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Abstract 48 

Species delimitation remains a challenge worldwide, especially in highly diverse tropical 49 

and subtropical regions. Here, we use an integrative approach that combines morphology, 50 

phylogenomics, and species distribution modeling (SDM) to clarify the cryptic differentiation 51 

within the enigmatic hemiparasitic love vine Cassytha filiformis (Lauraceae) in China and 52 

adjacent regions. We generated complete plastid genomes and nuclear ribosomal sequences 53 

for diverse samples from across the species range and compared results with previously 54 

published plastid data, recovering two well-supported monophyletic clades. Further, the 55 

analysis revealed significant differences in two morphological characters and SDM, 56 

indicating distinct environmental factors influencing their distributions. Fossil-calibrated 57 

analyses to estimate the origins and diversification patterns for the cryptic species gave 58 

divergence age estimates corresponding to the Oligo-Miocene; a period of new ecological 59 

opportunities associated with the prevailing East Asian monsoon. Multivariate analyses 60 

support the conclusion that southern China and adjacent regions have a different, previously 61 
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unknown, cryptic lineage of Cassytha filiformis. Our study highlights the importance of using 62 

multivariate approach to characterize plant species, as well as the significant role that past 63 

climatic changes have played in driving speciation in parasitic plants in tropical and 64 

subtropical zones.  65 

Keywords 66 

Parasitic angiosperms, species delimitation, morphology, phylogeny, Cassytha 67 

1. Introduction 68 

For centuries, systematic biologists have relied on morphological characters for 69 

diagnosing and delimiting species, however, speciation is not always accompanied by 70 

morphological change (Kenfack, 2011), species boundaries are often ambiguous (Posso-71 

Terranova & Andres, 2018). The true number of biological species is likely to be greater than 72 

the current tally of species, most of which are delineated on purely morphological grounds 73 

(Bickford et al., 2007). Species delimitation is the act of identifying species-level biodiversity 74 

(Carstens et al., 2013) and incorporating cryptic species leads to novel insights regarding 75 

biodiversity patterns and processes (Fiser et al., 2018). Many groups from the poles to the 76 

equator and in all major terrestrial and aquatic regions include species that are difficult, or 77 

sometimes impossible to distinguish morphologically and thus have been classified 78 

incorrectly as a single taxon (Knowlton, 1993; Beheregaray & Caccone, 2007; Pfenninger & 79 

Schwenk, 2007; Kenfack, 2011). The taxonomic challenge posed by cryptic species has been 80 

recognized for nearly 300 years (Bickford et al., 2007), but the advent of the “phylogenetic 81 

species concept” gave biologists a new framework for detecting and differentiating 82 

morphologically similar species (de Queiroz, 2005).  83 

As such, research on the delimitation of species has increased exponentially with the 84 

development of genetic approaches and the use of phylogenetic approaches to define species 85 

(Roca et al., 2001; Hebert et al., 2003; Hebert et al. 2004; Lu et al., 2010; Fennessy et al., 86 

2016; Yu et al., 2018; Chai et al., 2022; Wang et al., 2022; Newton, Starrett, Jochim, & Bond, 87 

2023). Similarly, powerful statistical approaches have been proposed to use morphological 88 

variation as the criteria for species delimitation (Valcárcel & Vargas, 2010). Accordingly, an 89 
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integrative approach should be able to provide the best inferences about species delimitation 90 

(Padial & De La Riva, 2010; Posso-Terranova & Andres, 2018).  91 

However, species diversification has been promoted by notable geological and climatic 92 

change (Zachos et al., 2001; Sun et al., 2014; Deng et al., 2018; Westerhold et al., 2020) and 93 

plant diversity resulting from climate-related events has been observed in diverse plant 94 

lineages (Feng et al., 2020; Schmerler et al., 2012). For example, the East Asian flora (EAF) 95 

is incredibly rich in species diversity and includes more than 3,000 genera (Chen et al., 2018). 96 

The East Asian monsoon (EAM) likely driven by the Tibetan Plateau (TP) growth and global 97 

warming (Wu et al., 2022), may promote species speciation in the related regions, particularly 98 

in highly diverse tropical and subtropical area. 99 

Many parasitic plant species have at least partly hidden lives and their morphological 100 

adaptations can be subtle (Bickford et al., 2007) and as such, cryptic species diversity is 101 

likely. Parasitic plants comprise ~4,500 species (1.2% of flowering plants) representing ~280 102 

genera from 20 families (Rubiales & Heide-Jørgensen, 2011; Twyford, 2018). Parasitic plants 103 

can be chlorophyllous, photosynthetic hemiparasites or achlorophyllous holoparasites (Irving 104 

& Cameron, 2009), but all invade other plants directly via a specialized parasitic organ called 105 

the haustorium (Yoder & Scholes, 2010). Hemiparasites are more species-rich and generalist 106 

hemiparasites may have a wide host range, often attaching to multiple, diverse, co-occurring 107 

plants (Brown et al., 2021; Liu et al., 2023). Parasitic plants have had increased attention over 108 

the past three decades (Nickrent, 2020), since they are found in a wide range of ecosystems, 109 

including subarctic tundra, heathlands, savanna woodlands, deserts, temperate and tropical 110 

forests, as well as agricultural ecosystems (Press & Phoenix, 2005; Shen et al., 2006). 111 

However, much less attention has been given to their evolution and any features useful for 112 

species delimitation.  113 

The widespread hemiparasitic Lauraceae genus Cassytha L. currently contains 19 114 

described species, one variety and four forms (http://www.theplantlist.org/). This genus is 115 

controversial and has not been resolved satisfactorily. Morphological characters used for 116 

species delimitation in Cassytha are often problematic, with overlap between species resulting 117 

in a complex and controversial taxonomic history, with many taxa in the genus distinguished 118 

by only a few fruit color, shape, and indumentum characters (Weber, 1981, 2007). For 119 

example, Cassytha filiformis L. strongly resembles other robust-stemmed, racemose species 120 

such as C. pubescens R.Br., C. capillaris Meisn., C. melantha R.Br., C. larsenii Kosterm., C. 121 

http://www.theplantlist.org/
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flindersii (J.Z.Weber) J.Z.Weber and C. peninsularis J.Z.Weber. However, stem and branch 122 

indumentum in Cassytha can vary from glabrescent to pubescent within the same species, or 123 

even a single individual (Weber, 1981, 2007) and such morphological gradients often cause 124 

taxonomic confusion in the group (Liu et al., 2021). 125 

C. filiformis is cosmopolitian in tropical and subtropical regions. Although regarded as a 126 

serious invasive weed in Cuba, Puerto Rico, and the Chagos Archipelago in the Indian Ocean 127 

