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Abstract: The primary neural circuit affected in Amyotrophic Lateral Sclerosis (ALS) patients is the
corticospinal motor circuit, originating in upper motor neurons (UMNs) in the cerebral motor cortex
which descend to synapse with the lower motor neurons (LMNs) in the spinal cord to ultimately
innervate the skeletal muscle. Perturbation of these neural circuits and consequent loss of both
UMNs and LMNs, leading to muscle wastage and impaired movement, is the key pathophysiology
observed. Despite decades of research, we are still lacking in ALS disease-modifying treatments. In
this review, we document the current research from patient studies, rodent models, and human
stem cell models in understanding the mechanisms of corticomotor circuit dysfunction and its
implication in ALS. We summarize the current knowledge about cortical UMN dysfunction and
degeneration, altered excitability in LMNs, neuromuscular junction degeneration, and the non-cell
autonomous role of glial cells in motor circuit dysfunction in relation to ALS. We further highlight
the advances in human stem cell technology to model the complex neural circuitry and how
these can aid in future studies to better understand the mechanisms of neural circuit dysfunction
underpinning ALS.

Keywords: amyotrophic lateral sclerosis; neuronal circuit; synaptic dysfunction; stem cells; spinal
cord; motor neurons; cortical neurons; excitability; glutamate excitotoxicity; neuromuscular junction

1. Introduction

Amyotrophic lateral sclerosis is a fatal adult-onset neurodegenerative disorder, charac-
terized by progressive muscle atrophy, paralysis, and eventual death. The disease primarily
affects the cortico-spinal motor circuit which originates in the motor cortex and terminates
in nerves innervating skeletal muscle (Figure 1), thereby controlling voluntary movement.
Specifically, the disease is caused by the loss of both upper motor neurons (UMNs) in the
motor cortex and lower motor neurons (LMNs) in the brainstem and spinal cord. UMNs
can form direct glutamatergic monosynaptic connections with LMNs in the spinal cord via
the corticospinal tract, a feature unique to primates and increased in humans, postulated to
correlate with manual dexterity [1,2]. Although neurodegeneration occurs throughout the
corticospinal motor circuit, there have been varied hypotheses regarding onset of pathology
in ALS, as to whether the origin is in the motor cortex (dying forward) [3–5] or spinal
cord/muscle (dying back) [6–8].
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Figure 1. Schematic of dysfunctions of the cortico-motor system in amyotrophic lateral sclerosis. (A) 
UMNs in the motor cortex synapse with LMNs in the spinal cord via the corticospinal tract. This 
circuit degenerates in ALS with patients exhibiting loss of cortical neurons and dendritic and syn-
aptic degeneration. Moreover, changes in neuronal physiology have been observed such as cortical 
hyperexcitability and reduced cortical inhibition. (B) LMNs in the anterior horn of the spinal cord 
are particularly vulnerable to degeneration in ALS. Further, altered excitability, dysregulated AM-
PAR subunit expression, glutamate-mediated excitotoxicity, and degeneration of dendritic spines 
have been observed in these LMNs. In addition, astrocytes, oligodendrocytes, and microglia (glial 
cells) undergo functional changes in ALS. (C) LMNs connect to the skeletal muscle via the neuro-
muscular junction (NMJ) which is denervated early during the disease progression. Initially, sur-
viving LMNs reinnervate orphaned muscle by compensatory axonal sprouting, clinically evidenced 
by altered fasciculations. Ultimately, muscle fibres are fully denervated. Created with BioRen-
der.com. 

Most ALS cases are sporadic in nature, and approximately 10% of ALS cases are fa-
milial. Genome-wide association studies have identified more than 50 genes associated 
with ALS pathophysiology [9]. Pedigree studies using clinical-based registry studies have 

