving frames. But,
first, we shall illustrate how the moving frame method can be used to describe the geometry of surfaces.

Let r : U → S ⊂ R3 be a surface and N its unit normal. If {n1, n2} is a field of orthonormal bases for the
tangent planes, we then define a moving frame in 3D as {n1, n2, n3 :=N} along with its dual frame
{η1, η2, η3}. Since we are interested on the surface geometry, we shall restrict our attention to ηi, ηj

i when
applied to tangent vectors. Then, in this restricted setting it follows that

∀ v = v1n1 + v2n2 ∈ TpS, η3(v) = 0.

Therefore, seeing η3 as a 2D differential form on S implies η3 = 0. Thus, the one-forms η2
1 , η3

1, η3
2 can be

written as a linear combination of η1 and η2 only, i.e., they can also be seen as differential forms on the
surface. This process of seeing ηi and ηi

j as 2D differential forms can be rigorously justified by using r to

pullback the one-forms ηi and η
j
i to U: the pullback of a k-form η is the k-form ω = r∗η defined by

ωp(v1, . . . , vk) = ηr(p)(dr(v1), . . . , dr(vk)). Now, since the pullback operation ∗ commutes with d and ∧
[25], the one-forms r∗ηi and r∗ηi

j satisfy the same structure equations as ηi and ηi
j . Thus, with some abuse of

notation, we simply write ηi = r∗ηi and ηi
j = r∗ηi

j , which finally justifies seeing ηi and η
j
i as one-forms over

S = r(U)3.
From the fact that η3 = 0 on S, it follows that dη3 = 0 on S. Then, the structure equations in (2) imply

that η1 ∧ η3
1 + η2 ∧ η3

2 = 0. An important result for differential forms is the Cartan lemma [20, 26], which
says that if ω1, . . . ,ωk are linearly independent one-forms and if there exist one-forms θ1, . . . , θk such that∑k

i=1ω
i ∧ θi = 0, then θi = ai

jω
j with aj

i = ai
j. Therefore, since the set {η1, η2} is linearly independent, from

the Cartan lemma we may write

η3
1 = a1

1η
1 + a1

2η
2 and η3

2 = a2
1η

1 + a2
2η

2, aj
i = ai

j. (5)

From dn3 = η1
3 n1 + η2

3 n2 = −(η3
1 n1 + η3

2n2), it follows that the coefficients ai
j precisely describe the shape

operator of S. Then, the mean (H) and Gaussian (K) curvatures can be written as

H =
1

2
tr(a) =

a1
1 + a2

2

2
and K = det(a) = a1

1a2
2 − (a2

1)2. (6)

It remains to find the interpretation of η2
1 . From η2

1(v) = 〈∇vn1, n2〉, we see that we can write
η2

1 = η2
1(n1)η1 + η2

1(n1)η2 = κgη
1 + κ⊥

g η
2, where κg and κ⊥

g are the geodesic curvatures of the integral
curves of n1 and n2, respectively. In addition, taking the exterior derivative provides the important relation
dη2

1 = η3
1 ∧ η2

1 = −Kη1 ∧ η2. This relation will be the key to finding the compatibility equation for director
fields in 2D.

3 As an alternative to using pullbacks, we could consider a foliation of space by surfaces parallel to S spanning a region parametrized
as R(x1, x2, x3) = r(x1, x2) + x3N(x1, x2). Since we are only interested on tangent directions, any dependence of ηj

i on η3 does not con-
tribute to the final result. In addition, following this idea, η3 is nothing but the differential of the x3-coordinate, which implies that
dη3 = 0. As shown in the main text, this is the key property allowing us to use the moving frame method to study the differential
geometry of surfaces in space.
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We have just seen that for a surface in 3D the intrinsic geometry is encoded in η1, η2, and η2
1 , while the

extrinsic geometry comes from η3
1 and η3

2 . (The second fundamental form II can be written as II = ηiη3
i .)

The equation dη2
1 = −Kη1 ∧ η2 in 2D indicates that for moving frames in a Riemannian manifold the

second set of structure equations, equation (2), must be modified to account for the curvature of the
ambient manifold: for a 2D manifold with Gaussian curvature K = R1212, the structure equations
associated with the one-forms {η1, η2} and η2

1 are dη1 = η2 ∧ η1
2 , dη2 = η1 ∧ η2

1 , and dη2
1 − ηk

1 ∧ η2
k

= dη2
1 = −Kη1 ∧ η2.

In general, for a moving frame {ni}m
i=1 in a Riemannian manifold Mm with curvature tensor Rijk� = Ri

jk�,
the structure equations are [20, 26]

dηi = ηk ∧ ηi
k and dηi

j − ηk
j ∧ ηi

k = −1

2
Ri

jk�η
k ∧ η� = −

∑
k<�

Rijk�η
k ∧ η�, (7)

where we used that the operation of raising and lowering indices is trivial since the metric coefficients
associated with the moving frame are δij = 〈ni, nj〉.

Now, let n̂ be a director field on a 2D Riemannian manifold (M2, 〈·, ·〉). We may introduce a moving
frame {n1 := n̂, n2 := n̂⊥} along with its coframe {η1, η2}. As we have seen, we can write η2

1 = κgη
1 + κ⊥

g η
2.

