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Normalization for Fitch-Style Modal Calculi
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Fitch-style modal lambda calculi enable programming with necessity modalities in a typed lambda calculus
by extending the typing context with a delimiting operator that is denoted by a lock. The addition of locks
simplifies the formulation of typing rules for calculi that incorporate different modal axioms, but each variant
demands different, tedious and seemingly ad hoc syntactic lemmas to prove normalization. In this work,
we take a semantic approach to normalization, called normalization by evaluation (NbE), by leveraging the
possible-world semantics of Fitch-style calculi to yield a more modular approach to normalization. We show
that NbE models can be constructed for calculi that incorporate the K, T and 4 axioms of modal logic, as suitable
instantiations of the possible-world semantics. In addition to existing results that handle 𝛽-equivalence, our
normalization result also considers [-equivalence for these calculi. Our key results have been mechanized
in the proof assistant Agda. Finally, we showcase several consequences of normalization for proving meta-
theoretic properties of Fitch-style calculi as well as programming-language applications based on different
interpretations of the necessity modality.

CCS Concepts: • Theory of computation→ Type theory;Modal and temporal logics; Constructive
mathematics.

Additional Key Words and Phrases: Fitch-style lambda calculi, Possible-world semantics, Normalization by
Evaluation
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1 INTRODUCTION
In type systems, a modality can be broadly construed as a unary type constructor with certain
properties. Type systems with modalities have found a wide range of applications in programming
languages to specify properties of a program in its type. In this work, we study typed lambda calculi
equipped with a necessity modality (denoted by ◻) formulated in the so-called Fitch style.
The necessity modality originates from modal logic, where the most basic intuitionistic modal

logic IK (for “intuitionistic” and “Kripke”) extends intuitionistic propositional logic with a unary
connective◻, the necessitation rule (if · ⊢ 𝐴 then Γ ⊢ ◻𝐴) and the K axiom (◻(𝐴⇒𝐵)⇒◻𝐴⇒◻𝐵).
With the addition of further modal axioms T (◻𝐴⇒𝐴) and 4 (◻𝐴⇒◻◻𝐴) to IK, we obtain richer
logics IT (adding axiom T), IK4 (adding axiom 4), and IS4 (adding both T and 4). Type systems with
necessity modalities based on IK and IS4 have found applications in partial evaluation and staged
computation [Davies and Pfenning 1996, 2001], information-flow control [Miyamoto and Igarashi
2004], and recovering purity in an effectful language [Choudhury and Krishnaswami 2020]. While
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type systems based on IT and IK4 do not seem to have any prior known programming applications,
they are nevertheless interesting as objects of study that extend IK towards IS4.

Fitch-style modal lambda calculi [Borghuis 1994; Clouston 2018; Martini and Masini 1996] feature
necessity modalities in a typed lambda calculus by extending the typing context with a delimiting
“lock” operator (denoted by µ). In this paper, we consider the family of Fitch-style modal lambda
calculi that correspond to the logics IK, IT, IK4, and IS4. These calculi extend the simply-typed
lambda calculus (STLC) with a type constructor ◻, along with introduction and elimination rules
for ◻ types formulated using the µ operator. For instance, the calculus λIK, which corresponds to
the logic IK, extends STLC with Rules ◻-Intro and λIK/◻-Elim, as summarized in Fig. 1. The rules
for _-abstraction and function application are formulated in the usual way—but note the modified
variable rule Var!

Ty 𝐴 F . . . | ◻𝐴 Ctx Γ F · | Γ, 𝑥 : 𝐴 | Γ,µ

Var

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴
µ ∉ Γ′

◻-Intro
Γ,µ ⊢ 𝑡 : 𝐴

Γ ⊢ box 𝑡 : ◻𝐴

λIK/◻-Elim
Γ ⊢ 𝑡 : ◻𝐴

Γ,µ, Γ′ ⊢ unboxλIK 𝑡 : 𝐴
µ ∉ Γ′

Fig. 1. Typing rules for λIK (omitting _-abstraction and application)

The equivalence of terms in STLC is extended by Fitch-style calculi with the following rules
for ◻ types, where the former states the 𝛽- (or computational) equivalence, and the latter states a
type-directed [- (or extensional) equivalence.

◻-𝛽
unbox (box 𝑡) ∼ 𝑡

◻-[
Γ ⊢ 𝑡 : ◻𝐴

𝑡 ∼ box (unbox 𝑡)
We are interested in the problem of normalizing terms with respect to these equivalences. Tradi-
tionally, terms in a calculus are normalized by rewriting them using rewrite rules formulated from
these equivalences, and a term is said to be in normal form when it cannot be rewritten further.
For example, we may formulate a rewrite rule unbox (box 𝑡) ↦→ 𝑡 by orienting the ◻-𝛽 equivalence
from left to right. This naive approach to formulating a rewrite rule, however, is insufficient for
the ◻-[ rule since normalizing with a rewrite rule 𝑡 ↦→ box (unbox 𝑡) (for Γ ⊢ 𝑡 : ◻𝐴) does not
terminate as it can be applied infinitely many times. It is presumably for this reason that existing
normalization results [Clouston 2018] for some of these calculi only consider 𝛽-equivalence.

While it may be possible to carefully formulate a more complex set of rewrite rules that take the
context of application into consideration to guarantee termination (as done, for example, by Jay and
Ghani [1995] for function and product types), the situation is further complicated for Fitch-style
calculi by the fact that we must repeat such syntactic rewriting arguments separately for each
calculus under consideration. The calculi λIT, λIK4, and λIS4 differ from λIK only in the◻-elimination
rule, as summarized in Fig. 2. In spite of having identical syntax and term equivalences, each
calculus demands different, tedious and seemingly ad hoc syntactic renaming lemmas [Clouston
2018, Lemmas 4.1 and 5.1] to prove normalization.
In this paper, we take a semantic approach to normalization, called normalization by eval-

uation (NbE) [Berger and Schwichtenberg 1991]. NbE bypasses rewriting entirely, and instead
normalizes terms by evaluating them in a suitable semantic model and then reifying values in
the model as normal forms. For Fitch-style calculi, NbE can be developed by leveraging their
possible-world semantics. To this end, we identify the parameters of the possible-world semantics
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λIT/◻-Elim
Γ ⊢ 𝑡 : ◻𝐴

Γ, Γ′ ⊢ unboxλIT 𝑡 : 𝐴
#µ (Γ′) ≤ 1

λIK4/◻-Elim
Γ ⊢ 𝑡 : ◻𝐴

Γ,µ, Γ′ ⊢ unboxλIK4 𝑡 : 𝐴

λIS4/◻-Elim
Γ ⊢ 𝑡 : ◻𝐴

Γ, Γ′ ⊢ unboxλIS4 𝑡 : 𝐴

Fig. 2. ◻-elimination rules for λIT, λIK4, and λIS4

for the calculi under consideration, and show that NbE models can be constructed by instantiating
those parameters. The NbE approach exploits the semantic overlap of the Fitch-style calculi in the
possible-world semantics and isolates their differences to a specific parameter that determines the
modal fragment, thus enabling the reuse of the evaluation machinery and many lemmas proved in
the process.

In Section 2, we begin by providing a brief overview of the main idea underlying this paper. We
discuss the uniform interpretation of types for four Fitch-style calculi (λIK, λIT, λIK4 and λIS4) in
possible-world models and outline how NbE models can be constructed as instances. The reification
mechanism that enables NbE is performed alike for all four calculi. In Section 3, we construct
an NbE model for λIK that yields a correct normalization algorithm, and then show how NbE
models can also be constructed for λIS4, and for λIT and λIK4 by slightly varying the instantiation.
The calculi λIK and λIS4 and their normalization algorithms have been implemented and verified
correct [Valliappan, Ruch, et al. 2022] in the proof assistant Agda [Abel, Allais, et al. 2005–2021].
NbE models and proofs of normalization in general have several useful consequences for term

calculi. In Section 4, we show how NbE models and the accompanying normalization algorithm
can be used to prove meta-theoretic properties of Fitch-style calculi including completeness, de-
cidability, and some standard results in modal logic in a constructive manner. In Section 5, we
discuss applications of our development to specific interpretations of the necessity modality in
programming languages, and show (but do not mechanize) how application-specific properties that
typically require semantic intervention can be proved syntactically. We show that properties similar
to capability safety, noninterference, and binding-time correctness can be proved syntactically
using normal forms of terms.

2 MAIN IDEA
The main idea underlying this paper is that normalization can be achieved in a modular fashion for
Fitch-style calculi by constructing NbE models as instances of their possible-world semantics. In
this section, we observe that Fitch-style calculi can be interpreted in the possible-world semantics
for intuitionistic modal logic with a minor refinement that accommodates the µ operator, and give
a brief overview of how we construct NbE models as instances.

Possible-World Semantics. The possible-world semantics for intuitionistic modal logic [Božić and
Došen 1984] is parameterized by a frame 𝐹 and a valuation 𝑉] . A frame 𝐹 is a triple (𝑊,𝑅𝑖 , 𝑅𝑚) that
consists of a type𝑊 of worlds along with two binary accessibility relations 𝑅𝑖 (for “intuitionistic”)
and 𝑅𝑚 (for “modal”) on worlds that are required to satisfy certain conditions. An element𝑤 :𝑊
can be thought of as a representation of the “knowledge state” about some “possible world” at
a certain point in time. Then, 𝑤 𝑅𝑖 𝑤

′ represents an increase in knowledge from 𝑤 to 𝑤 ′, and
𝑤 𝑅𝑚 𝑣 represents a possible passage from𝑤 to 𝑣 . A valuation 𝑉] , on the other hand, is a family of
types 𝑉],𝑤 indexed by 𝑤 :𝑊 along with functions wk],𝑤,𝑤′ : 𝑉],𝑤 → 𝑉],𝑤′ whenever 𝑤 𝑅𝑖 𝑤

′. An
element 𝑝 : 𝑉],𝑤 can be thought of as “evidence” for (the knowledge of) the truth of the atomic

proposition ] at the world𝑤 . The requirement for functions wk],𝑤,𝑤′ enforces that the knowledge
of the truth of ] at𝑤 is preserved as time moves on to𝑤 ′, and is neither forgotten nor contradicted
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118:4 Nachiappan Valliappan, Fabian Ruch, and Carlos Tomé Cortiñas

by any new evidence learned at𝑤 ′. There are no such requirements on a valuation 𝑉] with respect
to the modal accessibility relation 𝑅𝑚 .
Given a frame (𝑊,𝑅𝑖 , 𝑅𝑚) and a valuation 𝑉] , we interpret (object) types 𝐴 in any Fitch-style

calculus as families of (meta) types ⟦𝐴⟧𝑤 indexed by worlds𝑤 :𝑊 , following the work by Ewald
[1986], Fischer-Servi [1981], Plotkin and Stirling [1986], and Simpson [1994] as below:

⟦] ⟧𝑤 = 𝑉],𝑤
⟦𝐴⇒ 𝐵⟧𝑤 = ∀𝑤 ′ .𝑤 𝑅𝑖 𝑤

′ → ⟦𝐴⟧𝑤′ → ⟦𝐵⟧𝑤′

⟦◻𝐴 ⟧𝑤 = ∀𝑤 ′ .𝑤 𝑅𝑖 𝑤
′ → ∀𝑣 .𝑤 ′ 𝑅𝑚 𝑣 → ⟦𝐴⟧𝑣

The nonmodal type formers are interpreted as in the Kripke semantics for intuitionistic proposi-
tional logic: the base type ] is interpreted using the valuation𝑉] , and function types𝐴⇒𝐵 at𝑤 :𝑊
are interpreted as families of functions ⟦𝐴⟧𝑤′ → ⟦𝐵⟧𝑤′ indexed by 𝑤 ′ : 𝑊 such that 𝑤 𝑅𝑖 𝑤

′.
Recall that the generalization to families is necessary for the interpretation of function types to be
sound.
As for the interpretation of modal types, at 𝑤 : 𝑊 the types ◻𝐴 are interpreted by families

of elements ⟦𝐴⟧𝑣 indexed by those 𝑣 :𝑊 that are accessible from 𝑤 via some 𝑤 ′ :𝑊 such that
𝑤 𝑅𝑖 𝑤

′ and𝑤 ′ 𝑅𝑚 𝑣 . In other words, ◻𝐴 is true at a world𝑤 if𝐴 is necessarily true in “the future”,
whichever concrete possibility this may turn out to be. We remark that the interpretation of ◻𝐴 as
∀𝑣 .𝑤 𝑅𝑚 𝑣 → ⟦𝐴⟧𝑣 , as in classical modal logic without the first quantifier ∀𝑤 ′ .𝑤 𝑅𝑖 𝑤

′, requires
additional conditions [Božić and Došen 1984; Simpson 1994] on frames that (some of) the NbE
models we construct do not satisfy.

