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Leveraging browse and grazing 
forage estimates to optimize 
index‑based livestock insurance
Njoki Kahiu 1,2*, J. Anchang 1, V. Alulu 2, F. P. Fava 2,3, N. Jensen 2,4 & N. P. Hanan 1

African pastoralists suffer recurrent droughts that cause high livestock mortality and vulnerability 
to climate change. The index‑based livestock insurance (IBLI) program offers protection against 
drought impacts. However, the current IBLI design relying on the normalized difference vegetation 
index (NDVI) may pose limitation because it does not consider the mixed composition of rangelands 
(including herbaceous and woody plants) and the diverse feeding habits of grazers and browsers. To 
enhance IBLI, we assessed the efficacy of utilizing distinct browse and grazing forage estimates from 
woody LAI  (LAIW) and herbaceous LAI  (LAIH), respectively, derived from aggregate leaf area index 
 (LAIA), as an alternative to NDVI for refined IBLI design. Using historical livestock mortality data from 
northern Kenya as reference ground dataset, our analysis compared two competing models for (1) 
aggregate forage estimates including sub‑models for NDVI, LAI  (LAIA); and (2) partitioned biomass 
model  (LAIP) comprising  LAIH and  LAIW. By integrating forage estimates with ancillary environmental 
variables, we found that  LAIP, with separate forage estimates, outperformed the aggregate 
models. For total livestock mortality,  LAIP yielded the lowest RMSE (5.9 TLUs) and higher  R2 (0.83), 
surpassing NDVI and  LAIA models RMSE (9.3 TLUs) and  R2 (0.6). A similar pattern was observed for 
species‑specific livestock mortality. The influence of environmental variables across the models 
varied, depending on level of mortality aggregation or separation. Overall, forage availability was 
consistently the most influential variable, with species‑specific models showing the different forage 
preferences in various animal types. These results suggest that deriving distinct browse and grazing 
forage estimates from  LAIP has the potential to reduce basis risk by enhancing IBLI index accuracy.

Keywords Aggregate leaf area index  (LAIA), Herbaceous leaf area index  (LAIH), Index Based Livestock 
Insurance (IBLI), Livestock mortality, Normalized Difference Vegetation Index (NDVI), Woody leaf area index 
 (LAIW)

Pastoralists living in arid and semiarid lands (ASALS) of Africa primarily depend on livestock for their 
 livelihoods1. Livestock play a significant role in generating income and employment, supplying nutrients, sup-
porting cultural practices, providing resilience against economic and climate shocks and supporting crop pro-
duction in agropastoral  systems1. However, the persistent vulnerability of pastoral livelihoods to recurring and 
intense drought events, the leading cause of livestock  mortality2,3, poses a formidable challenge, adversely impact-
ing a substantial pastoral population in the region.

The implications of livestock mortality are multifaceted, encompassing the depletion of household assets, 
disruption of livelihoods, compromised nutritional security, loss of valuable genetic resources, and the loss of 
substantial investments, encompassing both financial resources and  labor4. This vulnerability is further exacer-
bated by escalating climate variability, mounting population pressure, and rangeland  degradation5, which col-
lectively diminish the effectiveness of traditional herding strategies, such as migration, and strain the informal 
coping mechanisms of pastoral societies, thereby exacerbating  poverty6. The recent emergence of index-based 
livestock insurance (IBLI) has begun to provide much-needed respite, shielding pastoralists against the adverse 
impacts of  drought7–9. Index-based insurance products are primarily used as financial tools for mitigating risks 
associated with agriculture and livestock, particularly those stemming from natural  disasters10. Unlike traditional 
insurance products, index insurance, often referred to as parametric insurance, operates on a unique principle 
where indemnity is not determined by actual losses but relies on the empirical relationship between a chosen 
proxy index and the expected loss associated with the covered  risk11,12. The selection of these proxy indices is 
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crucial and depends on the specific risk being addressed. Some of the common proxy indices encompass weather 
information and Earth Observation (EO) derived vegetation yield information. The index of choice should be 
strongly correlated with the risk being modeled, to provide a reliable basis for triggering insurance payouts when 
predetermined thresholds or conditions are  met12. Presently, IBLI operates in parts of Kenya and Ethiopia as part 
of commercial and government subsidized  program13, with expansion initiatives underway across other parts of 
 Africa14–16. In the current setup IBLI is defined to cover extreme drought conditions whereby payouts are made 
when forage availability falls below predefined thresholds, thus policyholders receive compensation they can 
use to mitigate the impact of drought related adversities on their livelihoods.

IBLI operates on the principle of indemnification, utilizing a predetermined external variable known as the 
"forage index" derived from EO data, strongly correlated with drought and forage scarcity, rather than depend-
ing on individual loss assessments, which can be both time-consuming and potentially  biased17. This approach 
renders IBLI efficient, credible, accessible and immune to potential manipulations by various stakeholders. IBLI 
is characterized by its cost-effectiveness and independence from data on actual livestock mortality, which can 
be financially and logistically difficult to acquire in many African  regions6,18. Consequently, the index-based 
approach provides an accessible insurance option for poor and vulnerable pastoralists who may lack formal 
documentation or face challenges in proving their losses, thus providing them with a reliable safety net dur-
ing drought which would otherwise be impossible in conventional insurance  markets19,20. The fundamental 
mechanism underlying IBLI involves automatic payouts triggered when the forage index falls below a predefined 
threshold within a geographical unit designed to capture shared risk and referred to as the unit area of insurance 
(UAI). A UAI is defined as an area with homogeneous biophysical or agroclimatic characteristics, similar pastoral 
experiences, socioeconomic factors and risk  profile21,22. Neighboring pastoral communities are grouped into the 
same UAI cluster based on these criteria.

An additional strength of the IBLI approach lies in the ability to provide payments early in the season, 
allowing pastoralists to proactively safeguard their livestock before the onset of significant mortality, reducing 
reliance on less favorable coping  strategies18. Beyond its immediate benefits, IBLI addresses the root causes of 
climate-related vulnerability among pastoral communities and holds the potential to catalyze economic growth, 
enhance household food security, and bolster resilience among marginalized  pastoralists23. Moreover, IBLI has 
been instrumental in catalyzing insurance markets across numerous African countries over the past decade. It 
has made previously unaffordable or nonexistent insurance options accessible. This has the capacity to attract 
private sector investment and augment both public and private capital flows, contribute to the improvement of 
financial institutions and infrastructures, fostering a more robust financial  ecosystem18,24.

