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Abstract. The challenge that is at the forefront of data-driven vibration-based structural
health monitoring (VSHM) is the detrimental effect caused by environmental and operational
variations (EOVs). Therefore, action must be taken in order to mitigate the effects of the EOVs
without affecting the influence of damage. A number of regression-based approaches have been
applied in VSHM, using measured environmental and operational parameters to model damage
sensitive features (DSFs). In this work, a forward stepwise method is compared with Lasso
regression for the purpose of regression model optimisation. The Akaike information criterion
(AIC) and the variance of the covariance of the input variables are used to quantitatively assess
the quality of the regression models. Additionally, the F-statistic is used to determine which
DSFs should or should not be regressed. The results of the analysis showed that the reduced
order forward stepwise regression had the lowest AIC and was the most appropriate model
despite not having the most stable coefficient matrices. Ultimately, the choice of optimisation
method has a significant impact on the quality of future predictions.

1. Introduction
Vibration-based structural health monitoring (VSHM) has been suggested as a potential
alternative to costly visual inspections. However, the biggest downfall of VSHM is that the
measurements are sensitive to changes in environmental and operational conditions. The
changing conditions can effectively hide the presence of damage, making it more difficult to
detect [1]. For this reason, a significant amount of work now focuses on mitigating the effects
of the varying conditions without removing the influence of the damage [2, 3, 4, 5, 6, 7].

VSHM can be broken down into a number of sub-categories. Firstly, between model-based and
data-driven. Model-based methods often require expensive computer models which are updated
to match the behaviour of the structure as closely as possible. On the other hand, data-driven
methods rely on models purely made of measured data. Data-driven can be split further into
implicit and explicit models [8]. In implicit models, no information about the varying conditions
are required. Alternatively, explicit models make use of information available on the varying
conditions to create a cause-effect relationship with the measured damage sensitive features
(DSFs) [9].

https://creativecommons.org/licenses/by/4.0/
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VSHM relies upon changes in the vibrational behaviour of the structure to detect damage.
Observations are compared to a baseline model and the small changes can be detected through
an outlier analysis. The VSHM implemented in this work follows a standard framework for
explicit modelling. The layout of the framework is given in Fig. 1. The focus of this work lies
in the design of the optimisation scheme, and how this affects the stability of the coefficient
matrices.

Model optimisation scheme

Environmental 
and operational 

parameters

Damage 

sensitive features

Feature 

normalisation

Outlier analysis

Damage 

diagnosis

Parameter 
selection

Model order 

selection
Cross validation

Regression 

modelling

Training observations

Figure 1. Schematic representation of an explicit VSHM framework.

Regression models have been a popular choice for explicit methods since they are flexible and
can be implemented with varying degrees of complexity. This ranges from simple linear models
[10] all the way to stochastic methods like Gaussian process regression [2]. The choice of model
is dependent on the data that is being modelled. Overfitting the models to the data can lead
to poor predictions of future observations [11]. The problem of overfitting is well established in
the machine learning community. For example, when working with neural networks, the model
will excessively weight around the training data [12].

Many methods have been implemented to avoid the problem of overfitting in regression-based
approaches as best as possible. Complexity regularisation [13] introduces penalty functions
to stop the neural networks growing too large, pruning [14] has been used to methodically
remove sections of neural networks and subset selection [8] has been implemented to remove non-
influential parameters. While these methods can help control overfitting, data sets with noisy
predictors or responses can still cause problems. Additionally, machine learning approaches can
also lack any interpretability.

The methodology implemented in this study uses multivariate nonlinear regression since the
results are more interpretable. Two different optimisation methods are used for performing
subset selection and to prevent overfitting of model orders. The first is a nonlinear forward
stepwise regression [9] and the second is Lasso regression [15]. Since the Lasso is a backward
stepwise type of regression, it makes a good comparison for the forward stepwise method. The
novelty of this work comes from the comparison of the two methods, as well as the introduction
of new metrics for assessing the quality of the coefficient matrices. The work in this paper
complements forthcoming work on the topic of forward stepwise regression [16].
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2. Methodology
2.1. Multivariate nonlinear regression
The DSFs extracted from the vibration responses from the structure can be expressed as a
function relating to the environmental and operational parameters (EOPs). DSFs are modelled
as a function of a coefficient matrix (W ) and a multivariate representation of the EOPs (f(ξ)).
f(ξ) is expressed as the Kronecker product of the input variables. The coefficient matrix can
then be estimated using the least squares estimate along with the DSFs and the multivariate
representations. Once the coefficient matrix is established, the DSFs for each observation can
be estimated. EOP-corrected DSFs are calculated as the difference between the original DSF
and the estimated DSF, as shown in Eq. 1. A full explanation of this process can be found in
previous work [9].