Figure 1. Schematic of dysfunctions of the cortico-motor system in amyotrophic lateral sclerosis.
(A) UMNs in the motor cortex synapse with LMNs in the spinal cord via the corticospinal tract.
This circuit degenerates in ALS with patients exhibiting loss of cortical neurons and dendritic and
synaptic degeneration. Moreover, changes in neuronal physiology have been observed such as cortical
hyperexcitability and reduced cortical inhibition. (B) LMNs in the anterior horn of the spinal cord are
particularly vulnerable to degeneration in ALS. Further, altered excitability, dysregulated AMPAR
subunit expression, glutamate-mediated excitotoxicity, and degeneration of dendritic spines have
been observed in these LMNs. In addition, astrocytes, oligodendrocytes, and microglia (glial cells)
undergo functional changes in ALS. (C) LMNs connect to the skeletal muscle via the neuromuscular
junction (NMJ) which is denervated early during the disease progression. Initially, surviving LMNs
reinnervate orphaned muscle by compensatory axonal sprouting, clinically evidenced by altered
fasciculations. Ultimately, muscle fibres are fully denervated. Created with BioRender.com.
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Most ALS cases are sporadic in nature, and approximately 10% of ALS cases are famil-
ial. Genome-wide association studies have identified more than 50 genes associated with
ALS pathophysiology [9]. Pedigree studies using clinical-based registry studies have ascer-
tained heritability of ALS to be between 40 and 60% dependent on the genetic risk [10,11].
ALS-linked genes can be categorised into three pathways, (1) RNA metabolism, (2) au-
tophagy/protein clearance, and (3) cytoskeletal proteins. The most commonly occurring
mutations are within the genes of C9ORF72, SOD1, FUS, and TARDBP [12]. Noting that
familial and sporadic forms of ALS are indistinguishable both clinically and pathologically,
studies performed to understand pathomechanisms have relied predominantly on the
genetic forms of ALS. The intronic G4C2 repeat expansion mutation in the C9ORF72 gene
is the most common gene mutation, observed in approximately 40% of familial ALS and
approximately 10% of sporadic ALS patients [9]. Three non-mutually exclusive mecha-
nisms have been postulated by which C9ORF72 mutation leads to cellular dysfunction:
(1) intronic G4C2 repeats is transcribed bi-directionally (sense and anti-sense) and forms
intra-nuclear RNA foci which sequesters multiple RNA-binding proteins, (2) Repeat Asso-
ciated Non-AUG (RAN) translation of G4C2 repeat RNA to form five different di-peptide
repeat proteins (DPRs), and (3) hypermethylation of G4C2 repeats leading to haploinsuffi-
ciency of downstream C9ORF72 [13]. Mutations in the open-reading frame of SOD1 gene
coding for Cu/Zn superoxide dismutase enzyme accounts for approximately 10% of famil-
ial ALS cases [14,15]. Despite decades of research, mechanisms of SOD1 related pathology
are still not fully understood. Several studies have shown that the gain of toxicity drives
disease pathology [16]; however, the role of enzymatic loss-of-function of SOD1 in ALS
disease aetiology has also been suggested [17]. While mutations observed in the TARDBP
gene are rare (<1%), the protein encoded by the TARDBP gene—a TDP43 protein—forms
cytoplasmic aggregates in approximately 97% of ALS cases including the genetic forms of
ALS (exceptions are SOD1-ALS and FUS-ALS), making it hugely relevant for understand-
ing the pathophysiology of ALS [18]. TDP43 is a nuclear-localised RNA/DNA binding
protein, with essential functions in the regulation of splicing [19–21]. Cytoplasmic TDP43
aggregates leads to both toxic gain of function and the depletion of TDP43 protein from the
nucleus, causing a loss of its physiological function [22].

Multiple disease mechanisms have been described in ALS individuals and models of
ALS, in both neurons and glial cells. Some key phenotypes include impaired protein home-
ostasis and RNA metabolism, oxidative stress, glial dysfunction, and changes in neuronal
excitability and excitotoxicity [23,24]. A common feature observed along the corticospinal
motor circuit is synaptic dysfunction. There are two major groups of synaptic connections
which are present on this circuit, the synapses between UMNs and LMNs, and subse-
quently, LMNs synapse with the muscle via neuromuscular junctions (NMJs). Regulation
of synaptic transmission is complex and dependent on various factors, such as modulation
of the synaptic vesicle formation, release of the synaptic vesicles into the synaptic cleft, and
postsynaptic receptors and subsequent signalling pathways. Neurotransmitters released
by the presynaptic neuron can be excitatory or inhibitory [25]. Dysregulation of such
proteins (for instance, PSD95, Ubiquilin2, and CHMP2B) may result in altered synaptic
structure and function, eventually leading to cognitive and motor impairments, similar
to other progressive neurodegenerative disorders [23,26–28]. Recent studies have shown
that TDP43, C9ORF72, SOD1, and FUS play important roles in maintaining proper synapse
development and function [29–31], indicating the crucial interplay between molecular and
cellular mechanisms in ALS pathology.

ALS and its pathophysiology have been studied in detail over the past few decades
using preclinical animal and in vitro models which have been informative in recapitu-
lating aspects of disease pathology [32,33]. However, these models have also translated
inadequately to human therapeutics and led to poor clinical trial outcomes [34–36]. These
constraints have led many groups to turn towards using human pluripotent stem cell
(hPSC) derived systems for modelling ALS. Moreover, given the differences in human
and rodent corticospinal synaptic connections [37] it is increasingly becoming relevant
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that human models of ALS are needed to better understand disease mechanisms and
translate to more positive therapeutic outcomes. hPSC models are proving important
in understanding species-specific recapitulation of disease pathology by ease of genetic
manipulation and careful analyses of the temporal and spatial disease profile. Indeed, 2D
and 3D hPSC models are emerging as powerful tools to uncover novel mechanisms in
many neurodegenerative disorders [38–40].

In this review, we summarize the key impairments observed in neuronal activity and
synaptic function along the corticospinal motor circuit in ALS patients and in vivo/in vitro
models. We discuss some of the crucial unanswered questions and the use of complex
hPSC models in understanding ALS disease aetiology for therapeutic intervention.