While IBLI has emerged as an effective tool in mitigating the impacts of drought on pastoral and crop pro-
duction  systems6,25, it only provides partial  protection26 and faces a significant challenge in the form of poten-
tial basis risk. The basis risk represents the discrepancy between the index-triggered indemnity payments and 
actual observed  losses6,12. Product design in IBLI encompasses several critical elements that directly influence 
insurance payouts, including the degree of correlation between the chosen index and average available forage, 
formulation of payout models, and the established trigger thresholds. For instance, in the current IBLI formula-
tion, given that different livestock species exhibit distinct feeding preferences, the chosen index should aptly 
reflect the dietary habits of the covered animal, ensuring relevance and accuracy in assessing risks and potential 
losses. These disparities can lead to a mismatch between the index used for insurance and the actual risk being 
covered, predominantly drought.

The existing IBLI contract relies on a satellite measurement of vegetation greenness, the Normalized Differ-
ence Vegetation Index (NDVI), which serves as a proxy for forage availability by measuring vegetation vigor. 
NDVI is aggregated over UAIs, encompassing diverse rangeland types to gauge forage status relative to long-term 
average seasonal  profiles17. However, livestock in pastoral systems largely feed on herbaceous biomass, hence 
limiting the applicability of aggregate NDVI for estimating forage availability in rangelands in mixed tree grass 
systems. Moreover, intended IBLI expansion across regions in Africa, including a diversity of agro-silvopastoral 
systems, poses a challenge in the current contract design due to heterogeneity in land cover, with areas of denser 
woody cover, mixed crop and rangeland vegetation. This is exacerbated by ongoing invasion of non-palatable 
 species27 and woody encroachment in pastoral  lands28, some of which remain evergreen year-round, further 
complicating forage estimation, particularly during drought.

This research explored the use of novel satellite-derived data products for the estimation of the forage index 
in the context of IBLI product design. The newly considered inputs were based on MODIS leaf area index  (LAIA; 
defined as the area of green leaves per unit ground area, an indicator of foliage quantity) partitioned into her-
baceous  (LAIH) and woody  (LAIW) forage components. Thus, the objective of this research was to evaluate the 
feasibility and effectiveness of utilizing distinct woody  (LAIW; a proxy for browsing resources) and herbaceous 
 (LAIH; a proxy for grazing resources) forage estimates as an alternative to the commonly used NDVI for the 
enhancement of IBLI product design. To test these approaches, we utilized historical livestock mortality data from 
northern Kenya as a reference dataset for index accuracy assessment and employed a random forest regression 
framework to examine two competing forage type models: (1) the aggregate biomass model which represents 
the mixed woody (shrubs and trees) and herbaceous (grasses and forbs) foliage including sub-models for (a) 
NDVI model, (b) LAI model  (LAIA), and (2) partitioned LAI model  (LAIP), comprising separate woody  (LAIW) 
and herbaceous  (LAIH) forage estimates. The distribution of livestock and their ability to survive drought in 
African rangelands are influenced by a complex interplay of forage availability and other ecological, climatic, 
socio-economic, and management factors. Environmental factors, including ecological and climatic elements, are 
relatively straightforward to represent using EO derived metrics. In contrast, socio-economic and management 
factors may not always be readily accessible for  analysis2,6. Hence, within the framework of this analysis, we inte-
grated the forage availability proxies with other pertinent environmental variables, including water availability, 
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temperature, and the extent of human landscapes, to elucidate the factors influencing livestock mortality in 
Kenyan pastoral rangelands.

Materials and methods
Study area
The study location was in Marsabit County, northern Kenya, where a time series of livestock mortality data were 
collected between 2009 and 2021 (Fig. 1). The county is one of Kenya’s arid and semi-arid regions where IBLI has 
been implemented, with mean annual precipitation (MAP) 200–300 mm across most of the County, with some 
small localized mountainous areas receiving up to 800 mm  annually29,30. Rainfall follows the typical bimodal 
precipitation pattern of the Horn of Africa (HoA), with the long rainy season (LRS) occurring from March to 
June, followed by a three-month dry period and the short rain season (SRS) from October to December. Daytime 
temperatures vary in the range 22–35 °C between the cold and hot months.

Marsabit County is among the Kenya’s largest counties in terms of land area, covering ~ 12% of the country’s 
total landmass, yet it is sparsely populated with a total population of 459,785 individuals, translating to approxi-
mately 6 persons/km231. The population is ethnically diverse, encompassing groups pastoral and non-pastoral 
 communities30,31.

Pastoralism is the main source of livelihood among the various communities in the county, who practice 
both sedentary and nomadic pastoralism. Marsabit County, like many other arid and semi-arid areas in the 
region, contends with recurrent droughts occurring every 2–3 years, some of which extend beyond a single 
season, resulting in various drought related challenges. Over the years, the county has grappled with livestock 
mortality due to drought, conflicts arising from competition for scarce foraging resources among pastoralists, 
and an upsurge in disease outbreaks when foraging resources become critically low, leading to mass livestock 
migrations and congregations in the few available grazing  reserves30,32. Additionally, cattle raids are a common 
occurrence, with neighboring communities invading during wetter seasons mainly to recover livestock lost in 
the aftermath of preceding  droughts30.