On the one hand, the splay s = ∇ · n̂ is computed as

s = 	 d 	 η1 = 	 dη2 = 	(η1 ∧ η2
1) = κ⊥

g . (8)

On the other hand, the bend b = ‖n̂ ×∇× n̂‖ is

b =
∥∥	(η1 ∧ 	 dη1)

∥∥ =
∥∥	[η1 ∧ 	(η2 ∧ η1

2)]
∥∥ =

∥∥	[η1 ∧ 	(κgη
1 ∧ η2)]

∥∥ =
∥∥κgη

2
∥∥ = κg. (9)

This last equation also shows that, in 2D, we may write b = −∇ · n2 = 	d 	 η2. In short, we have the
following relation

η2
1 = bη1 + sη2. (10)

Now we shall apply the findings above in order to write the compatibility equation for 2D director fields
as found in [9], but using moving frames.

Theorem 1. (Compatibility condition in 2D). Let n̂ be a director field with splay s and bend b on a 2D
manifold M2 with Gaussian curvature K. Then,

− K = s2 + b2 + (n̂ · ∇)s − (n̂⊥ · ∇)b, (11)

where (v · ∇) is the directional derivative in the direction of v and 〈n̂, n̂⊥〉 = 0.

Proof. The exterior derivative of η2
1 is

dη2
1 = d(bη1 + sη2) = db ∧ η1 + b dη1 + ds ∧ η2 + s dη2

= [(n̂⊥ · ∇)b]η2 ∧ η1 + bη2 ∧ η1
2 + [(n̂ · ∇)s]η1 ∧ η2 + sη1 ∧ η2

1

=
[
(n̂ · ∇)s − (n̂⊥ · ∇)b + b2 + s2

]
η1 ∧ η2.

Now, using that dη2
1 = −Kη1 ∧ η2 we deduce the desired equality.

5. Three-dimensional director fields

Inspired by the study of 2D director fields, the strategy in 3D will consist of writing the one-forms ηj
i in

terms of the deformation modes of a director field n and then from the structure equations associated with
dηj

i we will obtain the compatibility equations.
In 2D, there are two deformation modes (bend and splay), while in 3D there are 6 modes, which can be

further reduced to 5. Indeed, as discussed in section 2, taking into account rotations that preserve the
director n, the gradient ∇n decomposes as [13, 14]

∇αnβ = −nαbβ +
s

2
(δαβ − nαnβ) +

t

2
εαβγnγ +Δαβ , (12)

where Greek indices indicate Cartesian coordinates and b = −n · ∇n is the bend vector, whose norm b (the
bend) gives the curvature of the integral lines of n, s = ∇ · n is the splay, t = n · ∇ × n is the twist, and Δij

are the coefficients of the biaxial-splay [14].

6
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In 2D, the coefficients of the one-form η2
1 are related to the geometry of the integral curves of the

director and its orthogonal field. Given an integral curve of ni in 3D, we can consider {ni, ni+1, ni+2} as a
positive orthonormal moving trihedron along it, e.g., for n2 we have {n2, n3, n1}. The equations of motion
of such a moving trihedron along the ni-integral curves are

∇ni

⎛
⎝ ni

ni+1

ni+2

⎞
⎠ =

⎛
⎝ 0 κ1

i κ2
i

−κ1
i 0 ωi

−κ2
i −ωi 0

⎞
⎠

⎛
⎝ ni

ni+1

ni+2

⎞
⎠ , (13)

where κ1
i and κ2

i relate to the (geodesic) curvature function κi as κi(s) =
√

[κ1
i (s)]2 + [κ2

i (s)]2 and ωi

relates to the torsion τ i as ωi(s) = τ i(s) − θ′(s), where θ is the angle between the (Frenet) principal normal
and ni+1 [27]. Thus, using the property η

j
i(v) = 〈∇vni, nj〉, the one-forms ηj

i when written in the basis
{η1, η2, η3} are ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
η2

1 = κ1
1η

1 − κ2
2η

2 + ω3η
3

η3
1 = κ2

1η
1 − ω2η

2 − κ1
3η

3

η3
2 = ω1η

1 + κ1
2η

2 − κ2
3η

3.

(14)

The one-forms η2
1 and η3

1 provide information about the gradient of the director n1, dn1 = η2
1n2 + η3

1 n3.
The components dual to the director n then contains information about the bend vector b = −∇nn
= bn ×∇× n, b =

√
(κ1

1)2 + (κ2
1)2. The remaining components of dn1 can be decomposed into an

antisymmetric and a symmetric part, where the symmetric part can be further decomposed into a trace and
traceless operator. This decomposition provides the twist t, splay s, and biaxial splay coefficients Δij,
respectively. Thus, from

(
−κ2

2 ω3

−ω2 −κ1
3

)
=

t

2

(
0 −1
1 0

)
+

s

2

(
1 0
0 1

)
+

(
Δ1 Δ2

Δ2 −Δ1

)
, (15)

we can write

t = −(ω2 + ω3), s = −(κ2
2 + κ1

3), Δ1 =
κ1

3 − κ2
2

2
and Δ2 =

ω3 − ω2

2
. (16)

