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Abstract
Background  Using the Clinical Audit Research and Evaluation of Motor Neuron Disease (CARE-MND) database and the 
Scottish Regenerative Neurology Tissue Bank, we aimed to outline the genetic epidemiology and phenotypes of an incident 
cohort of people with MND (pwMND) to gain a realistic impression of the genetic landscape and genotype–phenotype 
associations.
Methods  Phenotypic markers were identified from the CARE-MND platform. Sequence analysis of 48 genes was undertaken. 
Variants were classified using a structured evidence-based approach. Samples were also tested for C9orf72 hexanucleotide 
expansions using repeat-prime PCR methodology.
Results  339 pwMND donated a DNA sample: 44 (13.0%) fulfilled criteria for having a pathogenic variant/repeat expansion, 
53.5% of those with a family history of MND and 9.3% of those without. The majority (30 (8.8%)) had a pathogenic C9orf72 
repeat expansion, including two with intermediate expansions. Having a C9orf72 expansion was associated with a signifi-
cantly lower Edinburgh Cognitive and Behavioural ALS Screen ALS-Specific score (p = 0.0005). The known pathogenic 
SOD1 variant p.(Ile114Thr), frequently observed in the Scottish population, was detected in 9 (2.7%) of total cases but in 
17.9% of familial cases. Rare variants were detected in FUS and NEK1. One individual carried both a C9orf72 expansion 
and SOD1 variant.
Conclusions  Our results provide an accurate summary of MND demographics and genetic epidemiology. We recommend 
early genetic testing of people with cognitive impairment to ensure that C9orf72 carriers are given the best opportunity for 
informed treatment planning. Scotland is enriched for the SOD1 p.(Ile114Thr) variant and this has significant implications 
with regards to future genetically-targeted treatments.

Keywords  Motor neuron disease · Amyotrophic lateral sclerosis · Genetic epidemiology · Genotype-phenotype · SOD1 · 
C9orf72

Introduction

The genetics of motor neuron disease (MND) is an evolv-
ing landscape. People with MND (pwMND) are becom-
ing increasingly aware of, and interested in, pursuing 
genetic testing. For those who proceed with genetic testing, 

interpretation of variant implications brings another dimen-
sion to their complex disease.

Classification of variant pathogenicity is problematic for 
many genetic diseases but becomes particularly difficult 
within the scope of a rare disease with multiple genetic links 
such as MND [1]. Barriers to firm classification have been 
acknowledged, including the relative paucity of functional 
studies and large pedigrees for assessment of co-segregation 
[2]. Variants of Uncertain Clinical Significance (VUS) are 
inevitable and bring their own diagnostic difficulties. There 
remains no consensus classification system for assessment of 
MND variant causality [3]. Latterly, the American College 
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of Medical Genetics and Association for Molecular Pathol-
ogy (ACMG-AMP) framework has been adopted [4–8].

The implications for MND are clear when we consider the 
imminent advent of genetically stratified therapies, which 
have the potential to involve prolonged commitment to inva-
sive treatments. The recently Food and Drug Administration 
(FDA) approved drug, Tofersen, for MND mediated by the 
SOD1 gene is currently under review by UK and European 
drug regulators [9]. Accurate description of the genetic epi-
demiology of MND in Scotland will be important for plan-
ning potential delivery of these treatments. On a more imme-
diate level there is the concern of burdening patients and 
their relatives with the anxiety of uncertain future risk [10].

In a previous study of the genetic epidemiology of MND 
in Scotland, 17% of pwMND had a potential genetic cause 
of their disease using a limited gene panel [5]. Key genetic 
mutations in this population include C9orf72 expansions and 
a Scottish founder variant in the SOD1 gene (p.(Ile114Thr)) 
[5, 7, 11]. In 2014, a neurodegenerative gene panel com-
prising 11 genes was incorporated into clinical practice in 
Scotland. However, with the emergence of new discoveries 
regarding genetic associations in MND, this quickly became 
outdated. The burden of MND-associated rare genes in this 
population is unknown. This information is required to 
inform clinical and diagnostic testing, outline priorities for 
future disease modelling studies and identify families for 
whom genetically-targeted treatments may be an option.

Scotland benefits from a longstanding national register for 
pwMND, now hosted by the CARE-MND Platform (Clini-
cal Audit Research and Evaluation for MND) [12]. A broad 
selection of variables are available to allow us to appreciate 
the phenotypes of pwMND.

We aimed to study the genetic epidemiology and pheno-
types of a well-characterised incident population of pwMND 
in Scotland diagnosed between 2015 and 2017. This cohort 
was carefully studied at the inception of the CARE-MND 
platform and coincided with a boost in MND nursing care 
in Scotland [12, 13]. Using an inclusive and contemporary 
research gene panel and adopting stringent variant classifica-
tion methods, we aimed to obtain a realistic representation 
of the clinical impact of genetics in the Scottish MND popu-
lation and identify any genotype–phenotype associations. 
Findings would inform clinical gene-panel testing pathways.

