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Abstract 38 

Protein S-nitrosylation, which is defined by the covalent attachment of NO to the thiol group 39 

of cysteine residues, is known to play critical roles in plant development and stress responses.  40 

NO promotes seedling photomorphogenesis and NO emission is enhanced by light.  However, 41 

the function of protein S-nitrosylation in plant photomorphogenesis is essentially unknown. 42 

E3 ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and transcription factor 43 

ELONGATED HYPOCOTYL 5 (HY5) antagonistically regulate seedling photomorphogenesis. 44 

COP1 inhibits plant photomorphogenesis by targeting photomorphogenic promoters like HY5 45 

for 26S proteasome degradation. Here, we report that COP1 is S-nitrosylated in vitro. Mass 46 

spectrometry analyses revealed that two evolutionarily well conserved residues, cysteine 425 47 

and cysteine 607, in the WD40 domain of COP1 are S-nitrosylated. S-nitrosylated glutathione 48 

(GSNO) is an important physiological NO donor for protein S-nitrosylation. The gsnor1-3 49 

mutant, which accumulates higher level of GSNO, accumulated higher HY5 levels than 50 

wildtype, indicating that COP1 activity is inhibited. Protein S-nitrosylation can be reversed by 51 

Thioredoxin-h5 (TRXh5) in plants. Indeed, COP1 interacts directly with TRXh5 and its close 52 

homolog TRXh3. Moreover, catalase 3 (CAT3) acts as a transnitrosylase that transfers NO 53 

to its target proteins like GSNO reductase (GSNOR). We found that CAT3 interacts with 54 

COP1 in plants. Taken together, our data indicate that the activity of COP1 is inhibited by NO 55 

via S-nitrosylation to promote photomorphogenesis. 56 

 57 

Introduction 58 

Nitric oxide (NO) regulates plant growth, development and stress response (Yu et al. 2014; 59 

Domingos et al. 2015; Feng et al. 2019; Kolbert et al. 2021). NO exerts its functions by 60 

modulating protein function or activity through posttranslational modifications including 61 

protein S-nitrosylation, tyrosine nitration and metal nitrosylation. Protein S-nitrosylation, 62 

which is defined by the covalent attachment of NO to the thiol group of cysteine residues to 63 

form S-nitrosothiol (-SNO), is the most important type of protein modification by NO (Feng et 64 

al. 2019; Ageeva-Kieferle et al. 2021). Certain proteins are S-nitrosylated in plants in 65 

response to different environment factors (Vanzo et al. 2016; Jain et al. 2018). As an 66 
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important environment factor light can induce NO production in plants, however, the function 67 

of S-nitrosylation in plant photomorphogenesis remains essentially unknown. 68 

CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is among the first-characterized 69 

negative regulators of plant photomorphogenesis (Deng et al. 1991). COP1 targets several 70 

photomorphogenic promoters including the bZIP transcription factor HY5 for degradation 71 

(Osterlund et al. 2000; Pacin et al. 2014). SUPPRESSOR OF PHYTOCHROME A-105 (SPA) 72 

proteins interact directly with COP1 and this COP1/SPA complex is considered as a 73 

functional E3 ubiquitin ligase (Hoecker 2017). To promote photomorphogenesis the activity 74 

of the E3 ubiquitin ligase COP1/SPA is inhibited by light via different mechanisms, including 75 

disruption of COP1-SPA interaction, exclusion of COP1 from the nucleus and degradation of 76 

some SPA proteins (Lian et al. 2011; Liu et al. 2011; Zheng et al. 2013; Sheerin et al. 2015; 77 

Lu et al. 2015; Chen et al. 2015; Hoecker 2017; Menon et al. 2016; Podolec and Ulm 2018). 78 

Several photoreceptors including UVR8, CRY1 and CRY2 can compete with some COP1 79 

substrates for binding to the WD40 domain, thereby inhibiting of COP1 activity (Ponnu et al. 80 

2019; Lau et al. 2019). Regulation of COP1 activity by protein modifications is less explored. 81 

S-nitrosylated glutathione (GSNO) is an important natural and physiological NO donor 82 

(Kovacs and Lindermayr 2013). GSNO is degraded by GSNO reductase (GSNOR) and 83 

Arabidopsis gsnor1 mutants accumulate high levels of both cellular GSNO and protein-SNO 84 