In order to extend the possible-world semantics of intuitionistic modal logic to Fitch-style calculi,
we must also provide an interpretation of contexts and the µ operator, which is unique to the Fitch
style, in particular:

⟦· ⟧𝑤 = ⊤
⟦Γ, 𝐴⟧𝑤 = ⟦Γ⟧𝑤 × ⟦𝐴⟧𝑤
⟦Γ,µ⟧𝑤 =

∑
𝑢 ⟦Γ⟧𝑢 × 𝑢 𝑅𝑚 𝑤

The empty context · and the context extension Γ, 𝐴 of a context Γ with a type 𝐴 are interpreted
as in the Kripke semantics for STLC by the terminal family and the Cartesian product of the
families ⟦Γ⟧ and ⟦𝐴⟧, respectively. While the interpretation of types ◻𝐴 can be understood as a
statement about the future, the interpretation of contexts Γ,µ can be understood as a dual statement
about the past: Γ,µ is true at a world𝑤 if Γ is true at some world 𝑢 for which𝑤 is a possibility, i.e.
𝑢 𝑅𝑚 𝑤 .

With the interpretation of contexts Γ and types 𝐴 as (𝑊,𝑅𝑖 )-indexed families ⟦Γ⟧ and ⟦𝐴⟧ at
hand, the interpretation of terms 𝑡 : Γ ⊢ 𝐴, also known as evaluation, in a possible-world model
is given by a function ⟦−⟧ : Γ ⊢ 𝐴 → (∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤) as follows. Clouston [2018] shows
that the interpretation of STLC in Cartesian closed categories (CCCs) extends to an interpretation
of Fitch-style calculi in any CCC equipped with an adjunction by interpreting ◻ and µ by the
right and left adjoint as well as box and unbox using the right and left adjuncts, respectively. The
key idea here is that, correspondingly, the interpretation of terms in the nonmodal fragment of
Fitch-style calculi using the familiar CCC structure on (𝑊,𝑅𝑖 )-indexed families extends to the
modal fragment: the interpretation of ◻ in a possible-world model has a left adjoint that is denoted
by our interpretation of µ. In summary, the possible-world interpretation of Fitch-style calculi can
be given by instantiation of Clouston’s generic interpretation in CCCs equipped with an adjunction.

Constructing NbE Models as Instances. To construct an NbE model for Fitch-style calculi, we must
construct a possible-world model with a function quote : (∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤) → Γ ⊢nf 𝐴 that
inverts the denotation (∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤) of a term to a derivation Γ ⊢nf 𝐴 in normal form. The
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normal forms for the modal fragment of λIK are defined below, where Γ ⊢ne 𝐴 denotes a special
case of normal forms known as neutral elements.

Nf/◻-Intro
Γ,µ ⊢nf 𝑡 : 𝐴

Γ ⊢nf box 𝑡 : ◻𝐴

λIK/Ne/◻-Elim
Γ ⊢ne 𝑡 : ◻𝐴

Γ,µ, Γ′ ⊢ne unboxλIK 𝑡 : 𝐴
µ ∉ Γ′

The normal forms for λIT, λIK4, and λIS4 are defined similarly by varying the elimination rule as in
their term typing rules in Fig. 2.

Following the work on NbE for STLCwith possible-world1 models [Coquand 2002], we instantiate
the parameters that define possible-world models for Fitch-style calculi as follows: we pick contexts
for𝑊 , order-preserving embeddings (sometimes called “weakenings”, defined in the next section)
Γ ≤ Γ′ for Γ 𝑅𝑖 Γ′, and neutral derivations Γ ⊢ne ] as the valuation 𝑉],Γ . It remains for us to
instantiate the parameter 𝑅𝑚 and show that this model supports the quote function.
The instantiation of the modal parameter 𝑅𝑚 in the possible-world semantics varies for each

calculus and captures the difference between them. Recall that the syntaxes of the four calculi only
differ in their elimination rules for ◻ types. When viewed through the lens of the possible-world
semantics, this difference can be generalized as follows:

◻-Elim
Δ ⊢ 𝑡 : ◻𝐴

Γ ⊢ unbox 𝑡 : 𝐴
(Δ ◁ Γ)

We generalize the relationship between the context in the premise and the context in the conclusion
using a generic modal accessibility relation ◁ between contexts. When viewed as a candidate for
instantiating the 𝑅𝑚 relation, this rule states that if ◻𝐴 is derivable in some past world Δ, then we
may derive 𝐴 in the current world Γ. The various ◻-elimination rules for Fitch-style calculi can be
viewed as instances of this generalized rule, where we define ◁ in accordance with ◻-elimination
rule of the calculus under consideration. For example, for λIK, we observe that the context of the
premise in Rule λIK/◻-Elim is Γ and that of the conclusion is Γ,µ, Γ′ such that µ ∉ Γ′, and thus
define Δ ◁λIK Γ as ∃Δ′ .µ ∉ Δ′ ∧ Γ = Δ,µ,Δ′. Similarly, we define Δ ◁λIS4 Γ as ∃Δ′ . Γ = Δ,Δ′ for
λIS4, and follow this recipe for λIT and λIK4. Accordingly, we instantiate the 𝑅𝑚 parameter in the
NbE model with the corresponding definition of ◁ in the calculus under consideration.
A key component of implementing the quote function in NbE models is reification, which is

implemented by a family of functions reify𝐴 : ∀Γ. ⟦𝐴⟧Γ → Γ ⊢nf 𝐴 indexed by a type 𝐴. While its
implementation for the simply-typed fragment follows the standard, for the modal fragment we
are required to give an implementation of reify◻𝐴 : ∀Γ. ⟦◻𝐴⟧Γ → Γ ⊢nf ◻𝐴. To reify a value of
⟦◻𝐴⟧Γ , we first observe that ⟦◻𝐴⟧Γ = ∀Γ′ . Γ ≤ Γ′ → ∀Δ. Γ′ ◁ Δ → ⟦𝐴⟧Δ by definition of ⟦−⟧
and the instantiations of 𝑅𝑖 with ≤ and 𝑅𝑚 with ◁. By picking Γ for Γ′ and Γ,µ for Δ, we get ⟦𝐴⟧Γ,µ
since ≤ is reflexive and it can be shown that Γ ◁ Γ,µ holds for the calculi under consideration. By
reifying the value ⟦𝐴⟧Γ,µ recursively, we get a normal form Γ,µ ⊢nf 𝑛 : 𝐴, which can be used to
construct the desired normal form Γ ⊢nf box𝑛 : ◻𝐴 using the rule Nf/◻-Intro.

3 POSSIBLE-WORLD SEMANTICS AND NbE
In this section, we elaborate on the previous section by defining possible-world models and showing
that Fitch-style calculi can be interpreted soundly in these models. Following this, we outline the
details of constructing NbE models as instances. We begin with the calculus λIK, and then show
how the same results can be achieved for the other calculi.

Before discussing a concrete calculus, we present some of their commonalities.
1also called “Kripke” or “Kripke-style”
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118:6 Nachiappan Valliappan, Fabian Ruch, and Carlos Tomé Cortiñas

Types, Contexts and Order-Preserving Embeddings. The grammar of types and typing contexts for
Fitch-style is the following.

Ty 𝐴 F ] | 𝐴⇒ 𝐵 | ◻𝐴 Ctx Γ F · | Γ, 𝐴 | Γ,µ
Types are generated by an uninterpreted base type ], function types 𝐴⇒ 𝐵, and modal types ◻𝐴,
and typing contexts are “snoc” lists of types and locks.
We define the relation of order-preserving embeddings (OPE) on typing contexts in Fig. 3. An

OPE Γ ≤ Γ′ embeds the context Γ into another context Γ′ while preserving the order of types and
the order and number of locks in Γ.

base : · ≤ ·
𝑜 : Γ ≤ Γ′

drop𝑜 : Γ ≤ Γ′, 𝐴

𝑜 : Γ ≤ Γ′

keep𝑜 : Γ, 𝐴 ≤ Γ′, 𝐴

𝑜 : Γ ≤ Γ′

keepµ 𝑜 : Γ,µ ≤ Γ′,µ

Fig. 3. Order-preserving embeddings

3.1 The Calculus λIK
3.1.1 Terms, Substitutions and Equational Theory. To define the intrinsically-typed syntax and
equational theory of λIK, we first define a modal accessibility relation on contexts Δ ◁λIK Γ, which
expresses that context Γ extends Δ,µ to the right without adding locks. Note that Δ ◁λIK Γ exactly
when ∃Δ′ .µ ∉ Δ′ ∧ Γ = Δ,µ,Δ′.

nil : Γ ◁λIK Γ,µ
𝑒 : Δ ◁λIK Γ

var 𝑒 : Δ ◁λIK Γ, 𝐴

Fig. 4. Modal accessibility relation on contexts (λIK)

Var-Zero
Γ, 𝐴 ⊢var zero : 𝐴

Var-Succ
Γ ⊢var 𝑣 : 𝐴

Γ, 𝐵 ⊢var succ 𝑣 : 𝐴

Var
Γ ⊢var 𝑣 : 𝐴
Γ ⊢ var 𝑣 : 𝐴

⇒-Intro
Γ, 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ _ 𝑡 : 𝐴⇒ 𝐵

⇒-Elim
Γ ⊢ 𝑡 : 𝐴⇒ 𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ app 𝑡 𝑢 : 𝐵

◻-Intro
Γ,µ ⊢ 𝑡 : 𝐴

Γ ⊢ box 𝑡 : ◻𝐴

λIK/◻-Elim
Δ ⊢ 𝑡 : ◻𝐴 𝑒 : Δ ◁λIK Γ

Γ ⊢ unboxλIK 𝑡 𝑒 : 𝐴

Fig. 5. Intrinsically-typed terms of λIK

Fig. 5 presents the intrinsically-typed syntax of λIK. We will use both Γ ⊢ 𝑡 : 𝐴 and 𝑡 : Γ ⊢ 𝐴 to say
that 𝑡 denotes an (intrinsically-typed) term of type 𝐴 in context Γ, and similarly for substitutions,
which will be defined below. Instead of named variables as in Fig. 1, variables are defined using
De Bruijn indices in a separate judgement Γ ⊢var 𝐴 . The introduction and elimination rules for
function types are like those in STLC, and the introduction rule for the type ◻𝐴 is similar to that
of Fig. 1. The elimination rule λIK/◻-Elim is defined using the modal accessibility relation Δ ◁λIK Γ
which relates the contexts in the premise and the conclusion, respectively. This relation replaces
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the side condition (µ ∉ Γ′) in Fig. 1 and other ◻-elimination rules in Sections 1 and 2. Note that
formulating the rule for the term unboxλIK with 𝑒 : Δ ◁λIK Γ as a second premise is in sharp contrast
to Clouston [2018, Fig. 1] where the relation is not mentioned in the term but formulated as the
side condition Γ = Δ,µ, Γ′ for some lock-free Γ′.
A term Γ ⊢ 𝑡 : 𝐴 can be weakened, which is a special case of renaming, with an OPE (see Fig. 3)

using a function wk : Γ ≤ Γ′ → Γ ⊢ 𝐴 → Γ′ ⊢ 𝐴. Given an OPE 𝑜 : Γ ≤ Γ′, renaming the term
using wk yields a term Γ′ ⊢ wk 𝑜 𝑡 : 𝐴 in the weaker context Γ′. The unit element for wk is the
identity OPE id≤ : Γ ≤ Γ, i.e. wk id≤ 𝑡 = 𝑡 . Renaming arises naturally when evaluating terms and in
specifying the equational theory (e.g. in the [ rule of function type).

Γ ⊢s empty : ·
Γ ⊢s 𝑠 : Δ Γ ⊢ 𝑡 : 𝐴

Γ ⊢s ext 𝑠 𝑡 : Δ, 𝐴
Θ ⊢s 𝑠 : Δ 𝑒 : Θ ◁λIK Γ

Γ ⊢s extµ 𝑠 𝑒 : Δ,µ

Fig. 6. Substitutions for λIK

Substitutions for λIK are inductively defined in Fig. 6. A judgement Γ ⊢s 𝑠 : Δ denotes a
substitution for a context Δ in the context Γ. Applying a substitution to a term Δ ⊢ 𝑡 : 𝐴, i.e.
subst 𝑠 𝑡 : Γ ⊢ 𝐴, yields a term in the context Γ. The substitution ids : Γ ⊢s Γ denotes the identity
substitution, which exists for all Γ. As usual, it can be shown that terms are closed under the
application of a substitution, and that it preserves the identity, i.e. subst ids 𝑡 = 𝑡 . Substitutions are
also closed under renaming and this operation preserves the identity as well.
The equational theory for λIK, omitting congruence rules, is specified in Fig. 7. As discussed

earlier, λIK extends the usual rules in STLC (Rules⇒-𝛽 and⇒-[) with rules for the◻ type (Rules◻-𝛽
and ◻-[). The function factor : Δ ◁λIK Γ → Δ,µ ≤ Γ, in Rule ◻-𝛽, maps an element of the modal
accessibility relation 𝑒 : Δ ◁λIK Γ to an OPE Δ,µ ≤ Γ. This is possible because the context Γ does
not have any lock to the right of Δ,µ.