Methods

Gene‑panel selection

A review was undertaken in 2015–2016 to update the exist-
ing 11-gene neurodegenerative disease gene panel. Exist-
ing UK-based MND-related gene panels and resources 
were examined [14–19]. The final panel consisted of 49 

MND-associated genes for research study: ALS2, ANG, 
ANXA11, APP, ATL1, BSCL2, CCNF, CHCHD10, 
CHMP2B, CSF1R, DAO, DCTN1, ERBB4, FIG4, FUS, 
GRN, hnRNPA1, hnRNPA2/BA, HTRA1, ITM2B, MAPT, 
MATR3, NEFH, NEK1, NIPA1, NOTCH3, OPTN, PFN1, 
PLP1, PRNP, PRPH, PSEN1, PSEN2, REEP1, SETX, SIG-
MAR1, SOD1, SPAST/SPG4, SPG11, SPG20, SQSTM1, 
TAF15, TARDBP, TBK1, TUBA4A, UBQLN2, VAPB, 
VCP and the C9orf72 repeat expansion (previously pub-
lished, https://​doi.​org/​10.​1007/​s00415-​022-​11505-0) [7].

Recruitment and ethical approvals

All people diagnosed with MND in Scotland are invited 
to participate in the Scottish MND Register via the 
CARE-MND platform (ethical approvals MREC/98/0/56 
1989–2010, 10/MRE00/78 2011–2015, and the Scotland 
A Research Ethics Committee 15/SS/0126 2015 onwards). 
DNA samples were donated to the Scottish MND DNA 
Bank and the Scottish Regenerative Neurology Tissue Bank 
(MREC/98/0/56 1989–2010, 10/MRE00/77 2011 to 2013, 
13/ES/0126 2013–2015, 15/ES/0094 2015-present). The 
Lothian Birth Cohorts (LBC) – a research population of 
Scottish adults born in 1921 and 1936—were used as ances-
try-matched genetic controls [20]. Ethical permission for 
the LBC1936 study protocol was obtained from the Multi-
Centre Research Ethics Committee for Scotland (Wave 1: 
MREC/01/0/56), the Lothian Research Ethics Committee 
(Wave 1: LREC/2003/2/29), and the Scotland A Research 
Ethics Committee (Waves 2, 3,4 and 5: 07/MRE00/58). Ethi-
cal permission for the LBC1921 study protocol was obtained 
from the Lothian Research Ethics Committee (Wave 1: 
LREC/1998/4/183; Wave 2: LREC/2003/7/23; Wave 3: 
LREC1702/98/4/183), the Scotland A Research Ethics Com-
mittee (Waves 4 and 5: 10/MRE00/87).

Genotyping

Samples were genotyped using QiaSeq Amplicon Sequenc-
ing. Sequence analysis of a panel of 48 genes causally 
associated with neurodegeneration was carried out using 
a custom-designed QIAseq assay for library construction 
as per manufacturer’s instructions (QIAGEN). In brief, 
80 ng of DNA was fragmented followed by adaptor liga-
tion. Target enrichment was carried out by single primer 
extension, followed by sample indexing and amplification. 
Equal volumes of libraries were combined, and quanti-
fied using a Quantus™ Fluorometer as per manufacturer’s 
instructions. Paired-end sequencing of the resulting DNA 
library (at a concentration of 10 pM) was performed using 
an Illumina MiSeq instrument. Alignment and variant call-
ing was performed using the QIAGEN CLC Genomics 
Workbench as per in-house standard operating procedure. 

https://doi.org/10.1007/s00415-022-11505-0
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Sequence read coverage was assessed against a browser 
extensible data (BED) file containing the genomic regions 
of interest.

All samples were also screened for C9orf72 hexanucleo-
tide expansions using repeat-prime PCR methods [21], tak-
ing the total gene count to 49. Expansions > 30 repeats were 
considered pathogenic.

Variant classification

Each variant was systematically reviewed using the ACMG-
AMP 28-point system and adhering to the Association for 
Clinical Genomic Science (ACGS) UK 2020 guidelines [6, 
22]. A modified Delphi approach[23, 24] was taken to out-
line consensus criteria for the major MND-associated genes. 
Classification criteria have been used by our group previ-
ously[7] and are detailed in Supplementary Material 1.