(Zhang et al., 2022), C. filiformis is also exploited for medicines, cosmetics, rope, and cushion 128 

making in China, India, Nigeria, and the Pacific Islands (Adamu et al., 2017; Zhang et al., 129 

2022). It is currently the only species reported from China (Li et al., 2008), though Liu et al. 130 

(2021) speculated that C. capillaris maybe also occur there, based on fruit morphology of 131 

some accessions and comparisons with the plastome of an Indonesian sample of the latter 132 

(GenBank No. MF939338; Song et al., 2019). However, only a few samples have been 133 

sequenced for the genus in China. The distribution range of C. filiformis is pantropical 134 

whereas C. capillaris is mainly distributed in tropical Australia, but with isolated records 135 

from Assam, Borneo, the Lesser Sunda Islands, Malulu, New Guinea, and Vietnam (Zhang et 136 

al., 2022). These distribution patterns have led to a reconsideration of whether C. capillaris is 137 

present in China and/or whether samples from there instead represent cryptic taxa within the 138 

C. filiformis. This study provides an ideal case for assessing the species delimitation in 139 

parasitic angiosperms. 140 

Molecular phylogenetic methods have been used to address several long-standing issues 141 

in parasitic plant taxonomy and evolutionary biology (Wicke & Naumann, 2018; Nickrent, 142 

2020). However, inter- and intrageneric phylogenetic relationships of Cassytha have remained 143 

largely unresolved or disputed in previous studies, which relied on few gene sequences 144 

(plastid: matK, psbA–trnH, trnK and nuclear regions: RPB2 and ITS) and sampled few 145 

individuals (Rohwer, 2000; Chanderbali et al., 2001; Rohwer & Rudolph, 2005; Wang et al., 146 

2010; Li et al., 2016). Kokubugata et al. (2012) generated trnK intron sequences from 50 147 

individuals covering nine species to investigate the intrageneric phylogenetic relationships 148 

within Cassytha, revealing C. filiformis to be paraphyletic. Recent improvements in genomic 149 

sequencing technologies provide additional options for generating better-supported 150 

phylogenies (Hollingsworth et al., 2016), including complete plastome sequencing and the 151 

nuclear ribosomal DNA arrays (nrDNA). As the plastomes of many parasitic plants 152 

experience a relaxation of selection and thus elevated rates of base substitution (dePamphilis 153 
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et al., 1997), variation may be present at lower taxonomic levels. Therefore ‘genome 154 

skimming’, i.e., low-coverage whole genome sequencing aimed at recovering high copy 155 

genomic regions such as plastids, may be informative for exploring evolutionary relationships 156 

at the population and species level in Cassytha.  157 

In this study, we examine Chinese Cassytha samples currently placed into C. filiformis 158 

as well as several related members of the racemose group to investigate the phylogenetic and 159 

evolutionary history of the genus in the region. The study will generate new complete 160 

plastome and nrDNA (18S–ITS1–5.8S–ITS2–26S) sequences for C. filiformis from a range of 161 

populations, combining these with previously published plastid data to investigate 162 

phylogenetic relationships, possible divergence dates, combining with geographic and 163 

morphological data to investigate cryptic differentiation in C. filiformis, and help define 164 

potentially overlooked cryptic species. 165 

2. Materials and Methods 166 

2.1 Plant materials and sequencing 167 

Samples of C. filiformis were collected from five provinces in China: Fujian, 168 

Guangdong, Guangxi, Hainan, and Yunnan (Figures 1B, S1; Tables S1-2). Due to the 169 

pantropical distribution of C. filiformis, we also collected samples from Japan, Kenya, Laos 170 

and Thailand (Figures 1B, S1; Table S1-2). Stems for each individual were dried with silica 171 

gel, with vouchers deposited at the Herbarium of Xishuangbanna Tropical Botanical Garden, 172 

Chinese Academy of Sciences (HITBC), Yunnan, China and identified by morphological and 173 

molecular comparisons, as described previously (Liu et al., 2017, 2021, 2022, 2023).  174 

Our data consist of complete plastomes and nrDNA from 52 newly de novo genome 175 

skims, augmented with four plastomes from GenBank (Table S2). The resulting 56 plastome 176 

samples represented three species: 52 C. filiformis, with three C. pubescens and one C. 177 

melantha accessions used as outgroups. Genomic DNA from newly sequenced samples was 178 

extracted using a modified CTAB method (Doyle & Doyle, 1987) with a Tiangen DNA secure 179 

Plant Kit (DP305). The concentration and integrity of DNA were determined by gel 180 

electrophoresis and Nanodrop. From each purified sample of total DNA, greater than 1 μg 181 

was fragmented to construct shotgun libraries (500 bp insert size) with a TruSeq DNA Sample 182 

Prep Kit following the manufacturer’s instructions (NEBNext® Ultra IITMDNA Library Prep 183 

Kit for Illumina®). Paired-end sequencing with 150 bp reads was performed on an Illumina 184 
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HiSeq2000 at BGI, with the aim of generating approximately 6 Gb of data for each sample. 185 

Raw reads were filtered to remove adaptors and low-quality reads using the NGS QC Toolkit 186 

(Patel & Jain, 2012) with default parameters. 187 

2.2 Assembly, annotation, and comparison 188 

Clean reads were assembled with GetOrganelle (Jin et al., 2020), which uses baiting and 189 

iterative mapping to assemble plastomes with minimal manual intervention. This approach 190 

integrates SPAdes (Bankevich et al., 2012), Bowtie2 (Langmead & Salzberg, 2012), BLAST+ 191 

(Camacho et al., 2009), and Bandage (Wick et al., 2015). The assembled plastomes were 192 

annotated using PGA (Qu et al., 2019) and GeSeq (Tillich et al., 2017) and comparison of 193 

published Cassytha plastomes (Wu et al., 2017; Song et al., 2019; Liu et al., 2021) led us to 194 

choose C. filiformis MH03 (GenBank No. MT621616) as the plastome reference for assembly 195 

and annotation. After annotation, a manual check was undertaken and the missing genes and 196 

gene boundaries were verified in Geneious Prime (https://www.geneious.com). The circular 197 

map of plastomes was drawn with CHLOROPLOT (https://irscope.shinyapps.io/Chloroplot/) 198 

and OGDRAW (Greiner et al., 2019). Assembly of nrDNA sequences provides a separate 199 

genomic region for comparative analysis and we recovered the 18S rDNA, ITS1, 5.8S rDNA, 200 

