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The breaking of internal gravity waves in the abyssal ocean is thought to be responsible for
much of the mixing necessary to close oceanic buoyancy budgets. The exact mechanism
by which these waves break down into turbulence remains an active area of research and
can have significant implications on the mixing efficiency. Recent evidence has suggested
that both shear instabilities and convective instabilities play a significant role in the
breaking of an internal gravity wave in a high Richardson number mean shear flow. We
perform a systematic analysis of the stability of a configuration of an internal gravity wave
superimposed on a background shear flow first considered by Howland et al. (J. Fluid
Mech., vol. 921, 2021, A24), using direct–adjoint looping to find the perturbation giving
maximal energy growth on this evolving flow. We find that three-dimensional, convective
mechanisms produce greater energy growth than their two-dimensional counterparts. In
particular, we find close agreement with the direct numerical simulations of Howland et al.
(J. Fluid Mech., 2021, in press), which demonstrated a clear three-dimensional mechanism
causing breakdown to turbulence. The results are shown to hold at realistic Prandtl
numbers. At low mean Richardson numbers, two-dimensional, shear-driven mechanisms
produce greater energy growth.
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1. Introduction

Buoyancy budgets of the global oceans suggest that turbulence, on scales too small to
simulate directly in computational models, is an important element both to dissipate
energy and to close the budget (Wunsch & Ferrari 2004; Gregg et al. 2018). Observations
(Baker & Gibson 1987; Alford & Pinkel 2000) have shown that such turbulence is
intermittent and localised, and the nonlinear breaking of internal gravity waves has been
proposed as a likely candidate for the main source of the turbulence (MacKinnon et al.
2017).

Such wave breaking could be caused by a number of mechanisms. Lombard &
Riley (1996) used linear stability analysis to show that instabilities on an internal
wave are strongly dependent upon both the amplitude and the propagation angle of
the wave, with strongly three-dimensional and two-dimensional modes being dominant
in different cases. One important effect, not taken into account in these analyses, is
the amplification of waves as they approach critical layers within the flow (Booker
& Bretherton 1967), where the flow velocity matches the phase speed. Motivated by
the observation in Alford & Pinkel (2000) of coinciding shear and large amplitude
waves, Howland, Taylor & Caulfield (2021), henceforth denoted HTC21, numerically
simulated the idealised flow arising from a superposition of a plane internal wave in a
uniform density gradient, and a simple sinusoidal shear profile. They observed a clear
three-dimensional, convective-like structure, with a definite spanwise wavelength, very
different from the primarily two-dimensional Kelvin–Helmholtz billows and other shear
instabilities often thought to dominate breakdown to turbulence. We exactly recreate the
basic flow used in that work, but study it from a more theoretical viewpoint to analyse the
mechanisms responsible.

Since the flow profile adopted by HTC21 is not steady, a traditional linear stability
analysis is unsuitable for determining the structures which are important to its breakdown.
One approach would be to perform linear stability analyses on ‘frozen’ background flows
at different times, which has been done extensively, for example, on Kelvin–Helmholtz
billows (Klaassen & Peltier 1985; Caulfield & Peltier 2000; Mashayek & Peltier 2012, to
name but a few). This is a valid strategy for slowly varying background flows, or for quickly
growing instabilities, but otherwise just gives a hint on the possible nonlinear behaviour.

The approach we take here is to ask, over a fixed finite time, which initial, infinitesimal
perturbation is amplified by the greatest amount. This is still an entirely linear approach,
but typically requires a lot more computation than traditional linear stability analyses.
Indeed, even for a steady background flow, the finite time ‘optimal growth’ is still an
interesting problem, since for non-normal linear operators such as in the Orr–Sommerfeld
equations, the most unstable normal mode is not necessarily the structure that grows the
most over a finite time interval (Schmid 2007).

The method we employ, direct–adjoint looping (DAL) (Corbett & Bottaro 2000; Luchini
2000), is essentially equivalent to that used by Arratia, Caulfield & Chomaz (2013) to
study optimal growth on a two-dimensional (2-D) time-evolving Kelvin–Helmholtz billow.
It is an iterative method, with each solution of the Navier–Stokes equations followed by
a solution of the corresponding adjoint equations, which gives the flow sensitivity with
respect to a given quantity of interest. Optimising, for example, the energy at time T of a
infinitesimal perturbation at time t = 0 gives a particularly simple formulation.