2. Cortical Neuron Dysfunction in ALS

One of the defining features of ALS pathology is the degeneration of upper motor
neurons (UMNs) in the motor cortex and corticospinal tract (CST). Although UMN degener-
ation and dysfunction in ALS patients is well documented [41], the reasons for this selective
vulnerability and the role of the cerebral cortex in aetiology and disease progression are yet
poorly understood.

There have been a few key studies that have examined degeneration and dysfunction
of neurons in the cerebral cortex in ALS patients. Diffusion tension imaging and struc-
tural MRI has been used to describe disorganization in the CST and reduced precentral
cortical ribbon thickness [42]. Cortical thinning in primary motor areas has been widely
described [43,44] and correlated with faster disease progression in temporal areas [44].

In addition to the loss of neurons, specific hallmarks of degeneration have been re-
ported wherein Betz cells (human UMNs) in both sporadic and familial ALS patients
exhibited apical dendrite abnormalities [45,46]. Interestingly, the dendritic abnormalities
correlated with a specific loss of PSD95+ postsynaptic and pre/postsynaptic colocalized
puncta in Betz cells [45]. Reduction in the presynaptic marker synaptophysin has also been
reported in the prefrontal cortex of ALS patients and correlated with cognitive decline [47].
Studies have uncovered molecular links to the atrophy pathology wherein atrophy in the
motor cortex and CST positively correlated with the TDP43 pathology staging system
described by Brettschneider and colleagues [48]. Post-mortem studies from patients de-
scribing cortical thinning, dendritic, and axonal degeneration in the cortex and CST has
been supported by findings from rodent models of TDP43 (overexpression of cytoplasmic
hTDP43 and A315T mutation) and SOD1 (G93A and G86R mutations) [49–52].

A seminal study in 2008 reported cortical hyperexcitability in the motor cortex of
pre-symptomatic SOD1 patients using transcranial magnetic stimulation (TMS) prior to
the onset of motor symptoms [53]. This study and others have redirected the focus back to
the cerebral cortex in ALS disease aetiology and in identifying early neuronal dysfunction.
Cortical hyperexcitability, which renders neurons to fire increased action potentials in
response to stimuli, has become an increasingly relevant clinical phenotype and a common
hallmark observed in both familial and sporadic ALS patients [54–59]. TMS is often used
to measure cortical hyperexcitability, characterized by features such as reduced motor
evoked potentials and increased intracortical facilitation [56]. Other techniques such as
fMRI neuroimaging, EEG and MEG recordings have also been used in conjunction with
TMS to indicate enhanced network connectivity in the motor cortex and other brain regions
in ALS individuals [60–64]. Layer 5 pyramidal neurons in the motor cortex of a hTDP43
mouse model and corticospinal and cortico-cortico projection neurons in the motor cor-
tex of SOD1G93A mice display hyperexcitability [65,66]. In addition, a recent study using
SOD1G86R and FUS1∆NLS/+ mouse models described increased susceptibility to pentylenete-
trazol, a GABAA receptor antagonist [67] that unravels network hyperexcitability, indicative
of cortical network hyperexcitability in these models.

Given that the observed cortical hyperexcitability could arise from excitation–inhibition
imbalance, studies have examined dysfunction in cortical interneurons. TMS on ALS
patients has described a possible functional impairment in intracortical inhibitory in-
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terneurons [68]. The wobbler mouse model of ALS reported a decrease in GABAergic
inhibition [69], and embryonic GAD67+ cortical interneuron cultures from SOD1G93A mice
showed an attenuation in excitability [70]. SOD1G93A adult mice exhibited PV+ layer 5
interneuron hypoexcitability at late pre-symptomatic stages [71] which morphed into a
hyperexcitability phenotype [65] at late symptomatic stages, suggesting that changes in
interneuron excitability is highly dynamic during disease progression. Examining cor-
tical inhibition could be another key aspect in disease aetiology and understanding the
mechanisms underlying the observed pyramidal neuron hyperexcitability.

Interestingly, both TDP43Q331K and SOD1G93A mice displayed increased excitatory
synaptic neurotransmission of layer 5 pyramidal neurons at pre-symptomatic stages [72,73].
Moreover, dendritic spine density in a TDP43A315T mouse model has also been described
to precede symptom onset [74]. Key recent work on a TDP43 mouse model, wherein cyto-
plasmic hTDP43 was specifically induced in the cerebral cortex, described an early cortical
hyperexcitability phenotype which spread anterogradely through the corticomotor system
and led to lumbar LMN degeneration at later stages [66,75]. These data are some of the first
to examine the direct consequence of cortical neuron dysfunction on spinal motor neurons
in an ALS model. Further, it sheds important light on the interplay between different
neurons affected along the corticospinal motor circuit which warrants further research.
In summary, data from ALS patients and animal models prompt important questions on
understanding the temporal profile of cortical atrophy, with synaptic dysfunction and
cortical hyperexcitability possibly preceding UMN loss.