ITS2, and 26S rDNA clusters, with MAFFT (Katoh et al., 2019) used for sequence alignment, 201 

followed by a manual check using Geneious Prime. The annotated organelle genomes and 202 

nrDNA have been submitted to GenBank (accession numbers: OP476276-OP476327 and 203 

OP453368-OP453415). Single nucleotide polymorphisms (SNPs) from the plastomes and 204 

nrDNA were tried to analyze in STRUCTURE v2.3.4 (Pritchard et al., 2000), setting K from 205 

1–10 with 20 replicates for each K value.  206 

To visualize the extent of divergence between representative plastomes, we compared ten 207 

genomes from different tribes of Lauraceae. We choose Neocinnamomum delavayi (Lecomte) 208 

H.Liu KZ01 [MT621607] as the X-axis, since Neocinnamomum has a sister relationship with 209 

Cassytha (Rohwer & Rudolph, 2005). The tribes Cryptocaryeae, Cryptocarya hainanensis 210 

Merr. ZF10 [MT621586], Caryodaphnopsideae, Caryodaphnopsis tonkinensis (Lecomte) Airy 211 

Shaw GLQ08 [MT621583], Perseae, Phoebe bournei (Hemsl.) Yang SCH08 [MT621604], 212 

Cinnamomeae, Cinnamomum camphora (L.) J.Presl KZ05 [MT621650], and Laureae, Litsea 213 

glutinosa (Lour.) C.B.Rob. ZF03 [MT621605]), as well as different clades within Cassytha 214 

(choosing C. pubescens AZ01, C. melantha AZ04, C. filiformis MH01 as Type I, and C. 215 

filiformis MH03 as Type II, since MH01 was identified as C. capillaris initially, MH03 is the 216 
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reference in this study) were used in mVISTA (http://genome.lbl.gov/vista/index.shtml) 217 

(Frazer et al., 2004) in LAGAN mode. In addition, we extracted the plastid trnK gene intron 218 

from the 56 plastomes using Geneious Prime and compared them to a previously published 219 

alignment from the same region across Cassytha (Rohwer & Rudolph, 2005; Kokubugata et 220 

al., 2012).  221 

2.3 Species discrimination and phylogenetic analyses 222 

We recorded the proportion of species that resolved as monophyletic following 223 

phylogenetic analysis. The utility of different datasets for species identification was 224 

investigated using the tree-based approach ML (maximum likelihood) and BI (Bayesian 225 

inference) methods using IQTREE 2 (Minh et al., 2020) and MrBayes 3.1.2 (Huelsenbeck & 226 

Ronquist, 2001). The best-fit model for each dataset was determined using ModelFinder 227 

(Kalyaanamoorthy et al., 2017), with the best-fit substitution model selected by –TEST using 228 

a tree search with 1,000 bootstrap replicates in a single run. 229 

A total of 107 Cassytha individuals were used to investigate phylogenetic relationships, 230 

representing the 56 newly-extracted complete plastome samples reported here, plus 51 231 

previously published trnK sequences covering nine species: C. filiformis, C. capillaris, C. 232 

ciliolata Nees, C. glabella R.Br., C. melantha, C. muelleri Meisn., C. pergracilis (Hatus.) 233 

Hatus., C. pubescens, and C. rufa J.Z.Weber adopted from NCBI (Rohwer & Rudolph, 2005; 234 

Kokubugata et al., 2012). The plastome is a single linkage unit that traces a single 235 

evolutionary history (dePamphilis et al., 1997), so to understand the relationships between 236 

plastomes and nrDNA better, further analysis of complete plastome and associated nrDNA 237 

(18S–ITS1–5.8S–ITS2–26S) data was undertaken for those 48 individuals for which nrDNA 238 

sequences assembly was successful. Discordance analysis of the 48 sequenced organelle 239 

genomes and nuclear DNA datasets was performed using ML and phytools was used to 240 

compare the resulting ML trees. 241 

2.4 Molecular dating and estimation of divergence times 242 

To calibrate the molecular dating of Cassytha, three reliable calibration points were used 243 

to constrain the root of Lauraceae, the stem age of Neocinnamomum and Persea group 244 

following Li et al. (2011; 2016) and Huang et al. (2016). Abundant and widespread fossil 245 

record of Lauraceae have been reported from the late early to late Cretaceous (e.g., Drinnan et 246 

al., 1990; Herendeen et al.,1994; Eklund, 2000; Takahashi et al.,1999, 2014). But unequivocal 247 



 9 

fossil for molecular dating is scarce owing to ambiguous traits of the fossils (Li et al., 2011). 248 

Here, we adopted three reliable calibration points. Firstly, the molecular dating estimated of 249 

the crown node of Laurales (~107.7 Ma) (Doyle et al., 2008; Doyle & Endress, 2010; Massoni 250 

et al., 2015), which was supported by the fossil record (Friis et al., 1994). Secondly, the 251 

Cretaceous fossil Neusenia tetrasporangiata Eklund has well-preserved flower buds and 252 

shows a high degree of affinity with the extant taxa of Neocinnamomum H. Liu (Eklund, 253 

2000; Atkinson et al., 2015). We use this fossil to date the stem node of Neocinnamomum (ca. 254 

83 Ma) (Li et al., 2016). The tribes Perseae and Laureae diverged in the early Eocene (ca. 52 255 

Ma) (Li et al., 2011), which is also supported by early Eocene fossils from Europe and North 256 

America (Li et al., 2016). In addition, Alseodaphne changchangensis J.H.Jin & J.Z.Li , a 257 

perfectly preserved fossil leaf from the late early to early late Eocene coal-bearing series of 258 

the Changchang Basin of Hainan Island, China (Li et al., 2009) was used to date the stem age 259 

of Persea group (Li et al., 2011; Huang et al., 2016; Qin et al., 2023). 260 

Dating analyses were conducted using Markov Chain Monte Carlo (MCMC) methods in 261 

BEAST version 2.4 (Bouckaert et al., 2014). For setting the parameters of BEAUti, site model 262 

chose the “BEAST model test”, clock model chose “Relaxed Clock Log Normal” and “Yule 263 

Model” for speciation. To avoid overestimation of root age, we set parameter of offset at 108 264 

Ma in lognormal distribution both with the mean “M” at 0.5 and the standard deviation “S” at 265 