Figure 1.  Map of Kenya, showing the study area of Marsabit county and the Counties participating in the 
index-based livestock insurance (IBLI) program. Approximate location of household surveys is shown for 
Marsabit County, conducted in different seasons on livestock status, losses from drought mortality and other 
events. Figure generated in ArcGIS Pro 3.2.2.
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Data and pre‑processing steps
Marsabit observes a bimodal rainfall pattern which corresponds with two distinct forage production periods, 
which are commonly used to define insurance coverage risk periods for  IBLI2,6. The severity of drought-related 
livestock mortality can vary between these seasons due to differences in their duration and behavior. To account 
for this variability, our analysis categorized seasons based on static monthly definitions. We combined the wet 
season with the subsequent dry period to address the lag in livestock mortality caused by forage shortages during 
the wet  season33. Thus, we defined the LRS (March–June) and the following dry season (July–September) as the 
first seven-month mortality season, termed the long rains long dry (LRLD; March to September). The short rains 
(October–December) and two-month dry period that follows (January–February) were then referred to as the 
short rains and short dry (SRSD; October–February). These seasonal timelines served as the basis for defining 
drought-related mortality statistics and derivation of vegetation  indices29.

Livestock mortality
The livestock mortality data comprised panel surveys of pastoralist households in Marsabit county (Fig. 1). 
The data was collected as part of the International Livestock Research Institute (ILRI) IBLI initiative for the 
epoch 2008–2021. It comprised a randomized control trial of pastoral communities with the overarching goal 
of representing the diverse pastoral populations in northern Kenya. The data collected included livestock status 
data such as household stock sizes, details on livestock losses (including assumed causes), livestock inflows and 
outflows, income, expenditure, and population  demographics34.

Longitudinal data were collected in October/November of 2009, 2010, 2011, 2012, 2013, 2015, and 2021 for 
this analysis across a total of 1027 households. While there were slight variations in household participation 
across the seven rounds of data collection, the majority of households consistently took part in these repeat 
surveys. During the annual surveys, respondents were asked recall questions on specific livestock-related events 
including losses, intakes, offtakes, slaughters, and births, all within the context of the 12 months preceding each 
survey, with reference to a specific month of the  year34. The primary data were collected on camels, cattle, sheep, 
and goats. During the surveys, sheep and goats were typically grouped together under the term "shoats". To 
address concerns related to data retrieval from memory and potential inaccuracies in mortality reports, efforts 
were made to identify and eliminate any apparent data duplications and inconsistencies.

The analysis was conducted at the household level, leveraging the availability of GPS location data for each 
household. This enabled us to extract and incorporate EO derived vegetation and environmental variables at 
household level in our analysis. Pastoralists migrate across vast areas of land in search of foraging  resources35. 
The range of pastoral migration is influenced by ecological, climatic, and socio-economic factors, and it varies 
across different regions of  Africa36. Here we assumed that most pastoralists in northern Kenya have access to 
forage within a 20 km radius of their communal grazing lands, although this range may expand during extreme 
 droughts37,38. This assumption holds true, especially in eastern Africa where land fragmentation due to land use 
changes has diminished available grazing lands. Thus, for each household we created a buffer of 20 km, then used 
it to extract the EO derived vegetation indices and other environmental variables used in the analysis.

To calculate mortality rates associated with droughts in our analysis, we included mortality losses stemming 
from both drought and disease (Table 1). We argued that, droughts in pastoral systems limit forage and water 
resources, leading to reduced nutrition quality and quantity for livestock, increasing their susceptibility to dis-
eases and increasing mortality  rates36,39. Additionally, disease outbreaks are more prevalent during dry seasons 
when livestock congregate around water sources and limited foraging resources, increasing disease transmission 
between herds, further elevating mortality  rates32.

To match seasonal estimates of livestock mortality and vegetation indices used as proxies for forage availability 
we did a seasonal aggregation of mortality. To establish uniformity in quantifying livestock across our models, 
we employed the conversion of individual mortality figures into Tropical Livestock Units (TLU). TLU serves as 
a standardized metric for expressing the size or relative value of various livestock species in tropical regions. It 
is anchored on a ruminant with a liveweight of 250 kg, typically representing an adult  cow40. For consistency, 

Table 1.  Reported causes of livestock loss in the Marsabit household surveys and their reclassification for use 
in the current analysis.

Loss reason Loss reclassification

1 Accident/poisoned Other

2 Disease Disease

3 Lost Other

4 Old age Other

5 Predation Predation

6 Premature birth Other

7 Raiding/rustling/conflict Conflict

8 Rain Drought

9 Starvation/drought Drought

10 Other (specify as consumed plastic bags, premature birth, bloat, ceremony, birth complication, snake bite Other
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we adopted the TLU conversion rates established by ILRI for the implementation of IBLI in northern Kenya, as 
outlined in Table 2.

Indicators of forage availability and water resources
The availability of water, forage resources and their nutritional quality are key determinants of livestock distribu-
tion. Access to sufficient and nutritious forage is critical for livestock survival, especially during drought periods. 
Overgrazing, land degradation, extreme weather patterns and climate variability can reduce forage availability, 
thus significantly impacting livestock distribution and drought survival in African rangelands. Areas with more 
reliable rainfall tend to have higher available forage thus can support larger livestock populations. During critical 
periods relocation to grazing reserves is critical for livestock survival. Thus, in this analysis we used EO derived 
vegetation indices including NDVI and leaf area index (LAI) as proxies for forage availability across seasons. 
Furthermore, the presence of reliable water sources plays a crucial role in livestock survival during droughts 
and affects pastoral grazing patterns. Areas with access to water are the best foraging zones as most livestock 
have a high dependency on water. Hence, we used EO derived seasonal water estimates as an indicator of water 
availability.

Aggregate leaf area index  (LAIA). In this analysis we used EO derived LAI as a proxy for landscape-scale 
aggregate forage resources, which constitutes mixed grazing (herbaceous) and browse (from woody vegetation) 
resources. LAI provides valuable information about the amount of green vegetation cover and foliage area. LAI 
is a dimensionless parameter, defined as the one-sided area of green leaves  (m2) per unit ground area  (m2) in 
broadleaf canopies and half total needle surface area per unit ground area in conifers. LAI values range from 0 
(no vegetation) to values exceeding 6 in dense  vegetation41. Here, we used Moderate Resolution Imaging Spec-
troradiometer (MODIS) Collection 6.1 (MC6.1) LAI from NASA’s Terra and Aqua satellites to estimate total 
landscape-scale LAI comprising mixed vegetation components for woody and herbaceous vegetation (“aggre-
gate LAI”, denoted as LAIA). This distinction serves to differentiate it from its derivatives that separate the aggre-
gate LAI into woody  (LAIW) and herbaceous  (LAIH) LAI constituents, which form what we term the partitioned 
LAI  (LAIP), as presented in the section that follows. This dataset offers comprehensive coverage at 8-day intervals 
with a spatial resolution of 500  m42 from 2002 to 2021.