By inverting these relations, we can finally rewrite η2
1 and η3

1 in equation (14) as

η2
1 = −b⊥η

1 +
( s

2
+Δ1

)
η2 +

(
− t

2
+Δ2

)
η3, (17)

and
η3

1 = −b×η
1 +

( t

2
+Δ2

)
η2 +

( s

2
−Δ1

)
η3, (18)

where we write the bend vector as b = b⊥n2 + b×n3.
The compatibility conditions then come from the structure equations

Ω2
1 = dη2

1 − η3
1 ∧ η2

3 , Ω3
1 = dη3

1 − η2
1 ∧ η3

2, and Ω3
2 = dη3

2 − η1
2 ∧ η3

1 ,

where Ω
j
i are the curvature forms whose coordinates in the basis {ηi ∧ ηj} provide the coefficients of the

curvature tensor as defined in equation (7). Together, the three structure equations provide the 34 = 81
coefficients of the curvature tensor Rijk�. From Ω

j
i = −Ωi

j and the fact that Ωj
i is a differential form, it follows

that Rijk� = −Rjik� = −Rij�k reducing these to only 9 independent entries. However, the first Bianchi identity
(which is required to further reduce these to only 6 independent components) cannot be proved directly
from the above definition. Proving this identity requires differentiating dηi = ηk ∧ ηi

k to obtain
ηk ∧Ωi

k = 0, from which follows that Rijk� = Rk�ij (see [26] or [20], p 376). While these relations hold for

connection forms that are obtained from a moving frame, there could be one-forms ηj
i that would fail to

satisfy these relations. Such forms could not be the connection forms of a moving frame in any Riemannian
geometry. Thus, while for any compatible set of moving frames the Riemann curvature tensor contains only
six independent entries, requiring the satisfaction of the first Bianchi identity yields three additional

7
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non-trivial compatibility conditions resulting in the following nine equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1212 = −
( s

2
+Δ1

)
,1
− b⊥,2 − b2

⊥ − s2

4
+

t2

4
− sΔ1 − (Δ)2 + 2ω1Δ2 + κ1

2b×,

R1213 = −
(
− t

2
+Δ2

)
,1
− b⊥,3 − b⊥b× − s

(
− t

2
+Δ2

)
− 2ω1Δ1 − κ2

3b×,

R1223 = −
(
− t

2
+Δ2

)
,2
+
( s

2
+Δ1

)
,3
+ tb⊥ − 2κ1

2Δ1 + 2κ2
3Δ2,

R1312 = −
( t

2
+Δ2

)
,1
− b×,2 − b⊥b× − s

( t

2
+Δ2

)
− 2ω1Δ1 − κ1

2b⊥,

R1313 = −
( s

2
−Δ1

)
,1
− b×,3 − b2

× − s2

4
+

t2

4
+ sΔ1 − (Δ)2 − 2ω1Δ2 + κ2

3b⊥,

R1323 = −
( s

2
−Δ1

)
,2
+
( t

2
+Δ2

)
,3
+ tb× − 2κ1

2Δ2 − 2κ2
3Δ1,

R2312 = −κ1
2,1 + ω1,2 − (b× + κ1

2)
( s

2
+Δ1

)
+ (b⊥ + κ2

3)
( t

2
+Δ2

)
+ b⊥ω1 − κ2

3ω1,

R2313 = κ2
3,1 + ω1,3 + (b⊥ + κ2

3)
( s

2
−Δ1

)
− (b× + κ1

2)
(
− t

2
+Δ2

)
+ b×ω1 − κ1

2ω1,

R2323 = κ2
3,2 + κ1

2,3 − (κ1
2)2 − (κ2

3)2 − tω1 −
s2

4
− t2

4
+ (Δ)2,

(19)

where f,i = ni · ∇f denotes the derivative of f in the direction of ni and we denote Δ =
√

(Δ1)2 + (Δ2)2.
The gradient of the director field can be written in terms of the deformations modes b⊥, b×, s, t,Δ1, and

Δ2. However, notice that by choosing n2 to be either the normalized bend vector or an eigenvector of the
biaxial splay implies we have a Gauge freedom allowing us to set either b× = 0 or Δ2 = 0. Therefore, this
reduces the number of degrees of freedom from 6 to 5. In addition, the equations for the curvature tensor
were written in terms of 9 functions, six of which can be written in terms of the deformation modes. Thus,
the remaining three, κ1

2, κ2
3, and ω1 must be superfluous. We will prove this last assertion in the next two

subsections, where we divide the study into director fields with either Δ2 = (Δ1)2 + (Δ2)2 > 0 or
Δ2 = (Δ1)2 + (Δ2)2 = 0 on all points. In short, we will have six 6 compatibility equations in 5 functions.