For the non-parallel, non-steady flow studied herein, we have no reason a priori to
assume that the fastest growing disturbance is a 2-D one, since recourse cannot be made
to Yih’s theorem (Yih 1955). However, since the background flow is two-dimensional,
the lack of nonlinearity makes it sufficient to study individual Fourier modes in the
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Optimal growth on a breaking internal wave

(third) spanwise direction, for which we introduce a method using a fully 3-D numerical
simulation code. Our aims in this paper are thus twofold. First, we wish to determine
whether the optimal perturbations predicted by our DAL calculations are qualitatively or
even quantitatively similar (for example in terms of the predicted spanwise wavelength) to
the structures observed to trigger breakdown in the fully nonlinear simulations presented
in HTC21. Second, we wish to determine the relative importance of shear-driven and
convective growth mechanisms in the amplification of these optimal perturbations as they
grow on the evolving background flow.

To address these twin aims, the remaining three sections of the paper are as follows: § 2
gives the precise flow we are considering, and gives the derivation and implementation
details of the DAL algorithm. § 3 presents our results for different target times and
discusses in detail two different cases, with subsections considering the influence of
Prandtl number and Richardson number, and § 4 gives concluding remarks.

2. Methods

The Boussinesq equations consist of the Navier–Stokes equation, the advection–diffusion
equation for buoyancy and the incompressiblity condition, governing the evolution of
velocity u, pressure p and buoyancy b

∂u
∂t

+ u · ∇u = −∇p + Ribb ez + 1
Re

∇2u, (2.1a)

∂b
∂t

+ u · ∇b = 1
RePr

∇2b, (2.1b)

∇ · u = 0. (2.1c)

These equations have been non-dimensionalised using a typical length scale L, velocity
U, gravitational acceleration g, density ρ, density gradient ρz, kinematic viscosity ν and
density diffusion coefficient κ to give the non-dimensional Reynolds number Re = UL/ν,
Prandtl number Pr = ν/κ and bulk Richardson number Rib = gρzL2/ρU2.

Following HTC21, we consider an internal gravity wave with wavevector k = (k1, 0, k3)
(and define k = ‖k‖) and ‘wave steepness’ s incident on a background flow that is
uniformly stratified and has a sinusoidal velocity profile, which gives a particularly simple
and periodic model of a stratified shear flow. At time t = 0, then,

u = sin z + sω
k1

sin (k · x), (2.2a)

w = −sω
k3

sin (k · x), (2.2b)

b = z + s
k3

cos (k · x), (2.2c)

where ω2 = Rib(k2
1/k2) is the (squared) frequency of the internal wave, so that the phase

speed of this wave in isolation is given by kω/k2. The wave steepness s is defined such
that s > 1 produces a region of negative buoyancy gradient where the wave overturns.
The evolution of this 2-D background flow is complex, as will be seen in § 3. The initial
evolution of the wave can be characterised as refraction of the wave by the mean shear
flow. We restrict this study to that of a 2-D base flow, since motion out of the plane of
the wave cannot affect this linear refraction process. However, we cannot preclude the
possibility that a 3-D base flow modifies the subsequent nonlinear breakdown of the wave
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that we analyse here. Further research is needed to isolate how such 3-D base flows may
impact internal wave breaking.

As discussed in more detail by HTC21 the idealised flow arising from (2.1) and (2.2)
necessarily neglects a range of important processes that can lead to internal wave breaking
in the ocean. For example, we neglect rotation in (2.1) by assuming that the Coriolis
frequency f is significantly smaller than the buoyancy frequency N = −gρz/ρ. Although
rotation is absent in our system, one could associate the background shear in (2.2) with
rotationally dominated processes on a larger horizontal scale such as eddies or near-inertial
waves. The use of an initial value problem to model wave breaking can also be questioned.
However, the alternative setup of continuously forcing a stratified flow at large scales can
exhibit results that depend non-trivially on the details of the forcing (Howland, Taylor &
Caulfield 2020).