Phenotyping and genotype–phenotype 
associations

Data were available for individuals who had provided writ-
ten informed consent to data-sharing via the Scottish MND 
Register. A wide breadth of premorbid demographical (sex, 
ethnicity), environmental (smoking, heavy metal or pesticide 
exposure) and health-related variables (exercise, history of 
head injury, history of autoimmune disease, cardiovascular 
disease, malignancy, psychiatric illness), family history (of 
MND, dementia, early-onset dementia, other neurological 
disease, psychiatric disease) as well as markers of disease 
(age of onset, time to diagnosis, site of onset, classification 
of MND, riluzole use, feeding tube insertion, non-invasive 
ventilaton (NIV) use) were extracted and pre-processed from 
the CARE-MND database. MND-specific tools were used, 
including the validated and globally recognised Edinburgh 
Cognitive and Behavioural Amyotrophic Lateral Sclerosis 
Screen (ECAS)[25] and the revised Amyotrophic Lateral 
Sclerosis Functional Rating Scale (ALSFRS-R), a measure 
of limb, bulbar and respiratory function in daily living. Rate 
of ALSFRS-R decline was calculated using the concept of 
the ‘preslope’ or ALSFRS-R-based linear estimate of rare of 
disease progression, which is a recognised measurement in 
MND observational studies and clinical trials [26].

The following group were studied for genotype–pheno-
type associations: (i) pwMND with C9orf72 expansions, (ii) 
pwMND with SOD1 mutations, (iii) pwMND with SOD1 
p.(Ile114Thr) variants. Descriptive statistics for phenotypic 
variables by group were summarised. In view of the large 
number of variables included relative to the number of indi-
viduals studied, univariate statistics were used to determine 
significance.

Statistical analyses

Data were formatted and analysed using R statistical pro-
gramming [27]. Krippendorff’s alpha (k-alpha) statistic was 
used to assess formally inter-rater reliability; k-alpha score 
ranges from 0 (no concordance) to 1 (complete concordance) 
with good agreement considered ≥ 0.80 [28]. Univariate sta-
tistics (Fisher’s exact tests, t tests and Wilcoxon rank-sum 
tests) were used for association testing with correction for 
multiple testing using the Bonferroni method.

Results

Of 619 people with MND diagnosed in Scotland in 
2015–2017, 437 (70.6%) consented to share their medical 
record data via the MND Register. The number of DNA 
samples donated by incident pwMND 2015–2017 was 339; 
this is representative of 54.8% of the incident MND cohort 
2015–17 [13].

Variant classification

After three rounds of honing classification approaches 
using the modified Delphi method, classification concord-
ance between raters was 84%, with an error rate of 3.0% 
and a mean k-alpha of 0.91 (95% CI 0.87, 0.95). In a review 
of use of the ACMG-AMP criteria amongst nine laborato-
ries, average intra-laboratory k-alpha was 0.91 [29]. As our 
third-round k-alpha was ≥ 0.80 and compatible with clinical 
sequencing laboratory agreements, the consensus methods 
were considered to be appropriate for use.

Genotyping: C9orf72

Repeat-prime PCR for the C9orf72 expansion identified 
29/339 (8.6%) individuals with > 30 GGG​GCC​ repeats. 
Of these, one patient had an unusual intermediate-length 
expansion (70 repeats). One further patient had 28 repeats. 
Meta-analysis suggests that intermediate expansions 24–30 
repeats in length are associated with MND [30]. In view of 
this evidence, our intermediate-length samples were both 
considered significant giving a final population frequency 
of 30/339 (8.8%).

Genotyping: panel sequencing

On gene panel sequencing, depth of coverage (≥ 20X) was, 
on average, 98% across the regions of interest. After VarSeq 
variant filtering, 503 variants were identified in 339 samples. 
Variants (including benign variants and VUS) were identi-
fied in 278/339 (82.0%) of samples. Fifteen (15/339, 4.4%) 
had a variant meeting criteria for pathogenicity (Table 2). 
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The number of pwMND with a VUS in an MND-associ-
ated gene was 88 (88/339, 25.9%). Of these, 38 individu-
als (38/339, 1.1%) had a VUS which met some pathogenic 
ACMG-AMP criteria (‘hot’ VUS). These are summarised 
in Supplementary Material 2. One patient had both a patho-
genic missense variant and a pathogenic C9orf72 expansion. 
A further six individuals had two variants of interest (includ-
ing VUS meeting some criteria for pathogenicity) and these 
are summarised in Supplementary Material 3.

After the C9orf72 expansion, the most common variant 
in this MND cohort was the SOD1 p.(Ile114Thr) variant 
(n = 9), previously described as a founder mutation in the 
Scottish population [5, 7, 11]. Three further SOD1 variants 
were identified. One of these, p.(Ala146Asp), had previously 
been seen in a different Scottish individual with MND[5] and 
was absent from the control population and gnomAD. Two 
other SOD1 missense variants were observed: p.(Gln23His) 
and p.(Gly73Cys). These variants have not previously been 
identified in the Scottish population. The frequency of SOD1 
mutations in this cohort was therefore 12/339, 3.5%.

A loss of function (LoF) variant (p.Tyr479Metfs*50) 
was observed in the FUS gene. This is a novel variant in a 
genomic location near to previously described MND-asso-
ciated frameshift mutations.