0.6. Two independent MCMC runs were performed with one cold chain and three heated 266 

chains for 1,000,000,000 generations and sampled every 10,000 generations. Effective sample 267 

sizes (ESSs) >200 for all parameters after the first 100,000 iterations were discarded as burn-268 

in, as determined in Tracer V1.7.2 (Rambaut et al., 2018) and a maximum clade credibility 269 

(MCC) tree was generated using TreeAnnotator by setting “Mean heights” for the “Node 270 

heights” and visualized using FigTree version 1.4.4 (Rambaut, 2018).  271 

2.5 Species distribution modeling (SDM) and niche overlap 272 

SDM was carried out to predict suitable present climate envelopes for the C. filiformis 273 

Type I and Type II clades, using the MaxEnt 3.4.1 software package 274 

(https://biodiversityinformatics.amnh.org/open_source/maxent/). Sampling was undertaken 275 

for C. filiformis populations recognised by the FOC (Flora of China), CVH (Chinese Virtual 276 

Herbarium: http://www.cvh.ac.cn/class), PPBC (Plant Photo Bank of China: 277 

http://ppbc.iplant.cn), POWO (Plants of the World Online: http://powo.science.kew.org), 278 

Tropicos (http://www.tropicos.org), and the GBIF (Global Biodiversity Information Facility: 279 
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https://www.gbif.org). A total of 118 individuals were collected, covering almost the entire 280 

distribution of C. filiformis from across China (see Figure S1 and Table S1).  281 

Environmental variables were selected from the Harmonized World Soil Database 282 

(HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), Geospatial Data Cloud 283 

(http://www.gscloud.cn/sources) and WorldClim 1.4 (WorldClim 1.4 — WorldClim 1 284 

documentation). All variables have a uniform spatial resolution of 2.5 min. To reduce 285 

modeling overfitting, we calculated Pearson's correlations among environmental variables. If 286 

two variables were highly correlated (|r| > 0.8), the one with higher contribution was selected, 287 

with 35 predictors (11 climate factors, 6 solar radiation, 4 wind speed, 11 soil factors, 3 288 

topographic factors) used for final modeling (Table S3). The area under the Receiving 289 

Operator Curve (AUC) was used to evaluate model performance (Phillips & Dudík, 2008). 290 

The ecological niche divergence analyses (PCA-env analysis, niche overlap index, niche 291 

equivalence, and niche similarity) were based on the studies of Lin et al. (2021) and Tang et 292 

al. (2021). Niche overlap and the null hypothesis test were based on two similarity metrics in 293 

‘ecospat’ package in R, using 1000 replicates to generate a pseudoreplicated null distribution. 294 

2.6 Hemiparasite morphological observations and statistical analyses 295 

We recorded the collection longitude, latitude, and altitude of all samples in the field. 296 

The flowering and fruiting durations were based on herbarium records and verified further by 297 

field observations from 2015 to 2023. Morphological characteristics of the two C. filiformis 298 

morphotypes were recorded following the methods of Liu et al. (2017; 2023), with character 299 

selection based on field observations and characters used in previous studies of the genus 300 

(Weber, 1981; Weber, 2007; Kokubugata et al., 2012; Liu et al., 2023). Morphological 301 

observations and photographs were taken using a Nikon D870 with a Stereo Microscope 302 

(Motic SMZ168-BL). Five reproductive morphological characters were documented for 303 

specimens using statistical analyses: flower size, inflorescence length, inflorescence 304 

thickness, fruit size and fruit shape index (Figure 2). However, as some individuals were 305 

sterile when sampled, not every collection could be used for morphological analysis (see 306 

Table S4). To determine which traits provided useful information, we examined statistically 307 

significant morphological differences using ANOVA. All statistical analyses used to assess 308 

differences in morphological characteristics between the two morphotypes were performed 309 

with GraphPad Prism 10 (One-way ANOVA followed by Dunnett’s multiple comparisons test 310 

was performed using GraphPad Prism version 10.0.0 for Windows, GraphPad Software, 311 
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Boston, Massachusetts USA, www.graphpad.com). All data are presented as mean ± SD. All 312 

comparisons were tested using unpaired two-tailed Student’s t-test, with P ≤ 0.05 considered 313 

statistically significant. 314 

3. Results 315 

3.1 Plastome sequencing and general characteristics 316 

Cassytha plastome sequences were completed for 56 individuals: 52 C. filiformis (34 317 

Type I, 18 Type II) and two outgroup taxa consisting of three C. pubescens and one C. 318 

melantha sample (Figure 1A; Table S2). Cassytha is one of the earliest divergent groups of 319 

the inverted repeat-lacking clade (IRLC), which has lost one IR region and most NADH 320 

dehydrogenase (ndh) genes, ndhB, ndhC, ndhG, ndhI, ndhJ, and ndhK, with remnants of some 321 

ndh regions as pseudogenes (Figure 3). As such this group does not possess the typical 322 

quadripartite structure (an LSC, an SSC, and a pair of IRs) of other Lauraceae (Figures S2-3). 323 

The C. filiformis plastome sizes ranged 114 (Type II) to 115 kb (Type I), but both types 324 

contained the same 102 unique genes, including 68 protein-coding genes, 30 tRNA genes, and 325 

four rRNA genes, with a GC content of 37% (Figure S2). GenBank accession numbers for all 326 

newly sequenced plastomes and nrDNA are reported in supplementary Table S2. 327 

The aligned consensus length of the 56 complete plastomes was 124,798 bp and the 328 

corresponding extracted trnK gene matrix was 2,594 bp. The analysis of cytonuclear 329 

discordance for 48 aligned nrDNA (18S–ITS1–5.8S–ITS2–26S) sequences was 5,200 bp, 330 

with a corresponding plastome length of 124,432 bp, with organelle genome sizes very similar 331 

between accessions (Table S5). The largest plastome was C. melantha AZ04, with 118,123 bp 332 

(Table S6). We found plastome size varied by 555 bp across samples, with the two cryptic C. 333 

filiformis lineages having non-overlapping size ranges: the C. filiformis Type I (Figure 1A: 334 

Clade 1) plastome being larger (Figure S3 Type I: 114,955–115,158 bp) than Type II (Figure 335 

1A: Clade 2) (Figure S3 Type II: 114,603–114,743 bp) based on the unaligned sequences, due 336 

in part to multiple large insertions. For example, there were deletions of up to 287 bp (the 337 

brown dashed box in Figure S4) between the gene rpl2 and trnM-CAU|trnl-CAU in Type II 338 

relative to Type I. However, there were also unique insertions and polymorphic structural 339 

features, such as a 71 bp insertion in individuals collected from Guangxi, Yunnan and Laos 340 