⇒-𝛽
Γ, 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ app (_ 𝑡) 𝑢 ∼ subst (ext ids 𝑢) 𝑡

⇒-[
Γ ⊢ 𝑡 : 𝐴⇒ 𝐵

Γ ⊢ 𝑡 ∼ _ (app (wk (drop id≤) 𝑡) (var zero))

◻-𝛽
Δ,µ ⊢ 𝑡 : 𝐴 𝑒 : Δ ◁λIK Γ

Γ ⊢ unboxλIK (box 𝑡) 𝑒 ∼ wk (factor 𝑒) 𝑡

◻-[
Γ ⊢ 𝑡 : ◻𝐴

Γ ⊢ 𝑡 ∼ box (unboxλIK 𝑡 nil)

Fig. 7. Equational theory for λIK

3.1.2 Possible-World Semantics. A possible-world model is defined using the notion of a possible-
world frame as below. We work in a constructive type-theoretic metalanguage, and denote the
universe of types in this language by Type.

Definition 1 (Possible-world frame). A frame 𝐹 is given by a triple (𝑊,𝑅𝑖 , 𝑅𝑚) consisting of a
type𝑊 : Type and two relations 𝑅𝑖 and 𝑅𝑚 :𝑊 ×𝑊 → Type on𝑊 such that the following conditions
are satisfied:

• 𝑅𝑖 is reflexive and transitive
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• if 𝑤 𝑅𝑚 𝑣 and 𝑣 𝑅𝑖 𝑣
′ then there exists some 𝑤 ′ :𝑊 such that 𝑤 𝑅𝑖 𝑤

′ and 𝑤 ′ 𝑅𝑚 𝑣 ′; this
factorization condition can be pictured as an implication 𝑅𝑚 ;𝑅𝑖 ⊆ 𝑅𝑖 ;𝑅𝑚 or diagrammatically
as follows:

𝑤 ′ 𝑣 ′

𝑤 𝑣

𝑅𝑚

𝑅𝑖

𝑅𝑚

𝑅𝑖

(note that neither𝑤 ′ nor the proofs of relatedness are required to be unique, nor will they all
be in the frames that we will consider)

Definition 2 (Possible-world model). A possible-world modelM is given by a tuple (𝐹,𝑉 ) con-
sisting of a frame 𝐹 (see Definition 1) and a𝑊 -indexed family 𝑉] :𝑊 → Type (called the valuation
of the base type) such that ∀𝑤,𝑤 ′ .𝑤 𝑅𝑖 𝑤

′ → 𝑉],𝑤 → 𝑉],𝑤′ .

We have omitted coherence conditions from these definitions for readability. Those conditions
stem from the proof relevance of the relations and predicates involved. They will be satisfied by
the models we will construct, and will also be given below for completeness.

The types and typing contexts in λIK are interpreted in a possible-world model via the interpre-
tation functions ⟦−⟧ defined in Section 2. To evaluate terms, we must first prove the following
monotonicity lemma. This lemma is well-known as a requirement to give a sound interpretation
of the function type in an arbitrary possible-world model, and can be thought of as the semantic
generalization of renaming in terms.

Lemma 1 (Monotonicity). In every possible-world model M, for every type 𝐴 and worlds 𝑤 and

𝑤 ′
, we have a function wk𝐴 : 𝑤 𝑅𝑖 𝑤

′ → ⟦𝐴⟧𝑤 → ⟦𝐴⟧𝑤′ . And similarly, for every context Γ, a
function wkΓ : 𝑤 𝑅𝑖 𝑤

′ → ⟦Γ⟧𝑤 → ⟦Γ⟧𝑤′ .

We evaluate terms in λIK in a possible-world model as follows.
⟦−⟧ : Γ ⊢ 𝐴 → (∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤)
⟦var 𝑣 ⟧𝛾 = lookup 𝑣 𝛾
⟦_ 𝑡 ⟧𝛾 = _𝑖. _𝑎. ⟦𝑡⟧ (wk 𝑖 𝛾, 𝑎)
⟦app 𝑡 𝑢 ⟧𝛾 = (⟦𝑡⟧𝛾) id≤ (⟦𝑢⟧𝛾)
⟦box 𝑡 ⟧𝛾 = _𝑖. _𝑚. ⟦𝑡⟧ (wk 𝑖 𝛾,𝑚)
⟦unboxλIK 𝑡 𝑒⟧𝛾 = ⟦𝑡⟧𝛿 id≤𝑚

where (𝛿,𝑚) = trimλIK 𝛾 𝑒

The evaluation of terms in the simply-typed fragment is standard, and resembles the evaluator
of STLC. Variables are interpreted by a lookup function that projects values from an environment,
and _-abstraction and application are evaluated using their semantic counterparts. To evaluate
_-abstraction, we must construct a semantic function ∀𝑤 ′ .𝑤 𝑅𝑖 𝑤

′ → ⟦𝐴⟧𝑤′ → ⟦𝐵⟧𝑤′ using the
given term Γ, 𝐴 ⊢ 𝑡 : 𝐵 and environment 𝛾 : ⟦Γ⟧𝑤 . We achieve this by recursively evaluating 𝑡 in an
environment that extends 𝛾 appropriately using the semantic arguments 𝑖 : 𝑤 𝑅𝑖 𝑤

′ and 𝑎 : ⟦𝐴⟧𝑤′ .
We use the monotonicity lemma to “transport” ⟦Γ⟧𝑤 to ⟦Γ⟧𝑤′ , and construct an environment of
type ⟦Γ⟧𝑤′ × ⟦𝐴⟧𝑤′ for recursively evaluating 𝑡 , which produces the desired result of type ⟦𝐵⟧𝑤′ .
Application is evaluated by simply recursively evaluating the applied terms and applying them in
the semantics with a value id≤ : 𝑤 𝑅𝑖 𝑤 , which is available since 𝑅𝑖 is reflexive.
In the modal fragment, to evaluate the term Γ ⊢ box 𝑡 : ◻𝐴 with 𝛾 : ⟦Γ⟧𝑤 , we must construct

a function of type ∀𝑤 ′ .𝑤 𝑅𝑖 𝑤 ′ → ∀𝑣 .𝑤 ′ 𝑅𝑚 𝑣 → ⟦𝐴⟧𝑣 . Using the semantic arguments 𝑖 :
𝑤 𝑅𝑖 𝑤 ′ and 𝑚 : 𝑤 ′ 𝑅𝑚 𝑣 , we recursively evaluate the term Γ,µ ⊢ 𝑡 : 𝐴 in the extended
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environment (wk 𝑖 𝛾,𝑚) : ⟦Γ,µ⟧𝑣 , since ⟦Γ,µ⟧𝑣 =
∑

𝑤′ ⟦Γ⟧𝑤′ ×𝑤 ′ 𝑅𝑚 𝑣 . On the other hand, the
term Γ ⊢ unboxλIK 𝑡 𝑒 : 𝐴 with 𝑒 : Δ ◁λIK Γ and Δ ⊢ 𝑡 : ◻𝐴, for some Δ, must be evaluated
with an environment 𝛾 : ⟦Γ⟧𝑤 . To recursively evaluate the term Δ ⊢ 𝑡 : ◻𝐴, we must first
discard the part of the environment 𝛾 that substitutes the types in the extension of Δ,µ. This is
achieved using the function trimλIK : ⟦Γ⟧𝑤 → Δ ◁λIK Γ → ⟦Δ,µ⟧𝑤 that projects 𝛾 to produce an
environment 𝛿 : ⟦Δ⟧𝑣′ and a value𝑚 : 𝑣 ′ 𝑅𝑚 𝑤 . We evaluate 𝑡 with 𝛿 and apply the resulting
function of type ∀𝑣 . 𝑣 𝑅𝑖 𝑣 ′ → ∀𝑤. 𝑣 ′ 𝑅𝑚 𝑤 → ⟦𝐴⟧𝑤 to id≤ and𝑚 to return the desired result.

We state the soundness of λIK with respect to the possible-world semantics before we instantiate
it with the NbE model that we will construct in the next subsection. We note that the soundness
proof relies on the possible-world models to satisfy coherence conditions that we have omitted
from Definitions 1 and 2 but that will be satisfied by the NbE models. Specifically,𝑊 and 𝑅𝑖 together
with the transitivity and reflexivity proofs transi and refli for 𝑅𝑖 need to form a category 𝒲, i.e.
transi needs to be associative and refli needs to be a unit for transi ; the proofs of the factorization
condition need to satisfy the functoriality laws factori𝑚 (refli 𝑣) = refli𝑤 , factorm𝑚 (refli 𝑣) =

𝑚, factori𝑚 (transi 𝑖 𝑗) = transi (factori𝑚 𝑖) (factori𝑚′ 𝑗) and factorm𝑚 (transi 𝑖 𝑗) = factorm𝑚′ 𝑗
where𝑚′ B factorm𝑚 𝑖 : 𝑤 ′ 𝑅𝑚 𝑣 ′ denotes the modal accessibility proof produced by the first
factorization of𝑚 : 𝑤 𝑅𝑚 𝑣 and 𝑖 : 𝑣 𝑅𝑖 𝑣 ′; and 𝑉] together with the monotonicity proof wk] needs
to form a functor on the category𝒲, i.e. wk] (refli𝑤) needs to be equal to the identity function on
𝑉],𝑤 and wk] (transi 𝑖 𝑗) needs to be equal to the composite wk] 𝑗 ◦ wk] 𝑖 .

Theorem 2. LetM be any possible-world model (see Definition 2). If two terms 𝑡 and 𝑢 : Γ ⊢ 𝐴 of

λIK are equivalent (see Fig. 7) then the functions ⟦𝑡⟧ and ⟦𝑢⟧ : ∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤 as determined by

M are equal.

Proof. Let M be a possible-world model with underlying frame 𝐹 = (𝑊,𝑅𝑖 , 𝑅𝑚). Denote the
category whose objects are worlds𝑤 :𝑊 and whose morphisms are proofs 𝑖 : 𝑤 𝑅𝑖 𝑤

′ by C. The
frame 𝐹 can be seen as determining an adjunction µ ⊣ ◻ on the category of presheaves indexed
by the category C, which is moreover well-known to be Cartesian closed. The interpretation ⟦−⟧
can then be seen as factoring through the categorical semantics described in Clouston [2018,
Section 2.3], of which the category of presheaves over C is an instance by virtue of its Cartesian
closure and equipment with an adjunction. We can therefore conclude by applying Clouston [2018,
Theorem 2.8 (Categorical Soundness) and remark below that]. □

3.1.3 NbE Model. The normal forms of terms in λIK are defined along with neutral elements in a
mutually recursive fashion by the judgements Γ ⊢nf 𝐴 and Γ ⊢ne 𝐴, respectively, in Fig. 8. Intuitively,
a normal form may be thought of as a value, and a neutral element may be thought of as a “stuck”
computation. We extend the standard definition of normal forms and neutral elements in STLC
with Rules Nf/◻-Intro and λIK/Ne/◻-Elim.

Ne/Var
Γ ⊢var 𝑣 : 𝐴

Γ ⊢ne var 𝑣 : 𝐴

Nf/Up
Γ ⊢ne 𝑛 : ]

Γ ⊢nf up𝑛 : ]

Nf/⇒-Intro
Γ, 𝐴 ⊢nf 𝑛 : 𝐵

Γ ⊢nf _ 𝑛 : 𝐴⇒ 𝐵

Ne/⇒-Elim
Γ ⊢ne 𝑛 : 𝐴⇒ 𝐵 Γ ⊢nf 𝑚 : 𝐴

Γ ⊢ne app𝑛𝑚 : 𝐵

Nf/◻-Intro
Γ,µ ⊢nf 𝑛 : 𝐴

Γ ⊢nf box𝑛 : ◻𝐴

λIK/Ne/◻-Elim
Δ ⊢ne 𝑛 : ◻𝐴 𝑒 : Δ ◁λIK Γ

Γ ⊢ne unboxλIK 𝑛 𝑒 : 𝐴

Fig. 8. Normal forms and neutral elements in λIK
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Recall that an NbE model for a given calculus C is a particular kind of model M that comes
equipped with a function quote : M(⟦Γ⟧, ⟦𝐴⟧) → Γ ⊢nf 𝐴 satisfying 𝑡 ∼ quote ⟦𝑡⟧ for all
terms 𝑡 : Γ ⊢ 𝐴 where ⟦−⟧ denotes the generic evaluation function for C.

Using the relations defined in Figs. 3 and 4, we construct an NbE model for λIK by instantiating
the parameters that define a possible-world model as follows.