Human pluripotent stem cell (hPSC) models are valuable tools to answer these key
questions in ALS neuronal circuitry and interplay between cortical and spinal motor
neurons. hPSC models of the cerebral cortex, particularly 3D models such as organoids,
often display multiple cell types (Figure 2), neuronal maturation, synaptic function, network
oscillations, and glutamatergic and GABAergic signalling [76–82]. Such features of hPSC-
derived cortical neuron cultures and organoids have established them as robust human
model systems to study cortical neuron function, facilitating temporal and spatial analysis
and cell-type-specific genetic manipulation of key molecules.
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Organoid models of the cortico-motor system

Neuromuscular organoid

Cortical organoids

Spinal cord organoids

Assembloids

Cortical neurons
Astrocytes

Progenitors: neural, glia

Spinal Neurons
Astrocytes

Schwann cells
Progenitor: neural, glia
Skeletal muscle fibers

Cortical/spinal neurons
Astrocytes

Oligodendrocytes
Progenitor: neural, glia
Skeletal muscle fibers

Spinal Neurons
Astrocytes

Oligodendrocytes
Progenitor: neural, glia

Cortical organoid

Spinal cord organoid

Muscle organoid

Cortical neuron

Spinal neuron

Oligodendrocyte

Astrocyte

Skeletal muscle fibre

Legend

Figure 2. Organoid models of the cortico-motor system. The last decade has seen the emergence
of several organoid models of the corticomotor circuit. Human stem cell-derived organoid systems
can be generated to model certain aspects of the cerebral cortex, spinal cord, and muscle. Most 3D
models generate the primary neural cell types, neuronal and glial progenitor, excitatory and inhibitory
neurons, astrocytes and oligodendrocytes. Neuromuscular organoids may contain schwann cells,
which are essential for neuromuscular junction maintenance. The generation of assembloid models
has progressed the field allowing the study of complex neuronal circuits by assembling region-
specific organoids. With increasing interest, researchers aim to incorporate other resident CNS cells
such as microglia and vasculature in organoids and, more recently, in assembloids [83–85]. Created
with BioRender.com.

Although 2D and 3D hPSC models have been widely used in the context of spinal
dysfunction in ALS, hPSC-derived cortical neuron models in context of ALS have been very
limited to date. Hyperexcitability was observed in a 2D monoculture of human cortical
neurons which correlated positively with the expression of the shortened toxic isoform
of TDP43 [86]. Another key study showed that cortical hyperexcitability was observed in
C9ORF72 cortical neurons, and this was supported with an increase in synaptic density [79].
Given the limited data on human cortical models of ALS, there is yet much to be uncovered
on the dynamics of neuronal dysfunction and the underlying mechanisms that drive key
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cortical neuron phenotypes and their potential implications on the descending corticospinal
motor circuit.

3. Altered Excitability in the Lower Motor Neurons in ALS

The spinal cord motor neurons, also known as lower motor neurons (LMNs), are
diverse, both in morphology and function and can be classified into α, β, and γ MNs based
on the type of muscle fibre they are innervating. Specifically, α MNs innervate extrafusal
muscle, while β MNs innervate both extra- and intrafusal muscle, and γ MNs innervate
intrafusal muscle only [87]. Of these, α-motor neurons, which are located in the anterior
horn of the spinal cord and innervate the force generating extrafusal muscle, are suggested
to be selectively vulnerable to degeneration in ALS [88,89]. A single axon from each α MN
innervates several extrafusal muscle fibres comprising the motor unit, and depolarization
of the neuron causes all its innervated muscle fibres to contract simultaneously [90]. Indeed,
one of the major clinical symptoms seen in patients with ALS is the presence of fasciculation
or twitching of the muscles [91,92], which may be a feature of altered excitability of the lower
motor neurons innervating the muscles [93]. Using high-density surface electromyography
(HDSEMG) recordings, a recent study demonstrated the presence of higher frequencies of
fasciculations in ALS patients, which could be due to an increase in the excitability of the
LMNs innervating the muscles [94]. Indeed, several studies have indicated upregulation of
sodium and downregulation of potassium channel conductance in the motor axons with
a concomitant change in excitability in patients with both familial and sporadic forms of
ALS [95–97]. Notably, one of the main mechanisms of action of Riluzole, the only licensed
drug for treating ALS, is inhibition of the persistent Na+ channels [98].

