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Abstract

The objective of this study is to numerically investigate the ignition and

combustion of pulverized solid fuels in turbulent conditions and to assess

different modeling strategies relevant to large-eddy simulations (LES). The

investigations show that due to the high Stokes number of solid particles,

they do not necessarily follow the flow. At Stokes numbers around unity,

particle-turbulence interactions can lead to particle clustering and change

the ignition behavior. According to observations, ignition is most likely to

happen outside the formed clusters, where suitable thermo-chemical condi-

tions exist. To study this behavior, direct numerical simulations (DNS) of

reactive particles in turbulent conditions employing detailed kinetics for solid

and gas phases were performed. Pulverized fuel combustion was modeled us-

ing the point-particle approximation to represent the dispersed phase in an
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Eulerian-Lagrangian framework. Isotropic turbulence was employed to in-

vestigate the influence of particle clustering on the ignition process. After

investigating the physical aspects of the ignition process, the DNS dataset

was used as a benchmark for evaluating the reduced-order flamelet models

usually employed in LES of pulverized fuel combustion during the ignition

process. The flamelet model performance in predicting the selected quan-

tity of interest was compared to the DNS data. An error decomposition was

performed using the optimal estimator concept. Finally, the prediction accu-

racy of presumed PDFs is evaluated by calculating the errors in predicting the

quantity of interest using different PDFs compared to the predictions using

the accurate sub-filter joint distribution of the DNS data. The a priori model

assessment showed the best performance for the model, especially inside par-

ticle clusters, when using mixture fraction, progress variable, and enthalpy

as flamelet tabulation input parameters and employing the presumed β-PDF

for mixture fraction.

Keywords:

Isotropic turbulence, Pulverized fuel, Ignition and combustion, DNS,

Flamelet model assessment, Subgrid PDF

1. Introduction1

Solid fuel combustion remains a principal technology for producing elec-2

tricity, as it has reached a matured technological state and possesses reliable3

supply chains with the possibility of a change from conventional to bio-fuels.4

However, burning solid fuels, such as pulverized coal or biomass, can be a ma-5

jor source of pollutants and CO2. Hence, improvements in system efficiency6
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and carbon capture and storage (CCS) methods to reduce the environmental7

impact are actively researched. Experimental techniques for studying solid8

fuel combustion remain challenging due to the hostile environment in boilers9

and limited optical access [1]. Therefore, numerical simulations provide an10

alternative to enable insights into the underlying complex multi-physics and11

multi-scale processes.12

For predictive modeling of solid fuel combustion, three main modeling13

pillars can be identified: solid fuel conversion, turbulent mixing and heat14

transfer, as well as turbulence-chemistry interactions [1]. For solid-fuel sub-15

models, most numerical studies rely on simplified models, whose parameters16

must be adjusted to capture fuel type changes or operating conditions accu-17

rately [1]. However, recent numerical studies have employed more detailed18

solid fuel models, such as the chemical percolation devolatilization (CPD) [2]19

or the CRECK-S [3] models [4–7]. These models enable a more detailed de-20

scription of the solid particle conversion process for various fuels and a vast21

range of conditions by including more detailed information about the fuel,22

such as its molecular structure [8].23

To capture the turbulent flow environment in pulverized coal combustion24

(PCC), traditionally Reynolds-averaged Navier-Stokes (RANS) approaches25

have been used. However, with the advancements of computational resources,26

the application of scale-resolving techniques became feasible, offering higher27

accuracy for predictive simulations [1, 9]. In recent years, large-eddy sim-28

ulations (LES) have been successfully extended to study PCC and used in29

several studies [10–14]. These advancements in simulation techniques have30

provided valuable insights into the interactions between turbulent motion31
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and combustion characteristics of pulverized fuels.32