• Worlds as contexts:𝑊 = Ctx
• Relation 𝑅𝑖 as order-preserving embeddings: Γ 𝑅𝑖 Γ

′ = Γ ≤ Γ′

• Relation 𝑅𝑚 as extensions of a “locked” context: Δ 𝑅𝑚 Γ = Δ ◁λIK Γ
• Valuation 𝑉] as neutral elements: 𝑉],Γ = Γ ⊢ne ]

The condition that the valuation must satisfy wk𝐴 : Γ ≤ Γ′ → Γ ⊢ne 𝐴 → Γ′ ⊢ne 𝐴, for all types
𝐴, can be shown by induction on the neutral term Γ ⊢ne 𝐴. To show that this model is indeed a
possible-world model, it remains for us to show that the frame conditions are satisfied.

The first frame condition states that OPEs must be reflexive and transitive, which can be shown
by structural induction on the context and definition of OPEs, respectively. The second frame
condition states that given Δ ◁λIK Γ and Γ ≤ Γ′ there is a Δ′ : Ctx such that Δ ≤ Δ′ and Δ′ ◁λIK Γ′,

Δ′ Γ′

Δ Γ

◁λIK

≤

◁λIK

≤

which can be shown by constructing a function by simultaneous recursion on OPEs and the modal
accessibility relation.

Observe that the instantiation of the monotonicity lemma in the NbE model states that we have
the functions wk𝐴 : Γ ≤ Γ′ → ⟦𝐴⟧Γ → ⟦𝐴⟧Γ′ and wkΔ : Γ ≤ Γ′ → ⟦Δ⟧Γ → ⟦Δ⟧Γ′ , which allow
denotations of types and contexts to be renamed with respect to an OPE.
To implement the function quote, we first implement reification and reflection, using two func-

tions reify𝐴 : ⟦𝐴⟧Γ → Γ ⊢nf 𝐴 and reflect𝐴 : Γ ⊢ne 𝐴 → ⟦𝐴⟧Γ , respectively. Reification converts a
semantic value to a normal form, while reflection converts a neutral element to a semantic value.
They are implemented as follows by induction on the index type 𝐴.

reify𝐴,Γ : ⟦𝐴⟧Γ → Γ ⊢nf 𝐴
reify],Γ 𝑛 = up𝑛
reify𝐴⇒𝐵,Γ 𝑓 = _ (reify𝐵,(Γ,𝐴) (𝑓 (drop id≤) fresh𝐴,Γ))
reify◻𝐴,Γ 𝑏 = box (reify𝐴,(Γ,µ) (𝑏 id≤ nil))

reflect𝐴,Γ : Γ ⊢ne 𝐴 → ⟦𝐴⟧Γ
reflect],Γ 𝑛 = 𝑛

reflect𝐴⇒𝐵,Γ 𝑛 = _(𝑜 : Γ ≤ Γ′). _𝑎. reflect𝐵,Γ (app (wk𝐴⇒𝐵 𝑜 𝑛) (reify𝐴,Γ′ 𝑎))
reflect◻𝐴,Γ 𝑛 = _(𝑜 : Γ ≤ Γ′). _(𝑒 : Γ′ ◁λIK Δ). reflect𝐴,Δ (unboxλIK (wk◻𝐴 𝑜 𝑛) 𝑒)

For the function type, we recursively reify the body of the _-abstraction by applying the
given semantic function 𝑓 with suitable arguments, which are an OPE drop id≤ : Γ ≤ Γ, 𝐴
and a value fresh𝐴,Γ = reflect𝐴,(Γ,𝐴) (var zero) : ⟦𝐴⟧Γ,𝐴—which is the De Bruijn index equiva-
lent of a fresh variable. Reflection, on the other hand, recursively reflects the application of a
neutral Γ ⊢ne 𝑛 : 𝐴⇒ 𝐵 to the reification of the semantic argument 𝑎 : ⟦𝐴⟧Γ′ for an OPE 𝑜 : Γ ≤ Γ′.
Similarly, for the ◻ type, we recursively reify the body of box by applying the given semantic
function 𝑏 : ∀Γ. Γ ≤ Γ′ → ∀Δ. Γ′ ◁λIK Δ → ⟦𝐴⟧Δ to suitable arguments id≤ : Γ ≤ Γ and the
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empty context extension nil : Γ ◁λIK Γ,µ. Reflection also follows a similar pursuit by reflecting the
application of the neutral Γ ⊢ne 𝑛 : ◻𝐴 to the eliminator unbox.

Equipped with reification, we implement quote (as seen below), by applying the given denotation
of a term, a function 𝑓 : ∀Δ. ⟦Γ⟧Δ → ⟦𝐴⟧Δ, to the identity environment freshEnvΓ : ⟦Γ⟧Γ , and
then reifying the resulting value. The construction of the value freshEnvΓ is the De Bruijn index
equivalent of generating an environment with fresh variables.

quote : (∀Δ. ⟦Γ⟧Δ → ⟦𝐴⟧Δ) → Γ ⊢nf 𝐴
quote 𝑓 = reify𝐴,Γ (𝑓 freshEnvΓ)

freshEnvΓ : ⟦Γ⟧Γ
freshEnv · = ()
freshEnvΓ,𝐴 = (wk (drop id≤) freshEnvΓ, fresh𝐴,Γ)
freshEnvΓ,µ = (freshEnvΓ, nil )

To prove that the function quote is indeed a retraction of evaluation, we follow the usual logical
relations approach. As seen in Fig. 9, we define a relation L𝐴 indexed by a type 𝐴 that relates
a term Γ ⊢ 𝑡 : 𝐴 to its denotation 𝑎 : ⟦𝐴⟧Γ as L𝐴 𝑡 𝑎. From a proof of L𝐴 𝑡 𝑎, it can be shown
that 𝑡 ∼ reify𝐴 𝑎. This relation is extended to contexts as LΔ, for some context Δ, which relates a
substitution Γ ⊢ 𝑠 : Δ to its denotation 𝛿 : ⟦Δ⟧Γ as LΔ 𝑠 𝛿 .

L𝐴,Γ : Γ ⊢ 𝐴 → ⟦𝐴⟧Γ → Type
L],Γ 𝑡 𝑛 = 𝑡 ∼ quote𝑛
L𝐴⇒𝐵,Γ 𝑡 𝑓 = ∀Γ′, 𝑜 : Γ ≤ Γ′, 𝑢, 𝑎. L𝐴,Γ′ 𝑢 𝑎 → L𝐵,Γ′ (app (wk 𝑜 𝑡) 𝑢) (𝑓 𝑜 𝑎)
L◻𝐴,Γ 𝑡 𝑏 = ∀Γ′, 𝑜 : Γ ≤ Γ′, 𝑒 : Γ′ ◁λIK Δ. L𝐴,Δ (unboxλIK (wk 𝑜 𝑡) 𝑒) (𝑏 𝑜 𝑒)

LΔ,Γ : Γ ⊢s Δ → ⟦Δ⟧Γ → Type
L·,Γ empty () = ⊤
L(Δ,𝐴),Γ (ext 𝑠 𝑡) (𝛿, 𝑎) = LΔ,Γ 𝑠 𝛿 × L𝐴,Γ 𝑡 𝑎
L(Δ,µ),Γ (extµ 𝑠 (𝑒 : Θ ◁λIK Γ)) (𝛿, 𝑒) = LΔ,Θ 𝑠 𝛿

Fig. 9. Logical relations for λIK

For the logical relations, we then prove the so-called fundamental theorem.

Proposition 3 (Fundamental theorem). Given a term Δ ⊢ 𝑡 : 𝐴, a substitution Γ ⊢s 𝑠 : Δ and a

value 𝛿 : ⟦Δ⟧Γ , if LΔ,Γ 𝑠 𝛿 then L𝐴,Γ (subst 𝑠 𝑡) (⟦𝑡⟧𝛿).

We conclude this subsection by stating the normalization theorem for λIK.
Proposition 3 entails that L𝐴,Δ (subst ids 𝑡) (⟦𝑡⟧ freshEnvΔ) for any term 𝑡 , if we pick 𝑠 as the

identity substitution ids : Δ ⊢s Δ, and 𝛿 as freshEnvΔ : ⟦Δ⟧Δ, since they can be shown to be related
as LΔ,Δ ids freshEnvΔ. From this it follows that subst ids 𝑡 ∼ reify𝐴 (⟦𝑡⟧ freshEnvΔ), and further
that 𝑡 ∼ quote ⟦𝑡⟧ from the definition of quote and the fact that subst ids 𝑡 = 𝑡 . As a result, the
composite norm = quote ◦ ⟦−⟧ is adequate, i.e. norm 𝑡 = norm 𝑡 ′ implies 𝑡 ∼ 𝑡 ′.
The soundness of λIK with respect to possible-world models (see Theorem 2) directly entails

quote ⟦𝑡⟧ = quote ⟦𝑢⟧ : Γ ⊢nf 𝐴 for all terms 𝑡 , 𝑢 : Γ ⊢ 𝐴 such that Γ ⊢ 𝑡 ∼ 𝑢 : 𝐴, which means that
norm = quote ◦ ⟦−⟧ is complete. Note that this terminology might be slightly confusing because it
is the soundness of ⟦−⟧ that implies the completeness of norm.
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Theorem 4. Let M denote the possible-world model over the frame given by the relations Γ ≤ Γ′

and Δ ◁λIK Γ and the valuation 𝑉],Γ = Γ ⊢ne ].
There is a function quote : M(⟦Γ⟧, ⟦𝐴⟧) → Γ ⊢nf 𝐴 such that the composite norm = quote ◦ ⟦−⟧ :

Γ ⊢ 𝐴 → Γ ⊢nf 𝐴 from terms to normal forms of λIK is complete and adequate.

3.2 Extending to the Calculus λIS4
3.2.1 Terms, Substitutions and Equational Theory. To define the intrinsically-typed syntax of λIS4,
we first define the modal accessibility relation on contexts in Fig. 10.

nil : Γ ◁λIS4 Γ
𝑒 : Δ ◁λIS4 Γ

var 𝑒 : Δ ◁λIS4 Γ, 𝐴
𝑒 : Δ ◁λIS4 Γ

lock 𝑒 : Δ ◁λIS4 Γ,µ

Fig. 10. Modal accessibility relation on contexts (λIS4)

If Δ ◁λIS4 Γ then Γ is an extension of Δ with as many locks as needed. Note that, in contrast to λIK,
the modal accessibility relation is both reflexive and transitive. This corresponds to the conditions
on the accessibility relation for the logic IS4.
Fig. 11 presents the changes of λIK that yield λIS4. The terms are the same as λIK with the

exception of Rule λIK/◻-Elim which now includes the modal accessibility relation for λIS4. Similarly,
the substitution rule for contexts with locks now refers to ◁λIS4 .

λIS4/◻-Elim
Δ ⊢ 𝑡 : ◻𝐴 𝑒 : Δ ◁λIS4 Γ

Γ ⊢ unboxλIS4 𝑡 𝑒 : 𝐴
Θ ⊢ 𝑠 : Δ 𝑒 : Θ ◁λIS4 Γ

Γ ⊢s extµ 𝑠 𝑒 : Δ,µ

Fig. 11. Intrinsically-typed terms and substitutions of λIS4 (omitting the unchanged rules of Fig. 5)

Fig. 12 presents the equational theory of the modal fragment of λIS4. This is a slightly modified
version of λIK (cf. Fig. 7) that accommodates the changes to the rule λIS4/◻-Elim. Unlike before,
Rule ◻-𝛽 now performs a substitution to modify the term Δ,µ ⊢ 𝑡 : 𝐴 to a term of type Γ ⊢ 𝐴. Note
that the result of such a substitution need not yield the same term since substitution may change
the context extension of some subterm.

◻-𝛽
Δ,µ ⊢ 𝑡 : 𝐴 𝑒 : Δ ◁λIS4 Γ

Γ ⊢ unboxλIS4 (box 𝑡) 𝑒 ∼ subst (extµ ids 𝑒) 𝑡

◻-[
Γ ⊢ 𝑡 : ◻𝐴

Γ ⊢ 𝑡 ∼ box (unboxλIS4 𝑡 (lock nil))

Fig. 12. Equational theory for λIS4 (omitting the unchanged rules of Fig. 7)

3.2.2 Possible-World Semantics. Giving possible-world semantics for λIS4 requires an additional
frame condition on the relation 𝑅𝑚 : it must be reflexive and transitive. Evaluation proceeds as
before, where we use a function trimλIS4 : ∀𝑤. ⟦Γ⟧𝑤 → Δ ◁λIS4 Γ → ⟦Δ,µ⟧𝑤 to manipulate the
environment for evaluating unboxλIS4 𝑡 𝑒 , as seen below.