Two individuals were found to have a LoF variant in 
exon 21 of NEK1, which was absent from gnomAD and 
classified as pathogenic (p.(Glu634Lysfs*11)). As far 
as we can determine from patient histories, the patients 
were unrelated. A further LoF NEK1 splice donor variant 
(NM_012224.2:c.868 + 1G > C) was identified in a different 
individual; this is predicted to abolish the canonical splice 
donor site and initiate nonsense-mediated decay. However, 
the variant is present in gnomAD and so it did not meet 
criteria for pathogenicity (see Supplementary Material 2).

In summary, a total of 44/339 (13.0%) of individuals 
(including those with C9orf72 expansions) had a potential 
genetic explanation for their disease (Fig. 1) (see Table 1).

Genotype–phenotype associations

Phenotypic characteristics of the genotyped cohort (n = 339) 
as well as those of individuals with i) C9orf72 pathogenic 
expansions, (ii) SOD1 pathogenic variants and (iii) SOD1 
p(.Ile114Thr) variants are summarised in Table 2.

Univariate statistics with Bonferroni correction revealed 
that a family history of MND and lower ECAS: ALS-Spe-
cific Score were associated with having a C9orf72 expansion 
(Table 2). There were two individuals with intermediate-
length repeat expansions. Both individuals were diagnosed 
in their early sixties with upper limb-onset disease and had 
diagnoses of ALS with cognitive impairment identified via 
ECAS measurements (ECAS total score 73 in patient with 
28 repeats, 79 in patient with 70 repeats). Neither had a 
family history of MND nor past medical or family history of 
psychiatric conditions. The individual with 28 repeats died 
2.6 years after symptom onset whereas the individual with 
70 repeats was alive 1.6 years after onset.

There was a significant association between SOD1 car-
riers and having a family history of MND (p = 0.0001) 
(Table 2). SOD1 p(.Ile114Thr) carriers were studied sepa-
rately and they were also significantly associated with hav-
ing a family history of MND (p = 0.0003) (Table 2). Fam-
ily-history details of p(.Ile114Thr) carriers are described 

Fig. 1   Summary of genetic epidemiology of incident MND cohort 
2015–2017, VUS variant of uncertain clinical significance

Table 1   Variants identified in incident MND cohort 2015–2017

LoF loss of function

Gene Genomic position Variant DNA change Variant protein change Variant type Pathogenic 
classification

Number 
cases

Number 
controls

Variants meeting criteria for pathogenicity
 SOD1 21:33039672T > C c.341T > C p.Ile114Thr Missense Pathogenic 9 0
 SOD1 21:33040863C > A c.437C > A p.Ala146Asp Missense Pathogenic 1 0
 SOD1 21:33032151G > C c.69G > C p.Gln23His Missense Pathogenic 1 0
 SOD1 21:33038809G > T c.217G > T p.Gly73Cys Missense Pathogenic 1 0
 FUS 16:31202325 T > - c.1435delT p.Tyr479Metfs*50 LoF frameshift Pathogenic 1 0
 NEK1 4:170428210TC > - c.1900_1901delGA p.Glu634Lysfs*11 LoF frameshift Pathogenic 2 0
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Table 2   Descriptive statistics of phenotypic characteristics of the total analysed cohort (n = 339) and by genotype group

Phenotypic charac-
teristic

Missing 
data (%)

Summary statistic/test All
(n = 339)

C9orf72 (n = 30) SOD1 inc. I114T 
(n = 12)

SOD1 I114T
(n = 9)