Following pre-processing based on MODIS quality  flags43 we used the approach detailed in Kahiu and 
 Hanan44 to filter out cloud-contaminated pixels, fill data gaps and reduce noise, including a robust spline smooth-
ing algorithm implemented in  Python45. Despite the MODIS satellite nearing the end of its operational  life46, we 
opted for this data source due to its extensive historical archive, which aligns with the livestock mortality data 
spanning from 2008 to 2021. This choice allowed us to establish a lengthy reference period for the computation 
of the forage index.

Using the household buffer described above, we spatially aggregated  LAIA to compute the forage index based 
on  LAIA. The 8-day household buffer aggregate data was used to compute the monthly average estimates, then 
cumulated per season for the LRLD and SRSD periods for the years 2003–2021 (Fig. 2). Subsequently, anomalies 
were derived using z-score standardization. Standardizing vegetation indices is crucial as it ensures the uniformity 
of data across diverse regions and timeframes, ultimately enhancing the reliability, comparability, and accuracy 
of the data employed in IBLI and drought  modeling6,47,48.

Partitioned leaf area index. Following the methods proposed in Kahiu and  Hanan44, the MODIS  LAIA was par-
titioned into woody and herbaceous LAI constituents, denoted as  LAIW and  LAIH respectively, together denoted 
as partitioned LAI  (LAIP; https:// sites. google. com/ view/ parti tioned- modis- lai/ home)49. This update to  LAIP 
uses the preprocessed 8-day MODIS Collection 6.1 (MCD15A2Hv061) at 500 m resolution described above, for 
the implementation of the partitioning approach which requires three key input parameters: (1) EO based  LAIA 
estimates; (2) woody cover (WC; τw); and (3) potential maximum in-canopy LAI (LAIW*max). The EO based  LAIA 
was available from MODIS, WC from a woody cover product centered around year  200550, while LAIW*max is 
based on an allometric relationship between in situ in-canopy LAI measurements from Africa and precipitation. 
Other important details and assumptions are detailed in Kahiu and  Hanan44.

To derive household level  LAIH and  LAIW, the household buffer approach described above was used to spa-
tially aggregate the 8-day data. The 8-day household buffer aggregate data was used to compute the monthly 
average estimates then cumulated per season for the LRLD and SRSD periods for the years 2003–2021 (Fig. 3). 
Subsequently, anomalies were derived using z-score standardization.

Table 2.  Tropical livestock units conversion factors used for implementation of index-based livestock 
insurance in northern Kenya.

Livestock species TLU conversion rate

Cattle 1

Sheep 0.1

Goats 0.1

Camels 1.3

https://sites.google.com/view/partitioned-modis-lai/home
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Normalized difference vegetation index. To align with the 8-day MODIS Collection 6.1 LAI data at 500 m spa-
tial resolution utilized in our study, for which readily available preprocessed data were lacking, we employed the 
MODIS Version 6.1 Normalized Difference Vegetation Index (NDVI) data from Terra (MOD13A1) and Aqua 
(MYD13A1) satellites. These datasets were available every 16 days at a 500 m pixel spatial resolution. The 16-day 
product composites the highest-quality pixel values from all acquisitions within the 16-day period, considering 
factors like low cloud cover, favorable view angles, and the highest NDVI values. Given the 8-day difference 
between these two products, we did a temporal compositing to generate an 8-day NDVI product, which matches 
the MODIS LAI data. The NDVI preprocessing procedure was based on the LAI smoothing approach as out-
lined in Kahiu and  Hanan44. This involved employing quality flags to filter out pixels contaminated by clouds, 
addressing gaps in data for missing dates and pixels, and applying data smoothing techniques to minimize the 
inherent noise. For data smoothing, we also implemented the robust spline smoothing algorithm implemented 
in  Python45.

After preprocessing, we used the household buffer zones to spatially aggregate the NDVI data and compute 
the household forage index from cumulated NDVI for LRLD and SRSD for the 2003–2021 epoch (Fig. 4), fol-
lowing steps described in the LAI section above.

Water availability. Water is a critical resource in pastoral ecosystems, influencing the spatial distribution of 
both livestock and wild  herbivores51,52. It plays a pivotal role in guiding the seasonal migration patterns of herds, 
sometimes intersecting with wildlife migration  routes52. Water points serve as central hubs, directing the sea-
sonal migration of herds. Pastoralists carefully plan their livestock seasonal movement to ensure foraging areas 
with access to water, which is particularly crucial during dry seasons and  droughts53. Certain animal types, such 
as cattle, are heavily dependent on water. Consequently, the availability of adequate water resources is paramount 
for ensuring their survival and resilience in the face of extreme dryland weather  conditions54.

We used Version 3 Copernicus Global Land Cover seasonal inland water fractional cover estimates (Fig. 5b), 
available at 100 m spatial resolution for year  201955. The data ranges between 0% for non-water pixel and 100% 
for pixels filled with seasonal water at any time during the year. We used these estimates to compute seasonal 
water density within the 20 km buffer surrounding the household data. It is noteworthy that although additional 
data on water sources like shallow wells and boreholes would have been beneficial for our analysis, we found that 
such data were not available in a format or scale compatible with our geospatial layers.

Temperature
Climatic variability and weather patterns play a key role in survival and distribution of livestock. Various live-
stock types have optimal temperature ranges outside which may have adverse impacts on the animal health and 
performance. Extreme cold and hot temperatures can impact disease susceptibility, threatening livestock health 
and  survival56.