⟦unboxλIS4 𝑡 𝑒⟧𝛾 = ⟦𝑡⟧𝛿 id≤𝑚
where (𝛿,𝑚) = trimλIS4 𝛾 𝑒
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The additional frame requirements ensures that the function trimλIS4 can be implemented. For
example, consider implementing the case of trimλIS4 for some argument of type ⟦Γ⟧𝑤 and the
extension nil : Γ ◁λIS4 Γ that adds zero locks. The desired result is of type ⟦Γ,µ⟧𝑤 , which is defined
as

∑
𝑣 ⟦Γ⟧𝑣 × 𝑣 𝑅𝑚 𝑤 . We construct such a result using the argument of ⟦Γ⟧𝑤 by picking 𝑣 as 𝑤

itself, and using the reflexivity of 𝑅𝑚 to construct a value of type𝑤 𝑅𝑚 𝑤 . Similarly, the transitivity
of 𝑅𝑚 is required when the context extension adds more than one lock.

Analogously to Theorem 2, we state the soundness of λIS4 with respect to reflexive and transitive

possible-world models before we instantiate it with the NbE model that we will construct in the
next subsection. In addition to the coherence conditions stated before Theorem 2 the soundness
proof for λIS4 relies on coherence conditions involving the additional proofs reflm and transm that
a reflexive and transitive modal accessibility relation 𝑅𝑚 must come equipped with. Specifically,
transm also needs to be associative, reflm also needs to be a unit for transm, and the proofs of the
factorization condition also need to satisfy the functoriality laws in themodal accessibility argument,
i.e. factori (reflm𝑤) 𝑖 = 𝑖 , factorm (reflm𝑤) 𝑖 = reflm𝑤 ′, factori (transm 𝑛𝑚) 𝑖 = factori 𝑛 𝑖′ and
factorm (transm 𝑛𝑚) 𝑖 = transm (factorm 𝑛 𝑖′) (factorm𝑚 𝑖) where 𝑖′ B factori𝑚 𝑖 : 𝑤 𝑅𝑖 𝑤

′.

Proposition 5. Let C be a Cartesian closed category equipped with a comonad ◻ that has a left

adjoint µ ⊣ ◻, then equivalent terms 𝑡 and 𝑢 : Γ ⊢ 𝐴 denote equal morphisms in C.

Proof. This is a version of Clouston [2018, Theorem 4.8] for λIS4 where the side condition of
Rule λIS4/◻-Elim appears as an argument to the term former unbox and hence idempotency is not
imposed on the comonad ◻. □

Theorem 6. Let M be a possible-world model (see Definition 2) such that the modal accessibility

relation 𝑅𝑚 is reflexive and transitive. If two terms 𝑡 and 𝑢 : Γ ⊢ 𝐴 of λIS4 are equivalent (see Fig. 12)
then the functions ⟦𝑡⟧ and ⟦𝑢⟧ : ∀𝑤. ⟦Γ⟧𝑤 → ⟦𝐴⟧𝑤 as determined byM are equal.

Proof. The right adjoint determined by a reflexive and transitive frame has a comonad structure
so that we can conclude by applying Proposition 5. □

3.2.3 NbE Model. The normal forms of λIS4 are defined as before, except for the following rule
replacing the neutral rule λIK/Ne/◻-Elim.

λIS4/Ne/◻-Elim
Δ ⊢ne 𝑛 : ◻𝐴 𝑒 : Δ ◁λIS4 Γ

Γ ⊢ne unboxλIS4 𝑛 𝑒 : 𝐴
The NbE model construction also proceeds in the same way, where we now pick the relation 𝑅𝑚

as arbitrary extensions of a context: Δ 𝑅𝑚 Γ = Δ ◁λIS4 Γ. The modal fragment for reify and reflect
are now implemented as follows:

reify◻𝐴,Γ 𝑏 = box (reify𝐴,(Γ,µ) (𝑏 id≤ (lock nil)))
reflect◻𝐴,Γ 𝑛 = _(𝑜 : Γ ≤ Γ′). _(𝑒 : Γ′ ◁λIS4 Δ). reflect𝐴,Δ (unbox (wk 𝑜 𝑛) 𝑒)

Theorem 7. Let M denote the possible-world model over the reflexive and transitive frame given by

the relations Γ ≤ Γ′ and Δ ◁λIS4 Γ and the valuation 𝑉],Γ = Γ ⊢ne ].
There is a function quote : M(⟦Γ⟧, ⟦𝐴⟧) → Γ ⊢nf 𝐴 such that the composite norm = quote ◦ ⟦−⟧ :

Γ ⊢ 𝐴 → Γ ⊢nf 𝐴 from terms to normal forms of λIS4 is complete and adequate.

The proof of this theorem requires us to identify terms by extending the equational theory of
λIS4 with an additional rule. To understand the need for it, consider unboxing a term Γ ⊢ 𝑡 : ◻𝐴
into an extended context Γ, 𝐵 in λIS4. We may first weaken 𝑡 as Γ, 𝐵 ⊢ wk (drop id≤) 𝑡 : ◻𝐴
and then apply unbox as Γ, 𝐵 ⊢ unbox (wk (drop id≤) 𝑡) nil : 𝐴. However, we may also apply
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unbox on 𝑡 as Γ, 𝐵 ⊢ unbox 𝑡 (var nil) : 𝐴. This weakens the term “explicitly” in the sense that
the weakening with 𝐵 is recorded in the term by the proof var nil of the modal accessibility
relation Γ ◁λIS4 Γ, 𝐵. The two ways of unboxing Γ ⊢ 𝑡 : ◻𝐴 into the extended context Γ, 𝐵 result in
two terms with the same denotation in the possible-world semantics but distinct typing derivations.
Wewish the two typing derivations unbox 𝑡 (var nil) and unbox (wk (drop id≤) 𝑡) nil to be identified.
For this reason, we extend the equational theory of λIS4 with the rule unbox 𝑡 (transm 𝑒 𝑒′) ∼
unbox (wk (toOPE𝑒) 𝑡) 𝑒′ for any lock-free extension 𝑒 , which can be converted to a sequence of
drops using the function toOPE . Explicit weakening can also be avoided by, instead of extending
the equational theory, changing the definition of the modal accessibility relation such that Δ ◁λIS4 Γ
holds only if Γ = Δ or Γ = Δ,µ, Γ′ for some Γ′. Note that the modal accessibility relation for λIK,
where the issue of explicit weakening does not occur, satisfies this property.

3.3 Extending to the Calculi λIT and λIK4
The NbE model construction for λIT and λIK4 follows a similar pursuit as λIS4. We define suitable
modal accessibility relations ◁λIT and ◁λIK4 as extensions that allow the addition of at most one µ,
and at least one lock µ, respectively. To give possible-world semantics, we require an additional
frame condition that the relation 𝑅𝑚 be reflexive for λIT and transitive for λIK4. For evaluation, we
use a function trimλIT : ⟦Γ⟧𝑤 → Δ ◁λIT Γ → ⟦Δ,µ⟧𝑤 for λIT, and similarly trimλIK4 for λIK4. The
modification to the neutral rule λIK/Ne/◻-Elim is achieved as before in λIS4 using the corresponding
modal accessibility relations. Unsurprisingly, reification and reflection can also be implemented,
thus yielding normalization functions for both λIT and λIK4.

4 COMPLETENESS, DECIDABILITY AND LOGICAL APPLICATIONS
In this section we record some immediate consequences of the model constructions we presented
in the previous section.

Completeness of the Equational Theory. As a corollary of the adequacy of an NbE model N , i.e.
Γ ⊢ 𝑡 ∼ 𝑢 : 𝐴 whenever ⟦𝑡⟧ = ⟦𝑢⟧ : N(⟦Γ⟧, ⟦𝐴⟧), we obtain completeness of the equational
theory with respect to the class of models that the respective NbE model belongs to. Given the NbE
models constructed in Subsections 3.1.3 and 3.2.3 this means that the equational theories of λIK and
λIS4 (cf. Fig. 7) are (sound and) complete with respect to the class of Cartesian closed categories
equipped with an adjunction and a right-adjoint comonad, respectively.

Theorem 8. Let 𝑡 , 𝑢 : Γ ⊢ 𝐴 be two terms of λIK. If for all Cartesian closed categoriesM equipped

with an adjunction it is the case that ⟦𝑡⟧ = ⟦𝑢⟧ : M(⟦Γ⟧, ⟦𝐴⟧) then Γ ⊢ 𝑡 ∼ 𝑢 : 𝐴.

Proof. Let M0 be the model we constructed in Subsection 3.1.3. Since M0 is a Cartesian closed
category equipped with an adjunction, by assumption we have ⟦𝑡⟧M0 = ⟦𝑢⟧M0 . And lastly, since
M0 is an NbE model, we have Γ ⊢ 𝑡 ∼ quote ⟦𝑡⟧M0 = quote ⟦𝑢⟧M0 ∼ 𝑢 : 𝐴. □

Note that this statement corresponds to Clouston [2018, Theorem 3.2] but there it is obtained via
a term model construction and for the term model to be equipped with an adjunction the calculus
needs to be first extended with an internalization of the operation µ on contexts as an operation ♦
on types.

Theorem 9. Let 𝑡 , 𝑢 : Γ ⊢ 𝐴 be two terms of λIS4. If for all Cartesian closed categoriesM equipped

with a right-adjoint comonad it is the case that ⟦𝑡⟧ = ⟦𝑢⟧ : M(⟦Γ⟧, ⟦𝐴⟧) then Γ ⊢ 𝑡 ∼ 𝑢 : 𝐴.

Proof. As for Theorem 8. □
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This statement corresponds to Clouston [2018, Section 4.4] but there it is proved for an equational
theory that identifies terms up to differences in the accessibility proofs and with respect to the
class of models where the comonad is idempotent, to which the model of Subsection 3.2.3 does not
belong.

Completeness of the Deductive Theory. Using the quotation function of an NbE model N , i.e.
quote : N(⟦Γ⟧, ⟦𝐴⟧) → Γ ⊢ 𝐴, we obtain completeness of the deductive theory with respect to the
class of models that the respective NbE model belongs to. Given the NbE models constructed in
Subsections 3.1.3 and 3.2.3 this means that the deductive theories of λIK and λIS4 (cf. Figs. 2 and 5)
are (sound and) complete with respect to the class of possible-world models with an arbitrary frame
and a reflexive–transitive frame, respectively.

Theorem 10. Let Γ : Ctx be a context and 𝐴 : Ty a type. If for all possible-world models M it is the

case that M(⟦Γ⟧, ⟦𝐴⟧) is inhabited then there is a term 𝑡 : Γ ⊢ 𝐴 of λIK.

Proof. LetM0 be the model we constructed in Subsection 3.1.3. SinceM0 is a possible-world
model, by assumption we have a morphism 𝑝 : M0 (⟦Γ⟧, ⟦𝐴⟧). And lastly, since M0 is an NbE
model, we have the term quote 𝑝 : Γ ⊢ 𝐴. □

Theorem 11. Let Γ : Ctx be a context and 𝐴 : Ty a type. If for all possible-world modelsM with a

reflexive–transitive frame it is the case that M(⟦Γ⟧, ⟦𝐴⟧) is inhabited then there is a term 𝑡 : Γ ⊢ 𝐴
of λIS4.

Proof. As for Theorem 10. □

Note that the proofs of Theorems 10 and 11 are constructive.

Decidability of the Equational Theory. As a corollary of the completeness and adequacy of an
NbE model N , i.e. Γ ⊢ 𝑡 ∼ 𝑢 : 𝐴 if and only if ⟦𝑡⟧ = ⟦𝑢⟧ : N(⟦Γ⟧, ⟦𝐴⟧), we obtain decidability of
the equational theory from decidability of the equality of normal forms 𝑛,𝑚 : Γ ⊢nf 𝐴. Given the
NbE models constructed in Subsections 3.1.3 and 3.2.3 this means that the equational theories of
λIK and λIS4 (cf. Fig. 7) are decidable.
To show that any of the following decision problems 𝑃 (𝑥) is decidable we give a constructive

proof of the proposition ∀𝑥 . 𝑃 (𝑥) ∨ ¬𝑃 (𝑥). Such a proof can be understood as the construction
of an algorithm 𝑑 that takes as input an 𝑥 and produces as output a Boolean 𝑑 (𝑥), alongside a
correctness proof that 𝑑 (𝑥) is true if and only if 𝑃 (𝑥) holds.

Theorem 12. For any two terms 𝑡 , 𝑢 : Γ ⊢ 𝐴 of λIK the problem whether 𝑡 ∼ 𝑢 is decidable.

Proof. We first observe that for any two normal forms 𝑛,𝑚 : Γ ⊢nf 𝐴 of λIK the problem whether
𝑛 =𝑚 is decidable by proving ∀𝑛,𝑚. 𝑛 =𝑚∨𝑛 ≠𝑚 constructively. All the cases of an simultaneous
induction on 𝑛,𝑚 : Γ ⊢nf 𝐴 are immediate.
Let N be the NbE model we constructed in Subsection 3.1.3. Completeness and adequacy of N

imply that we have 𝑡 ∼ 𝑢 if and only if norm 𝑡 = norm𝑢 for the function norm : Γ ⊢ 𝐴 → Γ ⊢nf
𝐴, 𝑡 ↦→ quote ⟦𝑡⟧. Now, 𝑡 ∼ 𝑢 is decidable because norm 𝑡 = norm𝑢 is decidable by the observation
we started with. □

Theorem 13. For any two terms 𝑡 , 𝑢 : Γ ⊢ 𝐴 of λIS4 the problem whether 𝑡 ∼ 𝑢 is decidable.