5.1. Director fields with non-vanishing biaxial splay
Let us assume non-vanishing biaxial splay (Δ)2 = (Δ1)2 + (Δ2)2 > 0. Then, using the equations for Rijk�

we can compute the sum Δ1R1223 +Δ2R1323, which allows us to write κ1
2 as

κ1
2 = −Δ1R1223 +Δ2R1323

2Δ2 +
Δ1t,2 −Δ2s,2 +Δ1s,3 +Δ2t,3

2Δ2

− Δ1Δ2,2 −Δ2Δ1,2

2Δ2 +
(Δ2),3

4Δ2 + t
b⊥Δ1 + b×Δ2

2Δ2 . (20)

Using the equations for Rijk� we can find Δ2R1223 −Δ1R1323, which allows us to write κ2
3 as

κ2
3 = −Δ1R1323 −Δ2R1223

2Δ2 − Δ2t,2 +Δ1s,2 −Δ1t,3 +Δ2s,3

2Δ2

+
Δ1Δ2,3 −Δ2Δ1,3

2Δ2 +
(Δ2),2

4Δ2 − t
b⊥Δ2 − b×Δ1

2Δ2 . (21)

Analogously, computing −Δ2R1212 +Δ2R1313 +Δ1R1213 +Δ1R1312 allows us to write ω1 as

ω1 =
Δ2R1212 −Δ2R1313 −Δ1R1213 −Δ1R1312

4Δ2 +
Δ2Δ1,1 −Δ1Δ2,1

2Δ2

− Δ1b×,2 +Δ1b⊥,3 −Δ2b⊥,2 +Δ2b×,3

4Δ2 +
(b2

⊥ − b2
×)Δ2 − 2b⊥b×Δ1

4Δ2

− κ1
2

b⊥Δ1 + b×Δ2

4Δ2 + κ2
3

b⊥Δ2 − b×Δ1

4Δ2 . (22)

Now, substituting the expressions for κ1
2 and κ2

3 in the equation above, we finally have

ω1 =
Δ2R1212 −Δ2R1313 −Δ1R1213 −Δ1R1312

4Δ2 +
b⊥R1223 + b×R1323

8Δ2

+
Δ2Δ1,1 −Δ1Δ2,1

2Δ2 − Δ1b×,2 +Δ1b⊥,3 −Δ2b⊥,2 +Δ2b×,3

4Δ2 − tb2

8Δ2

− b×Δ1,2 − b⊥Δ2,2 + b⊥Δ1,3 + b×Δ2,3

8Δ2 +
(b2

⊥ − b2
×)Δ2 − 2b⊥b×Δ1

4Δ2 . (23)

8
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There are three other linearly independent combinations we can construct with the equations for R12ij

and R13ij. Indeed, using the equations for Rijk� we can compute R1212 + R1313, R1312 − R1213 = 0, and
Δ1R1212 +Δ2R1213 +Δ2R1312 −Δ1R1313, which give

R1212 + R1313 = −s,1 − b⊥,2 − b×,3 − b2 − s2

2
+

t2

2
− 2Δ2 + κ1

2b× + κ2
3b⊥, (24)

0 = R1312 − R1213 = −t,1 − b×,2 + b⊥,3 − st − κ1
2b⊥ + κ2

3b×, (25)

and

s =
Δ1[R1313 − R1212] −Δ2[R1213 + R1312]

2Δ2 − [(b2
⊥ − b2

×)Δ1 + 2b⊥b×Δ2]

2Δ2

− Δ1[b⊥,2 − b×,3] +Δ2[b×,2 + b⊥,3]

2Δ2 − κ1
2

b⊥Δ2 − b×Δ1

2Δ2 − κ2
3

b⊥Δ1 + b×Δ2

2Δ2 . (26)

Note we can set 0 = R1312 − R1213 since this is required by the symmetries of the curvature tensor Rijk�.
Now, substituting κ1

2, κ2
3, and ω1 from equations (20), (21), and (23) in the three equations we just

obtained, we obtain three differential equations of first order involving the deformations modes. In
addition, if we also substitute κ1

2, κ2
3, and ω1 in the equations for R23ij, we will obtain another set of three

differential equations involving the deformations modes and their first and second derivatives.

5.2. Director fields with vanishing biaxial splay
Now, let us assume a vanishing biaxial splay (Δ)2 = (Δ1)2 + (Δ2)2 = 0. If we assume that b �= 0, then from
the equations of Rijk� we can compute b×R1212 − b⊥R1312, which allows us to write κ1

2 as

κ1
2 =

b×R1212 − b⊥R1312

b2
+

b×s,1 − b⊥t,1

2b2
+

b⊥b×,2 − b×b⊥,2

b2
− (t2 − s2)b× + 2stb⊥

4b2
. (27)

In addition, from the equations of Rijk� we can compute b⊥R1313 − b×R1213, which allows us to write κ2
3 as

κ2
3 =

b⊥R1313 − b×R1213

b2
+

b×t,1 + b⊥s,1

2b2
+

b⊥b×,3 − b×b⊥,3

b2
+

(s2 − t2)b⊥ + 2stb×
4b2

. (28)

Note that when Δ = 0, we can write ω1 as a function of the deformation modes {s, t, b⊥, b×} by
substituting for κ1

2 and κ2
3 in the equation for R2323. Alternatively, we can get rid of ω1 by choosing n2 and

n3 such that ω1 = 0.
On the other hand, if b = 0, then there are some restrictions on the geometry of the ambient manifold.

Indeed, we straightforwardly conclude that R1212 = R1313 and R1213 = −R1312, which by using the symmetry
R1213 = R1312 allows us to deduce that R1213 = R1312 = 0.