Here we used monthly temperature maxima from the TerraClimate global dataset for the epoch 2003–2021 
(Fig. 5c). The data comprises monthly temperature maximum estimates for global terrestrial surfaces, available 
at a spatial resolution of ~ 4  km57. This gridded dataset integrates the higher spatial attributes from WorldClimV2 

Figure 2.  Average seasonal cumulative aggregate leaf area index  (LAIA) for Marsabit County in Kenya, for the 
epoch 2003–2021 in (a) the long rains long dry season (LRLD; March–September), and (b) short rains short dry 
season (SRSD; October–February). Figure generated in R-Programming (version 4.2.1), using Lattice Package 
(version 0.10-10).
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with temporal attributes from CRU Ts4.0, utilizing climatically aided interpolation techniques, to create a high-
spatial resolution dataset that covers a broader temporal  record57,58.

To determine the household level temperature anomalies as an indicator of climate variability, we used the 
household buffer approach to compute the seasonal average temperature across the LRLD and SRSD periods for 
the years 2003–2021. Subsequently, anomalies were derived using z-score standardization.

Human landscapes
Land use and cover types, crucial determinants of livestock populations and herding practices, can significantly 
affect pastoralism in Africa. Traditional pastoralists, practicing nomadic and transhumant herding, rely on mobil-
ity to access better forage and water resources during droughts. However, land fragmentation, often driven by 
expanding settlements and agricultural farms, disrupts pastoral migration corridors and movement  patterns59. 
This results in smaller, isolated land parcels, reducing available grazing areas and intensifying resource competi-
tion among various land  users60,61. In this analysis, we employed EO derived human landscapes, encompassing 
built-up and cultivated areas, as a proxy for land fragmentation. These landscapes encroach upon traditional 
grazing lands, impacting the mobility and livelihoods of pastoral communities and challenging their traditional 
drought coping mechanisms and survival  strategies60,61.

Figure 3.  Average seasonal cumulative partitioned leaf area index for Marsabit County in Kenya, for the epoch 
2003–2021 in (a) woody LAI for the long rains long dry season (LRLD; March–September), and (b) woody 
LAI for the short rains short dry season (SRSD; October–February), (c) herbaceous LAI for the long rains long 
dry season and (d) herbaceous LAI for the short rains short dry season. Figure generated in R-Programming 
(version 4.2.1), using Lattice Package (version 0.10-10).
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To account for the influence from human population and land fragmentation in our models, we used a 
recently developed EO product from the Copernicus Global Land Service, Collection 3 Land Cover 100 m dataset 
for the year 2019 (Fig. 5a), available at a spatial resolution of 100 m. These estimates are derived from PROBA-V 
satellite observations and ancillary  datasets55. We created the human landscapes layer by summing fractional 
cover estimates for cultivated and built-up areas. To determine the extent of human landscapes within the 20 km 
buffer surrounding the household data, we calculated the density by dividing the total human landscapes area 
divided by the 20 km radius buffer feature.

Analysis models
General forage models
We implemented three competing forage type models: (1) NDVI forage model, (2) aggregate LAI model  (LAIA), 
and (3) the partitioned LAI model  (LAIP) which included separate woody  (LAIW) and herbaceous  (LAIH) forage 
estimates. These forage proxies derived from vegetation indices were integrated with other relevant environmental 

Figure 4.  Average seasonal cumulative NDVI for Marsabit County in Kenya, for the epoch 2003–2021 in (a) 
the long rains long dry season (LRLD; March-September), and (b) short rains short dry season (SRSD; October–
February). Figure generated in R-Programming (version 4.2.1), using Lattice Package (version 0.10-10).

Figure 5.  Environmental Variables for Marsabit County used in the analysis including (a) Human Landscapes 
which combines built up and cultivated areas, (b) Seasonal surface water resources, and (c) Average maximum 
monthly temperature for the epoch 2003–2021. Figure generated in R-Programming (version 4.2.1), using 
Lattice Package (version 0.10-10).
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variables, including water availability, temperature, and the extent of human landscapes, to elucidate the factors 
influencing livestock mortality rates in Kenyan pastoral rangelands, as summarized in Table 3

Regression analysis using random forest modelling
To conduct the regression analysis Random Forest Models (RFM) were implemented using the ‘randomForest’ 
package in R-Programming62,63. RFMs comprise an ensemble of machine learning algorithms that are widely used 
for both classification and regression  analysis64. It builds multiple decision trees during training and combines 
their outputs to improve predictive accuracy and reduce overfitting. In classification tasks, RFM typically uses 
majority voting among the trees to make predictions, while in regression analysis, it averages the predictions 
from individual trees. Their robustness is enhanced through feature randomization by considering only a sub-
set of features at each split in the decision tree, to ensure the correlation between trees is reduced and model’s 
generalization is improved.

Randomness plays a crucial role in the RF algorithm, introduced through bootstrapping (randomly sampling 
subsets of data with replacement) and feature randomization (randomly selecting subsets of features at each 
split)64. To ensure repeatability and optimize our RFMs, we carefully controlled these sources of randomness by 
setting up 50 random seeds, with results from the 50 models averaged to generate the final  results62,63.

Results
Livestock mortality types
In African pastoral systems, livestock mortality stems from multiple factors, including drought, wildlife preda-
tion, disease, and inter-communal livestock raids. In Marsabit County, northern Kenya, our analyses revealed 
that drought related mortality accounted for the majority (66%) of livestock losses (Table 1 and Fig. 6a). Pro-
longed droughts create water and forage shortages, malnutrition, and weakened immunity, rendering livestock 
susceptible to diseases, consequently increasing  mortality36,39. Disease outbreaks ranked as the second (19%) 
leading cause of livestock mortality in the region, particularly during the dry season when livestock congregate 
around limited foraging and water sources, facilitating disease  transmission32.

While drought and disease persist as predominant factors contributing to mortality in specific animal spe-
cies, their impact varied significantly among different types (Fig. 6b). In terms of individual numbers, shoats 
exhibited the highest vulnerability to mortality from both drought and disease causes (Fig. 6b). However, when 
considering livestock population in TLUs, cattle emerged as the most significant loss experienced by pastoralists 
during drought, while camels were the most susceptible to diseases, Fig. 6b (ii).

Table 3.  Aggregate and partitioned models used for the herbivory analysis using random forest model. LAIA-
Aggregate leaf area index (LAI);  LAIH—herbaceous LAI;  LAIP – Partitioned LAI;  LAIW—Woody LAI; NDVI—
Normalized Difference Vegetation Index; TLUS-Tropical livestock units.