Sex 0 Male (%)
Fisher’s

220 (64.9)
–

15 (50.0)
p = 0.1

9 (75.0)
p = 0.6

6 (66.7)
p = 1.0

Ethnicity 2.7 White Scottish (%)
Fisher’s

326 (98.8)
–

29 (100)
p = 1.0

12 (100)
p = 1.0

9 (100)
p = 1.0

Ever smoked 7.7 Yes (%)
Fisher’s

176 (56.2)
–

14 (48.3)
p = 0.4

6 (50.0)
p = 0.8

4 (44.4)
p = 0.5

Exercise participation 15.6 Median (IQR)
Wilcoxon

Mod (Light–Mod)
–

Mod (Light-Mod)
p = 0.5

Mod (Mod-Heavy)
p = 0.3

Mod (Mod-Heavy)
p = 0.1

Heavy metal or pesti-
cide exposure

28.0 Yes (%)
Fisher’s

60 (24.6)
–

5 (20.8)
p = 0.8

2 (20.0)
p = 1.0

2 (25.0)
p = 1.0

PMH cardiovascular 
disease

0 Yes (%)
Fisher’s

164 (48.4)
–

12 (40.0)
p = 0.3

6 (50.0)
p = 1.0

4 (44.4)
p = 1.0

PMH autoimmune 
disease

0 Yes (%)
Fisher’s

53 (15.6)
–

6 (20.0)
p = 0.4

0 (0)
p = 0.2

0 (0)
p = 0.4

PMH malignancy 0 Yes (%)
Fisher’s

28 (8.3)
–

1 (3.3)
p = 0.5

1 (8.3)
p = 1.0

1 (11.1)
p = 0.5

PMH psychiatric 
disease

0 Yes %)
Fisher’s

71 (20.9)
–

4 (13.3)
p = 0.4

4 (33.3)
p = 0.3

3 (33.3)
p = 0.4

History of head injury 26.8 Yes (%) 67 (27.0)
–

3 (13.0)
p = 0.1

3 (33.3)
p = 0.7

2 (28.6)
p = 1.0

History of blood trans-
fusion

29.8 Yes (%) 25 (10.5)
–

0 (0)
p = 0.1

1 (11.1)
p = 1.0

1 (14.3)
p = 0.5

Family history of 
MND

1.8 Yes (%)
Fisher’s

28 (8.4)
–

9 (30.0)
p = 0.0002*

6 (50.0)
p = 0.0001*

5 (55.6)
p = 0.0003*

Family history of 
dementia

3.5 Yes (%)
Fisher’s

97 (29.7)
–

9 (30.0)
p = 1.0

5 (45.5)
p = 0.3

3 (37.5)
p = 0.7

Family history of 
early-onset dementia

3.5 Yes (%)
Fisher’s

15 (4.6)
–

3 (10.0)
p = 0.1

1 (9.1)
p = 0.4

0 (0)
p = 1.0

Family history of 
other neurological 
conditions

5.0 Yes (%)
Fisher’s

94 (29.2)
–

14 (46.7)
p = 0.03

7 (63.6)
p = 0.02

4 (50.0)
p = 0.2

Family history of psy-
chiatric conditions

11.5 Yes (%)
Fisher’s

49 (16.3)
–

7 (26.9)
p = 0.2

2 (18.2)
p = 0.7

0 (0)
p = 0.4

Age of onset (years) 0.6 Mean (SD)
t-test

63.1 (10.8)
–

60.7 (7.8)
p = 0.1

58.4 (7.8)
p = 0.06

60.1 (6.5)
p = 0.2

Time to diagnosis 
(months)

Median (IQR)
Wilcoxon

12.0 (8.0–23.0)
–

10.0 (7.0–18.0)
p = 0.08

17.0 (8.5–35.8)
p = 0.3

14.0 (7.0–35.0)
p = 0.8

Site of onset 0 Bulbar %
Limb (%)
Other (%)
Fisher’s

110 (32.5)
211 (62.2)
18 (5.3)
–

11 (36.7)
15 (50.0)
4 (13.3)
p = 0.08

1 (8.3)
11 (91.7)
0 (0)
p = 0.1

0 (0)
9 (100)
0 (0)
p = 0.07

Classification 0 ALS (%)
MND-FTD (%)
PLS (%)
PMA (%)
PBP (%)
Bibrachial (%)
Fisher’s

261 (77.0)
18 (5.3)
14 (4.1)
16 (4.7)
20 (5.9)
10 (3.0)
–

23 (76.7)
5 (16.7)
0 (0)
0 (0)
2 (6.7)
0 (0)
p = 0.08

11 (91.7)
0 (0)
0 (0)
0 (0)
0 (0)
1 (8.3)
p = 0.7

9 (100)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
p = 1.0

ALSFRS-R Preslope 21.5 Median (IQR)
Wilcoxon

0.58 (0.28–1.00)
–

0.71 (0.32–1.11)
p = 0.3

0.23 (0.18–0.58)
p = 0.03

0.40 (0.14–0.62)
p = 0.1

ECAS ALS specific 
score

44.5 Median (IQR)
Wilcoxon

81.5 (70.8–87.0)
–

69.0 (55.8–79.0)
p = 0.0005*

86 (76.5–87.0)
p = 0.4

87.0 (78.0–87.0)
p = 0.4

ECAS ALS non-
specific score

44.5 Median (IQR)
Wilcoxon

28.0 (24.0–31.0)
–

25.5 (24.0–29.0)
p = 0.3

26.5 (26.0–30.5)
p = 0.9

26.0 (25.0–30.0)
p = 1.0
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in Table 3. The individual with both the C9orf72 expan-
sion and SOD1 p(.Ile114Thr) variant was a male who had 
lower limb-onset ALS age 68 and who developed cognitive 
impairment as assessed by ECAS. Interestingly, he had no 
family history of MND or other neurological conditions. 
He died 65 months (5.4 years) after symptom onset.

The patient with the FUS LoF mutation had young-
onset ALS with short survival (20 months from onset) and 
a family history of MND. The individuals with NEK1 LoF 
mutations did not have family histories of MND.