Furthermore, a study using hPSC-derived motor neurons from patients with SOD1,
C9ORF72, or FUS mutations has shown that these neurons are hyperexcitable owing to
reduced delayed-rectifier potassium currents [99]. Hyperexcitability in the ALS MNs were
rescued by treatment with a KCNQ (Kv7) channel activator, retigabine. Moreover, in a
phase 2 clinical trial conducted using retigabine (also known as ezogabine), the excitability
of both the upper and lower motor neurons was reduced in a dose-dependent manner
by ezogabine, although the treatment window (4 weeks) was too short to observe any
alterations in the disease progression [100]. However, recent mechanistic insights have
also implicated neuronal hypoexcitability in the ALS pathophysiology. Indeed, in some
patients with ALS, the spinal MNs do not exhibit hyperexcitability [101]. Similarly, MNs
innervating the fast-contracting fatigable muscle fibres were hypoexcitable in SOD1G93A

mice [102]. In addition, several hPSC studies have also shown that motor neurons derived
from ALS patients with C9ORF72 [103], FUS, and SOD1 mutations are hypoexcitable due
to increased expression levels of voltage-gated potassium channels and decreased levels of
sodium channels [104]. It should be noted that neuronal excitability is dynamic, and the
biophysical characteristics of the MNs are age-dependent [105]. Devlin and colleagues have
shown that hPSC-derived MNs from ALS patients harbouring the C9ORF72 or TARDBP
mutations demonstrate an initial hyperexcitability followed by hypoexcitability [106]. Thus,
a temporal profile of motor neuronal excitability is key to understanding the pathogenic
mechanisms underlying ALS.

The excitability of MNs is mediated by synaptic inputs and disruption of these inputs
could lead to aberrant excitability [107]. While synaptic dysfunction has not been studied
in detail with respect to the LMNs in ALS, it has been shown that specifically tripartite
synapses are lost in post-mortem spinal cord samples from ALS patients harbouring SOD1
and C9ORF72 mutations and in the SOD1G93A mouse model [108]. Furthermore, hPSC-
derived neurons from ALS patients showed reduced synapse formation [109] and dendritic
arborization of the spinal motor neurons was diminished in transgenic mouse models
expressing mutant FUS [110] highlighting the need for studying the molecular mechanisms
involved in maintaining the structure and function of the tripartite synapse.
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4. Glutamate Receptor Dysregulation in ALS

Glutamate is a major excitatory neurotransmitter in the mammalian brain [111,112],
and aberrant glutamatergic transmission has been attributed as one of the key mecha-
nisms underlying ALS pathophysiology [91,113]. The presence of excess glutamate in
the synaptic cleft may result in an increased calcium influx, thereby resulting in altered
excitability and eventual excitotoxicity of the neurons [91,105,113,114]. MNs are selec-
tively vulnerable to glutamate-induced excitotoxicity [115–118], and the dysregulation
of calcium-permeable AMPA (α~-amino-3-hydroxy-5-methyl-4 isoxazole propionic acid)
receptors (AMPAR) has been implicated as the underlying mechanism for this selective
vulnerability [115,117,119–122].

AMPARs are tetrameric complexes of four subunits (GluA1-GluA4), which are en-
coded by four genes, GRIA1-GRIA4 [123,124]. Of these subunits, the GluA2 subunit
undergoes constitutive post-transcriptional RNA editing (Q/R editing) and becomes im-
permeable to Ca2+, further distributing the AMPARs into two subclasses: Ca2+—permeable
(CP) and Ca2+—impermeable AMPARs [125,126]. Thus, in addition to expression pattern
of AMPAR genes, the subunit composition confers specific molecular and biophysical
properties to the neurons and changes during development, learning and memory, and
neurological disorders [124,127].

Additionally, perturbed Ca2+ buffering has also been implicated in making the motor
neurons selectively vulnerable to excitotoxicity and death [128]. Specifically, subgroups
of motor neurons in the brainstem and spinal cord express low levels of Ca2+ buffering
proteins, such as calretinin and calbindin [129,130], leading to an overload of Ca2+ in the
mitochondria of the motor neurons [128,131]. Early studies have shown that cerebrospinal
fluid (CSF) from patients with ALS was toxic to cultured neurons [132]. Indeed, CSF
from ALS patients when injected into rat pups reduced the number of motor neurons
and led to reduced choline acetyl transferase (ChAT) expression [133]. However, studies
analysing the levels of glutamate in the CSF have revealed mixed results, whereby some
patients had elevated glutamate concentration and other patients had normal glutamate
concentrations [134,135], although addition of the AMPAR blockers (CNQX/NBQX) led to
increased neuronal survival [132,136]. Thus, whether elevated concentration of glutamate
is a prerequisite for excitotoxicity is still up for debate because there is evidence that low
glutamate concentration can induce apoptosis in cultured neurons [137].