6. Uniform distortion director fields on manifolds of constant curvature

In this section, we provide a characterization of uniform distortion fields, i.e., director fields n for which the
deformation modes {s, t, b,Δ1,Δ2} are all constant, in manifolds of constant sectional curvature. As a
consequence, it will follow that no combination of values other than the pure twist phase exist in positive
curvature. For negative curvature, the examples of uniform distortion fields with s2 + 4b2 = 4 and t = 0
provided in [19] are in fact the most general case under the assumption that the biaxial splay vanishes.
However, our results will also imply that it is possible to have uniform distortion fields in negative curvature
with non-vanishing biaxial splay and, as in the Euclidean space, these phases correspond to foliations of
space by helices.

From now on, let us assume that we have a director field in a curved space M3 of constant curvature R0.
This means that the curvature tensor is given by Rijk� = R0(δikδj� − δi�δjk) [28]: R0 < 0 if M3 is locally
isometric to a hyperbolic space, R0 = 0 if M3 is locally isometric to the Euclidean space, and R0 > 0 if M3 is
locally isometric to a three-sphere. Let us also introduce the shorthand notation 〈Db, b〉 = (b2

⊥ − b2
×)Δ1

+ 2b⊥b×Δ2 = b2Δ cos(2φ) and 〈JDb, b〉 = (b2
× − b2

⊥)Δ2 + 2b⊥b×Δ1 = b2Δ sin(2φ), where φ is the angle
formed by the bend vector and the principal direction of the biaxial splay. (In other words, D and J denote
the biaxial splay and the counterclockwise π

2 -rotation acting as linear operators on the plane normal to the
director field, respectively.) The results of this section can be summarized as follows

Theorem 2. Let M3 be a manifold of constant sectional curvature R0 and let n be a director field in it with
constant deformation modes {s, t, b⊥, b×,Δ1,Δ2}.

9
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Figure 1. (Left) A single integral curve of a uniform distortion field n in hyperbolic space H3 using the Poincaŕe ball model.
(Right) A collection of five integral curves of a uniform distortion field in hyperbolic space H3 forming congruent helices of
similar curvature κ = b and torsion τ = ω1. The collection of all integral curves constitute a foliation of H3 by congruent helices.
The dashed gray line indicates the points (x, y, z) in the ideal boundary with z = 0. The different helices are assigned five distinct
letters (colors) to help guide the eye. Note that the distance between the integral curves increases as we move away from the point
(0, 0, 0) indicating a non-zero splay. This is expected in hyperbolic space since the failure of the parallel postulate is equivalent to
the non-existence of equidistant geodesics and, therefore, we expect to not have equidistant congruent curves in H3. (In the
figure, the sectional curvature is R0 = −1, b = 4.0 (with b⊥ = −b and b× = 0), Δ1 = Δ2 =

√
2

2 , t = 2Δ = 2, and
s = − 1

2Δ2 [(b2
⊥ − b2

×)Δ1 + 2b⊥b×Δ2] = −4
√

2.)

(a) If R0 > 0, then s = b = Δ = 0 and t = ±2
√

R0 is the only solution.

(b) If R0 = 0, then b = s = t = 0 when Δ = 0. On the other hand, when Δ �= 0, then s = 0, t = ±2Δ, and
φ = (2k+1)π

4 , k ∈ {0, 1, 2, 3}, i.e., the bend vector b bisects the principal directions of the biaxial splay, where
k = 0 or k = 2 if t = 2Δ and k = 1, 3 if t = −2Δ.

(c) If R0 < 0, then t = 0 and s2 + 4b2 = −4R0 when Δ = 0. On the other hand, when Δ �= 0, then t = ±2Δ,

s = − 1
2Δ2 〈Db, b〉, and the deformation modes are subjected to the restriction 1 + b2

4Δ2 �
√
− R0

Δ2 .

In (b) and (c), the bend and biaxial splay are the free parameters describing the families of solutions.

Illustrations of uniform distortion fields in the Euclidean space and three-sphere can be found in
references [12, 19], respectively. In our figure 1 we illustrate a uniform distortion field in hyperbolic space.
As we show below, similarly to the case of Euclidean space, in H3 uniform distortions also give rise to
foliation of space by congruent helices.

In the next subsections we are going to provide a proof for this theorem by analyzing the restrictions
imposed by the compatibility equations on the values of the deformation modes. But, before that, let us
discuss the implications on the geometry of the integral curves of the director field.

For R0 > 0, it is known that the vector field tangent to the fibers of the Hopf fibration provides an
example of a uniform distortion field [18, 19]. It turns out that this is the only possibility. Indeed, given any
uniform distortion field n on a manifold of constant positive curvature, the integral curves of n are
geodesics. In addition, from the fact that s,Δ1, and Δ2 all vanish, we deduce that any two integral curves
are parallel to each other, from which follows that the fibration provided by the integral curves of n is
locally a Hopf fibration [29].