Of those with a family history of MND (28/339, 8.3%), 
9/28 (32.1%) had pathogenic C9orf72 expansions and 6/28 
(21.4%) had SOD1 mutations. Including all pathogenic 
variants and expansions, there was an overall mutation 
rate of 16/28, 57.1%. However, even in those without a 
clear family history of MND the frequency of C9orf72 
was 21/311 (6.8%) and SOD1 6/311 (1.9%) with an overall 
pathogenic mutation rate of 28/311, 9.0%.

Discussion

Genetic epidemiology of MND in Scotland

Thirteen per cent of pwMND met criteria for having a patho-
genic mutation/expansion. A further 11.2% of the cohort 
had potential ‘hot’ VUS but there was insufficient evidence 
to classify these variants as causative and they would not 
have been reportable clinically. As such, we report a realis-
tic impression of the MND genetic landscape in Scotland. 
Almost two thirds of those with family history of MND and 
almost a tenth of those without a family history of MND had 
a potentially pathogenic mutation. The rates amongst appar-
ently sporadic cases are very similar to those reported in a 
recent large study of ALS genomes, using a 90-gene panel 
and ACMG-AMP led classification [8].

The most important regions of interest in this incident 
Scottish cohort are: the C9orf72 expansion and the SOD1 
and NEK1 genes. The proportion of C9orf72 expansion 

PMH Past Medical History, ALS Amyotrophic Lateral Sclerosis, MND-FTD Motor Neuron Disease with Frontotemporal Dementia, PLS Pri-
mary Lateral Sclerosis, PMA Progressive Muscular Atrophy, PBP Progressive Bulbar Palsy, ALSFRS-R Revised Amyotrophic Functional Rating 
Scale, ECAS Edinburgh Cognitive and Behavioural ALS Screen, NIV Non-invasive ventilation
Bonferroni-corrected significant values are highlighted in bold and starred (*) (Bonferroni-corrected p = 0.0019)

Table 2   (continued)

Phenotypic charac-
teristic

Missing 
data (%)

Summary statistic/test All
(n = 339)

C9orf72 (n = 30) SOD1 inc. I114T 
(n = 12)

SOD1 I114T
(n = 9)

Riluzole use 0 Yes (%)
Fisher’s

138 (40.7)
–

14 (46.7)
p = 0.6

5 (41.7)
p = 1.0

3 (33.3)
p = 0.7

Feeding tube inserted 0.3 Yes (%)
Fisher’s

115 (34.0)
–

10 (33.3)
p = 1.0

0 (0)
p = 0.01

0 (0)
p = 0.03

NIV use 0.3 Yes (%)
Fisher’s

99 (29.3)
–

2 (6.7)
p = 0.003

8 (66.7)
p = 0.007

7 (77.8)
p = 0.003

Table 3   Family histories of SOD1 p(.Ile114Thr) carriers

MS multiple sclerosis

Proband with 
SOD1 p.I114T 
variant

Age of 
onset of 
proband

Site of 
onset of 
proband

Number of 
affected rela-
tives

Family history of MND details Other family history

1 61 Limb 1 Father – limb-onset age 63 Parental grandfather – diagnosed with MS
2 64 Limb 3 Sisters × 2, parental cousin – disease 

site and onset unknown
3 67 Limb 1 Father – site and onset unknown Niece – diagnosed with MS
4 57 Limb 2 Father, sister – limb onset
5 48 Limb 1 Stepsister – site and onset unknown
6 55 Limb 0 – Parental grandfather – diagnosed with MS 

in 40s
7 67 Limb 0 –
8 68 Limb 0 –
9 64 Limb 0 –
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carriers (8.8%) was lower than in a previous Scottish study 
(10.2%) [5]. However, the 2015–17 cohort is more unse-
lected than our historical cohort and so more representative. 
The C9orf72 expansion is the commonest cause of famil-
ial MND affecting 32.1% of cases and 6.8% of apparently 
sporadic cases. Similar rates have been reported in people 
of European, USA and Australian origin [8, 31, 32]. SOD1 
mutations were identified in 3.5% of cases overall, but 21.4% 
of familial cases. This is again lower than in our selected 
1989–2014 cohort (5% of all cases, 29% of familial cases) 
though figures are higher than global population estimates 
(1–2% sporadic and 12% familial cases [32, 33]). As before, 
the p.(Ile114Thr) variant is the biggest contributor to this 
observation, implicated in 17.9% (5/28) of familial cases. 
The relative ethnic homogeneity of the Scottish MND popu-
lation is likely a factor in the persistence of this variant [13]. 
This has significant implications as antisense oligonucleo-
tide (ASO) gene-modifying treatments for SOD1 carriers 
appear promising, with the potential to treat up to 4% of the 
Scottish MND population [9].