Proof. As for Theorem 12. □
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Denecessitation. The last of the consequences of the NbE model constructions we record is of a
less generic flavour than the other three, namely it is an application of normal forms to a basic
proof-theoretic result in modal logic.
Using invariance of truth in possible-world models under bisimulation2 it can be shown that

◻𝐴 is a valid formula of IK (or IS4) if and only if 𝐴 is. A completeness theorem then implies the
same for provability of ◻𝐴 and 𝐴. The statement for proofs in λIK (and λIS4) can also be shown by
inspection of normal forms as follows.

Firstly, we note that while deduction is not closed under arbitrary context extensions (including
locks) it is closed under extensions (including locks) on the left:

Lemma 14 (cf. Clouston [2018, Lemma A.1]). Let Δ, Γ : Ctx be arbitrary contexts, both possibly

containing locks, and 𝐴 : Ty an arbitrary type. There is an operation Γ ⊢ 𝐴 → Δ, Γ ⊢ 𝐴 on terms of

λIK (and λIS4), where Δ, Γ denotes context concatenation.

Proof. By recursion on terms. □

And, secondly, we note that also a converse of this lemma holds by inspection of normal forms:

Lemma 15. Let Δ, Γ : Ctx be arbitrary contexts, both possibly containing locks, 𝐴 : Ty an arbitrary

type and 𝑡 : Δ, Γ ⊢ 𝐴 a term of λIK (or λIS4) in the concatenated context Δ, Γ that does not mention

any variables from Δ, then there is a term 𝑡 ′ : Γ ⊢ 𝐴 of λIK (or λIS4, respectively).

Proof. Since normalization (see Theorems 4 and 7) does not introduce new free variables
it suffices to prove the statement for terms in normal form. We do so by induction on normal
forms 𝑛 : Δ, Γ ⊢nf 𝐴 (see Fig. 8). The only nonimmediate step is for 𝑛 of the form unbox𝑛′ 𝑒 for
some neutral element 𝑛′ : Δ′ ⊢ne ◻𝐴 and Δ′ ◁ Δ ≤ Δ, Γ. But in that case the induction hypothesis
says that we have a neutral element 𝑛′′ : · ⊢ne ◻𝐴, which is impossible. □

Note that some form of normalization seems to be needed in the proof of Lemma 15. More
specifically, the “strengthening” of a term of the form unbox 𝑡 𝑒 from the context ·,µ, · to the empty
context · cannot possibly result in a term of the form unbox 𝑡 ′ 𝑒′ because there is no context Γ
such that Γ ◁ · in λIK. As an example, consider the term unbox (box (_ 𝑥. 𝑥)) nil, which needs to be
strengthened to _ 𝑥. 𝑥 .
With these two lemmas at hand we are ready to prove denecessitation through normalization:

Theorem 16. Let 𝐴 : Ty be an arbitrary type. There is a term 𝑡 : · ⊢ 𝐴 of λIK (or λIS4) if and only if

there is a term 𝑢 : · ⊢ ◻𝐴 of λIK (or λIS4, respectively), where · : Ctx denotes the empty context.

Proof. From a term 𝑡 : · ⊢ 𝐴 we can construct a term 𝑡 ′ : ·,µ ⊢ 𝐴 using Lemma 14 and thus the
term 𝑢 = box 𝑡 ′ : · ⊢ ◻𝐴.
In the other direction, from a term 𝑢 : · ⊢ ◻𝐴 we obtain a normal form 𝑢′ = norm𝑢 : · ⊢nf ◻𝐴

using Theorems 4 and 7. By inspection of normal forms (see Fig. 8) we know that 𝑢′ must be of
the form box 𝑣 for some normal form 𝑣 : ·,µ ⊢nf 𝐴, from which we obtain a term 𝑡 : · ⊢ 𝐴 using
Lemma 15 since the context ·,µ does not declare any variables that could have been mentioned in
𝑣 . □

This concludes this section on some consequences of the model constructions presented in this
paper. Note that the consequences we recorded are completely independent of the concrete model
construction. To wit, the two completeness theorems follow from the mere existence of an NbE

2Invariance of truth under bisimulation says that if 𝑤 and 𝑣 are two bisimilar worlds in two possible-world models M0 and
M1, respectively, then for all formulas 𝐴 it is the case that ⟦𝐴⟧𝑤 holds in M0 if and only if ⟦𝐴⟧𝑣 does in M1.
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model, and the decidability and denecessitation theorems follow from the mere existence of a
normalization function.

5 PROGRAMMING-LANGUAGE APPLICATIONS
In this section, we discuss some implications of normalization for Fitch-style calculi for specific
interpretations of the necessity modality in the context of programming languages. In particular,
we show how normalization can be used to prove properties about program calculi by leveraging
the shape of normal forms of terms. We extend the term calculi presented earlier with application-
specific primitives, ensure that the extended calculi are in fact normalizing, and then use this
result to prove properties such as capability safety, noninterference, and binding-time correctness.
Note that we do not mechanize these results in Agda and do not prove these properties in their
full generality, but only illustrate special cases. Although possible, proving the general properties
requires further technical development that obscures the main idea underlying the use of normal
forms for simplifying these proofs.

5.1 Capability Safety
Choudhury and Krishnaswami [2020] present a modal type system based on IS4 for a programming
language with implicit effects in the style of ML [Milner et al. 1990] and the computational lambda
calculus [Moggi 1989]. In this language, programs need access to capabilities to perform effects.
For instance, a primitive for printing a string requires a capability as an argument in addition to
the string to be printed. Crucially, capabilities cannot be introduced within the language, and must
be obtained either from the global context (called ambient capabilities) or as a function argument.
Let us denote the type of capabilities by Cap. Passing a printing capability 𝑐 to a function of

type Cap⇒ Unit in a language that uses capabilities to print yields a program that either (1) does
not print, (2) prints using only the capability 𝑐 , or (3) prints using ambient capabilities (and possibly
𝑐). A program that at most uses the capabilities that it is passed explicitly, as in the cases 1 and 2,
is said to be capability safe. To identify such programs, Choudhury and Krishnaswami [2020]
introduce a comonadic modality ◻ to capture capability safety. Their type system is loosely based
on the dual-context calculus for IS4 [Kavvos 2020; Pfenning and Davies 2001]. A term of type ◻𝐴 is
enforced to be capability safe bymaking the introduction rule for◻ “brutally” remove all capabilities
from the typing context. As a result, programs with the type ◻(Cap⇒ Unit) are denied ambient
capabilities and thus guaranteed to behave like the cases 1 and 2.
Choudhury and Krishnaswami [2020] characterize capability safety precisely using their ca-

pability space model. A capability space (𝑋,𝑤𝑋 ) is a set 𝑋 and a weight relation𝑤𝑋 that assigns
sets of capabilities to every member in 𝑋 . In this model, they define a comonad that restricts the
underlying set of a capability space to those elements that are only related to the empty set of
capabilities. This comonad has a left adjoint that replaces the weight relation of a capability space
by the relation that relates every element to the empty set of capabilities. This adjunction suggests
that capability spaces are a model of λIS4 and we may thus use λIS4 to write programs that support
reasoning about capability safety.

In this subsection, we present a calculus λIS4+MoggiCap that extends λIS4 with a capability type
and a monad for printing effects. We extend the normalization algorithm for λIS4 to λIS4+MoggiCap
and show that the resulting normal forms can be used to prove a kind of capability safety. In
contrast to the language presented by Choudhury and Krishnaswami [2020], λIS4+MoggiCap models
a language where effects are explicit in the type of a term. Languages with explicit effects, such as
Haskell [Augustsson et al. 1990] (with the IO monad) or PureScript [Freeman 2013] (with the
Effect monad), can also benefit from a mechanism for capability safety, and we begin with an
example in a hypothetical extension of PureScript to illustrate this.
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Ty 𝐴, 𝐵 F . . . | T𝐴 | Cap | String | Unit Ctx Γ F . . .

T-Intro
Γ ⊢ 𝑡 : 𝐴

Γ ⊢ return 𝑡 : T𝐴

T-Elim
Γ ⊢ 𝑡 : T𝐴 Γ, 𝐴 ⊢ 𝑢 : T𝐵

Γ ⊢ let 𝑡 𝑢 : T𝐵

Unit-Intro
Γ ⊢ unit : Unit

String-Lit

Γ ⊢ str𝑠 : String
𝑠 ∈ String

T-Print
Γ ⊢ 𝑐 : Cap Γ ⊢ 𝑠 : String

Γ ⊢ print 𝑐 𝑠 : TUnit

Fig. 13. Types, contexts and terms of λIS4+MoggiCap (omitting the unchanged rules of Figs. 5 and 11)

Example in PureScript. Let us consider web development in PureScript. A web application
may consist of a mashup of several components, e.g. social media, news feed, or chat, provided by
untrusted sources. A component is a function of type

type Component = Element -> Effect Unit

that takes as a parameter the DOM element where the component will be rendered. For the correct
functioning of the web application, it is important that components do not interfere with each other
in malicious ways. For example, a malicious component (of Bob) could illegitimately overwrite a
DOM element (of Alice):

evilBob :: Component
evilBob e = do w <- window

doc <- document w
aliceE <- getElementById "alice.app" doc
setTextContent "Alice has been hacked!" aliceE

The issue here is that Bob has unrestricted access to the function window :: Effect Window,
and is able to obtain the DOM using document :: Window -> Effect DOM and overwrite an
element that belongs to Alice. Capabilities can be leveraged to restrict the access to window.
We can achieve this by extending PureScript with a type WindowCap, a type constructor Box
that works similarly to Choudhury and Krishnaswami’s ◻, and replacing the function window
with a function window' :: WindowCap -> Effect Window that requires an additional capability
argument. By making WindowCap an ambient capability that is available globally, all existing
programs retain their unrestricted access to retrieve a window as before. The difference now,
however, is that we can selectively restrict some programs and limit their access to WindowCap
using Box. We can define a variant of the type Component as:
type Component' = Box (Element -> Effect Unit)

By requiring Bob to write a component of the type Component', we are ensured that Bob cannot
overwrite an element that belongs to Alice. This is because the Box type constructor used to define
Component' disallows access to all ambient capabilities (including WindowCap), and thus restricts
Bob to only using the given Element argument. In particular, the program evilBob cannot be
reproduced with the type Component' since the substitute function window' requires a capability
that is neither available as an argument nor as an ambient capability.
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T-𝛽
Γ ⊢ 𝑡 : 𝐴 Γ, 𝐴 ⊢ 𝑢 : T𝐵

Γ ⊢ let (return 𝑡) 𝑢 ∼ subst (ext ids 𝑡) 𝑢

T-[
Γ ⊢ 𝑡 : T𝐴

Γ ⊢ 𝑡 ∼ let 𝑡 (return (var zero))

T-𝛾
Γ ⊢ 𝑡1 : 𝐴 Γ, 𝐴 ⊢ 𝑡2 : T𝐵 Γ, 𝐵 ⊢ 𝑡3 : T𝐶

Γ ⊢ let (let 𝑡1 𝑡2) 𝑡3 ∼ let 𝑡1 (let 𝑡2 (wk (keep (drop id≤)) 𝑡3))

Fig. 14. Equational theory for λIS4+MoggiCap (omitting the unchanged rules of Figs. 7 and 12)

Nf/T-Intro
Γ ⊢nf 𝑚 : 𝐴

Γ ⊢nf return𝑚 : T𝐴

Nf/T-Elim
Γ ⊢ne 𝑛 : T𝐴 Γ, 𝐴 ⊢nf 𝑚 : T𝐵

Γ ⊢nf let𝑛𝑚 : T𝐵

Nf/Unit-Intro
Γ ⊢nf unit : Unit

Nf/Up-Cap
Γ ⊢ne 𝑛 : Cap

Γ ⊢nf up𝑛 : Cap

Nf/Up-String
Γ ⊢ne 𝑛 : String

Γ ⊢nf up𝑛 : String

Nf/String-Lit

Γ ⊢nf str𝑠 : String
𝑠 ∈ String

Nf/T-Print
Γ ⊢nf 𝑐 : Cap Γ ⊢nf 𝑠 : String Γ,Unit ⊢nf 𝑚 : T𝐴

Γ ⊢nf let (print 𝑐 𝑠)𝑚 : T𝐴

Fig. 15. Normal forms of λIS4+MoggiCap (omitting the unchanged normal forms of λIS4)

Extension with a Capability and a Monad. We extend λIS4 with a monad for printing based on
Moggi’s monadic metalanguage [Moggi 1991]. We introduce a type T𝐴 that denotes a monadic
computation that can print before returning a value of type 𝐴, a type Cap for capabilities, and a
type String for strings. Fig. 13 summarizes the terms that correspond to this extension. The term
construct print is used for printing. The equational theory of λIS4+MoggiCap and the corresponding
normal forms are summarized in Fig. 14 and Fig. 15, respectively.
To extend the NbE model of λIS4 with an interpretation for the monad, we use the standard

techniques used for normalizing computational effects [Ahman and Staton 2013; Filinski 2001].
The interpretation of the other primitive types also follows a standard pursuit [Valliappan, Russo,
et al. 2021]: we interpret Cap by neutrals of type Cap and String by the disjoint union of String
and neutrals of type String. The difference in their interpretation is caused by the fact that there is
no introduction form for the type Cap.