(Chen et al. 2009; Feechan et al. 2005). S-nitrosylatoin is reversible. Thioredoxin-h3 (TRXh3) 85 

and TRXh5 interact with and denitrosylate the S-nitrosylated proteins to regulate plant 86 

immunity (Kneeshaw et al. 2014). S-nitrosylation has long been considered as a 87 

nonenzymatic reaction in plants. Recently, catalase 3 (CAT3) was shown to act as a 88 

transnitrosylase that it transfers its bearing NO moiety to GSNOR in Arabidopsis (Chen et al. 89 

2020). It would be interesting to test whether the transnitrosylase CAT3 has other protein 90 

substrates.  91 

Plants exposed to light emit more NO than plants in darkness (Ageeva-Kieferle et al. 92 

2021), suggesting that protein S-nitrosylation may play roles in light responses. Indeed, 93 

proteins involved in photosynthesis and chlorophyII metabolism are S-nitrosylated in gsnor1-94 

3 plants (Hu et al. 2015). However, it is to be tested whether proteins involved in plant 95 
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photomorphogenesis are S-nitrosylated. COP1 is critical player in several major 96 

photoreceptor-mediated light signaling pathways. In this work, we found that COP1 is S-97 

nitrosylated at its two well conserved cysteine residues located in its WD40 domain being 98 

responsible for binding to many of its degradation targets like HY5. Through analysis of HY5 99 

protein levels in gsnor1-3, which accumulates high levels of GSNO, we showed that COP1 100 

activity is inhibited probably via S-nitrosylation. 101 

 102 

Materials and methods 103 

Plant material and growth conditions 104 

The gsnor1-3 and cop1-4/35S:YFP-COP1 were of Columnbia ecotype background. For YFP-105 

COP1 protein level assay, after being stratified in the dark at 4°C for 2 d, seedlings were 106 

grown at 23°C under continuous white-light field (3.6 μmol/m2/s, measured by LI-250A Light 107 

Meter). For HY5 protein detection, seedlings were grown either in dark or under continuous 108 

white light 100 μmol/m2/s at 23°C.  109 

Protein expression and purification 110 

The coding sequences of COP1, COP1N282 (aa 1-282) and COP1C340 (aa 336-675) were 111 

cloned into the MBP-tag expression vector pMAL-c5x, respectively. The expression vectors 112 

were transformed into E.coil strain BL21/DE3. Amylose magnetic beads were usedf for 113 

protein purifications. 114 

Biotin switch assay 115 

Protein S-nitrosylation was detected with a similar biotin switch method (Jaffrey and Snyder 116 

2001). Purified proteins were precipitated and then exchanged for HEN buffer (250 mM 117 

HEPES, pH 7.7, 1 mM EDTA, 0.1 mM neocuproine). Proteins were divided into two parts and 118 

treated with DTT (110 mM) or Cys-NO (110 mM) for 30 minutes in dark. The sample was 119 

precipitated with acetone, and resuspended in 250 μl blocking buffer (250 mM HEPES, 1 mM 120 

EDTA, pH7.7, 0.1 mM neocuproine, 5%SDS, 50 mM NEM) for 20 min at 50°C. Samples were 121 

precipitated with acetone. 50 μl biotin-HPDP (4 mM) and 25 μl sodium ascorbate (500 mM) 122 

were added to the precipitates and incubated at room temperature for 1 h in dark. The 123 
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reaction mixture was precipitated with acetone and then boiled at 95°C for 5 min in SDS 124 

buffer without reducing agent. 125 

Mass Spectrometric analysis COP1-C340 protein charged by biotin-HPDP 126 

The target bands of biotinylated proteins were cut from SDS-PAGE gels stained by 127 

coomassie blue. Samples were digested with trypsin (Promega) and dissolved in 0.1% formic 128 

acid. An Easy-nLC1200 system coupled online to a Q Exactive plus mass spectrometer 129 

(Thermo Scientific, Bremen, Germany) were supplied to analyze the above reaction products. 130 