(Figure S4).  341 
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Variation occurred in the noncoding regions, with some variants also seen in coding ycf1 342 

and ycf2 genes in comparison to other Lauraceae (Figure 3). Most variants within C. filiformis 343 

occurred in the noncoding regions, but some were seen in coding genes, including trnK, 344 

rps16, and clpP (Figure 3). Synteny and rearrangements have been detected in ten plastomes 345 

of Lauraceae, with significant synteny found here within the sampled Cassytha species, as 346 

well as other Lauraceae (Cryptocarya hainanensis, Neocinnamomum delavayi, 347 

Caryodaphnopsis tonkinensis, Phoebe bournei, Cinnamomum camphora, and Litsea 348 

glutinosa) (Figure S5).  349 

3.2 Phylogenetic relationships and genetic structure 350 

Phylogenetic relationships among different datasets were analysed and as the consensus 351 

trees from the ML and BI analyses were almost identical in their topologies, only the ML 352 

consensus tree based on the complete plastomes are presented here (Figure 1A), including 353 

with bootstrap support values and posterior probabilities. This tree contains two principal C. 354 

filiformis clades, with Clade 1 (Figure 1A, Bootstrap support values [BS] = 100%, Posterior 355 

probabilities [PP] = 1.00) including most individuals collected from South-East Asia (Laos 356 

and Thailand) and South-East China (Guangxi and Yunnan), supported strongly as the sister 357 

with Clade 2 (Figure 1A, BS = 100%, PP = 1.00) representing sequences from a range of 358 

pantropical regions China (Fujian, Taiwan), Indonesia, Japan, and Kenya. Samples in these 359 

two clades also co-occur in some regions, such as Guangdong and Hainan provinces (Figure 360 

1B).  361 

Phylogenetic trees based on nrDNA sequences had a very similar overall topology to the 362 

plastome but exhibited minor differences at interior nodes (AM01 and ZJ01, marked with 363 

dashed lines in Figure S6). All C. filiformis Type II accessions cluster as a monophyletic 364 

lineage, but without strong support in the ML and BI analyses, Clade 1 (BS = 80%, PP = 0.97) 365 

and Clade 2 (BS = 38%, PP = 0.81) (Figure S6B). The first clade consisted of all South-East 366 

Asia and South-East China accessions, while the second clade included all pantropical C. 367 

filiformis accessions plus two Guangdong and Hainan accessions, based on the phylogeny of 368 

plastomes (Figure S6). The monophyly of both clades received full branch support (BS = 369 

100%, PP = 1) in the plastome tree (Figure S6A), while the clades in nrDNA were separated 370 

from modest (BS = 80%, PP = 0.97) and weak (BS = 38%, PP = 0.81) supports (Figure S6B). 371 
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After combining the trnK sequences and relating them to existing morphological 372 

characteristics, a few samples collected in China labelled as C. capillaris were unrelated to 373 

the sequenced Australian individual for this species and were instead nested within C. 374 

filiformis Type I (Figure 4). In addition, two samples identified as C. filiformis were nested 375 

with C. ciliolata (Figure 4); however, as these two samples were downloaded sequences, their 376 

identity cannot be verified easily. For those individuals which we sampled (see Figure 1; 377 

Table S2), we rechecked all sequences together with the morphology of our vouchers, 378 

herbarium specimens from E, HITBC, KEW and KUN, confirming that the sample labelled C. 379 

capillaris (MH01, 02, MF939338, SZ01) had been identified incorrectly and belongs to C. 380 

filiformis Type I (Figures 1, 4, S6). 381 

The aligned matrix of the plastomes contained 124,432 single nucleotide polymorphisms 382 

(SNPs) and 5,200 SNPs of the nrDNA are used for the STRUCTURE analyses. The datasets 383 

revealed K = 3 is the best estimated value, suggesting that there were three distinct genetic 384 

clusters in our Cassytha datasets (Figure S7). Under this model, the outgroup samples from 385 

the Australian sites (C. pubescens: AZ01-03, C. melantha: AZ04) formed one cluster, the 386 

pantropical sites China (Fujian, Guangdong, Hainan, and Taiwan), Indonesia, Japan, and 387 

Kenya formed the second, with the South-East Asia (Laos and Thailand) and South-East 388 

China (Guangxi and Yunnan) accessions formed the third cluster. These clusters showed clear 389 

subdivisions and evidence of differentiation among samples. Each vertical bar shows the 390 

proportional representation of the estimated cluster membership for a single individual. The 391 

two forms of C. filiformis were separated more clearly based on plastomes than nrDNA. Gene 392 

flow (introgression) was detected among the two types, such as in ZJ01, ZH14, LS05, ZH03, 393 

LS03, AM01 and JFL01 (Figure S7). Such gene flow may increase the difficulty of 394 

recognizing morphological differences between C. filiformis Type I and Type II. 395 

3.3 Morphological characteristics 396 

The flowering and fruiting of C. filiformis in China were described in our previous study 397 

(Liu et al., 2023) and based on our observations from 2015–2023, C. filiformis blooms and 398 

fruits all year round (especially from May to December). We collected the ripened fruit of 399 

Type I in May and Type II in August and November, but several Type I individuals did not 400 

flower for more than three years. 401 
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The inflorescences of the C. filiformis samples observed here are spicate (mostly), 402 

capitate, or racemose (Figure 2A-i, -ii). The flowers bisexual possess verticillate bracts and 403 

bracteoles and are 1–1.5 mm diam. with six tepals in two whorls, nine fertile stamens in three 404 

whorls, one whorl of staminodes and a central fertile pistil. The persistent tepals are yellow to 405 

white, the outer three triangular, acute, very small with yellow pubescent and ciliate (Figure 406 

2A-iii, -iv, -v); inner three ovate, acute, pubescent outside, glabrous inside, and yellow green 407 

to white, (Figure 2A-iii, -iv, -vi; Figure 2B). There are four whorls of stamens with three 408 

members in each whorl; the second outer whorl adnate to the tepals (Figure 2A-vi), the others 409 

free. Each member of the third whorls bears two lateral yellow glandular appendages (Figure 410 

2A-vii). The anthers of the two outer whorls are introrse while those of the third whorl are 411 

extrorse. All anthers are bilocular and show valvular dehiscence (Figure 2A-iv, -vi, -vii). The 412 

fourth androecial whorl consists of staminodes (Figure 2A-vii). The ovary is monocarpellary, 413 

glabrous, narrow stylar canal, ca. 1.5–2 mm long (Figure 2A-viii).  414 

No obvious morphological differences were seen between the flowers of Type I and Type 415 