Response variable (livestock mortality 
rates in TLUS)

Explanatory variables

Aggregate NDVI model (NDVI) Aggregate LAI model  (LAIA) Partitioned LAI model  (LAIP)

1. Aggregate Livestock

NDVI + Human Landscapes + Water avail-
ability + Temperature + Seasonality

LAIA + Human Landscapes + Water avail-
ability + Temperature + Seasonality

LAIH +  LAIW + Human Landscapes + Water 
availability + Temperature + Seasonality

2. Cattle

3. Camels

4. Shoats (Sheep and Goats)

Figure 6.  Descriptive analysis of livestock mortality causes, and livestock types affected in Marsabit county, 
(a) causes of livestock losses as a percent of total across all livestock types, (b) livestock losses for each type 
expressed in (i) number of affected, and (ii) Tropical Livestock Units. Figure generated in R-Programming 
(version 4.2.1), using ggplot2 Package (version 3.5.1).
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Seasonal distribution of livestock mortality across environmental variables
Extreme forage scarcity events aligned with high livestock mortality patterns in Marsabit from 2008 to 2021 
(Fig. 7). Notable low forage index values during the long rain season of 2009, were prominently reflected across 
all the forage indices, which match the high livestock mortality in that period. The distribution patterns of live-
stock mortality across different ranges of predictor variables are shows in Fig. A1 in Supplementary materials).

Overview of performance of all models
To evaluate the effectiveness of our RFMs, we employed model-derived variable importance metrics and cal-
culated the Root Mean Squared Error (RMSE) and R-squared  (R2) values across all models. RFMs commonly 
offer insights into variable importance, indicating the extent to which each predictor contributes to minimizing 
prediction errors. This importance can be expressed either as a percentage or as a ranking among variables. RMSE 
measures the average magnitude of the model’s prediction errors, while  R2 quantifies the proportion of variance 
in the dependent variable that is explained by the independent variables in the model.

Overall, the partitioned forage models demonstrated superior performance compared to the aggregate for-
age models (Table 4 and Fig. 9). The  LAIP forage model consistently exhibited lower RMSE and higher  R2 values 
across all livestock types when compared to the  LAIA and NDVI models. In the aggregate livestock mortality 
resulting from both drought and disease, the  LAIP model stood out with the lowest RMSE of 5.9 TLUs and a high 
 R2 value of 0.83. In comparison, the aggregate models comprising of both the  LAIA and NDVI models exhibited 
higher RMSE values (~ 9.3 TLUs) and lower  R2 values (~ 0.6), which align with our expectations due to their 
representation of similar aggregate (combined herbaceous and woody) landscape scale forage estimates. The 
animal specific statistics are summarized in Table 4.

The aggregate forage models tended to underestimate the mortality rates across the various animal specific 
mortality categories and the goodness of fit as shown by  R2 as shown in Fig. 8a,b (panels 1 and 2). In the all-
livestock aggregate mortality (camel, cattle, goats, and sheep) and shoats (b) models, there was generally poor 
performance in mortality rates lower than 50 TLUs (Fig. 8a,b respectively). Conversely, the partitioned forage 
model performed better across the various mortality ranges in both the aggregate and animal specific models as 
evidenced by the higher  R2 values (Fig. 8, 3rd panel).

The relatively poor performance of the year 2008 short rains followed by a severe drought season during 
the 2009 LRS, had a significant impact, resulting in exceptionally high mortality rates. These rates appeared as 
outliers in the data across all the models, but were more pronounced in the animal specific models (Fig. 8b,c).

Aggregate livestock mortality models
In the aggregate livestock mortality models, forage availability emerged as the primary determinant of livestock 
mortality in both the NDVI and  LAIA models, contributing 19.9% and 19.2% importance in the respective models 
(Fig. 9 and Table 4). Conversely, in the  LAIP model human landscapes ranked highest with importance at 22% 
followed by temperature at 21%, water availability at 20%, while both  LAIH and  LAIW at 19.5%. Grazing  (LAIH), 

Figure 7.  Distribution of livestock mortality during 2008–2021 from drought and disease and the 
corresponding forage indices across the years in Marsabit County, Kenya. (a) Long-term average mortality 
during the long rains and long dry season, (b) Long-term average mortality during the short rains short dry 
season and the corresponding forage indices (the z-scores) in (c) and (d) for aggregate LAI  (zscoreLAIA), 
Herbaceous LAI  (zscoreLAIH), woody LAI  (zscoreLAIW) and Normalized Difference Vegetation Index 
(zscoreNDVI). Note missing years in the mortality time series in (a) and (b) correspond to years when mortality 
data was unavailable. Figure generated in R-Programming (version 4.2.1), using ggplot2 Package (version 3.5.1).
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browsing  (LAIW) and water resources demonstrated almost equal importance. This observation may underscore 
the significance of both water and foraging resources in the overall livestock mortality model, or perhaps could 
suggest a high correlation between both foraging and water resources with rainfall. Water availability and season-
ality interchanged positions of importance in the aggregate models, ranging between 13.4 and 14.8% (Fig. 9a,b).

Across all three models, forage availability consistently exhibited a negative correlation with mortality, align-
ing with the anticipated outcome of increased mortalities when forage availability falls below average levels 
during drought conditions (Fig. 9a,c). Conversely, the intensity of human activity increased mortality across all 
models. This could be attributed to increasing density of livestock and associated reduction in accessible graz-
ing lands in locations with higher human populations, potentially leading to increasing competition for grazing 
resources. However, it’s noteworthy that a positive relationship emerged between mortality and seasonal water 
availability in all the models. This contradicted our expectation that mortality would decrease in areas with more 
abundant water resources.

Further, we conducted an analysis for drought only related aggregate mortality for all animals. While there 
may be subtle changes in the order of importance, the overall influence remained relatively consistent (Fig. A2 
and Table A1 in the Supplementary materials), compared to the drought and disease mortality models (Fig. 9).

Table 4.  Random forest results for the aggregate and separate forage models for livestock mortality in 
Marsabit County, Kenya.