An infinitesimal (now three-dimensional) perturbation to (2.1) satisfies the linear
equations (the primes denote the perturbation)

∂u′

∂t
+ u · ∇u′ + u′ · ∇u = −∇p′ + Ribb′ez + 1

Re
∇2u′, (2.3a)

∂b′

∂t
+ u · ∇b′ + u′ · ∇b = 1

RePr
∇2b′, (2.3b)

∇ · u′ = 0. (2.3c)

In these equations, the 2-D background fields u(x, z, t) and b(x, z, t) evolve with time
according to (2.1) from initial conditions (2.2) parameterised by s, Rib and k. Since the
background fields are purely two-dimensional and the perturbation is infinitesimal, there
is no nonlinearity in the spanwise y direction, and therefore it is sufficient to consider
individual spanwise Fourier modes, and then vary the domain size to investigate different
wavelengths. We consider the evolution of perturbations following (2.3), starting from time
t = 0. The choice of when to perturb the background flow in its evolution is somewhat
arbitrary, but t = 0 is the most obvious and agrees with HTC21.

2.1. Direct–adjoint looping
The power iteration DAL algorithm, as described by Schmid (2007) and Arratia et al.
(2013), on the evolving background flow, allows us to find optimal perturbations at a target
time T with respect to the perturbation energy

E := 1
2LxLyLz

∫
(u′ · u′ + Ribb′2) dV, (2.4)

where the integration is performed over the full periodic domain.
Consider the space of state vectors X = (u′, b′) satisfying ∇ · u′ = 0 (p′ can be

determined from these by solving a Poisson equation). Let us define a linear operator
ΦT acting on this space, defined as the solution of (2.3a)–(2.3c) up to time t = T . Further,
we define an inner product

〈X, Y〉 := 1
LxLyLz

∫ (
u′

X · u′
Y + Ribb′

Xb′
Y
)

dV, (2.5)

so that an energy for the perturbation X is given by 〈X, X〉 /2. We wish to find the
maximum possible energy growth of a perturbation of fixed energy over a time T ,
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i.e. to maximise the Lagrangian

L = 1
2 〈XT , XT〉 + λ

(
1
2 〈X0, X0〉 − 1

2

)
+ 〈X̃, XT − ΦTX0〉. (2.6)

Here, λ is a Lagrange multiplier that enforces the normalisation of the initial state X0.
The precise choice of this initial energy is irrelevant, since the system is linear and we are
only interested in the energy gain, i.e. the ratio of final energy to initial energy, but for
a well-posed problem we nevertheless must constrain the initial energy. X̃ is a Lagrange
multiplier state we call the adjoint state – for reasons which will become clear below – that
enforces that XT = ΦTX0. For an optimal perturbation, all variations of the Lagrangian
vanish, so that

0 = δL
δλ

= 1
2

〈X0, X0〉 − 1
2
, (2.7a)

0 = δL
δX̃

= XT − ΦTX0, (2.7b)

0 = δL
δX0

= λX0 − Φ
†
TX̃, (2.7c)

0 = δL
δXT

= XT + X̃, (2.7d)

where Φ
†
T is the adjoint operator to ΦT with respect to our inner product. The precise

definition of Φ
†
T is the solution of the so-called adjoint equations

−∂ũ
∂t

− u · ∇ũ + ũ · (∇u)T + Ribb̃∇b = ∇p̃ + 1
Re

∇2ũ, (2.8a)

−∂ b̃
∂t

− u · ∇b̃ = w̃ + 1
Re

Pr∇2b̃, (2.8b)

∇ · ũ = 0, (2.8c)

integrated backwards in time from t = T to t = 0. The derivation of these is given in
Appendix A. Equations (2.7) can be solved to give

X0 = Φ
†
TΦTX0√

〈Φ†
TΦTX0, Φ

†
TΦTX0〉

(2.9)

at an optimal, which suggests the iterative method

Xn+1 = Φ
†
TΦTXn√

〈Φ†
TΦTXn, Φ

†
TΦTXn〉

. (2.10)