Proving Capability Safety. Programs that lack access to capabilities are necessarily capability safe.
We say that a program Γ ⊢ 𝑝 : 𝐴 is trivially capability safe if there is a program · ⊢ 𝑝′ : 𝐴 such that
Γ ⊢ 𝑝 ∼ leftConcatΓ 𝑝

′ : 𝐴, where leftConcatΓ : ∀Δ, 𝐴. Δ ⊢ 𝐴 → Γ,Δ ⊢ 𝐴 can be defined similarly to
the operation given by Lemma 14 for λIS4.

First, we prove an auxiliary lemma about normal forms with a capability in context.

Lemma 17. For any context Γ, type 𝐴 and normal form 𝑐 : Cap,µ, Γ ⊢nf 𝑛 : 𝐴 there is a normal

form ·,µ, Γ ⊢nf 𝑛′ : 𝐴 such that 𝑛 = leftConcat𝑐 :Cap 𝑛
′
.
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Proof. We prove the statement for both normal forms and neutral elements by mutual induction.
The only nonimmediate case is when the neutral is of the form 𝑐 : Cap,µ, Γ ⊢ne unbox𝑛 𝑒 : 𝐴 for
some 𝑛 : Δ ⊢ne ◻𝐴 and 𝑒 : Δ ◁λIS4 𝑐 : Cap,µ, Γ. We observe that there are no neutral elements of
type ◻𝐴 in context 𝑐 : Cap and that hence Δ must contain the leftmost lock in 𝑐 : Cap,µ, Γ. Thus,
this case also holds by induction hypothesis. □

Now, we observe that all terms 𝑐 : Cap ⊢ 𝑡 : ◻𝐴 are trivially capability safe. By normalization,
we have that 𝑐 : Cap ⊢ 𝑡 ∼ norm 𝑡 : ◻𝐴. Given the definition of normal forms of λIS4+MoggiCap,
norm 𝑡 must be box𝑛 for some normal form 𝑐 : Cap,µ ⊢nf 𝑛 : 𝐴. By Lemma 17, there is a normal
form µ ⊢nf 𝑛′ : 𝐴 such that 𝑛 = leftConcat ·,Cap 𝑛

′. Since the operation leftConcat commutes
with box, i.e. leftConcat ·,Cap (box𝑛′) = box (leftConcat ·,Cap 𝑛′), we also have that 𝑡 ∼ box𝑛 =

leftConcat ·,Cap (box𝑛′). As a result, 𝑡 must be trivially capability safe.
A consequence of this observation is that any term 𝑐 : Cap ⊢ 𝑡 : ◻(TUnit) is trivially capability

safe. This means that 𝑡 does not print since it could not possibly do so without a capability. Going
further, we can also observe that 𝑡 ∼ box (return unit) : ◻(TUnit), since the only normal form of
type TUnit in the empty context is · ⊢nf return unit : TUnit. Note that this argument (and the one
above) readily adapts to a vector of capabilities ®𝑐 in context as opposed to a single capability 𝑐 .

5.2 Information-Flow Control
Information-flow control (IFC) [Sabelfeld and Myers 2003] is a technique used to protect the
confidentiality of data in a program by tracking the flow of information within the program.
In type-based static IFC [e.g. Abadi et al. 1999; Russo et al. 2008; Shikuma and Igarashi 2008]

types are used to associate values with confidentiality levels such as secret or public. The type
system ensures that secret inputs do not interfere with public outputs, enforcing a security policy
that is typically formalized as a kind of noninterference property [Goguen and Meseguer 1982].
Noninterference is proved by reasoning about the semantic behaviour of a program. Tomé

Cortiñas and Valliappan [2019] present a proof technique that uses normalization for showing non-
interference for a static IFC calculus based on Moggi’s monadic metalanguage [Moggi 1991]. This
technique exploits the insight that normal forms represent equivalence classes of terms identified
by their semantics, and thus reasoning about normal forms of terms (as opposed to terms them-
selves) vastly reduces the set of programs that we must take into consideration. Having developed
normalization for Fitch-style calculi, we can leverage this technique to prove noninterference.

In this subsection, we extend λIK with Booleans (denoted λIK+Bool), extend the NbE model of λIK
to λIK+Bool, and illustrate the technique of Tomé Cortiñas and Valliappan on λIK+Bool for proving
noninterference. We interpret the type ◻𝐴 as a secret of type 𝐴, and other types as public.

Extension with Booleans. Noninterference can be better appreciated in the presence of a type
whose values are distinguishable by an external observer. To this extent, we extend λIK with a
type Bool and corresponding introduction and elimination forms—as described in Fig. 16.

Ty 𝐴, 𝐵 F . . . | Bool Ctx Γ F . . .

Bool-Intro-true
Γ ⊢ true : Bool

Bool-Intro-false
Γ ⊢ false : Bool

Bool-Elim
Γ ⊢ 𝑏 : Bool Γ, Γ′ ⊢ 𝑡1 : 𝐴 Γ, Γ′ ⊢ 𝑡2 : 𝐴

Γ, Γ′ ⊢ ifte𝑏 𝑡1 𝑡2 : 𝐴

Fig. 16. Types, contexts and intrinsically-typed terms of λIK+Bool (omitting the unchanged rules of Fig. 5)
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Wemodify the usual elimination rule for Bool by allowing the context of the conclusion ifte𝑏 𝑡1 𝑡2
and branches 𝑡1 and 𝑡2 in the rule Bool-Elim to extend the context of the scrutinee𝑏. This modification
(following Clouston [2018, Fig. 2]) enables the following commuting conversion, which is required
to ensure that terms can be fully normalized and normal forms enjoy the subformula property:

Δ ⊢ 𝑏 : Bool Δ,Δ′ ⊢ 𝑡1 : ◻𝐴 Δ,Δ′ ⊢ 𝑡2 : ◻𝐴 𝑒 : Δ,Δ′ ◁ Γ

Γ ⊢ unbox (ifte𝑏 𝑡1 𝑡2) 𝑒 ∼ ifte𝑏 (unbox 𝑡1 𝑒) (unbox 𝑡2 𝑒)
A commuting conversion is required as usual for every other elimination rule, including the
rule ⇒-Elim. These are however standard and thus omitted here.
We extend the equational theory of λIK to λIK+Bool by adding the usual rules ifte true 𝑡1 𝑡2 ∼

𝑡1, ifte false 𝑡1 𝑡2 ∼ 𝑡2, and 𝑡 ∼ ifte 𝑡 true false for terms 𝑡 of type Bool. The normal forms of λIK+Bool
include those of λIK in addition to the following.

Nf/Bool-Intro-true
Γ ⊢nf true : Bool

Nf/Bool-Intro-false
Γ ⊢nf false : Bool

Nf/Bool-Elim
Γ ⊢ne 𝑛 : Bool Γ, Γ′ ⊢nf 𝑚1 : 𝐴 Γ, Γ′ ⊢nf 𝑚2 : 𝐴

Γ, Γ′ ⊢nf ifte𝑛𝑚1𝑚2 : 𝐴

Observe that a neutral of type Bool is not immediately in normal form, and must be expanded as
ifte𝑛 true false. This is unlike neutrals of the type ], which are in normal form by Rule Nf/Up.
To extend the NbE model of λIK with Booleans, we leverage the interpretation of sum types

used by Abel and Sattler [2019], who attribute their idea to Altenkirch and Uustalu [2004]. This
interpretation readily supports commuting conversions, and a minor refinement that reflects the
change to the rule Bool-Elim yields a reifiable interpretation for Booleans in λIK+Bool.

Proving Noninterference. A program · ⊢ 𝑓 : ◻𝐴 ⇒ Bool is noninterferent if it is the case that
· ⊢ app 𝑓 𝑠1 ∼ app 𝑓 𝑠2 : Bool for any two secrets · ⊢ 𝑠1, 𝑠2 : ◻𝐴. By instantiating 𝐴 to Bool, we can
show that any program · ⊢ 𝑓 : ◻Bool⇒Bool is noninterferent and thus cannot leak a secret Boolean
argument. In λIK+Bool, the type system ensures that data of type ◻𝐴 type can only influence (or
flow to) data of type ◻𝐵, thus all programs of type ◻Bool⇒ Bool must be noninterferent. To show
this, we analyze the possible normal forms of 𝑓 and observe that they must be equivalent to a
constant function, such as _ 𝑥. true or _ 𝑥. false, which evidently does not use its input argument 𝑥
and is thus noninterferent.
In detail, normal forms of type ◻Bool ⇒ Bool must have the shape _ 𝑥.𝑚, for some normal

form ·,◻Bool ⊢nf 𝑚 : Bool. If𝑚 is either true or false, then _ 𝑥.𝑚 must be a constant function
and we are done. Otherwise, it must be some normal form ·,◻Bool ⊢nf ifte𝑛𝑚1𝑚2 : Bool with
a neutral 𝑛 : Bool either in context · or in context ·,◻Bool. Such a neutral could either be of
shape unbox𝑛′ or app𝑛′′𝑚′ for some neutrals 𝑛′ and 𝑛′′. However, this is impossible, since the
context of the neutral unbox𝑛′ must contain a lock, and neither the context · nor the context ·,□Bool
do. The existence of 𝑛′′ can also be similarly dismissed by appealing to the definition of neutrals.

Discussion. Observe that not all Fitch-style calculi are well-suited for interpreting the type ◻𝐴 as
a secret, because noninterference might not hold. In λIS4, the term _ 𝑥. unbox𝑥 : ◻𝐴⇒𝐴 (axiom T)
is well-typed but leaks the secret 𝑥 , thus breaking noninterference. The validity of the interpretation
of ◻𝐴 as a secret depends on the calculus under consideration and the axioms it exhibits.

5.3 Partial Evaluation
Davies and Pfenning [1996, 2001] present a modal type system for staged computation based on IS4.
In their system, the type◻𝐴 represents code of type𝐴 that is to be executed at a later stage, and the
axioms of IS4 correspond to operations that manipulate code. The axiom K : ◻(𝐴⇒𝐵)⇒(◻𝐴⇒◻𝐵)
corresponds to substituting code in code, T : ◻𝐴⇒𝐴 to evaluating code, and 4 : ◻𝐴⇒◻◻𝐴 to
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further delaying the execution of code to a subsequent stage. A desired property of this type system
is that code must only depend on code, and thus the term _ 𝑥 : 𝐴. box𝑥 must be ill-typed.

Although λIS4 exhibits the desired properties of a type system for staging, its equational theory in
Fig. 12 does not reflect the semantics of staged computation. For example, the result of normalizing
the term box (2 ∗ unbox (box 3)) in λIS4 extended with natural number literals and multiplication
is box 6. While the result expected from reducing it in accordance with Davies and Pfenning’s
operational semantics is box (2 ∗ 3). The equational theory of Fitch-style calculi in general do not
take into account the occurrence of a term (such as the literal 3) under box, while this is crucial for
Davies and Pfenning’s semantics. We return to this discussion at the end of this subsection.
If we restrict our attention to a special case of staged computation in partial evaluation [Jones

et al. 1993], however, the semantics of Fitch-style calculi are better suited. In the context of partial
evaluation, the type ◻𝐴 represents a dynamic computation of type 𝐴 that must be executed at
runtime, and other types represent static computations. Static and dynamic are also known as
binding-time annotations, and they are used by a partial evaluator to evaluate all static computations.
In the term box (2 ∗ unbox (box 3)), we consider the literal 3 to be annotated as dynamic since

it occurs under box. The construct unbox strips this annotation and brings it back to static. The
multiplication of static subterms 2 and unbox (box 3) is however considered annotated dynamic
since it itself occurs under box. As a result, a partial evaluator that respects these annotations does
not perform the multiplication and specializes the term to box (2 ∗ 3)—which matches the result of
evaluating with Davies and Pfenning’s staging semantics. Observe that the same partial evaluator
would specialize the expression 2 ∗ unbox (box 3) to 6 since the multiplication does not occur under
box and is thus considered to be annotated static.