II and there were no significant differences for inflorescence length, flower size, or fruit size. 416 

However, inflorescence thickness was significantly thicker for Type I (Figure 2C, P = 0.0281). 417 

Similarly, fruit shape index was also significant different between Type I and II (P=0.0065) 418 

(Figure 2C), with the fruits of most Type I ovoid, compared to globose in all Type II samples 419 

and some Type I (Figure 2B). 420 

3.4 Estimation of divergence times 421 

Divergence time estimates based on plastomes and nrDNA from BEAST and with the 422 

root constrained to 108.05 Ma (plastomes, 95% highest posterior density [HPD]: 108.20–423 

107.06 Ma; Figure 5) and 110.74 Ma (nrDNA, 95% HPD: 110.89–108.93 Ma; Figure S8) are 424 

largely consistent with previous studies (Li et al., 2016; Chen et al., 2020). The crown age for 425 

Cassytha was estimated to be late Eocene: 37.04 Ma (plastomes, 95% HPD: 44.40–32.84 Ma; 426 

Figure 5, node 1) and 37.86 Ma (nrDNA, 95% HPD: 45.89–33.06 Ma; Figure S8, node 1). 427 

The split between the C. filiformis Type I and Type II clades was estimated as Oligocene to 428 

early Miocene 23.94 Ma (plastomes: 95% HPD: 34.10–18.74 Ma; Figure 5, node 2) and 29.62 429 

Ma (nrDNA: 95% HPD: 37.39–26.26 Ma; Figure S8, node 2). Type I apparently then 430 

diversified during the early Miocene ~18.99 Ma (plastomes: 95% HPD: 23.93–13.31 Ma; 431 
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Figure 5, node 3) and ~16.12 Ma (nrDNA: 95% HPD: 25.86–6.28 Ma; Figure S8, node 5). In 432 

contrast, Type II appears to have radiated during the middle Miocene ~13.65 Ma (95% HPD: 433 

17.13–6.92 Ma; Figure 5, node 4) based on the plastome sequences. In contrast, the nrDNA 434 

result showed that Type II was paraphyletic with two individuals of Type I and the clade 435 

radiated in the middle to late Miocene from 9.13 Ma (95% HPD: 4.41–16.37 Ma; Figure S8) 436 

to 13.41 Ma (95% HPD: 5.29–18.30 Ma; Figure S8).  437 

3.5 Species distribution modelling and ecological niche divergence 438 

For both the Type I and Type II clades, AUC values for potential distribution modelling 439 

were >0.90, indicating strong prediction accuracy, with potential distributions predicted by 440 

the model highly compatible with the occurrence point and current distribution predictions 441 

generally good representations of the actual distributions for both clades (Figure 6). The 442 

distribution of the two clades is influenced by environmental factors, with Type I affected by 443 

the Min Temperature of Coldest Month (bio 06) (66.4%, Figure 6A), indicating it is affected 444 

by severe fluctuations in ambient temperature. In contrast, the most important factors in 445 

shaping the distribution of Type II were Mean Temperature of Coldest Quarter (bio 11, 446 

52.8%) and Temperature Seasonality (bio 04, 20.3%) (Figure 6B) as this taxon occurs within 447 

a narrower and warmer temperature range than Type I. However, although Type I is 448 

apparently more tolerant of lower temperatures and more severe ambient temperature 449 

fluctuations, its more montane habitat and the generally low base temperatures there means it 450 

is still vulnerable to prolonged or extreme cold.  451 

Results from the climatic niche analysis of C. filiformis are shown in Figure S9. Principal 452 

component analysis (PCA) showed that the first two principal components could explain 453 

74.9% of the parameter variables selected by correlation analysis (PC1 = 52.6%, PC2 = 454 

22.3%). Based on the first two principal components, ecological niche dynamics of Type I 455 

and Type II within C. filiformis have a significant difference in the environmental needs 456 

(Figure S9A–C). The pair-wise comparison between the species environmental niche in Type 457 

I and Type II rejected the null hypotheses of niche equivalency and the niche similarity test 458 

was rejected (P > 0.05). The results of the niche equivalence and similarity tests further 459 

indicate that the niches of C. filiformis Type I and Type II have undergone significant changes 460 

during the speciation process (Figure S9D–G). In addition, the predicted occupied niche of 461 
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isothermality indicates there are considerable differences between the temperature needs of C. 462 

filiformis Type I and Type II (Figure S9H). 463 

4. Discussion 464 

4.1 Phylogenetic inference and the discovery of cryptic species  465 

Parasitic plant diversity is often cryptic, as they tend to live hidden lives and often have 466 

complex, specialized and/or reduced morphological adaptations for parasitism (Nickrent, 467 

2020). There are relatively few definitive morphological characters for Cassytha (Weber, 468 

1981, 2007) and the inter- and intrageneric phylogenetic relationships of Cassytha have been 469 

disputed in previous studies (Rohwer & Rudolph, 2005; Wang et al., 2010; Kokubugata et al., 470 

2012) and remain largely unresolved. In this study, we used genome skimming to recover the 471 

complete plastome and nrDNA array from geographically widespread samples of C. 472 

filiformis, revealing two well supported clades within the taxon as currently defined (Figures 473 

1A, S6, S7).  474 

Previous phylogenetic studies including Cassytha always use C. filiformis as a 475 

representative species (Chanderbali et al., 2001; Wang et al., 2010; Li et al., 2016; Wu et al., 476 

2017; Song et al., 2019), as it is a widespread pantropical taxon that is easy to collect. 477 

However, the samples of C. filiformis did not resolve as monophyletic by means of trnK 478 

sequence (Kokubugata, 2012), partly due to a lack of sequence variation and potential 479 

identification errors (Figure 4). In the case of widespread and variable taxa, the inclusion of 480 

multiple individuals from different regions can often help improve species delimitation, so the 481 

current study covered a wide area, including Chinese islands (Hainan, Taiwan), continental 482 

China (Fujian, Guangdong, Guangxi, Yunnan), Australia, Indonesia, Japan, Kenya, Laos, and 483 

Thailand (Figures 1B, S1), representing the species distribution across the Old World, but 484 

with particularly detailed sampling across China. The South-East Asian and South-East China 485 