α̃n = αn − α̂n (1)

where α̃n are the corrected DSFs, αn are the measured DSFs and α̂n are the estimated DSFs.
When working with a large number of DSFs, it is impossible to individually design each

regression model. Combining this fact with the necessity of avoiding overfitting, a well designed
optimisation scheme is required. In this work, two different optimisation methods are tested, a
forward stepwise method and Lasso regression. In their essence, the forward stepwise method
starts with one EOP and builds up the model while the Lasso starts with all EOPs and works
backwards. To evaluate which method is superior, two crucial metrics are introduced.

2.2. Nonlinear forward stepwise regression
In any forward stepwise regression, the starting point is always modelling the training data using
a single variable. In this form of nonlinear forward stepwise regression, each input variable is
tested up to a given order. The functional representation of the first step is given by Eq. 2.

f(ξn) = fi(ξn,i) (2)

where the dimension of fi(ξn,i) is increased from 1 to the maximum order being tested.
For each EOP and order tested, the leave-one-out cross validation error (LOOCV) is

calculated to give a measure of the accuracy of the model. The LOOCV (MSELOO) is calculated
as shown in Eq. 3. At the end of of the first step, the EOP and corresponding order with the
lowest LOOCV is progressed to the following stage.

MSELOO =
1

NT
·
NT∑
n=1

(α̃n)
2 ·

(
NT∑
n=1

(αn)
2

)−1

(3)

In the second step, the remaining EOPs are tested across the given range of orders along with
the selected EOP and order from the first step. The functional representation is now written in
the form in Eq. 4.

f(ξn) = fa(ξn,a)⊗ fi(ξn,i−a) (4)

where fa(ξn,a) is the functional representation from the first step and fi(ξn,i−a) is the functional
representation of the introduced EOP, excluding ξa which was selected in the first step.

As before, the combination with the lowest LOOCV is selected and progressed to the next
step. The functional representation of the third step is given in Eq. 5.

f(ξn) = fa(ξn,a)⊗ fb(ξn,b)⊗ fi(ξn,i−a,b
) (5)
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where fa(ξn,b) is the functional representation from the second step and fi(ξn,i−a,b
) is the

functional representation of the introduced EOP, excluding ξa and ξb which was selected in
the first two steps.

This process is repeated until the addition of more EOPs no longer improves the prediction
of the model, or only improves the model fractionally. The model with the lowest LOOCV from
the previous stage is used as the final model for that DSF. The whole process is repeated for
each DSF in the model.

2.3. Lasso regression
Lasso is a backward stepwise regression, and an appropriate comparison for the forward stepwise.
The Lasso method is also based on the least squares estimate but introduces a penalty function
in order to optimise the size of the regression coefficients. The form of the Lasso is given in
Eq. 6a [17]. To understand better the Lasso method, it is easier to view it in its Lagrangian
form, as in Eq. 6b

Ŵr = argmin
W

N∑
n=1

(
αr,n −W0 −

L∑
l=1

ξl,nWl

)2

(6a)

Ŵr = argmin
W

{
1

2

N∑
n=1

(
αr,n −W0 −

L∑
l=1

ξl,nWl

)2

+ λ

L∑
l=1

|Wl|

}
(6b)

where Ŵr is the estimated coefficient matrix for the r -DSF, ξl,n is the l -EOP of the n-
observation, W0 is a regression constant and Wl is the coefficient of the l -EOP. λ is the
regularisation parameter which controls the rate at which the coefficient shrinks.

The regularisation parameter is used for the purpose of performing subset selection [15]. If
λ is sufficiently small, the regression coefficients will become zero because of the geometry of
the l1 normalisation penalty [18]. If the coefficients reach zero, this implies that they have no
influence on the DSF being modelled. Subset selection is performed through repetition of this
idea.