Aliquots including peptides were conducted on a analytical column (C18, 20cm×75μm, 3μm) 131 

using a 1 h acetonitrile gradient in 0.1% formic acid at a flow rate of 600 nL/min. The mobile 132 

phase was 0.1% formic acid as solvent A and 80% acetonitrile containing 0.1% formic acid 133 

as solvent B with a linear gradient from 2% to 8% solvent B over 0 to 3 min, 8% to 20% over 134 

3 to 39 min, 20% to 35% over 39 to 47 min, 35% to 100% over 47 to 48 min and hold for 12 135 

min. MS analysis was performed using MS1 scans (350–1,800 m/z) with 70,000 resolution 136 

(AGC, 3e6 ions) and then followed by MS2 scans of up to 20 abundant multiply charged 137 

precursors in the MS1 spectrum fragmented by the higher energy collisional dissociation 138 

(HCD) with a normalized collision energy of 28. Capillary temperature was 275°C and spray 139 

voltage was 2100V. The HCD-MS2 spectra were analysed in 17,500 resolution (AGC, 1e5). 140 

The Peaks software was used to analyze the sequence of samples with a precursor ion mass 141 

tolerance of 10 ppm. The modifications include: Cysteine/+428.19 Da (charged with Biotin-142 

HPDP), Carbamidomethyl (C), Deamidation (NQ), Oxidation (M). FDR≤1%. 143 

Immunoblotting 144 

For immunoblot analysis, proteins were separated by SDS-PAGE and transferred to PVDF 145 

membranes according to the manufacturer’s instructions (Bio-Rad). The anti-GFP 146 

(Proteintech), anti-HY5, anti-MBP (Proteintech) and anti-biotin (CST) were used as primary 147 

antibodies. And anti-rabbit immunoglobulins (Proteintech) and anti-mouse immunoglobulins 148 

(Proteintech) were taken as secondary antibodies. Signals were detected using LumiBest 149 

ECL substrate solution kit (Share-bio).  150 

Yeast two-hybrid Interaction assay 151 
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AD-containing plasmids and BD-containing plasmids were respectively transformed into 152 

yeast strain Y187 and GoldY2H using LiAc-mediated yeast transformation. Yeast growth 153 

assays were carried out on selective solid medium SD–Trp–Leu–His at 30°C.  154 

Split-luciferase assay 155 

Full length of COP1 and CAT3 were cloned into the pJW772/cLUC and pJW771/nLUC to 156 

generate cLUC-COP1 and nLUC-CAT3, respectively. Different combinations of the 157 

constructs were infiltrated into N. benthamiana leaves mediated by Agrobacterium 158 

tumefaciens. Plants were kept in darkness for two more days. D-luciferin (Promega) solution 159 

was then infiltrated into the leaves, and luciferase activity was recorded using a CCD camera 160 

(Tanon). 161 

 162 

Results  163 

COP1 contains a RING finger domain, coiled-coiled domain and a C-terminal WD40 domain 164 

(Figure 1A). Therefore, we directly tested whether COP1 is S-nitrosylated through biotin 165 

switch assays (Jaffrey and Snyder 2001). The purified recombinant MBP-COP1 expressed 166 

in E. coli can be S-nitrosylated by CysNO (Figure 1B). Furthermore, we performed biotin 167 

switch assays with two distinct COP1 fragments. Immunoblotting analyses after biotin switch 168 

revealed that COP1336-675 fragment (WD40 domain) but not COP11-282 fragment was S-169 

nitrosylated (Figure 1C). The COP1336-675-SNO products were subjected to mass 170 

spectrometry analyses to identify the modified cysteine residues. In two independent 171 

experiments, both C425 and C607 of COP1 were identified (Figures 1D&E). Both C425 and 172 

C607 are evolutionary conserved ranging from unicellular algae to higher plants and 173 

mammals, suggesting that both cysteine residues are important for COP1 function (Figure 174 

S1).  175 

To test whether NO regulates COP1 protein abundance, the 35S:YFP-COP1/cop1-4 176 

seedlings were either treated with either NO donor sodium nitroprusside (SNP), or a NO 177 

scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). 178 

Immunoblotting analyses showed that COP1 levels were not obviously altered by SNP or 179 

cPTIO (Figure S2), suggesting that S-nitrosylation does not regulate COP1 abundance. Next, 180 
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we tested whether NO regulates COP1 activity through immunoblotting analyses for HY5, 181 

which is a well-studied substrate of COP1 (Osterlund et al. 2000). Obviously, more HY5 can 182 

be detected in gsnor1-3 mutant than in wildtype (WT) both in white light and in dark (Figures 183 