For R0 � 0, the integral curves of a uniform distortion field do not have to be geodesics. In general, they
are helices, i.e., curves with constant curvature and torsion. Indeed, the equations of motion of the
{n1, n2, n3} are

∇n1

⎛
⎝n1

n2

n3

⎞
⎠ =

⎛
⎝ 0 −b⊥ −b×

b⊥ 0 ω1

b× −ω1 0

⎞
⎠

⎛
⎝n1

n2

n3

⎞
⎠ ,

where ω1 is constant and given by equation (23). We can obtain the Frenet frame {T = n, N, B} from
{n1, n2, n3} by a rotation of an angle θ on the normal plane. Then, we can write κ1

1 = κ cos θ,
κ2

1 = κ sin θ, and θ′ = τ − ω1 [27]. Since κi
1 and ω1 are all constant, we deduce that κ and τ are also

10
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Figure 2. Helices in H3 in the Poincaŕe ball model shown, from left to right in perspective-view, side-view (xz-plane projection),
and top-view (xy-plane projection), respectively. The dashed gray line indicates the points (x, y, z) in the ideal boundary with
z = 0. Up to rigid motions in H3, every hyperbolic helix γ is parametrized by γ(t) = 1

1+cosh(θ) cosh(ω1 t) (cosh(θ) sinh(ω1t),
sinh(θ) cos(ω2t), sinh(θ) sin(ω2t)), where θ = θ(ω1,ω2) and ω1,ω2 are constants depending on κ and τ . In the figure, the
sectional curvature is R0 = −1, the torsion is τ = 1

2 while the curvature is κ = 1
2 for the dot-dashed black curve, κ = 1 for the

dashed blue curve, and κ = 3
2 for the full red curve. Note that the oscillatory behavior of γ is more prominent for large values

of κ.

constant. As a consequence, the integral curves of n form helices and make a constant angle with the
Darboux vector field w = ω1n1 − κ2

1n2 + κ1
1n3 or w = τT + κB if we use the Frenet frame: if s denotes the

arc-length of the integral curves of n, then d
ds 〈w, n〉 = 〈∇nw, n〉+ 〈w,∇nn〉 = 〈τ ′

n + b
′
B + τbN

− τbN, n〉+ 〈w, bN〉 = 0.
Virga’s strategy to characterize the helicoidal phases in Euclidean space [12] consisted in investigating

the behavior of the frame along a generic curve in space (not necessarily an integral curve). This gives rise
to an operator whose eigenvector can be shown to be constant and, in addition, the integral lines of the
director field precess around this fixed direction. We can provide an alternative proof by showing that all
integral curves of a uniform distortion field n in a flat manifold have the same axis, i.e., we may show that
v · ∇w = 0 for every direction v.

Using equations (13) and (16) to write some of the κj
i’s and ωi’s as functions of the deformation modes,

we conclude that

w,1 = (b×b⊥ − b⊥b×)n1 + (b⊥ω1 − ω1b⊥)n2 + (b×ω1 − ω1b×)n3 = 0,

w,2 =
[

b⊥
( t

2
+Δ2

)
− b×Δ1

]
n1 + (ω1Δ1 + b⊥κ

1
2)n2 +

[
ω1

( t

2
+Δ2

)
+ b×κ

1
2

]
n3,

and

w,3 =
[

b×
( t

2
−Δ2

)
+ b⊥

( s

2
−Δ1

)]
n1 −

[
ω1

( t

2
−Δ2

)
+ b⊥κ

2
3

]
n2 +

[
ω1

( s

2
−Δ1

)
− b×κ

2
3

]
n3.

On the one hand, for R0 = 0, substitution of the values of the deformation modes of a uniform
distortion field allows us to deduce that ni · ∇w = 0, i = 1, 2, 3. Therefore, n provides a foliation of space
by parallel helices. On the other hand, for R0 < 0, we still have that w,1 = 0 and, therefore, w is parallel
transported along the integral curves of n. However, in general w,2 and w,3 do not vanish, implying that n
provides a foliation of hyperbolic space by helices which are not necessarily parallel. In a hyperbolic space,
we need to distinguish between three types of helices. First notice that a curve with zero torsion is
necessarily contained in a totally geodesic surface, i.e., locally the surface is a copy of a hyperbolic plane of
curvature R0. There are three types of planes curves with constant curvature b > 0: circles if
b ∈ (

√
−R0,∞), horocycles if b =

√
−R0, and hypercycles if b ∈ (0,

√
−R0) [30]. Therefore, depending on

the values of the bend b, we expect three families of helices in hyperbolic geometry. Representative members
of each of the families of hyperbolic helices are illustrated in figure 2.

6.1. Uniform distortion fields with vanishing biaxial splay (Δ)2 = (Δ1)2+(Δ2)2 = 0
First, assume we have b⊥ = b× = 0. Then, from the equations for R1212 and R1213, it follows that
R0 =

1
4 (t2 − s2) and st = 0. Consequently, s = 0 or t = 0 and we finally conclude

Δ = 0, b = 0 ⇒
{

s = 0 and t = ±2
√

R0 if R0 � 0

t = 0 and s = ±2
√
−R0 if R0 � 0

. (29)

11
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In particular, in Euclidean space, Δ = 0 and b = 0 imply that the director field is constant: dn ≡ 0.
Now, assume that Δ = 0 but b �= 0. From R1223 = 0 and R1323 = 0, we necessarily have t = 0. From

equations (27) and (28) it follows

κ1
2 =

b×
b2

(
R0 +

s2

4

)
and κ2

3 =
b⊥
b2

(
R0 +

s2

4

)
. (30)