2.4. System robustness metrics
2.4.1. Akaike information criterion. The Akaike Information Criterion (AIC) is a quantitative
measure used to compare the predictive capability of different models [19]. In its essence, the
AIC can be used to determine which model describes the most variation using the least number of
input parameters. The AIC introduces a penalty function for the purpose of reducing overfitting
by penalising higher order models. Eq. 7 gives the form used to calculate the AIC. The lower
the AIC, the better the model.

AIC = −2 ln (Ψ) + 2p2 (7)

where ln (Ψ) is the log-likelihood and p2 the number of the input parameters of the given model.
There are other criteria that can be used to aid in the model selection process, such as the

Bayesian Information Criterion (BIC) or the Deviance Information Criterion (DIC). The DIC is
a generalisation of the AIC and typically suited to applications where the posterior is calculated
through Markov chain Monte Carlo simulations, a reason why it is not applied here. The BIC is
closely related to the AIC, but with a larger penalty function for the number of input parameters
based on the sample size. However, the BIC aims to find the true model, a model that is unlikely
to have been derived from the regression procedure. For the reasons above, the AIC is used as
the most appropriate method given the data available in the case study.
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2.4.2. Coefficient matrix stability. To understand the stability of the coefficient matrix, the
variance of the covariance matrix is considered. The covariance matrix obtained from the least
squares estimate. An estimate for the stability, variance-covariance, is given in Eq. 8. The
expected outcome is that, the lower the variance-covariance, the more stable the coefficient
matrix is. As such, the variability within the coefficient matrix is less.

Var(Ŵ)r = (F(X)TF(X))−1σ2
r (8)

where σ2
r is the variance, as calculated in Eq. 9, of the r -DSF.

σ̃2
r =

1

N − p2,r − 1

N∑
n=1

α̃2
n,r (9)

The N − p2,r − 1, above, allows for an unbiased estimate of σ2, such that E(σ̂2) = σ2 [17].

2.4.3. F-statistic. An F-test can be used to test a null hypothesis [20]. In this work, the
null hypothesis is that the regressed DSFs provide no improvement in predictive quality over
the mean of the original DSFs. The F-statistic is a way of determining which models provide
statistically significant results. Since the mean of the DSFs is being used for comparison in each
case, the order of the model will always equal one. The F-statistic is calculated using Eq. 11.

RSS =

NT∑
n=1

(αn − α̂n)
2 (10)

F0,r =
RSS1 −RSS2

RSS2
× NT

p2 − 1
(11)

where F0,r is the F-statistic of the r -DSF, RSS1 is residual sum of squares of the mean of the
DSF and RSS2 is the residual sum of squares of the model under scrutiny. In both cases, the
RSS is calculated using Eq. 10.

The critical F-statistic, γr, is used to determine whether a DSF should be regressed or not
according to the hypotheses in Eq. 12 and Eq. 13. The F-distribution is used to calculate the
critical F-statistic.

H0 : F0,r ≤ γr → Not regressed (12)

Hf : F0,r > γr → Regressed (13)

where H0 is the null hypothesis and Hf is the alternate hypothesis.

2.5. Outlier analysis
The outlier analysis that was used for the purpose of identifying damaged observations was the
Mahalanobis Squared Distance (MSD). The MSD has frequently been used in the context of
VSHM [7, 8, 9]. Typically, the MSD is written in the form given in Eq. 14.

MSD(α̃n,ΣA) = α̃n
TΣAα̃n (14)

where ΣA is the covariance of the training data set.
However, the modified MSD proposed by Roberts et al. [16] was used instead. The modified

MSD for the PCA-based DSFs are given in Eq. 15, the regressed DSFs in Eq. 16 and the
combination of the two types of DSF in Eq. 17.
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MSD(α̃n,Σβ) = α̃n
TΣ−1

β α̃n : Σβ =
1

NT − 1
diag

(
S2
j

)
(15)

MSD(α̃n,Σϵ) = α̃n
TΣ−1

ϵ α̃n : Σϵ =
1

NT − 1
diag

(
NT∑
n=1

α̃2
n,r

)
(16)

MSD(α̃n,Σtot) = α̃n
TΣ−1

totα̃n : Σtot =

[
Σβ 0
0 Σϵ

]
(17)

where Sj are the eigenvalues of the PCA transformation of the j -accelerometer and α̃n,r is the
r -DSF of the n-observation.