2A&B). We noticed that the difference of HY5 levels in the two genotypes is more obvious in 184 

dark than in light, which is consistent with the notion that COP1 is inhibited by light via several 185 

other mechanisms (Figures 2A&B). Thus, the activity of COP1 is inhibited by NO via S-186 

nitrosylation. 187 

TRXh3 and TRXh5 act as a selective protein-SNO reductase (Kneeshaw et al. 2014). 188 

TRXh3 and TRXh5 interact with their substrate and reverses SNO modifications in 189 

Arabidopsis (Kneeshaw et al. 2014). We found that both TRXh3 and TRXh5 interact directly 190 

with COP1 (Figure 2C). Supporting this notion that both TRXh3 and TRXh5 interact with 191 

NPR1, which is regulated by NO through S-nitrosylation (Tada et al. 2008). Future work is 192 

needed to test whether the S-nitrosylation of COP1 is regulated by these Thioredoxin proteins. 193 

Moreover, COP1 interacts with a transnitrosylase CAT3 both in yeasts and tobacco leaves, 194 

suggesting that CAT3 may catalyze the S-nitrosylation of COP1 in plants (Figure 3A&B). 195 

Collectively, these observations suggest that the activity of COP1 in photomorphogenesis is 196 

regulated by NO through S-nitrosylation. 197 

 198 

Discussion 199 

Independent studies reported that plant photomorphogenesis is promoted by NO (Castillo et 200 

al. 2018; Beligni and Lamattina 2000; Lozano-Juste and Leon 2011; Bai et al. 2014; 201 

Domingos et al. 2015). Treatment of etiolated Arabidopsis seedling with NO leads to short 202 

hypocotyls, mimicking the effect of light (Castillo et al. 2018; Beligni and Lamattina 2000; 203 

Lozano-Juste and Leon 2011). HY5 protein levels were shown be tightly regulated by COP1 204 

activity and to be inversely correlated with seedling hypocotyl length (Osterlund et al. 2000). 205 

The Arabidopsis gsnor1-3 seedlings have short hypocotyls (Shi et al. 2015). Our finding that 206 

gsnor1-3 accumulated higher HY5 levels is consistent with the effect of NO in seedling 207 

photomorphogenesis.  208 
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It should be noted that NO may regulate plant photomorphogenesis via different 209 

mechanism. NO represses Arabidopsis root growth and NO-specific scavenger 2-(4-210 

carboxyphenylalanine) 4,4,5,5tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) can at least 211 

partially rescue root growth inhibition (Bai et al. 2014). The phytochrome interacting factor 3 212 

(PIF3), which is an important transcription factor regulating plant photomorphogenesis, is 213 

involved in the inhibition of root growth by NO. The PIF3ox line was partially insensitive to 214 

NO and the pif3-1 mutant was hypersensitivity to NO  (Bai et al. 2014). Interestingly, NO 215 

promotes the accumulation of photoreceptor phyB protein levels  (Bai et al. 2014). Evidence 216 

has been provided that etiolated seedlings emit NO and light promotes NO accumulation 217 

(Ageeva-Kieferle et al. 2021). The light-indued NO accumulation corresponds to histone 218 

acetylation (Ageeva-Kieferle et al. 2021). It is to be tested whether the NO-induced epigenic 219 

regulation mechanisms contribute to photomorphogenesis. We found that the key negative 220 

regulator of photomorphogenesis COP1 is post-translationally modified by NO via S-221 

nitrosylation in vitro. Moreover, COP1 interacts with two known denitrosylases TRXh3 and 222 

TRXh5 and with a transnitrosylase CAT3 in yeasts and plant cells. Thus, our work revealed 223 

a potentially unrecognized mechanism for NO in the regulation of plant photomorphogenesis. 224 

Since NO can promote plant photomorphogenesis via distinct mechanisms, the short 225 

seedling hypocotyl phenotype of gsnor1 mutants is likely a combination of diverse effects of 226 

over-accumulated GSNO on plant photomorphogenesis. Nevertheless, the short stature of 227 

gsnor1 mutant is largely suppressed by cat3, suggesting that S-nitrosylation may play a major 228 

role in the regulation of plant development in the gsnor1 mutant (Chen et al. 2020). 229 