Substituting the expressions for κ1
2, κ2

3 in the equation for R2323 gives

R0 = − s2

4
−
(

R0 +
s2

4

)2
b2
⊥ + b2

×
b4

⇒ 1

b2

(
R0 +

s2

4

)(
b2 + R0 +

s2

4

)
= 0. (31)

Therefore, s2 = −4R0 or s2 = −4b2 − 4R0.
On the one hand, we see that if R0 � 0, then there exists no solution with b �= 0. On the other hand, if

R0 < 0, we could equally have either s2 = −4R0 or s2 = −4b2 − 4R0 (there is no sign obstruction for
R0 < 0). However, only s2 = −4b2 − 4R0 is allowed. Indeed, if it were s2 = −R0, then substituting the
expressions for κ1

2 and κ2
3 above in the equations for R1212, R1313 and summing them would give

2R0 = −b2 − s2

2
+ R0 +

s2

4
⇒ R0 = −b2 − s2

4
= −b2 − (−4R0)

4
⇒ b2 = 0. (32)

This contradicts the assumption that b �= 0. Finally, we conclude that

Δ = 0, b �= 0 ⇒
{
� solution if R0 > 0

t = 0 and s2 + 4b2 = −4R0 if R0 � 0
. (33)

Notice that in the case R0 < 0, such as in hyperbolic space, the configuration with Δ = 0 and t = 0
becomes the trivial director field in Euclidean space in the limit R0 → 0−.

6.2. Uniform distortion fields with non-vanishing biaxial splay (Δ)2 = (Δ1)2 + (Δ2)2 > 0
If all deformation modes are constant, it follows from equations (20), (21), and (23) that κ1

2, κ2
3, and ω1 are

also constant and equal to

κ1
2 = t

b⊥Δ1 + b×Δ2

2Δ2 , κ2
3 = −t

b⊥Δ2 − b×Δ1

2Δ2 , ω1 = − tb2

8Δ2 − 〈JDb, b〉
4Δ2 . (34)

Now, substituting κ1
2 and κ2

3 in equation (26), implies that the splay is given by

s = −〈Db, b〉
2Δ2 . (35)

In addition, substituting κ1
2, κ2

3, and ω1 in equations (24), (25), and R2323 from equation (19), gives

2R0 = −b2 − s2

2
+

t2

2
− 2Δ2 + t

(b2
× − b2

⊥)Δ2 + 2b⊥b×Δ1

2Δ2 , (36)

0 = −st − t
(b2

⊥ − b2
×)Δ1 + 2b⊥b×Δ2

2Δ2 , (37)

and

R0 = − s2

4
− t2

4
+Δ2 − t2b2

8Δ2 + t
(b2

× − b2
⊥)Δ2 + 2b⊥b×Δ1

4Δ2 . (38)

Notice that from the expression we got for the splay in equation (35), it follows that equation (37) is
redundant. Subtracting equation (36) from twice the last equation above allows us to conclude that

0 =

(
1 +

b2

4Δ2

)
(t2 − 4Δ2) ⇒ t = ±2Δ. (39)

Remark 1. The equations for R2312 and R2313 in (19) provide no further constraints. In fact, substituting κ1
2,

κ2
3, and ω1 in R2312 and in R2313 respectively gives(

1 +
b2

4Δ2

)(
1 − t2

4Δ2

)
(b×Δ1 − b⊥Δ2) = 0,

and (
1 +

b2

4Δ2

)(
1 − t2

4Δ2

)
(b⊥Δ1 + b×Δ2) = 0.

12
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Now, taking into account that t = ±2Δ, which is obtained from R2323, the two equations above vanish
identically.

Let us write t = 2δΔ, δ = ±1, and substitute for t and s in equation (36). Thus,

2R0 = −b2 − 〈Db, b〉2

8Δ4 + δ
〈JDb, b〉

Δ
, (40)

from which we find that

2R0Δ+
〈Db, b〉2

8Δ3 + b2Δ+ δ〈JDb, b〉 = 0. (41)

Now, from the Cauchy–Schwarz inequality, it follows that

|〈JDb, b〉| � ‖JDb‖‖b‖ � b2Δ ⇒ 0 � b2Δ+ δ〈JDb, b〉.

We immediately have the following conclusions:

(a) If R0 > 0, then equation (41) is a sum of non-negative numbers. However, R0Δ > 0 and, consequently,
there must be no uniform director field with Δ > 0 on a space of constant positive curvature, such as the
three-sphere.

(b) If R0 = 0, then we must have 〈Db, b〉 = 0 and also b2Δ+ δ〈JDb, b〉 = 0. It follows that in a space of
vanishing curvature the splay s must vanish and the bend vector b bisects the principal directions of the
biaxial splay, i.e., φ = (2k+1)π

4 , k ∈ {0, 1, 2, 3}, where k = 0 or k = 2 if t = 2Δ and k = 1, 3 if t = −2Δ.

It remains to further analyze uniform distortion director fields in hyperbolic geometry, i.e., R0 < 0.
Seeing equation (36) as a quadratic polynomial in t, its discriminant is

disc. = 4Δ2

(
1 +

b2

4Δ2

)2

+ 4R0. (42)

Thus, the requirement that t ∈ R demands disc. � 0, which implies

1 +
b2

4Δ2 �
√
− R0

Δ2 . (43)

Note that if we choose Δ �
√
−R0, then the above inequality imposes no restriction on the values of the

bend b.