We also discovered potentially pathogenic LoF variants 
in the NEK1 gene. This gene is as yet poorly characterised 
in MND populations but loss of function is considered 
mechanistic [34]. Of note, the NEK1 missense mutation 
p.(Arg261His) was also identified in this study (Supple-
mentary Material 2). First identified in an isolated commu-
nity in the Netherlands, it was thought to be a risk variant 
for ALS using meta-analysed data (p = 4.8 × 10–5, OR 2.4 
in cases versus controls) [35]. In the Scottish 1989–2014 
cohort, five cases and two controls had this variant and it was 
considered Likely Pathogenic. In the 2015–17 cohort, it was 
present in nine cases and seven controls. Other clinical sam-
ples reported to ClinVar suggest that the variant may be a 
VUS, Likely Benign or Benign. In the absence of functional 
studies, we would now classify this variant as likely benign, 
present in a total of 1.8% of cases and 0.7% of controls in 
Scottish MND cohorts (1989–2017).

Genotype–phenotype associations

Univariate association testing of C9orf72 expansion carri-
ers showed that they have significantly poorer ALS-Spe-
cific ECAS scores; this finding parallels other studies and 
supports a link between C9orf72 and MND-FTD (Motor 
Neuron Disease with Frontotemporal Dementia) spectrum 
disorders [36–39]. This highlights the utility and importance 
of early cognitive assessment using the ECAS assessment 
tool following diagnosis of MND. The penetrance for the 
C9orf72 expansion is incomplete but is thought to be higher 
in MND than in pure FTD; it is also unaffected by prior fam-
ily history of disease and increases with age [40]. Although 
previous trials of ASO therapies for C9orf72 expansions 
were terminated due to lack of efficacy, exploration of other 

genetically-targeted drug treatments for C9orf72 expansions 
are ongoing and an urgent priority for the MND/ALS com-
munity. Early identification of cognitive impairment will 
therefore be crucial to guide appropriate genetic testing and 
potential drug trial participation before people with C9orf72 
expansions lose capacity. Whilst a family history of MND 
was significantly associated with having a C9orf72 expan-
sion, having a family history of young-onset dementia, psy-
chiatric disease or other neurological disease did not reach 
correct significance (p = 0.1, p = 0.2, and p = 0.03 respec-
tively). This is perhaps surprising [41] but likely reflects 
the low patient numbers and potential under-reporting of 
family histories.

Whilst it did not meet Bonferroni-corrected threshold for 
significance, fewer C9orf72 expansion carriers in our popu-
lation were initiated on NIV (p = 0.003). C9orf72 expansion 
carriers are thought to have fast respiratory decline [42]. We 
might infer that this population might not have had oppor-
tunity to commence on NIV due to inability to consent and 
comply with treatment (because of cognitive impairment) 
and because of rapidly progressive disease. Inclusion of 
Forced Vital Capacity respiratory measures in a longitudi-
nal survival study might help to validate these findings. In 
the meantime, early assessment of C9orf72 status and ECAS 
cognitive assessment in a clinical setting could guide inter-
vention strategies and help to maximise patient access to 
available intervention. The male-to-female ratio in C9orf72 
expansion carriers was 50:50, ie., more females that would 
be expected in a typical MND cohort. In a Scottish study, 
we found that significantly fewer females than males were 
commenced on NIV (p < 0.0001) [13]. This was unexplained 
but, on reflection, C9orf72 status might be a contributor.

We identified two patients with intermediate-length 
repeat expansions who both had classical ALS phenotypes 
and cognitive impairment. Intermediate repeats are more 
common in those with neuropsychiatric disease (including 
FTD) and our results provide further evidence of this phe-
notype [30].

In contrast to C9orf72, more SOD1 mutation carriers 
started NIV, though this did not reach corrected significance 
(p = 0.007). This may be due to their having more predict-
able limb-onset ALS disease. ECAS scores of SOD1 car-
riers were reflective of the population as a whole; patients 
with SOD1 mutations tend not to have significant cognitive 
impairment and so this was anticipated [43]. Individuals 
who had the p.(Ile114Thr) mutation all had limb-onset ALS 
suggesting that the variant may result in a ‘typical’ SOD1 
phenotype, as has been described in recent meta-analyses 
[44]. Indeed, none required gastrostomy insertion by the 
time of censorship (p = 0.03), suggesting that bulbar dis-
ease was not a prominent feature. Family histories of indi-
viduals with the p.(Ile114Thr) variant revealed histories of 
limb-onset MND with similar ages to the proband, although 
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details about disease site and onset are missing for some. 
Family histories of multiple sclerosis were also apparent, 
perhaps implying either a shared genetic aetiology or a his-
torical misdiagnosis of phenotype.