In the context of turbulence-chemistry interactions, state-of-the-art mod-33

els are often based on a global description of gas-phase chemistry employing34

a limited number of reactions. Turbulence closure for these models is com-35

monly achieved by the eddy-breakup model (EBM) or the eddy-dissipation36

concept (EDC) [1]. To enable a more detailed representation of the com-37

plex gas mixtures released from solid particles, recent efforts have focused on38

extending flamelet-based modeling approaches specifically for solid fuel com-39

bustion [15]. With different focuses, several authors have explored flamelet-40

based tabulation approaches with applications to various configurations rang-41

ing from single particle and particle group combustion [16, 17] to pilot-42

scale furnaces [11–14]. Flamelet-based approaches offer the advantage of43

using detailed chemical mechanisms at low computational cost. They have44

proven effective in capturing both global characteristics, such as ignition45

processes [16, 17], flame structures [12, 13], and local species concentra-46

tions [11, 14]. Particularly, in combination with LES, flamelet tabulation has47

shown promising results, although appropriate subgrid closures are necessary48

to ensure maintaining accuracy. To address the closure problem, commonly49

employed methods involve the use of presumed filtered density functions [1].50

These presumed filter density functions can be developed and assessed51

by detailed reference data [18], such as direct numerical simulations (DNS),52

where all turbulence scales and all near- and intra-particle processes are re-53

solved by the numerical grid. Resolving all physical processes, including the54

particle boundary layers, became feasible within recent years [19, 20], but55

is still restricted to very few particles (O(10)) and relatively low Reynolds56
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numbers. Therefore, an alternative resolved flow simulation approach, the57

so-called carrier-phase DNS (CP-DNS), is commonly employed for solid fuels58

to enable fundamental insights into multiple interacting reactive particles.59

For this approach, the DNS resolves only the scales of the carrier phase,60

and the boundary layers around the individual particles while their impacts61

on the resolved scales are modeled. Using CP-DNS, Messig et al. [21] and62

Wen et al. [22] investigated laminar counterflow burners and performed de-63

tailed flame structure analyses for flamelet modeling; turbulent multi-phase64

jet burners were investigated by Luo et al. [23], Bai et al. [24], and Hara65

et al. [25]. These studies revealed that three distinctly different flame zones66

can be identified [24] and that both premixed and non-premixed combus-67

tion modes can appear [25]. Similar conclusions were drawn in the recent68

CP-DNS of a turbulent mixing layer resembling the condition of the inner69

recirculation zone of a swirled PCC boiler [26]. The latter dataset was exten-70

sively employed to evaluate different flamelet modeling approaches [27–29].71

A more simplified configuration of coal particle clouds in decaying turbulence72

was investigated by Brosh et al. [30]. They showed a strong dependency of73

homogenous ignition on particle density and clustering. Similar findings have74

been published for heterogeneous char conversion in forced isotropic turbu-75

lence by Krüger et al. [31]. The authors investigated turbulence-induced76

particle clustering and reported significant reductions in particle reactivity77

and char conversion rate inside particle clusters. The observed clustering78

effects were found to be strongly influenced by the particle Stokes number,79

which is the ratio of the characteristic time of a particle to the characteristic80

time of the flow, as indicated in the aforementioned studies. Considering that81
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clustering occurs in larger-scale burners, it becomes crucial to investigate the82

performance of recently developed flamelet models and subgrid closures in83

the context of particle clustering.84

Therefore, the objective of this work is to study the modeling of the85

homogeneous ignition process and volatile combustion of solid fuel particles86

in isotropic turbulence under conditions favoring particle clustering, which is87

typically observed in pulverized solid fuel burners. Particularly, the effect of88

particle-chemistry-turbulence interactions on the local ignition process and89

in clustering particle clouds is investigated. Therefore, modeling strategies90

for both the reduction of the gas-phase reactions by an FPV approach and91

the required closure for the filtered variables in the context of LES are studied92

in homogenous isotropic turbulence-induced particle clusters. The optimal93

estimator concept is employed to determine modeling errors and provide an94

effective modeling strategy for turbulent solid-fuel combustion.95

The remainder of the paper is structured as follows. First, in Section 2,96

the employed numerical framework and the models to be assessed are briefly97

introduced. This is followed by a short description of the numerical setup98

and the boundary conditions for the DNS in section 3. In Section 4, first, the99

physical effects of the employed configuration are presented, then a combined100

LES-FPV approach is assessed in an a priori analysis.101

2. Modeling framework and methods102

2.1. Multi-phase modeling103

In this study, the ignition and combustion process of pulverized coal par-104

ticle clouds is represented by an Eulerian-Lagrangian approach. The conser-105
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vation of mass, momentum, species, and energy between the Lagrangian and106