Model

RMSE R2 Variables Importance RMSE R2 Variables Importance

1) Aggregate mortality from drought and disease 3) Cattle mortality from drought and disease

Aggregate models

 Aggregate NDVI 9.33 0.59

Aggregate NDVI 19.9%

13.41 0.61

Aggregate NDVI 16.8%

Human Landscapes 15.1% Temperature 13.8%

Temperature 14.9% Human Landscapes 12.1%

Season 14.8% Seasonal Water 12.1%

Seasonal Water 14.1% Season 11.2%

 Aggregate LAI 9.30 0.60

Aggregate LAI 19.2%

13.38 0.61

Aggregate LAI 16.7%

Human Landscapes 15.7% Temperature 13.5%

Temperature 15.5% Human Landscapes 11.9%

Seasonal Water 13.8% Seasonal Water 11.9%

Season 13.4% Season 10.4%

Partitioned models

 Partitioned LAI 5.88 0.83

Human Landscapes 21.7%

9.07 0.81

Herbaceous LAI 18.1%

Temperature 20.8% Woody LAI 17.3%

Seasonal Water 19.9% Temperature 17.2%

Herbaceous LAI 19.5% Human Landscapes 14.6%

Woody LAI 19.5% Seasonal Water 12.4%

Season 7.4% Season 0.5%

2) Camels mortality from drought and disease 4) Shoats mortality from drought and disease

Aggregate models

 Aggregate NDVI 6.08 0.75

Temperature 8.0%

2.37 0.67

Aggregate NDVI 9.5%

Aggregate NDVI 6.4% Temperature 7.4%

Seasonal Water 5.5% Human Landscapes 6.8%

Human Landscapes 4.8% Seasonal Water 5.6%

Season -1.2% Season 4.6%

 Aggregate LAI 6.03 0.76

Temperature 7.9%

2.37 0.67

Aggregate LAI 7.3%

Aggregate LAI 6.8% Temperature 6.5%

Seasonal Water 5.3% Human Landscapes 6.4%

Human Landscapes 4.9% Seasonal Water 5.4%

Season -1.5% Season 3.8%

Partitioned models

 Partitioned LAI 4.43 0.84

Temperature 12.4%

1.65 0.82

Human Landscapes 9.8%

Seasonal Water 10.3% Temperature 9.3%

Human Landscapes 7.6% Woody LAI 9.2%

Woody LAI 7.3% Herbaceous LAI 8.5%

Herbaceous LAI 6.8% Seasonal Water 6.8%

Season -0.5% Season 4.5%
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Animal specific mortality models
To understand the impacts of forage availability on browsers and grazers, we ran animal specific models com-
bining drought and disease related mortality. We ran models specific to camels, cattle, and shoats (sheep and 
goats). Our results showed variations across the models depending on forage model type and level of mortality 
aggregation or separation (Supplementary materials Sections C–E).

The ranking of significance among the predictor environmental variables, crucial in explaining livestock 
mortality during drought, varied across models, contingent on the specific forage type and its relevance to dis-
tinct animal categories. In general, forage availability consistently emerged as the most influential variable, with 
species specific models showing the different forage preferences in various animal types. It exhibited a negative 
correlation with mortality, aligning with the anticipated outcome of increased mortalities when forage availability 

Figure 8.  Predicted livestock mortality for aggregate and distinct forage models for (a) aggregate livestock 
mortality (including camels, cattle, goats and sheep), (b) shoats (aggregating goats and sheep), (c) camel specific 
and (d) cattle specific mortality. Figure generated in R-Programming (version 4.2.1), using ggplot2 Package 
(version 3.5.1).



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14834  | https://doi.org/10.1038/s41598-024-62893-4

www.nature.com/scientificreports/

falls below average levels during drought conditions. Conversely, the intensity of human activity demonstrated a 
positive relationship with mortality across most models. This could be attributed to the reduction in accessible 
grazing areas and heightened resource competition in more highly populated and fragmented landscapes. In 
cattle which are predominantly grazers,  LAIH was the most influential factor in the  LAIP model, followed by 
 LAIW. Conversely, in camels, in the aggregate and partitioned forage models, temperature emerged as the most 
influential variable, demonstrating a negative correlation with mortality, while the increased importance of 
 LAIW compared to  LAIH aligns with the browsing behavior of camels (Table 4). The results in the shoats’ model 
which combines sheep and goats were more intricate than in the other animal specific models, which may be 
influenced by the sheep to goat ratio, an important factor that was missing from our dataset. Further details on 
animal specific model performance are presented in the Supplementary Materials (Sections C–E).

Discussion
Overall, the partitioned forage models outperformed the aggregate forage models  (LAIA and NDVI models; 
Table 4). The  LAIP model consistently exhibited lower RMSE and higher  R2, indicating a better goodness of fit 
between the modeled and actual values, across all livestock types when compared to the  LAIA and NDVI models. 
In the aggregate models, both the  LAIA and NDVI models had similar performance with comparable RMSE and 
 R2 values, indicating no preference as expected. The influence of environmental variables across the models var-
ied, depending on level of mortality aggregation or separation. In cattle which are predominantly grazers,  LAIH is 
the most influential factor in the  LAIP model, followed by  LAIW. Conversely, in camels, the increased importance 
of  LAIW compared to  LAIH aligns with the browsing behavior of camels. However, the results in the shoats’ model 
which combines sheep and goats were more intricate than in the other animal specific models, which may be 
influenced by the sheep to goat ratio, an important factor missing from our dataset. These findings suggest that 
by generating distinct estimates for browse and grazing forage through partitioned LAI, has the potential to 
improve IBLI product design by separating the effect of seasonal fluctuations and long-term variations in woody 
and herbaceous leaf area, allowing a more precise index of herbaceous and woody forage resources.

Further, our results showed in the majority of the models, the correlation between forage availability indices 
(NDVI,  LAIA and  LAIP) and livestock mortality rates becomes nearly negligible when the index values are greater 
than or equal to zero but exhibits a notably strong and negative correlation when the index values are less than 
zero. This observation suggests that these indices might be most effective in extreme drought scenarios, poten-
tially indicating existence of other influential factors contributing to medium to low drought related livestock 
mortality, that may need further investigation.