3. Case study
3.1. Experimental setup and monitoring campaign
The data that was used to demonstrate the proposed method was taken from an operational
Vestas V27 wind turbine blade. Full details on the experiment can be found in [9], with a
brief description given here for completeness. The blade was fitted with 12 accelerometers and
1 electro-mechanical actuator, as shown in Fig. 2. The blade was periodically struck by the
actuator and the response measured using the accelerometers. Only the acceleromters on the
leading and trailing edge are used, as well as the accelerometer adjacent to the actuator.

Unused Accelerometer
Used Accelerometer Electro-mechanical Actuator

15/30/45cm Damage

Root Tip

Leading edge

Trailing edge

Figure 2. Locations of accelerometers and electro-
mechanical actuator on Vestas V27 wind turbine
blade (adapted from a previous work [9]).

Figure 3. Image of damage
introduced to V27 wind turbine
blade.

During the experimental campaign, different damage scenarios were tested. It started as
undamaged, then a crack was introduced to the trailing edge of the blade, see Fig. 3, and finally
repaired. The crack started at 15cm and was extended to 30cm and finally to 45cm. The total
number of observations for each damage scenario is listed in Table. 1.

Table 1. Number of observations available for each damage scenario in the Vestas V27 wind
turbine blade monitoring campaign.

Undamaged 15cm damage 30cm damage 45cm damage Repaired
828 258 194 254 4320

In this work, the repaired observations were used for training and testing since there were
significantly more of them. Additionally, the range of EOPs experienced within the repaired was
greater than for the undamaged. 80% of the repaired observations (3456) were used for training
and 20% for testing (864). The EOPs that were considered in this work were: temperature,
wind speed, wind direction, pitch, yaw, azimuth angle, RPM, the maximum value of actuator
hit and the standard deviation of actuator hit.
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3.2. Damage sensitive feature extraction
The DSFs are based on a reduced order Fourier transformation of the acceleration responses. For
each observation, the response is transformed into the frequency domain and the real component
and real part of the imaginary component are concatenated. The vector is then reduced using
principal component analysis. The information across all accelerometers are then concatenated
to create a single DSF vector. A full explanation of the derivation is excluded for the sake of
brevity, but can be found in previous works [9].

4. Results and discussions
In this section, reference is made to four different optimisation schemes for the design of
regression models. The first (5 EOP) is a trial and error optimisation approach from previous
work [9] where every combination of model order with 5 EOPs (temperature, wind speed,
azimuth, actuator maximum and actuator standard deviation) is considered. The second
(forward stepwise) is from the forward stepwise approach from Section 2.2. The third (reduced
forward stepwise) is, again, from the forward stepwise approach but with the application of an
order overfitting method. The fourth (Lasso) is from the Lasso regression method from Section
2.3. Depending on the optimisation scheme implemented, the model for each DSF will differ in
which EOPs are included, and the order that they are included at.

4.1. Akaike information criterion
Firstly, the AIC is used to determine the models that explain the most variance using the fewest
input parameters. The AIC for four different methods is shown in Fig. 4. In each case, the AIC
has been sorted so that it is possible to determine which method has generally the lowest AIC.

Figure 4. AIC values against assorted DSFs using the 5 EOP, forward stepwise, reduced
forward stepwise and Lasso optimisation procedures. DSFs are sorted low to high according to
their corresponding AIC value, order of DSFs are different for each optimisation method.

From Fig. 4, it can be seen that the reduced order forward stepwise method has the lowest
AIC across the most DSFs. The regular forward stepwise method and the trial and error
approach using 5 EOPs generally perform on a similar level. This demonstrates that the
overfitting of model orders and fitting non-influential parameters has the same level of effect
on the predictability of the models. In the case of the Lasso, the AIC is consistent across all
DSFs. This is likely due to the coefficient matrices being more similar in size compared to the
alternative methods, whilst also having similar predictive accuracy. While the Lasso has lower
AIC for some DSFs, the reduced order forward stepwise method performs far better for a larger
number of DSFs as it provides the lowest AIC across a large number of DSFs. Based on the
results from Fig. 4, the method to use would be the reduced order forward stepwise.
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4.2. Coefficient matrix stability
A secondary aspect of each model that was tested was the coefficient matrix stability. The values
for the coefficient matrix stability from Eq. 8 are shown in Fig. 5.