Eulerian frameworks is ensured by a two-way coupling. Utilizing the two-way107

coupling also ensures the particle-fluid-chemistry interactions by distribut-108

ing the particles’ source terms in the Eulerian phase and calculating the109

gas-phase quantities at the particles’ location. The detailed description of110

the models and the equations for the Eulerian and Lagrangian formulations111

can be found in Farmand et al. [5] and Farazi et al. [32]. The accuracy of112

the applied models and methodologies have been validated against experi-113

mentally measured data for ignition times in different laminar configurations114

in earlier works [5, 32–34]. One particular focus of these studies was on115

properly capturing particle movement and ignition of point particles on DNS116

grids through a Gaussian kernel source term distribution. Chemical reac-117

tions in the gas phase are described employing finite-rate chemistry adopting118

a mechanism suitable for coal and biomass combustion with 68 species and119

906 reactions, which has been validated for different fuels in both air and oxy-120

fuel atmospheres [35], and has been used in previous studies [4, 5, 36, 37].121

Particle dynamics are modeled in a Lagrangian framework using the122

point-particle assumption solving equations for trajectory, velocity, mass,123

and temperature as described in previous works [5, 32, 38]. In order to have124

a detailed description of the solid particle conversion, the chemical percola-125

tion devolatilization (CPD) model, which is one of the most detailed models126

for solid kinetics, is used to describe the volatile release from the solid parti-127

cles based on the molecular structure of the fuel and considers the solid fuel128

as a complex network of the large aromatic hydrocarbon monomers and the129

bridges, in which bonds are broken by the external energy at each tempera-130
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ture level. This model, as described in detail in [2, 8, 39], takes into account131

the dynamic behavior of the devolatilization process by determining total132

released mass as well as its composition in light gases and tar. In the present133

study, light gases consist of CH4, CO2, CO, H2O, and other gases, which134

are assumed to be C2H2 similar to the assumption by Jimenez and Gonzalo-135

Tirado [40]. The released tars are assumed to solely consist of C2H2. To136

reduce the level of complexity in the model assessment procedure, similar137

to [5], a fixed volatile composition assumption (FVC) is employed for the138

particle devolatilization in the CPD model. The FVC is calculated based139

on the time-averaged values of each volatile species’ mass compared to the140

total released mass from the particle [4]. The resulting set of fixed volatile141

mass fractions is YCH4 = 0.057, YCO2 = 0.072, YCO = 0.087, YH2O = 0.268,142

and YC2H2 = 0.516. Assuming a fixed volatile composition neglects the rela-143

tionship between the change in particle heating rate and the volatile release,144

which is commonly made for flamelet modeling in the LES of solid pulverized145

fuel flames [4] and was found to only marginally affect ignition [5].146

To solve the governing equations in isotropic turbulence, the in-house147

structured finite difference solver CIAO is used. In CIAO, the Eulerian equa-148

tions are solved using a semi-implicit scheme with second-order accuracy in149

space and time. The scalar transport is solved using the fifth-order WENO150

scheme for the convective terms and a second-order central difference scheme151

for the diffusive terms. The chemistry is solved using the finite rate chem-152

istry method using the CVODE solver [5, 32]. The particles are advanced in153

time utilizing a two-stage Runge-Kutta solver with second-order accuracy to154

update the dispersed phase state, position, and source terms for the Eulerian155
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equations. The reader is referred to previous works for specific details on the156

numerical implementation [5, 32].157

2.2. Flamelet library for a priori analysis158

To model the turbulent reacting gas-phase in solid fuel combustion, flamelet-159

based tabulation methods are gaining attraction due to the possibility of in-160

cluding detailed kinetics in large-scale simulations. In this work, flamelet ta-161

bles, which are used for the a priori model assessment in post-processing, are162

built from counterflow-diffusion flamelets, which matches the non-premixed163

nature of combustion in the current study configuration. These are solved in164

physical coordinates using Cantera [41], assuming unity Lewis numbers for165

all species, which is a common assumption in PCC (e.g., [4, 14]). The same166

gas-phase kinetic model as for the DNS is used to calculate the flamelets [35].167