C. filiformis samples formed a highly supported clade (Type I) separate from a pantropical 486 

(Type II) clade (Figure 1A) and while these two clades have a partially sympatric distribution 487 

in Guangdong and Hainan (Figure 1B), they clearly belong to different genetic lineages. 488 

Overlapping distributions between these two types may be the results of population 489 

expansion. Multiple clusters were also found at some sites, which may imply gene flow 490 

among sites and/or multiple introductions to the same site (Figure S7). The morphological 491 
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variation seen here is linked strongly to genetic components, increasing the difficulty of 492 

separating these cryptic lineages using morphology. 493 

Although some morphological traits also overlap, inflorescence thickness and fruits 494 

shape index help to distinguish the C. filiformis Type I and Type II lineages (Figure 2), 495 

suggesting that they represent at least two cryptic species. Cryptic taxa within Cassytha may 496 

have been overlooked, especially in the C. filiformis complex, since most Cassytha species 497 

delimitation is based on morphology and there are relatively few distinguishing characteristics 498 

(Weber, 1981, 2007). There is some molecular and anatomical evidence that there are cryptic 499 

taxa within some Australian species, including C. filiformis (Conran, unpubl. obs.) and this is 500 

the subject of genetic and morphological investigations.  501 

Cryptic species are not only limited to Cassytha and are seen in other parasites, such as 502 

the hemiparasitic Orobanchaceae genera Phtheirospermum Bunge ex Fisch. & C.A.Mey. (Yu 503 

et al., 2018), Pedicularis L. (Liu et al., 2022) and Euphrasia L. (Garrett et al., 2022), as well 504 

as the holoparasitic Cuscuta sect. Californicae (Yunck.) Costea & Stefanović (Costea et al., 505 

2020). Cryptic species are important for a number of reasons, not least species conservation, 506 

as rare taxa cannot be conserved until species boundaries are established and distributions 507 

known. The correct identity of cryptic parasite species is also relevant to more applied areas 508 

such as food security, where a lack of taxon-specific knowledge about host preferences and 509 

biocontrol measures may inform actions to prevent crop losses (Palomares-Rius et al., 2014). 510 

A survey of Chinese C. filiformis host plants shows that it grows mainly on trees and shrubs 511 

from phylogenetically divergent members of the rosid and asterid eudicot clades, often 512 

attacking multiple adjacent hosts simultaneously, and forming extensive colonies (Liu et al., 513 

2023). Future Cassytha research should focus on combining genomic and morphological 514 

approaches and host preferences, to address the true scale of species diversity in this 515 

enigmatic group. 516 

4.2 Plastome divergence 517 

Parasitic plants frequently demonstrate functional reductions in plastid genes and major 518 

modifications to plastome structure due to relaxed selection pressure with the transition to 519 

(partial) heterotrophy. However, few studies to date have generated plastomes from multiple 520 

individuals within and between closely related species, therefore population-level patterns of 521 

variation remain unknown. The C. filiformis plastomes in this study were around 114 (Type 522 

II) to 115 kb (Type I) (Figure S3; Table S6), which is slightly lower than C. pubescens (~117 523 
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kb) and C. melantha (~118 kb), but greatly reduced relative to non-parasitic Lauraceae 524 

plastomes (~148–158 kb) and due mainly to the loss of one IR copy, as well as the ndh genes 525 

(Figures 3, S5). Loss or pseudogenization of ndh genes occurs in a range of heterotrophic 526 

plant groups, such as Cuscuta (McNeal et al., 2007), Epifagus Nutt. (dePamphilis & Palmer, 527 

1990), and some mycotrophic orchids (Kim et al., 2015; Barrett et al., 2018). Moreover, 528 

similar IR losses have also occurred in non-parasitic gentians (Fu et al., 2021) and legumes 529 

(Choi et al., 2019) with a predominantly herbaceous habits, suggesting losses in this gene 530 

family may occur readily and not just with transitions to parasitism, possibly as a response to 531 

stressful conditions such as low- or variable-light environments (Barrett et al., 2018).  532 

4.3 Cryptic differentiation of Cassytha filiformis complex 533 

The C. filiformis complex contains at least two species lineages, strongly supported by 534 

the plastome dataset, modest to weak support by the nrDNA dataset (Figures 1, S6), and 535 

diagnosable by morphological characters (Figure 2). The prediction of the potential 536 

geographical distribution of C. filiformis complex in southern China and adjacent regions also 537 

found that the potential distribution area of each clade showed clear environmental 538 

differences (Figure 6A, B). Phylogenetic relationships between the two lineages were largely 539 

consistent between the plastome and nrDNA datasets, but molecular dating was inconsistent 540 

between the plastome and nrDNA datasets. Perhaps, the relatively low resolution of the 541 

nrDNA tree and the occurrence of gene flow could have led to this phylogenetic conflict. 542 

However, heterogeneity between plastome and nrDNA datasets might have also played a 543 

contributing role. 544 

Environmental factors can affect the spatial distribution of species, as well as their 545 

habitat suitability (Kong et al., 2017; Zhang et al., 2019; Huang et al., 2023). The stability and 546 

variability of the East Asian monsoon (EAM) is associated with temperature, wind speed, and 547 

surface incoming solar radiation (Xu et al., 2006), with many species groups diversifying 548 

rapidly following the establishment of the EAM in southern China during the mid-Miocene 549 

(Kong et al., 2017). In this study, the estimated ages for the origin of C. filiformis complex 550 

and subsequent population-level divergences fell into the range of the East Asian monsoon 551 

establishment and intensification. Of the two C. filiformis lineages Type I is apparently more 552 

tolerant of low temperature and sharp fluctuations in ambient temperature than Type II 553 

(Figure 6A, B), so we speculate that Type I is better adapted mountainous environments, 554 

while Type II is more suited to warmer, more stable coastal environments, as shown in their 555 
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predicted potential geographical distributions (Figure 6C, D). These results suggest that 556 

environmental factors (temperature, solar radiation, wind speed, and water) could play an 557 

important role in predicting the potential distribution areas of these cryptic taxa, but this 558 

requires phylogeographic studies using more dense population samplings and multiple 559 

individuals per population. 560 

4.4 Performance of the species distribution modelling, niche divergence and gene flow 561 

A major goal of ecology is in the inspection of niche divergence to explain rapid lineage 562 

diversification and mechanisms of morphological evolution across clades (Lin et al., 2021). 563 

Species distribution modelling can take the nonlinear relationship between the distribution of 564 

species and environmental factors (De Marco Jr et al., 2008; Pecchi et al., 2019; Tang et al., 565 