  S-nitrosylation in plants could be transient. Currently, biotin switch method is routinely 230 

used to detect protein S-nitrosylation. It is still a major challenge to detect protein S-231 

nitrosylation in plants (Feng et al. 2019). We could not successfully detect S-nitrosylated 232 

COP1 in 35S:YFP-COP1/cop1-4 transgenic plants after intensive trials. This could be due to 233 

the low expression of YFP-COP1 and only a small fraction of total COP1 is S-nitrosylated. 234 

C425 and C607 of COP1 were detected to be S-nitrosylated. Notably, Arabidopsis COP1 235 

contains twenty cysteine residues in total. It is possible that some other cysteine residues of 236 

COP1 are S-nitrosylated in plants under certain conditions. We recently showed that C509 237 
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of COP1 is important for its function(Zhang et al. 2023). And C509 of COP1 is located on the 238 

surface of its WD40 domain (Lau et al. 2019; Zhang et al. 2023), suggesting that it could be 239 

readily S-nitrosylated from the structural point of view. Future work is needed to investigate 240 

the contribution of C425 and C607 to COP1 S-nitrosylation in plants.  241 

  S-nitrosylation regulates protein activities by various mechanisms, including stability, 242 

biochemical activity, conformation change, subcellular localization, and protein–protein 243 

interaction (Feng et al. 2019) . Treatment of seedlings with NO donor SNP or NO scavenger 244 

cPTIO did not alter COP1 protein levels (Figure S2). The exact mechanism for the inhibition 245 

of COP1 activity by NO awaits further investigations. 246 
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 260 

Figure legends 261 

Figure 1. COP1 is S-nitrosylated in vitro. 262 

(a) Schematic diagrams of COP1 functional domains. COP11-282 contains Ring finger (Ring) 263 

and Coiled-coil (CC) domains. COP1336-675 contains WD40 domain. The arrowheads indicate 264 

the estimated position of C425 and C607. (b,c) Detection of S-nitrosylated full length COP1 265 

(b) and COP1 fragments (c) by immunoblotting. Purified MBP-COP1 recombinant protein 266 
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was treated with CysNO or DTT (negative control) and then subjected to biotin-switch. The 267 

S-nitrosylated protein was detected by an anti-biotin antibody. The asterisk indicates a cross-268 

reacting band. (d, e) Mass spectrometry analysis of the tryptic biotin-charged MBP-COP1336-269 

675 recombinant protein. The b- and y-type product ions are indicated. C425 (d) and C607 (e) 270 

were identified as the S-nitrosylated residues. 271 

Figure 2. The activity of COP1 is reduced in gsnor1-3 mutant seedlings. 272 

(a, b) gsnor1-3 mutant accumulated higher HY5 levels than WT both in white light (a) and in 273 

darkness (b). Immunoblotting analysis with anti-HY5. Protein extracts were prepared from 274 

WT, hy5hyh and gsnor1-3 knock-out mutant grown in darkness (a) and white light (b) for ten 275 

days. The asterisk indicates a cross-reacting band. Ponceau staining of Rubisco Large chain 276 

serves as a loading control. 277 

Figure 3. COP1 interacts with TRXh3, TRXh5 and CAT3. 278 

(a) COP1 interacts with TRXh3 and TRXh5 in yeast two-hybrid assays. EV indicates empty 279 

vector. BD and AD indicate DNA binding domain vector and activation domain vector, 280 

respectively. (b,c) COP1 interacts with CAT3 in yeast two-hybrid assays (b) and in Split-281 

Luciferase assays (c). Split-luciferase assays were carried out in N. benthamiana leaves. The 282 

luminescence images were captured using a CCD imaging system.  283 

 284 

SUPPORTING INFORMATION 285 

Additional Supporting Information may be found in the online version of this article. 286 

Table S1. Primers used in this study. 287 

Figure S1. The Arabidopsis COP1 Cysteine 425 and 607 are evolutionarily highly conserved. 288 

Figure S2. COP1 protein levels are not altered by NO 289 

290 
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