During the flamelet calculation, the strain rate is varied by changing the in-168

flow boundary conditions. For the tabulation process, the varying strain169

rates are mapped onto a progress variable (C) [42], which represents the170

combustion progress.171

To take into consideration heat losses in the gas-phase caused by par-172

ticles and radiative heat transfer, the enthalpy h (sensible plus chemical)173

is introduced as an additional table dimension, and flamelets with different174

enthalpy levels are computed. For higher enthalpy values, the temperatures175

of the oxidizer and fuel are increased (from 300K up to 1500K). To obtain176

lower enthalpies, the source term in the temperature equation in Cantera is177

rescaled, as proposed by several authors [4, 14, 43]. Below a certain enthalpy178

level, no flamelet solution can be obtained. Here, a linear extrapolation to179

300K is used to complete the composition space [16, 44].180
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In the flamelet tabulation, normalized values for h and C based on the181

lower and upper limits of the flamelet table, which represents the lowest and182

highest possible temperature for the composition space, are employed [45]:183

Cn =
C − Cmin(h, Z)

Cmax(h, Z)− Cmin(h, Z)
, (1)

184

hn =
h− hmin(Z)

hmax(Z)− hmin(Z)
. (2)

This will also improve the statistical independence between table input pa-185

rameters [42, 46] and enable the possibility of evaluating different presumed186

PDF shapes for all input parameters when coupled to LES.187

When the tabulated chemistry is coupled to LES, modeling of the sub-188

grid filtered/probability density functions (FDF/PDF) is required since only189

Favre-filtered scalars are available for the table access [42]. Closure can be190

obtained through the joint-scalar-PDF in composition space. This involves191

integrating the joint-scalar-PDF over the composition space to obtain the192

filtered quantity of interest as193

Ψ̄ =

∫
Ψ(Z,Cn, hn, . . .) P̃ (Z,Cn, hn, . . .) dZdCndhn . . . , (3)

where the density-weighted PDF P̃ follows from the Favre-averaging proce-194

dure. Since the joint-scalar-PDF is computationally expensive to calculate195

during runtime, presumed PDF closures are commonly employed. The PDF196

has to be parametrized by the moments of the distribution, and it is often197

assumed that the PDF can be represented by its first two moments. Since198

prescribing a feasible presumed PDF for the joint PDF of multiple scalars199

is very challenging, the simplified assumption of statistical independence be-200

tween the scalar dimensions of the joint PDF is often used [14, 18]. As a201
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result, the representation of the joint PDF of multiple scalars in composi-202

tion space can be facilitated to the product of the individual marginal scalar203

PDFs as:204

Ψ̄ =

∫
Ψ(Z,Cn, hn) P̃

(
Z, Z̃, Z̃ ′′2

)
P̃
(
Cn, C̃n, C̃ ′′2

n

)
P̃
(
hn, h̃n, h̃′′2

n

)
dZdCndhn

(4)

Mostly, in tabulated flamelet models used in pulverized fuel combustion, all205

scalars besides the mixture fraction are modeled by a δ function, and the206

sub-grid PDF of the mixture fraction is approximated by top-hat [6, 47] or207

β [4, 14] distribution functions.208

2.3. Error decomposition analysis209

The modeling of unclosed terms in partial differential equations typically210

involves two steps: First, a set of known quantities needs to be specified as211

input parameters for a model, and second, a specific functional form needs212

to be defined to model the unclosed terms by the input parameters [48–50].213

Each of these steps introduces errors that need to be carefully investigated214

in the model assessment process. The error corresponding to the first step215

is known as the irreducible error, and the error corresponding to the second216

step is referred to as the functional error. Typically, the total modeling217

error, which involves both irreducible and functional errors, is calculated by218

the overall difference between quantities of interest calculated by the model219

and the DNS. The quadratic total modeling error over all N data points is220

defined as221

ϵ2tot(ϕ) =
1

N

N∑
i=1

(ϕi,DNS − ϕi,Model)
2 , (5)
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where ϵtot(ϕ) is the average value of the total modeling error for a quantity222