This is in fact precisely the power iteration eigenvalue algorithm to find the eigenvalue
of greatest modulus of the linear operator Φ

†
TΦT , and so will converge given a unique

such eigenvalue. Since Φ
†
TΦT is self-adjoint, the eigenvalue will be real. The value of the

eigenvalue is given by

lim
n→∞〈Xn, Φ

†
TΦTXn〉 = lim

n→∞ 〈ΦTXn, ΦTXn〉 , (2.11)

which is exactly (twice) the energy growth we wish to maximise. Therefore, so long as the
‘initial guess’ state has a component in the direction of the optimal, (2.10) will find the
maximum energy growth and the state needed to excite it.
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2.2. Algorithm implementation
Because of the large storage requirements of the 2-D background state (u, b), which
must be known at every point in time, the following algorithm is used, which employs
‘checkpointing’:

(i) The 2-D background state is evolved according to (2.1) from t = 0 to t = T . Every
100 timesteps, the state is stored to disk.

(ii) An initial perturbation state X1 is generated randomly. Set n = 1.
(iii) The value of Xn is scaled to have unit energy (required by (2.7a)).
(iv) The perturbation state Xn is evolved from t = 0 to t = T in blocks of 100 timesteps

(required by (2.7b)):
(a) The background state is loaded at the start of the block, and evolved by 100

timesteps according to (2.1), with results at each timestep stored in memory.
(b) The perturbation state is evolved from the start to the end of the block according

to (2.3), using the background states stored in memory.
(v) The adjoint state X̃n is initialised as the negative of the result of step 4 at t = T

(required by (2.7d)).
(vi) The adjoint state is evolved from t = T to t = 0 in blocks of 100 timesteps (required

by (2.7c)):
(a) The background state is loaded at the start of the block, and evolved by 100

timesteps according to (2.1), with results at each timestep stored in memory.
(b) The adjoint state is evolved from the end to the start of the block according to

(2.8), using the background states stored in memory (in reverse order).
(vii) The next state Xn+1 is initialised to be the negative of the result of step 5 at t = 0.

(viii) Repeat from step 3 with n → n + 1 until the (normalised) residual

〈Xn+1 − Xn, Xn+1 − Xn〉 / 〈Xn, Xn〉 < 10−5. (2.12)

The algorithm was started with noisy states created by randomly exciting the first six of
the Fourier modes in the vertical and streamwise directions. The precise choice of initial
condition does not affect the results. Convergence was found to require 10–100 iterations
before the residual was sufficiently small, with those converging to entirely 2-D results
requiring more iterations.

3. Results

The (2.1), (2.3) and (2.8) are solved on a triply periodic grid with a pseudo-spectral
method, using a modified version of the code developed for Parker, Caulfield & Kerswell
(2019). We use 2048 gridpoints in the streamwise (x) direction, with a domain length
Lx = 8π, and 512 gridpoints in the vertical (z) direction, with a domain height of Lz = 2π.
The resolutions in these directions match those employed in the non-turbulent phase of the
flow evolution by HTC21. As no nonlinearity is present in the spanwise (y) direction, only
the first two Fourier modes are evaluated, allowing mode-0 (i.e. spanwise independent,
exactly two-dimensional) disturbances, and mode-1 disturbances, with a wavelength that
matches the domain depth Ly. We vary Ly to determine the spanwise wavelength of
the fastest growing disturbance. This is a straightforward way of simulating a single
Fourier mode with a full pseudo-spectral DNS code by using only three gridpoints in
this direction (with dealiasing deactivated), and has the added benefit of determining for
which wavelengths the spanwise independent optimal perturbation grows faster than the
mode-1 optimal perturbation.
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Figure 1. The complex 2-D evolution of the background flow, a superposition of an internal gravity wave and
a sinusoidal shear. (a,c,e,g) Vorticity ∂u/∂z − ∂w/∂x. (b,d, f,h) Buoyancy gradient ∂b/∂z. The black contour
surrounds regions with negative buoyancy gradient.