The individual with MND with the FUS LoF variant 
has young-onset rapid progressive disease, meeting the 
expected phenotypic profile for this gene [45]. The NEK1 
gene is relatively newly described and genotype–phenotype 
observations are limited but there is a suggestion in the lit-
erature that carriers are more likely to have the flail arm/
bibrachial phenotype [46]. Our two NEK1-variant carriers, 
however, had ALS (bulbar onset and limb onset, respec-
tively). Interestingly, we identified one patient with both 
a C9orf72 expansion and the SOD1 p.(Ile114Thr) variant. 
This individual had a typical age of onset and relatively slow 
progression, perhaps in-keeping with a SOD1 phenotype, but 
had cognitive impairment in line with C9orf72 phenotype.

Strengths and limitations

Due to the well-established and robust nature of the CARE-
MND platform and the Scottish MND register we have been 
able to gain a wealth of information about our MND popula-
tion. The 2015–2017 cohort was the first to be studied within 
the CARE-MND platform and is comprehensive, with ascer-
tainment of 99% of pwMND in Scotland, using capture-
recapture methodology [13]. These data were also unaffected 
by the coronavirus pandemic. We would therefore anticipate 
that patients diagnosed subsequently would have similar 
characteristics and future and ongoing analysis of CARE-
MND Register data should support this. However, just over 
half of the incident MND population (54.8%) contributed to 
this genetic study. Reasons for not achieving higher ascer-
tainment might include patient choice, limited discussions 
regarding research options prior to the CARE-MND initia-
tive and rapidly deteriorating disease, meaning that patients 
were less willing to devote time and efforts to research. Cur-
rently, genetic research in Scotland does not offer feedback 
of results and does not lead to treatment modification and so 
benefits to patients at an individual level are limited. Allow-
ing for these factors, we consider our recruitment figures to 
be appropriate and reflective of the generosity of the Scottish 
MND patient community.

We acknowledge that that we have not confirmed variants 
identified in the incident cohort using Sanger sequencing. 
Whilst concordance between next-generation sequencing 
(NGS) and Sanger techniques is now excellent, the risk of 
false positives with NGS may be 1.3% [47]. One reason that 
this was not pursued was that sequencing was performed 
as part of a research study only, with results not being fed 
back to patients. In Scotland, all patients with MND are 
encouraged to store DNA in an NHS clinical-approved 
laboratory and if a drug were to become available for an 

MND-associated gene, the patient or their family members 
could activate confirmatory testing. We have also adopted a 
panel-sequencing approach for this study to make the results 
more generalisable to clinical practice. Advances in gene 
sequencing technology, including long-read sequencing, 
may allow the detection of even more rare genetic variation 
in future studies [48].

The number of patients with mutations also is small to 
make firm conclusions, especially with regard to geno-
type–phenotype associations. Bonferroni correction of sta-
tistical testing gives us conservative estimates which are 
hypothesis-generating, though near-significant results do 
confirm clinical observations in practice.

The majority of pwMND in Scotland are of White 
Scottish origin[13] (98.8% in this study). The SOD1 
p.(Ile114Thr) variant has been detected in European, North 
American, and Australasian populations but our results may 
not be generalisable to other ethnic groups or populations.

Conclusions

Our results show that the CARE-MND database provides a 
wealth of information about people diagnosed with MND 
which can be used to inform pwMND and stakeholders. By 
employing structured variant classification and using an 
extensive gene-panel approach we have provided a realis-
tic estimate of the frequency of rare variants in the Scot-
tish MND population for the first time. This information 
has subsequently informed patient information sources. We 
have confirmed the frequency of a specific SOD1 variant 
(SOD1 p.(Ile114Thr)) in the population and have detailed 
associated phenotypic characteristics; awareness of such key 
local mutations is essential for the delivery of future genet-
ically-targeted drug trials and drug approvals. NEK1 LoF 
variant carriers (0.6%) make up a small but important sub-
set of patients. As a consequence of this study, the Scottish 
Neurodegenerative Disease Gene Panel has been updated 
to include NEK1 (https://​www.​nhsggc.​org.​uk/​media/​
271442/​germl​inete​stdir​ectory_​v10.​pdf). As NEK1 carriers 
were all apparently sporadic cases, future work into func-
tional and pathological correlates is merited. We have also 
demonstrated that the SOD1 p.(Ile114Thr) variant and the 
C9orf72 expansion can co-exist and should be tested simul-
taneously—to our knowledge this is not widely described. 
However, more systematic gene testing of pwMND would 
likely reveal further cases and help to determine which gene 
phenotype is more strongly manifested. From a practical 
perspective, we suggest that early clinical gene testing may 
guide management, either by prompting consideration of 
NIV prior to cognitive decline (C9orf72) or by preparing 
patients early for the likelihood of NIV and/or reduced pres-
sure to consider urgent gastrostomy insertion (SOD1).

https://www.nhsggc.org.uk/media/271442/germlinetestdirectory_v10.pdf
https://www.nhsggc.org.uk/media/271442/germlinetestdirectory_v10.pdf
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