7. Discussion

In the intrinsic approach materials are described only through quantities available to an observer residing
within the material [11]. These quantities may be associated with some non-trivial locally preferred
reference values that manifest the constituents’ shape and mutual interactions. We show that a collection of
five such scalar (and pseudoscalar) fields suffice to characterize the director texture. These fields can be
chosen to be the bend, splay, twist, saddle-splay and the relative orientation between the principal biaxial
splay direction and the bend direction.

In 2D only two such fields suffice to uniquely prescribe a director field. The compatibility conditions in
the 2D case amount to a single first order differential relation [9]. In three dimensions we obtained six
differential relations. Three of first order, and three of second order. Thus the system is of at most second
order; it is presently unknown whether the system can be further reduced to yield a purely first order system
or not. Understanding the degree and structure of the compatibility conditions is important not for
taxonomical reasons, but rather as these determine the super-extensive rate at which energy accumulates
when a frustrated phase grows in size [11].

Though more abstract than an approach uniquely based on vector calculus, the method of moving
frames allows us to obtain manageable equations and to investigate director fields in both Euclidean and
curved Riemannian spaces in an equal foot. In particular it allows us to find all uniform distortion fields for
all isotropic homogeneous Riemannian manifolds.

The exhaustive nature of the compatibility conditions presented here allows us to assert that the well
known constant twist phase in S3 is, in fact, the only uniform distortion field S3 supports. For H3 we extend
the result of Sadoc et al [19] who found particular solutions with vanishing twist and biaxial splay, to show
that these constitute all possible textures foliated by planar curves in H3. Moreover, we find all the textures
foliated by non-planar curves characterized by non-vanishing twist and biaxial splay that grow in

13
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proportion to each other. In general, we showed that uniform distortion fields in H3 yield textures foliated
by congruent helices, encompassing the previous results.

The full compatibility conditions provided here allow us to extend our understanding of
three-dimensional frustrated textures in Euclidean space to the realm of non-uniform distortion fields.
Small enough domains of bent-core liquid crystals are expected to allow a non-uniform distortion field
associated with an elastic energy that is lower than that of the uniform twist-bent phase [31]. Knowledge of
the full compatibility conditions provides a path for constructing such low energy solutions for small
enough domains: starting with a state of pure bend at some point in the domain, satisfaction of the
compatibility conditions necessitates certain gradients to assume a non-vanishing value. Incorporating the
constitutive law at this point may help select which of these gradients will be chosen to balance the
attempted constant pure bend. Such ‘propagation’ of solutions may also find use in solving the inverse
design of three-dimensional responsive material, analogously to the procedure carried out for 2D in [4].

Considering the five characterizing fields as given quantities and solving for the corresponding director
field may also be carried out as long as the compatibility conditions are satisfied. The compatibility
conditions, in turn, can be interpreted both in terms of a material frame, where the fields gradients are
given in terms of their projections on the director orientations, and a lab frame in which the field gradients
are given explicitly in terms of the embedding space coordinates. It is important to note that the
information contained in the two viewpoints is not equivalent. The material intrinsic description, which is
more natural, may be used to integrate the director field from knowledge about its local behavior. Such an
approach is particularly useful for solving inverse design problems [4], and for constructing new optimal
textures. The lab frame approach is somewhat less natural as it assumes that the fields are given in terms of
the stationary embedding space coordinates, yet the director is unknown. For the two-dimensional case the
lab-frame approach allowed obtaining the director field directly from the gradients of the bend and splay
functions, provided they were compatible [9]. For general fields, b and s, one may apply the reconstruction
formula provided that the gradients of these fields are large enough. However, this does not assure that
these fields were indeed compatible. In this approach the compatibility condition is replaced by
self-consistency conditions equating the splay and bend of the resulting director field with those used to
generate it. One may expect that these conditions will produce two second order differential equations for
the fields b and s that are independent of the director orientation, however to the best of our knowledge
these relations have not yet been obtained.

When finishing this manuscript, it came to our attention that a similar approach to the one presented
here was recently pursued by Pollard and Alexander [22]. There, the authors also develop the idea of using
the moving frame method to obtain the compatibility conditions for the deformation modes of a director
field expressed in terms of the curvature tensor of the ambient manifold. In addition, they present the lab
frame reconstruction formulae for the director in terms of the fixed frame spatial gradients of the
deformation modes. These, much like their two-dimensional analogs are assured to satisfy the
self-consistency conditions if the scalar deformations modes were indeed compatible, yet for general fields
do not have to be self-consistent. Finally, they discuss the examples constructed by Sadoc et al [19] in the
language of moving frames by exploiting the fact that there exists an underlying Lie algebra structure
associated with uniform distortion fields. While the choice of applications differs between our work and
that of Pollard and Alexander, the main guiding principles and calculations of the components of the
Riemann curvature tensor are similar. In particular the nine equations (19)–(25) and (31)–(33) in their
manuscript can be directly translated to the nine equations derived here (19). While we further reduce these
nine equations in eight unknown fields to six equations in the five deformation modes, the compatibility
conditions remain equivalent, and any set of deformation modes determined compatible by one of the
methods would be compatible with respect to the other.
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