All calculations employ Re = 5000, the lowest used by HTC21 for computational
efficiency and direct comparison. This is too low to be realistic for oceanic flows, but is
sufficiently high to capture the initial behaviour studied in HTC21, before the breakdown
to turbulence. Initially we used Pr = 1 and Rib = 1; variation of these parameters is
discussed below. In the initial conditions (2.2) we took the wave steepness to be s = 0.75
and the wave vector to be k = (1/4, 0, 3) as in HTC21. With this choice, one wavelength
in the streamwise direction and three wavelengths in the vertical direction fit within the
periodic box. We consider only a single choice of Re and s, rather than vary them as in
HTC21, and choose instead to examine the effects of other Pr and Rib. Figure 1 shows
the complex, nonlinear evolution of this two-dimensional flow. By tracing ray paths for
internal waves through the sinusoidal shear, HTC21 predict a cluster of critical layers close
to the central height z = π (shown in figure 2 of that paper). A clear amplification of the
wave near these central critical layers is apparent, as predicted by classical wave theory.
Regions with negative vertical buoyancy gradient are visible near the critical layers after
approximately t = 5.

Figure 2 shows the nonlinear evolution of a finite amplitude, 3-D perturbation to this
background flow. See HTC21 for details of this simulation. Up to t = 20, the behaviour is
simple, with a clear concentration of activity in those regions with negative background
buoyancy gradient (indicated by a black contour in panels b,d,f,h). Subsequently,
turbulence develops, and we should not expect to capture this behaviour in the present
study.

We perform DAL with target times T ∈ {5, 10, 20, 30}, chosen to capture the time
horizon of the initial behaviour of the simulations of HTC21. The spanwise domain size
was varied over a range Ly ∈ [0.1, 1.6] (initially with increments of 0.2, with additional
calculations where necessary to smooth the curves), which is sufficiently large to capture

925 A16-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

60
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.603


J.P. Parker, C.J. Howland, C.P. Caulfield and R.R. Kerswell

2π

z

z

z

z

x x

t = 0

2π

t = 10

2π

t = 20

4π 8π0

2π

2π

2π

2π

0

2π

t = 30

t = 0

t = 10

t = 20

t = 30

4π 8π

4π 8π0 0 4π 8π

4π 8π0 0 4π 8π

4π 8π0 0 4π 8π

–1

0

1
(×10–1)

–2

0

2
(×10–2)

–5

0

5
(×10–2)

–1

0

1

–1

0

1
(×10–3)

–2

0

2
(×10–3)

–1

0

1
(×10–2)

–1

0

1
(×10–1)

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

Figure 2. Perturbation vorticity (a,c,e,g) and buoyancy (b,d, f,h) of the nonlinear simulation from HTC21
whose parameters match those considered here, i.e. Re = 5000, s = 0.75. The black contour on the right
surrounds those regions of the background flow for which the buoyancy gradient is statically unstable, which
are strongly correlated with increased perturbation growth.

mode-1 structures in the π/2 domain of HTC21. The results are shown in figure 3(c).
In each case, when the spanwise domain size Ly is sufficiently small, the optimal
structures become entirely two-dimensional, and are independent of Ly. These results are
shown as dashed horizontal lines. HTC21 used a periodic domain of size Ly = π/2, so
assuming a normal mode structure in this direction, wavelengths π/2, π/4, π/6, etc. are
permissible, as well as purely 2-D structures. The first six of these possible wavelengths
are shown as vertical lines on the figure. Note that the results of figure 3(c) show no
evidence of the ‘ultraviolet catastrophe’ found when performing stability analyses of
frozen background profiles, for example in Salehipour, Peltier & Mashayek (2015). This
is perhaps unsurprising due to the inherent time-dependent evolution of the background
flow.

Figure 3(a) shows a x–y slice through the simulation of figure 2, which shows a clear, if
noisy, mode-4 structure. The wavelength of this spanwise mode is marked by the vertical
red line in figure 3(c). There is a strong agreement here with our results, as the wavelength
measured from this DNS corresponds very closely to the wavelength of maximum growth
from our analysis, at both T = 20 and T = 30.