Similarly, studies using SOD1G93A transgenic mice have shown reduced GluA2 and
increased GluA3 levels in the motor neurons [138,139] leading to an overall increase in
calcium permeability. Moreover, it was shown that in the spinal motor neurons of patients
with ALS, there was a defect in the GluA2 mRNA editing and significant downregulation
of the Adenosine deaminase acting on RNA 2 (ADAR2) enzyme [140–142] that catalyses the
Q/R editing of GluA2 and renders them impermeable to calcium [143]. In the AR2 mouse
model, where ADAR2 was knocked out in the motor neurons, the spinal motor neurons de-
generated with a concomitant loss of motor function [144]. In motor neurons derived from
patients harbouring the C9ORF72 repeat expansion mutation (C9ORF72RE), our group has
shown that there was a significant increase in the CP-AMPARs via increase in the GluA1
mRNA expression. Notably, the AMPAR properties were unaltered in human cortical neu-
rons, indicating that this mechanism is specific to motor neurons [121]. Additionally, using
post-mortem samples, it was shown that lower motor neurons of patients with sALS and
C9ORF72 mutations displayed GluA1 upregulation, while lower motor neurons of those
with SOD1 mutations exhibited reduced GluA2 mRNA levels [122]. A presymptomatic
SOD1G93A mouse model of ALS has shown higher frequency of excitatory post synaptic
currents (EPSCs), indicating an increase in presynaptic glutamate release and an increase
in vGlut2 (a vesicular glutamate transporter) expression in the motor cortex [145]. A study
examined overexpressed human TDP43A315T in mouse primary pyramidal neurons and
found that the neurons exhibited increased levels of GluA1 [146]. Moreover, a TDP43
mouse model (overexpression of cytoplasmic hTDP43) exhibited altered levels of AMPARs
in the motor cortex [66]. Interestingly, a study has shown that ADAR2 was downregulated
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in the spinal motor neurons of patients with sALS, and these cells also showed TDP43
pathology [147] indicating a probable link between TDP43 and GluA2 levels. Thus, results
from these studies indicate an underlying AMPAR dysfunction contributing to lower mo-
tor neuron degeneration and specific molecular changes, underpinning this need to be
explored further.

While AMPAR dysfunction and glutamate excitotoxicity have been largely studied,
drug trials emanating from preclinical studies have not fared very successfully [148]. Talam-
panel, an AMPAR antagonist showed a moderate effect on muscle function and strength
in a small phase 2 study but did not show significant effect in a larger trial [149]. Another
AMPAR antagonist, perampanel, prolonged motor neuronal survival and function in pre-
clinical mouse model [150] but when used in the clinical trials led to adverse events in ALS
patients, such as aggression, somnolence, and dysarthria [151]. These adverse events could
be due to perturbed AMPAR levels in other regions of the central nervous system (CNS) by
the AMPAR antagonists. Thus, it is imperative to understand the molecular mechanisms
underpinning AMPAR dysfunction for generating viable drug targets. Approaches to re-
move excess glutamate from the synaptic cleft by increasing the expression of the glutamate
transporter, EEAT2, using ceftriaxone also did not yield better results [152]. One of the
reasons for the failure of these drug trials could be limited bioavailability of the drug in the
CNS. Thus, in addition to studying potential drug targets and their mechanism of action,
studies should also include analysis of how adequately the candidate drugs can cross the
blood–brain barrier to improve therapeutic efficacy.

5. Neuromuscular Junction Degeneration in ALS

The neuromuscular junction (NMJ) is the synaptic connection between motor neu-
rons (MNs) and muscle fibres, and degeneration of this synaptic connection occurs early
during ALS disease progression as evidenced clinically by altered fasciculation rates and
morphology [153–155]. Importantly, axonal sprouting of surviving MNs into orphaned
muscle was identified as a compensatory mechanism as fasciculation rates momentarily
increase, which is associated with muscle reinnervation. Ultimately, fasciculation rates fall,
as NMJs and MNs are degenerating. Consistent with patient studies, several ALS animal
models have shown NMJ degeneration prior to symptom onset [156] independent of their
genotype, confirming that NMJ degeneration is a common pathology across the range of
familial and sporadic ALS.

Equally, human in-vitro models have been able to recapitulate NMJ dysfunctions in
ALS models [157–161] over a wide range of genotypes, demonstrating that NMJ degener-
ation is a consistent finding in ALS models. For instance, SOD1+/G85R and PFN1+/G118V

human neuromuscular organoids lead to a reduced innervation of NMJs [160]. On the
other hand, TDP43+/G298S in organoids and microfluidic cocultures lead to a smaller size of
innervated NMJs [160,161].