The animal specific  LAIP models effectively captured the feeding preferences in various animal types. In cattle 
which are predominantly  grazers65,  LAIH was the most influential factor in the  LAIP model, followed by  LAIW. 
Conversely, in camels, the increased importance of  LAIW compared to  LAIH aligns with the browsing behavior 
of  camels65. These findings highlight the significance of distinct role played by browse  (LAIW) and herbaceous 

Figure 9.  Results showing level of importance and direction of influence for (a) aggregate NDVI, (b) aggregate 
LAI and (c) partitioned LAI models for explaining aggregate livestock mortality in Marsabit County, Kenya. 
Percentage values in the header of each variable panel represent variable importance in the models. Figure 
generated in R-Programming (version 4.2.1), using ggplot2 Package (version 3.5.1).
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 (LAIH) foraging resources in ensuring the survival and wellbeing of various livestock species. This distinction 
is particularly crucial for different livestock species with varying feeding behaviors, as they navigate through 
changing seasons and years with fluctuating levels of forage production.

We observed a more complex pattern across the mixed sheep and goats (shoats) mortality models. Aggregate 
forage estimates showed the highest importance across the aggregate (NDVI and  LAIA) forage models, while 
human landscape was the most important in the  LAIP model. Seasonal water and seasonality were consistently 
the least important variables across the models (Figs. A6 and Table 4). In the shoats  LAIP model we observed a 
somewhat different pattern between  LAIH and  LAIW compared to other animal-specific models. Contrary to our 
expectations in the  LAIP model,  LAIW ranked higher than  LAIH. We anticipated that  LAIH would have greater 
significance in the  LAIP model since sheep are predominantly grazers, whereas goats though predominantly 
browsers, mainly feed on shorter shrubs and  forbs66, which may be captured as  LAIH in the partitioned LAI 
 estimates44. However, it is noteworthy that the influence of  LAIH and  LAIW may be contingent upon the ratio of 
sheep to goats within the mortality data, a crucial factor that was absent from our dataset. This absence might 
have influenced the observed associations and underscores the complexity of disentangling the impact of these 
variables on shoat mortality accurately. It is noteworthy that in both  LAIH and  LAIW, mortality initially rose 
with diminished forage availability, stabilized under typical normal forage conditions, then rose once more with 
increasing forage availability before reaching a plateau.

Livestock distribution, survival and wellbeing is intrinsically dependent on the climate and its  variability67,68. 
Livestock species exhibit optimal temperature ranges, and deviations from these ranges can influence disease 
prevalence, thereby affecting livestock health and  survival56. Moreover, temperature fluctuations can disrupt veg-
etation growth, especially during  droughts69. In our cattle and camel mortality models, we consistently observed 
a negative correlation between temperature and mortality. Temperature negatively correlated with cattle and 
camel mortality, with higher mortality rates occurring in colder conditions, indicating increased susceptibil-
ity to diseases. While camels have a broad temperature tolerance range, their optimal conditions typically fall 
within a warm to hot  range70,71. Although they can withstand brief cold periods, prolonged cold conditions may 
compromise their immunity, rendering them more susceptible to diseases, particularly respiratory  infections72.

While our models generally aligned with expected patterns in explaining livestock mortality associated with 
drought, several limitations must be acknowledged, which could have introduced uncertainties and unexpected 
results. During the household surveys for mortality data collection in Marsabit, respondents were asked to recall 
specific livestock related events, including losses, intakes, offtakes, slaughters, and births, all within the context 
of the 12 months preceding each survey and with reference to a specific month of the  year34. This method almost 
certainly introduced errors and inaccuracies in the reported mortality statistics. Although we made efforts to 
identify and eliminate apparent data duplications or inconsistencies, some incorrect data may have persisted, 
potentially affecting our analysis results. Our approach to aggregating mortality, including reported disease and 
drought causes as a measure of drought related mortality, is logical. We contend that droughts within pastoral 
systems restrict the availability of forage and water resources, thus results into a decrease in both the quality 
and quantity of nutrition accessible to livestock, thereby heightening their vulnerability to diseases and raising 
mortality  rates36,39. However, other factors may contribute to mortality, introducing errors in the final model 
results. Furthermore, the mortality data only covers a limited region in northern Kenya. To provide more con-
clusive results, a more representative dataset should be used. An important consideration in selecting data for 
fitting the IBLI models should involve exploring additional influential factors beyond mortality that might also 
constrain livestock production. This broader approach will offer a more holistic understanding of the dynamics 
influencing livestock welfare and productivity in pastoral systems.

Moreover, in the HoA region, droughts can persist for multiple seasons or even  years73. Consequently, the 
survival of herbivores, both wildlife and livestock populations, becomes partly reliant on the forage conditions 
in the preceding season. An already weakened animal population is unlikely to endure a subsequent severe 
drought. Thus, considering this potential impact, we initially considered incorporating the forage indices from 
the previous season in our analysis. However, we found that this inclusion had minimal influence on the results, 
thus decided to exclude this variable from our models.

Our partitioned LAI estimates were derived based on a woody cover product centered around the year 2005 
to constrain the woody  LAI44. While this approach should generally capture the overall vegetation patterns due 
to the slow changing nature of woody vegetation, rapid changes in woody cover may not be fully represented, 
potentially leading to inaccuracies in the partitioned LAI estimates. This could, in turn, affect the overall mortal-
ity analysis results. Our LAI partitioning method may also struggle to account for very short shrubs, typically 
browsed by smaller livestock, thus may introduce complexities in the analysis of smaller ruminants.

Non-physical factors, such as socioeconomic welfare of households, land management practices, social net-
works, government policies and support, and livestock breeds, can influence livestock vulnerability and resilience 
to  drought74. However, these data are challenging to obtain and were not integrated into the current analysis. 
This may increase basis risk in IBLI models, although it is still uncertain on whether they are appropriate for 
inclusion in index insurance models. Additionally, while seasonal water availability serves as a suitable indica-
tor of available water resources, other sources such as shallow wells, boreholes and tapped water may also play 
significant roles in determining drought related livestock mortality. These additional parameters may introduce 
uncertainties into our models.
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