Figures 4 and 5 show the development of the optimal perturbation for target time T =
30, in respectively the 2-D case (which was found by the 3-D computations for Ly ≤ 0.1),
and the maximal growth case with Ly = 0.4, for which there is a simple normal mode
structure in the spanwise direction, shown in figure 3(b). The two figures are typical of the
2-D and 3-D mechanisms, respectively, which are qualitatively completely different from
one another.

The 2-D optimal perturbations, exemplified by figure 4, exploit the Orr mechanism, the
transient amplification of elongated spanwise vortices as they are rotated ‘tilted over’ and
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distorted by a shear (Orr 1907), which is commonly found in transient growth analyses of
shear flows (Arratia et al. 2013; Kaminski, Caulfield & Taylor 2014). In this case, a patch
of alternating-signed vortices is visible, at locations of high shear within the background
flow. This grows in both spatial extent and amplitude as it is sheared and advected by
the background. Compared with the 2-D optimal perturbation for lower target times, the
vortex pattern visible is of particularly high wavenumber, which allows the Orr mechanism
more time to amplify the disturbance. There does not appear to be any component, in
these optimal perturbations, of a Kelvin–Helmholtz-type shear instability – which would
manifest as spanwise vortices of only one sign which are not significantly distorted and
sheared as the flow evolves – as opposed to the transient Orr process. The patch in
figure 4 consists of vertically counterrotating vortices, either side of the black contour
which surrounds the region of negative buoyancy gradient in the background flow. The
optimal perturbation is therefore exploiting the unstable stratification for energy growth
via spanwise counterrotating convective rolls.

Figure 6(a) shows the buoyancy flux, defined as

J = 1
LxLyLz

∫
−Ribb′u′

i∂i(b − z) dV, (3.1)

and the shear production

PS = 1
LxLyLz

∫
−u′

iu
′
j∂iuj dV, (3.2)

for this 2-D optimal perturbation. These terms from the perturbation energy equation are
derived in Appendix B. While the buoyancy flux monotonically increases exponentially,
as the convection is increasingly exploited towards the end of the time window, the shear
production, orders of magnitude less important, shows two small peaks at t ≈ 5 and t ≈ 25
associated with Orr-like transient processes, before becoming strongly negative at the end
of the time window. This suggests that the transient Orr mechanisms, while present, are
not the dominant process.

The 3-D optimal perturbations, exemplified by figure 5, show no evidence of any Orr
mechanism, and instead take the form of a single patch of quasi-streamwise-independent,
counterrotating, streamwise-aligned vortices. As the flow evolves, this patch is advected
and significantly amplified. The patch exactly aligns with one of the regions of negative
buoyancy gradient in figure 1, strongly suggesting that these are indeed convective rolls,
being amplified by the statically unstable stratification, though it is likely that the lift-up
mechanism, a viscous algebraic instability of shear flows (Landahl 1980) is also being
exploited. Figure 6(b) shows the buoyancy flux and shear production for this optimal
perturbation. In this case, both components are roughly equally important, and both grow
monotonically and roughly exponentially throughout the time window. This is in stark
contrast to the 2-D results in figure 6(a), and suggests that in this case, the result is not
merely transient growth but a genuine instability.

Figure 7 shows the energy growth for both of these T = 30 optimal perturbations.
Both of these, after some initial waviness, show apparently exponential energy growth,
suggesting the dominant mechanism in each case is a convective instability, rather than the
transient Orr mechanism or the algebraic lift-up mechanism. The 3-D optimal perturbation
is many orders of magnitude more energetic. The figure additionally shows the energies of
the T = 20 optimal perturbations, when continued up to t = 30, which is the target time
which corresponds most closely to the results of HTC21, as a breakdown to turbulence
was observed around t = 20. The 3-D result for T = 20 appears almost identical to that
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with T = 30, but the 2-D result is markedly different. At the larger target time, the 2-D
optimal perturbation has much smaller initial growth, but ends with exponential growth,
whereas at smaller target times, there is no exponential final region, but a much larger
initial growth, suggesting stronger exploitation of the Orr mechanism.