The goal of a partial evaluator is to optimize runtime execution of a program by eagerly evaluating
as many static computations as possible and yielding an optimal dynamic program. The term box 6
is more optimized than the term box (2 ∗ 3) since the evidently static multiplication has also been
evaluated. Normalization in a Fitch-style calculus yields the former result, and the gain in optimality
can be seen as a form of binding-time improvement [Jones et al. 1993] that is performed automatically
during normalization.

In this subsection, we extend λIK with natural number literals and multiplication (denoted λIK+N),
and extend the NbE model of λIK to λIK+N. We use λIK as the base calculus since the other axioms
are not needed in the context of partial evaluation [Davies and Pfenning 1996, 2001]. The resulting
normalization function yields an optimal partial evaluator for λIK+N. In partial evaluation, as with
staging in general, we desire that a term _ 𝑥 : N. box𝑥 be disallowed, since a runtime execution of
a dynamic computation must not have a static dependency. While this term is already ill-typed in
λIK+N, we prove a kind of binding-time correctness property for λIK+N that implies that no term
equivalent to _ 𝑥 : N. box𝑥 can exist.

Extension with Natural Number Literals and Multiplication. We extend λIK with a type N, a
construct lift for including natural number literals, and an operation ∗ for multiplying terms of
type N—as described in Fig. 17.

Ty 𝐴, 𝐵 F . . . | N Ctx Γ F . . .

N-Lift

Γ ⊢ lift𝑘 : N
𝑘 ∈ N

N-Mul
Γ ⊢ 𝑡1 : N Γ ⊢ 𝑡2 : N

Γ ⊢ 𝑡1 ∗ 𝑡2 : N

Fig. 17. Types, contexts, intrinsically-typed terms of λIK+N (omitting the unchanged rules of Fig. 5)
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We extend the equational theory of λIK with some rules such as lift𝑘1 ∗ lift𝑘2 ∼ lift (𝑘1 ∗ 𝑘2) (for
natural numbers 𝑘1 and 𝑘2), lift 0 ∗ 𝑡 ∼ lift 0, 𝑡 ∼ lift 1 ∗ 𝑡 , 𝑡 ∗ lift𝑘 ∼ lift𝑘 ∗ 𝑡 , etc. The normal forms
of λIK+N include those of λIK in addition to the following.

Nf/N1
Γ ⊢nf lift 0 : N

Nf/N2
Γ ⊢ne 𝑛1 : N . . . Γ ⊢ne 𝑛 𝑗 : N

Γ ⊢nf lift𝑘 ∗ 𝑛1 ∗ · · · ∗ 𝑛 𝑗 : N
𝑘 ∈ N \ {0}

The normal form lift𝑘 ∗𝑛1 ∗ · · · ∗𝑛 𝑗 denotes a multiplication of a nonzero literal with a sequence of
neutrals of type N, which can possibly be empty. The term box (2 ∗ unbox (box 3)) from earlier can
be represented in λIK+N as box (lift 2 ∗ unbox (box (lift 3))), and its normal form as box (lift 6). To
extend the NbEmodel for λIK to natural number literals andmultiplication, we use the interpretation
presented by Valliappan, Russo, et al. [2021] for normalizing arithmetic expressions. Omitting the
rule lift 0 ∗ 𝑡 ∼ lift 0, this interpretation also resembles the one constructed systematically in the
framework of Yallop et al. [2018] for commutative monoids.

Proving Binding-Time Correctness. Binding-time correctness for a term · ⊢ 𝑓 : N⇒◻N can be
stated similar to noninterference: it must be the case that · ⊢ app 𝑓 𝑢1 ∼ app 𝑓 𝑢2 : ◻N for any two
arguments · ⊢ 𝑢1, 𝑢2 : N. The satisfaction of this property implies that no well-typed term equivalent
to _ 𝑥 : N. box𝑥 exists, since applying it to different arguments would yield different results. As
before with noninterference, we can prove this property by case analysis on the possible normal
forms of 𝑓 . A normal form of 𝑓 is either of the form _ 𝑥. box (lift 0) or _ 𝑥. box (lift𝑘 ∗ 𝑛1 ∗ · · · ∗ 𝑛 𝑗 )
for some natural number 𝑘 and neutrals 𝑛1,. . . , 𝑛 𝑗 of type N in context ·,N,µ. In the former case,
we are done immediately since _ 𝑥. box (lift 0) is a constant function that evidently satisfies the
desired criterion. In the latter case, we observe by induction that no such neutrals 𝑛𝑖 exist, and
hence 𝑓 must be equivalent to the function _ 𝑥. box (lift𝑘), which is also constant.

As a part of binding-time correctness, we may also desire that nonconstant terms ◻𝐴⇒𝐴 like
_ 𝑥 : ◻𝐴. unbox𝑥 be disallowed since a static computation must not have a dynamic dependency.
This can also be shown by following an argument similar to the proof of noninterference in
Subsection 5.2.

Discussion. The operational semantics for staged computation is given by Davies and Pfenning
via translation to a dual-context calculus for IS4, where evaluation under the introduction rule box
for ◻ is disallowed. While it is possible to implement a normalization function for λIS4 that does
not normalize under box, this then misses certain reductions that are enabled by the translation.
For instance, the term box (2 ∗ unbox (box 3)) is already in normal form if we simply disallow
normalization under box, while the translation ensures the reduction of unbox (box 3) by reducing
the term to box (2 ∗ 3). This mismatch, in addition to the lack of a model for their system, makes
the applicability of Fitch-style calculi for staged computation unclear.

6 RELATED AND FURTHERWORK
Fitch-Style Calculi. Fitch-style modal type systems [Borghuis 1994; Martini and Masini 1996]

adapt the proof methods of Fitch-style natural deduction systems for modal logic. In a Fitch-style
natural deduction system, to eliminate a formula ◻𝐴, we open a so-called strict subordinate proof
and apply an “import” rule to produce a formula𝐴. Fitch-style lambda calculi achieve a similar effect,
for example in λIK, by adding a µ to the context. To introduce a formula ◻𝐴, on the other hand, we
close a strict subordinate proof, and apply an “export” rule to a formula 𝐴—which corresponds to
removing a µ from the context. In the possible-world reading, adding a µ corresponds to travelling
to a future world, and removing it corresponds to returning to the original world.
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The Fitch-style calculus λIK was presented for the logic IK by Borghuis [1994] and Martini and
Masini [1996], and later investigated further by Clouston [2018]. Clouston showed that µ can be
interpreted as the left adjoint of◻, and proves a completeness result for a term calculus that extends
λIK with a type former ♦ that internalizes µ. The extended term calculus is, however, somewhat
unsatisfactory since the normal forms do not enjoy the subformula property. Normalization was
also considered by Clouston, but only with Rule ◻-𝛽 and not Rule ◻-[. The normalization result
presented here considers both rules, and the corresponding completeness result achieved using the
NbE model does not require the extension of λIK with ♦. The decidability result that follows for the
complete equational theory of λIK also appears to have been an open problem prior to our work.

For the logic IS4, there appear to be several possible formulations of a Fitch-style calculus, where
the difference has to do with the definition of the rule λIS4/◻-Elim. One possibility is to define unbox
by explicitly recording the context extension as a part of the term former. Davies and Pfenning
[1996, 2001] present such a system where they annotate the term former unbox as unbox𝑛 to denote
the number of µs. Another possibility is to define unbox without any explicit annotations, thus
leaving it ambiguous and to be inferred from a specific typing derivation. Such a system is presented
by Clouston [2018], and also discussed by Davies and Pfenning. In either formulation terms of
type ◻𝐴⇒𝐴 (axiom T) and ◻𝐴⇒◻◻𝐴 (axiom 4) that satisfy the comonad laws are derivable. As
a result, both formulations exhibit the logical equivalence ◻◻𝐴 ⇔ ◻𝐴. The primary difference
lies in whether this logical equivalence can also be shown to be an isomorphism, i.e. whether
the semantics of the modality ◻ is a comonad which is also idempotent. In Clouston’s categorical
semantics the modality ◻ is interpreted by an idempotent comonad. The λIS4 calculus presented
here falls under the former category, where we record the extension explicitly using a premise
instead of an annotation.

Gratzer, Sterling, et al. [2019] present yet another possibility that reformulates the system for IS4
in Clouston [2018]. They further extend it with dependent types, and also prove a normalization
result using NbE with respect to an equational theory that includes both Rule ◻-𝛽 and Rule ◻-[.
Although their approach is semantic in the sense of using NbE, their semantic domain has a very
syntactic flavour [Gratzer, Sterling, et al. 2019, Section 3.2] that obscures the elegant possible-world
interpretation. For example, it is unclear as to how their NbE algorithm can be adapted to minor
variations in the syntax such as in λIK, λIK4 and λIT—a solution to which is at the very core of
our pursuit. This difference also has to do with the fact that they are interested in NbE for type-
checking (also called “untyped” or “defunctionalized” NbE), while we are interested in NbE for
well-typed terms (and thus “typed” NbE), which is better suited for studying the underlying models.
Furthermore, we also avoid several complications that arise in accommodating dependent types in
a Fitch-style calculus, which is the main goal of their work.
Davies and Pfenning present their calculus for IS4 using a stack of contexts, which they call

“Kripke-style”, as opposed to the single Fitch-style context with a first-class delimiting operator µ.
The elimination rule unbox𝑛 for ◻ in the Kripke-style calculus for IS4 is indexed by an arbitrary
natural number 𝑛 specifying the number of stack frames the rule adds to the context stack of its
premise. This index 𝑛 corresponds to the modal accessibility premise of the Fitch-style unbox rule
presented in Fig. 11. As in the Fitch-style presentation, Kripke-style calculi corresponding to the
other logics IK, IT and IK4 can be recovered by restricting the natural numbers 𝑛 for which the
unbox𝑛 rule is available. Hu and Pientka [2022] present a normalization by evaluation proof for the
Kripke-style calculi for all four logics IK, IT, IK4, and IS4. Their solution has a syntactic flavour
similar to Gratzer, Sterling, et al. [2019] and also does not leverage the possible-world semantics.
Furthermore, their proof is given for a single parametric system that encompasses the modal logics
of interest, which need not be possible when we consider further modal axioms such as R : 𝐴⇒◻𝐴.
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Possible-World Semantics for Fitch-Style Calculi. Given that Fitch-style natural deduction for
modal logic has itself been motivated by possible-world semantics, it is only natural that Fitch-style
calculi can also be given possible-world semantics. It appears to be roughly understood that the µ
operator models some notion of a past world, but this has not been—to the best of our knowledge—
made precise with a concrete definition that is supported by a soundness and completeness result.
As noted earlier, this requires a minor refinement of the frame conditions that define possible-world
models for intuitionistic modal logic given by Božić and Došen [1984].

Dual-Context Calculi. Dual-context calculi [Davies and Pfenning 1996, 2001; Kavvos 2020; Pfen-
ning and Davies 2001] provide an alternative approach to programming with the necessity modality
using judgements of the form Δ; Γ ⊢ 𝐴where Δ is thought of as the modal context and Γ as the usual
(or “local”) one. As opposed to a “direct” eliminator as in Fitch-style calculi, dual-context calculi
feature a pattern-matching eliminator formulated as a let-construct. The let-construct allows a type
◻𝐴 to be eliminated into an arbitrary type𝐶 , which induces an array of commuting conversions in
the equational theory to attain normal forms that obey the subformula property. Furthermore, the
inclusion of an [-law for the◻ type former complicates the ability to produce a unique normal form.
Normalization (and, more specifically, NbE) for a pattern-matching eliminator—while certainly
achievable—is a much more tedious endeavour, as evident from the work on normalizing sum
types [Abel and Sattler 2019; Altenkirch, Dybjer, et al. 2001; Lindley 2007], which suffer from a
similar problem. Presumably for this reason, none of the existing normalization results for dual-
context calculi consider the [-law. The possible-world semantics of dual-context calculi is also less
apparent, and it is unclear how NbE models can be constructed as instances of that semantics.

Multimodal Type Theory (MTT). Gratzer, Kavvos, et al. [2020] present a multimodal dependent
type theory that for every choice of mode theory yields a dependent type theory with multiple
interacting modalities. In contrast to Fitch-style calculi, their system features a variable rule that
controls the use of variables of modal type in context. Further, the elimination rule for modal types is
formulated in the style of the let-construct for dual-context calculi. In a recent result, Gratzer [2021]
proves normalization for multimodal type theory. In spite of the generality of multimodal type
theory, it is worth noting that the normalization problem for Fitch-style calculi, when considering
the full equational theory, is not a special case of normalization for multimodal type theory.

Further Modal Axioms. The possible-world semantics and NbE models presented here only
consider the logics IK, IT, IK4 and IS4. We wonder if it would be possible to extend the ideas
presented here to further modal axioms such as R : 𝐴⇒◻𝐴 and GL : ◻(◻𝐴⇒𝐴)⇒◻𝐴, especially
considering that the calculi may differ in more than just the elimination rule for the ◻ type.
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