Considering that 97% of all ALS patients present with cytoplasmic TDP43 mislo-
calization, understanding the implications of TDP43 pathology on NMJ degeneration is
important and has been addressed by several studies [51,162–165]. Selective expression of
cytoplasmic TDP43 under human NEFH promoter led to NMJ degeneration prior to signifi-
cant MN loss [51]. Crucially, when the cytoplasmic expression of TDP43 was reversed after
symptom-onset, muscle was re-innervated and motor phenotypes were restored, although
the number of MNs remained unchanged. This strongly suggests a compensatory sprouting
of remaining motor axons to form new NMJs [51]. Likewise, physiological expression of
human mutant form of TDP43 (TDP43M337V and TDP43Q331K) led to motor deficits and
NMJ degeneration at 9 and 10 months, respectively [163,164]. Furthermore, selective loss of
TDP43 in motor neurons resulted in NMJ degeneration and motor deficit [165]. It has been
widely known that TDP43 loss-of-function leads to cryptic splicing of a plethora of genes,
amongst others Stathmin2, resulting in downregulation of Stathmin2 expression [19–21].
Noting that Stathmin2 is a microtubule-associated protein and that genetic evidence in
ALS implicates the involvement of cytoskeletal proteins in disease mechanism, it raises the
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question as to whether Stathmin2 dysregulation through TDP43 LoF could contribute to
axon and NMJ degeneration. A recent study by Krus and colleagues [162] showed that NMJ
degeneration can be recapitulated by Stathmin2 loss alone. Although Stathmin2 knockout
mice exhibit motor impairments and axonal degeneration, no MN loss was observed, even
at older age [162]. Overall, these studies suggest that several aspects of the TDP43 patho-
physiology are involved in MN and NMJ maintenance and its exact mechanism remains to
be discovered.

Studies have focussed to better understand the mechanisms by which NMJs are degen-
erating in ALS with the aim to identify drug targets that could slow down NMJ degeneration
and/or boost compensatory mechanisms. One such pathway that has been highlighted
is local protein synthesis. NMJs are located at the distal end of the MN axon; therefore,
local protein synthesis is essential to provide synaptic plasticity and maintenance [166,167].
RNA binding proteins (RBPs), such as TDP43 and FUS together with their corresponding
RNA targets, form a membraneless ribonucleoprotein (RNP) complex, which is transported
to the distal end of the MN axon and the NMJ for local protein translation. Perturbation
of the local translation machinery, such as aggregation of RNPs, has been observed in
axonal compartments of mutant FUS MNs [168] as well as at the TDP43 mutant NMJ [169],
culminating in reduced functionality of NMJs as measured by muscle activation [169].
Altman and colleagues showed that the clearance of RNP aggregates or restoration of
nuclear TDP-43 reversed NMJ phenotype, highlighting NMJ misfunction and degeneration
as a consequence of mislocalized aggregates of the RNA binding protein TDP43 [169].
Similarly, mutations of the nuclear-encoded FUS leads to cytoplasmic mislocalisation and
formation of insoluble stress granules [170]. FUS mutant MNs, cocultured with healthy
myotubes, revealed reduced complexity and number of NMJs [159,171] demonstrating
impaired maintenance of mutant FUS NMJs. Additionally, axonal growth of mutant FUS
MNs was impaired in both initial outgrowth and regrowth after stress (axotomy) and was
rescued by genetic correction of FUS [171]. While the underlying mechanisms leading to
impaired NMJ maintenance is not completely understood, it is noteworthy that selective
inhibition of HDAC6, known for deacetylating microtubules [172] and restoring axonal
transport deficits, ameliorated both the axonal growth level and NMJ pathology [171]. In
summary, local protein translation and axonal transport [173] are essential mechanisms
of NMJ maintenance and might be affected in ALS [159,169,171–173]. Future studies are
needed to understand impairments in key pathways and its molecular changes at the NMJ
upon and prior to degeneration.

6. Glial Contribution towards Neuronal Circuit Dysfunction in ALS

In ALS, MN vulnerability also involves non-cell-autonomous mechanisms owing
to impairment in glial cell function [174]. Selective removal of mutant SOD1 in astro-
cytes [175], microglia [176], and oligodendrocytes [177] slowed disease progression. Better
understanding the mechanisms by which glial cells contribute to ALS pathogenesis could
pave the way for novel therapeutic targets.

Astrocytes modulate synaptic transmission by expressing glutamate transporters
such as EAAT1 and EAAT2 that take up excess glutamate in the synaptic cleft and can
be dysregulated during neurological disorders [178,179]. Earlier studies from Rothstein
and colleagues observed selective downregulation of astrocytic EAAT2 both in the motor
cortex and spinal cord of ALS [180], and subsequent studies knocking down GLT-1 in
astrocytes of organotypic spinal cord slice cultures resulted in toxicity to motor neurons.
Crucially, motor neuron toxicity through EAAT2 knockdown in astrocytes was prevented
by adding an AMPA/kainate receptor antagonist [181]. These seminal studies suggest
that impaired clearance of glutamate from synaptic cleft by ALS astrocytes—owing to
reduced EAAT2 transporters—causes excitotoxicity in motor neurons. Astrocytes are also
known to modulate expression of AMPA receptors in the neurons [182], and a recent study
highlighted that astrocytes carrying FUS mutation induce toxicity to motor neurons by
upregulation of Ca2+-permeable AMPA receptor, GluA1, thus rendering motor neurons
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susceptible to excitotoxicity [183]. Additionally, conditioned media from SOD1 mouse
astrocytes was specifically toxic to the motor neurons, suggestive of soluble neurotoxic
factors released by the astrocytes in ALS [184,185].