3.1. The effects of Prandtl number
The results have thus far been restricted to the case of Pr = 1, which is consistent with
HTC21. However, this value is inappropriate for the oceans, as the ratio of the thermal
diffusivity and kinematic viscosity of water has a typical value of Pr ≈ 7. Numerous
computational studies have noted that nonlinear behaviour is strongly dependent on
Pr (Smyth & Moum 2000; Brucker & Sarkar 2007; Mashayek & Peltier 2011;
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Pr = 7, Rib = 1, which is a simple normal mode in the spanwise direction with period Ly = 0.3. It is very
similar to the Pr = 1 optimal perturbation in figure 5, despite the fact that the gain is orders of magnitude
higher in this case.

Salehipour et al. 2015; Parker, Caulfield & Kerswell 2021). We therefore repeat our T = 30
study at Pr = 7, with an increased resolution of 3072 streamwise gridpoints and 768
vertically.

In this case it was found that the energy growth was approximately maximised at Ly =
0.3 rather than Ly = 0.4, but the form of the optimal perturbation, shown in figure 8, is
qualitatively very similar to that found for Pr = 1, with the same mechanisms at work.
The final energy of the perturbation in this case was 6.21 × 1013, significantly greater than
the 6.77 × 1010 which was found for Pr = 1. This difference is despite the fact that the
background flow fields have very similar evolution and energy for flows with Pr = 1 and
Pr = 7, as the value of Pr has little effect on the evolution of the internal wave as it is
distorted by the shear layer.

3.2. The effects of Richardson number
We also repeated the T = 30 calculations at Rib = 0.1 and Pr = 1, as opposed to Rib = 1.
For domain sizes Ly ∈ {0.1, 0.4, 2.0}, the zeroth Fourier mode was always preferred,
so that 2-D spanwise-independent optimal perturbations very similar to those found at
low Ly for Rib = 1 give more growth than any spanwise-varying perturbations. This is
not particularly surprising, since with a decreased influence of stratification, 2-D shear
mechanisms are expected to be strengthened, whereas 3-D convective instabilities will be
damped.

4. Conclusion

The linear optimal energy growth analysis we have employed has provided an explanation
of the early phase of the simulations described by Howland et al. (2021, herein referred to
as HTC21). For target time T = 20, around which time the DNS of HTC21 begins to break
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down into turbulence for the matching parameter values, we see a clear optimal wavelength
which matches that found in the DNS (figure 3). The magnitude of the energy amplification
found (> 106 at t = 20) indicates why streamwise rolls are apparent in the simulations:
if the initial disturbance has any component of this wavenumber, it is so massively
amplified it will necessarily be visible as the simulation progresses. As turbulence
develops as a result of this energy growth, the rolls break down and are no longer
visible.

More generally, we have shown that both spanwise-independent and fully 3-D
perturbations are able to exploit negative (statically unstable) buoyancy gradients which
arise in the background flow as the internal wave is amplified near the critical layer,
despite the high value of Rib which was used. For longer times, the fully 3-D perturbations
can experience orders of magnitude more energy growth than the spanwise-independent
perturbations. For example, the 3-D optimal perturbation at the ideal spanwise wavelength
of around 0.4 (with T = 30) was found to grow by a factor O(105) larger than the
equivalent 2-D optimal perturbation. Understanding where these very large energy growth
factors come from and how they vary with all the parameters of the problem involves
unravelling what is happening in the complicated time-dependent underlying 2-D flow.
Figure 1 shows a series of thin statically unstable layers (where db/dz < 0) concentrated
over an O(1) width for the parameters considered here. The optimal 3-D disturbance
is focused on one of these layers (see figure 5) and possesses a spanwise length scale
apparently comparable to the vertical (height) scale of the layer. This height scaling must
also set the growth factor and so teasing out how this depends on all the parameters of the
problem is an important challenge for the future.