of interest ϕ over all N data points. The general idea of the optimal es-223

timator concept is to determine for a given parameter set Π, the mean of224

a quantity of interest ϕ conditioned on the set of parameters ⟨ϕ | Π⟩ and225

obtain a measure for the scatter of the quantity of interest with respect to226

Π. This is the minimum error possible after choosing the parameters set and227

is called irreducible error. In this study, an artificial neural network (ANN)228

with a single hidden layer is used to calculate the optimal estimator and the229

irreducible error, which is computationally efficient, even when using a large230

number of input parameters [48].231

Using the optimal estimator and the irreducible error concepts, the total232

modeling error can be decomposed into irreducible and functional errors [48],233

in which the functional error corresponds to the performance of the model234

for a given input parameter set235

ϵ2tot(Π) = ϵ2irr(Π) + ϵ2funct(Π), (6)

where Π is a set of known parameters used as input of the model. Formally,236

the irreducible error is given as237

ϵ2irr =
〈
(Qint − ⟨Qint | Π⟩)2

〉
(7)

In the following, irreducible error ϵirr and the error caused by the functional238

form of the model ϵfunct, as defined by equation (6), will be discussed sepa-239

rately for identifying the potential for model improvements.240

2.4. Quantifying preferential concentration/clustering241

When the particles are exposed to turbulence, their trajectory depends242

on the turbulent intensity and particle inertia. This can lead to a local in-243
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crease in the particle number density at specific locations in the field, which244

is known as preferential concentration or clustering [51, 52]. To identify the245

formed clusters, the three-dimensional Voronoi tessellation method is em-246

ployed [53]. In this method, the 3D particle field is discretized by Voronoi247

diagrams created by the half-plane intersection algorithm between each two248

particles in the field. This results in a specific volume around each particle,249

called Voronoi cells, as described in [53]. The size of each Voronoi cell is250

inversely related to the local concentration of the particles in a certain loca-251

tion in the field [54]. After discretizing the domain by the Voronoi cells, the252

clustering limit VC can be obtained by comparing the normalized Voronoi vol-253

ume distribution in the clustered field P (V/V ) with a randomly distributed254

particle field P (VR/V ), in which V in the mean Voronoi cell volume in the255

selected field, which is calculated based on the Voronoi volume around each256

particle as described in [53]. VC can be calculated when P (V/V ) = P (VR/V ).257

A more detailed description of the method can be found in Obligado et al.258

[52] and Monchaux et al. [53]. After performing the Voronoi algorithm as259

shown in Fig. 1a, a particle can be a member of a cluster when the respective260

Voronoi volume around the particle is smaller than the calculated clustering261

limit (VC). As a result, the cluster members can be identified as shown in262

Fig. 1b.263

3. Numerical setup and boundary conditions264

In order to reduce the complexity caused by mean shear forces, it is265

preferred to keep the turbulence fluctuations statistically uniform so that266

all particles are subjected to the same turbulence statistics. Therefore, the267
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(a) (b)

Fig. 1. a) Voronoi tesselation diagram for the 2D slice of the box b) Cluster member

particles filtered by the Voronoi algorithm at the initial time of the clustering.

homogeneous isotropic turbulent (HIT) configuration within a box with pe-268

riodic boundary conditions in all directions is chosen. Due to the absence269

of mean gradients, HIT has no turbulence production, and, as a result, tur-270

bulence decays in time. To investigate the effect of turbulence interactions271

on the ignition and the combustion process, a pre-computed fully developed272

HIT field with a linear forcing in physical space [55] is used as initial con-273

ditions to keep turbulence in a statistically steady state. Simulations were274

performed within a region with the physical size of 12.8mm × 12.8mm ×275

12.8mm with periodic boundary conditions in all directions. The domain276

size is discretized with a three-dimensional cartesian mesh with a resolution277

of ∆x = 50µm. Since the particle clustering effect on ignition is one of the278

main aspects of this study, turbulence characteristics and dispersed phase279

size have been chosen such that particle clustering can be observed. These280

conditions are representative of smaller-scale turbulent fluctuations under281
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practically relevant conditions [7, 26].282