Human stem cell disease modelling has enabled the mechanistical delineation of
the non-cell autonomous contribution of glial cells in ALS. hPSC-derived astrocytes from
patients harbouring C9ORF72 mutations did not affect motor neuronal viability but led
to hypo-excitability of the motor neurons by reducing the sodium and potassium cur-
rents [186]. Altered potassium homeostasis in the synaptic cleft, which is primarily regu-
lated by the astrocytic inwardly rectifying potassium (Kir) channels [187], can contribute to
physiological dysfunction in neurons [188]. Specifically, expression of the Kir4.1 channel
is downregulated in SOD1 mouse model and hPSC-derived astrocytes. Selective loss of
Kir4.1 in astrocytes led to altered fast-fatigable αMNs (those that are vulnerable in ALS)
size, function and led to reduced peak strength without overtly affecting the survival
of motor neurons [189]. Moreover, ALS astrocytes have also been shown to contribute
to axonal damage/degeneration [190]. Human hPSC-derived astrocytes carrying FUS
mutation when cocultured with motor neurons and myotubes resulted in toxic effect on
neurite outgrowth and impaired NMJ formation and function by modulating WNT/β-
catenin pathway on motor neurons [191]. There is an emerging concept of microglia, a
CNS-resident immune cell regulating neuroinflammation, affecting neuronal physiology
in the disease context. Indeed, cell-intrinsic immune dysfunction in microglia harbouring
the C9ORF72 mutation confers increased vulnerability to excitotoxicity to both healthy
and C9ORF72 motor neurons [192,193]. In summary, these studies highlight that glial cells
are key determinants of ALS pathogenesis, and it is necessary to precisely understand
the mechanisms by which glial cells induce neuronal physiological toxicity [192,193]. In
summary, these studies highlight that glial cells are key determinants of ALS pathogenesis,
and it is necessary to precisely understand the mechanisms by which glial cells induce
neuronal physiological toxicity.

7. Use of Human Stem Cell Models to Study Neuronal Circuit Dysfunction in ALS

In the last few decades, important advances have been made in understanding the
pathophysiology and neuronal circuit dysfunction in ALS. However, given the largely unsuc-
cessful number of clinical trials [194], there is an increasing need for more complex, disease-
relevant models. Moreover, studies showing species differences within the corticospinal
motor circuit, highlights the importance of complementary human models [195–197], to
facilitate a better understanding of both sporadic and familial ALS pathophysiology. The
emerging field of hPSC models has proven to be a robust preclinical model of neurode-
generative disorders such as Parkinson’s, Alzheimer’s, Amyotrophic lateral sclerosis, and
Huntington’s disease by recapitulating key aspects of human pathology [198,199].

While 2D hPSC models provide valuable insights into cellular and molecular mech-
anisms of disease, emerging 3D organoid models (Figure 2) can offer additional benefits,
such as the recapitulation of cellular interplay and the development of complex neural
circuitry. In addition, key questions around cellular autonomy in pathophysiology can be
addressed by the presence of multiple neural cell types (such as progenitors, subtypes of
neurons, astrocytes, and oligodendrocytes) in organoid models [200,201]. Recent seminal
studies by Pasca and others have described assembloids that combine brain, spinal cord,
and muscle organoids to generate 3D systems of the corticospinal motor circuit [202,203]
(Figure 2). Such models, which develop complex neuronal circuits, have revolutionized
the organoid field, facilitating the study of circuit disorders such as ALS. Nevertheless,
organoid models do have several caveats and limitations which need to be considered in
experiment design. Difficulties arise in long-term cultures as necrotic cores, for instance,
are a common occurrence in organoids [204]. Furthermore, most organoid protocols still
lack vasculature and certain cell types, e.g., microglia, but first studies have successfully
implemented these [205–207].
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In the context of ALS, the benefits of hPSC models lie within key areas ranging from
gene-editing, as well as drug discovery and development of high-throughput screen-
ing platforms. Furthermore, such systems are especially important in the context of
studying neuronal circuit dysfunction given the key differences in the human and ro-
dent CST and NMJ [195–197], which cannot always be faithfully recapitulated in animal
models. Key questions in understanding ALS circuit dysfunction could be addressed us-
ing organoid/assembloid models to study long-range neuronal circuits [202,203,208–210],
synapses [160,211,212], and myelination [213].

In summary, combining the ease of genetic manipulation of known ALS-linked genes
and the use of patient-derived or sporadic stem cells, with the complexity of human organoid
models, will allow the field to truly recapitulate ALS disease development and answer key
mechanistic and aetiological questions as well as aid in the development of novel therapeutics.
In addition to understanding the impact of ALS-causing pathogenic mutations, these models
also enable us to study the impact of region-specific neurons (upper or lower motor neurons)
and glia on circuit dysfunction. Combining these models with the latest ‘omics’ technologies
such as spatial transcriptomics and single-cell proteomics and transcriptomics will provide
further insights in novel therapeutic targets and potential biomarkers.
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