Figure 5. Coefficient matrix stability values against assorted DSFs using the 5 EOP, forward
stepwise, reduced forward stepwise and Lasso optimisation procedures.

Fig. 5 shows that the trial and error (5EOP) approach has the most stable coefficient matrices.
That is followed by the reduced order forward stepwise method, the forward stepwise method
and, finally, the Lasso. While the trial and error approach has the highest stability, previous
works [7, 9] have shown that this approach suffers in the prediction of future observations. On
the other hand, the reduced order forward stepwise was able to predict future observations better
through the methods within it that aimed to reduce overfitting. The result in Fig. 5 also shows
that the reduction of model orders help with the matrix stability. Given previous results and
those in Fig. 5, the best choice once again would be the reduced order forward stepwise method.

4.3. F-statistic
The F-statistic is used for determining whether the regression model predicts better the DSF
than the mean of the DSF. Fig. 6 shows how the F-statistic for the reduced order forward
stepwise method compares to its associated critical F-statistic. Highlighted in grey are the
instances where the model satisfies the alternative hypothesis.

Figure 6. F-statistic and critical F-statistic across 800 DSFs (100 from each accelerometer) for
the reduced forward stepwise optimisation method. The grey lines highlight when F0,r > γr.
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By studying Fig. 6, the most noticeable aspect across all accelerometers is that the DSFs
that explain the most variance in the data are also the ones where the alternative hypothesis
is satisfied. The implication of this is that they are the DSFs that are most influenced by the
varying conditions, since the created models provide the most significant benefit. Similarly, the
higher order DSFs most often satisfy the null hypothesis. This suggests that they may be a
result of noise and, therefore, not affected by the varying conditions.

Given that a large number of DSFs satisfy the null hypothesis, it does not make sense to
include all DSFs in the VSHM system. Instead, the regressed DSFs that satisfy the alternative
hypothesis should be combined with the original DSFs that do not. This approach will reduce
the level of variations in the system by choosing only the most influential regression models.

4.4. Outlier analysis
A control chart is a convenient way to present the outlier analysis across all the damage cases.
With the use of a threshold, a binary damage diagnosis can be made. Fig. 7 shows the control
chart for a DSF set made up of reduced order forward stepwise regression DSFs and original
DSFs, based on the results from Fig. 6. The threshold between damage and undamaged, black
dashed line, was chosen to be the value that explains 95% of the training data according to a
Chi-squared distribution.

Figure 7. Control chart showing the result of combining reduced order forward stepwise
regressed DSFs and original DSFs according to a critical F-statistic of 0.1%.

In the control chart in Fig. 7, the 30cm and 45cm damages are well detected. On the
other hand, the smaller 15cm damage is not very well detected. However, this work aims
to demonstrate the importance of carefully designed coefficient matrices and does not aim to
optimise damage detection. The overlap between training and testing is a key factor in designing
robust systems, and the control chart demonstrates this. The major negative aspect of Fig. 7 is
that there are still a large number of outliers in the training and testing cases. Further work is
required to quantify the effect of these observations [16].

5. Conclusions
A number of optimisation methods were applied to data taken from an operational wind
turbine blade with artificially introduced damage. The aim of the work was to evaluate and
compare different optimisation schemes using multivariate nonlinear regression for mitigating
environmental and operational variations in the context of VSHM. The AIC was implemented
first to quantify the predictive capability against the number of predictors. Following on,
the variance-covariance was used to analyse the stability of the coefficient matrices, a concept
previously unseen in VSHM. Finally, the F-statistic was used to determine which DSFs should
or should not be regressed. The outcome was that the reduced order forward stepwise regression
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method performed the best, owing to its low AIC values and stable coefficient matrices. A control
chart was used to show the quality of the damage detection. Whilst the damage detection was
not perfect, there was still separation between the undamaged observations and the 30cm and
45cm damaged observations.
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