This study was motivated by the hope that linear energy growth computations, which
include only a single Fourier mode in the spanwise direction, could capture some essence
of the expensive DNS results reported in HTC21. The fact that the optimal wavenumber
which emerges in the former resembles that found significant in the latter (admittedly in
only one point of comparison) augurs well for a systematic exploration of parameter space
which would be impractical using DNS. HTC21 investigated different s, and found viscous
effects to hinder the development of turbulence at smaller values. The method presented
here could add considerably more detail on how low-steepness waves break at higher,
more geophysically relevant values of Re, further investigating the subtle interplay between
shear-driven and convective processes. We have already performed a brief analysis of the
effects of Pr and Rib, but this could be expanded greatly, to determine at what Rib the
2-D mechanisms become dominant, for example. The efficiency of this method means it
may be possible, in reasonable computation times, to examine Pr up to 700, characteristic
of salt-stratified flows, which requires a very fine numerical grid. This study has focused
on the case of a shear and wave aligned in the same 2-D plane, but for a wave coming in
obliquely we may well have a qualitatively different background flow evolution, and thus
the optimal perturbations could be quite different. In this oblique case, shear instabilities
in particular would be altered. However, this case would require fully 3-D computations.
There is clearly much to explore.
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Appendix A. Derivation of the adjoint equations

Recalling the definitions of the state vectors and operators, (2.6) may be rewritten as

L = 1
2

1
LxLyLz

∫ (
u′

T · u′
T + Ribb′

Tb′
T
)

dV + λ
(

1
2

1
LxLyLz

∫ (
u′

0 · u′
0 + Ribb′

0b′
0
)

dV − 1
2

)

+
∫ T

0
dt

1
LxLyLz

∫
dV

[
ũ ·

(
∂u′

∂t
+ u · ∇u′ + u′ · ∇u + ∇p′ − Ribb′ez − 1

Re
∇2u′

)

+ Ribb̃
(

∂b′

∂t
+ u · ∇b′ + u′ · ∇b − 1

RePr
∇2b′

)
+ p̃

(∇ · u′)] , (A1)

where the adjoint state (ũ, b̃) is now treated as a time-varying Lagrange multiplier state
which enforces the evolution of (u′, b′) from (u′

0, b′
0) to (u′

T , b′
T) according to (2.3),

including the addition of an adjoint pressure p̃ to enforce incompressibility.
Computing the variations of (A1) with respect to u′, b′ and p′ we are now able to derive

the adjoint equations

δL
δu′ = −∂ũ

∂t
− u · ∇ũ + ũ · (∇u)T − 1

Re
∇2ũ + Ribb̃∇b − ∇p̃, (A2)

δL
δb′ = −Ribw̃ − Rib

∂ b̃
∂t

− Ribu · ∇b̃ − Rib
1

Re
Pr∇2b̃, (A3)

δL
δp′ = −∇ · ũ. (A4)

Equating these expressions with zero yields (2.8).

Appendix B. Derivation of buoyancy flux and shear production

Since the processes we observe are assumed to be inviscid, we start with (2.3) with the
viscous terms ignored

∂u′
i

∂t
+ uj∂ju′

i + u′
j∂jui = −∂ip′ + Ribb′δi3, (B1a)

∂b′

∂t
+ uj∂jb′ + u′

j∂jb = 0, (B1b)

∂ju′
j = 0. (B1c)

Taking the product of the first of these with u′
i (applying the Einstein summation

convention) and the product of the second with b′ we see

∂
∂t

(
1
2 u′

iu
′
i

)
+ ∂j

(
1
2 uju′

iu
′
i

)
+ u′

iu
′
j∂jui = −∂i

(
u′

ip
′) + Ribb′w′, (B2a)

∂
∂t

(
1
2 b′2

)
+ ∂j

(
1
2 ujb′2

)
+ b′u′

j∂jb = 0, (B2b)
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where we have used the incompressibility condition to simplify some of the terms. Then
integrating the sum of these two expressions (with an appropriate scaling factor of Rib for
the second expression) gives the equation for energy change

d
dt

∫ (
1
2

u′2 + Rib
2

b′2
)

dV =
∫ (

Ribb′w′ − Ribb′u′
j∂jb − u′

iu
′
j∂jui

)
dV, (B3)

using the divergence theorem over our periodic domain to eliminate most of the terms.
The terms remaining on the right-hand side then give the expressions for the buoyancy
flux (3.1) and the shear production (3.2).
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