2021). Generally, climate is considered having a close relationship with species distributions, 566 

as well as providing basic information on suitable habitats (Medlock et al., 2013; Uden et al., 567 

2015). Some climate variables may contribute to the cryptic differentiation between C. 568 

filiformis Type I and Type II, such as min temperature of coldest month (bio 6) and mean 569 

temperature of coldest quarter (bio 11) (Figures 6, S9). Our ecological niche model provides a 570 

sufficiently accurate estimation for C. filiformis Type I and Type II (Figure S9). Based on the 571 

PCA-env analysis, there is considerable variation in the niche space of C. filiformis between 572 

Type I and Type II. The niche overlap results showed high overlap between Type I and Type II 573 

ranges (Figure S9), which may provide the chances for exchanging DNA between them. Gene 574 

flow (introgression) produced phylogenetic conflict in species delimitation (Chan et al., 575 

2023), potentially shaping the morphological variation and evolution of C. filiformis Type I 576 

and Type II (Figure S7). For example, if some genome components were less prone to 577 

introgression than others, they should be particularly suitable to delimitate species (Petit & 578 

Excoffier, 2009). Here the plastome sequences were much more suitable to delimitate C. 579 

filiformis cryptic types than the nrDNA sequences (Figure S7). 580 

Niche equivalency evaluates whether the environmental conditions differ between 581 

communities and niche similarity evaluates the similarity in the relative distributions of 582 

environmental conditions over longer periods of time. Tests of equivalence and similarity 583 

revealed that C. filiformis Type I and Type II differed in their environmental niches (Figure 584 

S9). Similarly, the niche similarity results suggest that there is no significant climatic niche 585 

conservatism between Type I and Type II, but the predicted occupied niches of isothermality 586 

between Type I and Type II are different. In conclusion, underlying genetics and niche 587 



 20 

divergence may both contribute to the difficulties seen in classifying these two cryptic 588 

lineages using morphology. 589 

5. Conclusions 590 

Our analyses of C. filiformis, combining molecular phylogeny, morphology, and 591 

distribution patterns, strongly suggest that topological constraints, reinforced by subsequent 592 

differential climatic adaptations have resulted in cryptic lineage divergence leading to the 593 

formation of two discrete taxonomic entities: Type I: distributed in South-East Asia and 594 

South-East China and Type II: distributed in pantropically. Although the Type II entity may 595 

well include other cryptic taxa from outside China, a worldwide study of the complex was 596 

beyond the scope of the present study. 597 

These findings suggest that cryptic diversity in parasitic plants is probably higher than 598 

morphology alone would suggest, and that further investigation of widespread and 599 

polymorphic taxa may help improve taxon definition and conservation. The study shows that 600 

a combination of geographic and climatic factors has played a fundamental role in promoting 601 

diversification and evolution of species in the tropical and subtropical zones, and that these 602 

processes may give a good instruction for parasitic plant speciation studies. 603 
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Figure Legends 946 

Figure 1. Plastomes phylogenetic tree and geographic analyses of Cassytha filiformis. (A) 947 

Phylogenetic tree showing Type I (red) and Type II (blue) clades; Numbers above branches 948 

indicate likelihood bootstrap percentages (BS) and Bayesian posterior probabilities (PP). (B) 949 

Geographic origins of C. filiformis worldwide and enlarged view of the collection sites in 950 

Southern China. Sample sites are color-coded by red (Type I) and blue (Type II) dots 951 

corresponding to the phylogenetic clades. The base map was downloaded from the Standard 952 

Map Service System (http://bzdt.ch.mnr.gov.cn; No. GS (2024) 0447) 953 

 954 

Figure 2. Morphological characters and statistical analyses of Cassytha filiformis. (A) 955 

Images of inflorescence and flower morphology in the two types of C. filiformis. i. the 956 

inflorescence of Type I; ii. the inflorescence of Type II; iii. the external structure of the 957 

flower; iv. the internal structure of the flower; v. the outer tepals; vi. the inner tepal with the 958 

first whorl of stamen; vii. the second to fourth whorls of stamens; viii. ovary. (B) Images of 959 

fruit in the two types of C. filiformis (C) Relationship between morphological trait 960 

measurements made in reproductive wild-collected herbarium specimens for diverse C. 961 

filiformis. Trait variation in flowers, inflorescences, and fruits. The black dots indicate each 962 

individual measurement. P values were determined by using 1-way ANOVA with Tukey’s 963 

multiple comparisons test. Data are presented in Table S4. 964 

 965 

Figure 3 Comparison of the Cassytha filiformis complex plastome types with other 966 

related species using mVISTA. (A) The variation between Cassytha and other Lauraceae. 967 

(B) The variation within Cassytha. 968 

 969 

Figure 4. Phylogenetic relationships of Cassytha based on 107 trnK sequences. 970 

Phylogenetic tree showing Type I (red), Type II (blue) and outgroup (green) clades. The 971 

samples labelled as red were wrongly identified as C. capillaris initially; the sample labelled 972 

as green were the correct C. capillaris collected in Australia; the samples labelled as purple 973 

were identified as C. filiformis (suspected identification error) but nested with C. ciliolata. 974 

Numbers above branches indicate likelihood bootstrap percentages (BS) and Bayesian 975 

posterior probabilities (PP). Dashes indicates no support.  976 

 977 
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Figure 5. A simplified maximum clade credibility tree of Cassytha from BEAST 978 

divergence time analysis. The estimated age of main nodes is presented above the branch. 979 

Node bars represent the 95% highest posterior density (HPD) interval. Five key stem/crown 980 

nodes (black) were annotated by numbers. 981 

 982 

Figure 6. The percentage contribution of important environmental variables for the 983 

modern distribution of two types in Cassytha filiformis and its distribution pattern of 984 

potential habitat suitability in Southern China and adjunct regions. (A, B) The 985 

cumulative contribution of top five factors for both are more than 90%. (A) Bio 6 = Min 986 

Temperature of Coldest Month; Wind 12 = Wind speed of December; Bio 11= Mean 987 

Temperature of Coldest Quarter; Srad 11= Solar radiation of November; Bio 01= Annual 988 

Mean Temperature. (B) Bio 11= Mean Temperature of Coldest Quarter; Bio 04 = Temperature 989 

Seasonality (standard deviation×100); Bio 01= Annual Mean Temperature; Srad 06= Solar 990 

radiation of June; Bio 14 = Precipitation of Driest Month. (C, D) The distribution pattern of 991 
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