Particle clustering typically occurs when the characteristic time of the283

particles is on the same order as the flow time scale and is defined by the284

Stokes number. For Stokes numbers around unity, particles tend to form285

clusters, resulting in regions almost void of particles [56]. The Stokes number286

defined with the Kolmogorov time scale is given as287

St =
ρprtdprt

2

18ρgη2
. (8)

A forced isotropic turbulent field with Reλ ≃ 30 and the Kolmogorov length288

scale η ≃ 100µm has been chosen. The dispersed phase consists of 10,000289

particles of Colombian coal with dprt = 20µm and Tprt,0 = 300K and with290

apparent density of 700 kg/m3. The coal properties can be found in [5]. Non-291

reactive particles are first randomly distributed in the box filled with air with292

20% oxygen and an initial gas temperature of Tg,0 = 1500K, which is rele-293

vant to practical PCC applications. Based on equation (8), these conditions294

lead to an initial Stokes number of St ≃ 5, for which a clustering behavior295

in particle clouds motion is expected [57]. Finally, the reactive simulation296

starts after particle clusters have fully formed in a non-reactive HIT field297

to investigate the effect of particle clustering on the homogeneous ignition298

process. The employed forced isotropic turbulence ensures maintaining the299

same turbulence statistics during non-reactive and reactive simulations as300

summarized in Appendix A.301

To quantify the ignition process, an ignition criterion needs to be de-302

fined. Typically, in joint numerical-experimental studies, a certain OH rad-303

ical threshold is chosen as an ignition identifier based on OH-LIF measure-304

ments [5, 34]. In the current study, due to non-existing experimental mea-305
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surements for the current complex configuration, the same definition, used in306

previous studies [5, 16] to quantify the ignition process was used to have a re-307

alistic benchmark for the analysis. This definition has been validated against308

the experimentally measured ignition delay time in previous works. As a re-309

sult, the ignition onset is defined as the time when 10% of the maximum OH310

mass fraction during the entire combustion process is reached.311

4. Results and discussion312

In the following sections, first, the physical aspects of the ignition of313

clustering particles in isotropic turbulence and the ignitability condition are314

investigated. Then, the available models and their applicability for the igni-315

tion prediction in the clustering particle clouds are assessed.316

4.1. Ignition process of clustering particles in isotropic turbulence317

Figure 2 shows the evolution of the ignited regions in the computational318

domain over time. As shown in Fig. 2a, various ignition kernels are formed at319

various locations within the field where favorable thermo-chemical conditions320

for ignition exist. This process continues with the ignition of the adjacent321

regions due to the growth and merging of individual ignited regions until the322

whole domain is ignited and a continuous flame is established. The transition323

from the auto-ignition regime to the flame front propagation mode, which324

in this study is referred to as interaction ignition [58], can be quantified by325

investigating the time evolution of the ignited regions in the field as shown326

in Fig. 2.327

Figure 2a also indicates preferential particle concentration, also known as328

particle clustering. To further investigate this observation, Voronoi regions329
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(a) t = 0.46ms

(b) t = 0.5ms

(c) t = 0.48ms

(d) t = 0.55ms

Fig. 2. Snapshots of the ignition process illustrated by the iso-surfaces of the 10% of the

maximum OH mass fraction during the entire combustion process (YOH,max) colored by

heat release. Particles are shown with points colored by particle temperature.
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are introduced to study the effect of particle clustering in the ignition and330

combustion process. The ignition is investigated in each Voronoi region,331

following the definition given in Section 2.4. When particle clusters form332

in the turbulent field, the local particle number density increases at specific333

volumes, and the local gas temperature decreases due to the energy sink334

required for clustered particles heat-up at those locations. Therefore, the335

thermo-chemical conditions are more suitable for ignition in the location336

outside of the clusters, and as a result, the first ignition kernels are observed337

mostly in those regions. This behavior is quantified in Fig. 3 with respect338

to the normalized Voronoi volumes. Figure 3a shows the number of ignited339

cells Nign,cell normalized by the total number of cells in the numerical domain340

Ncell,tot = 2563, where a higher number of ignited points can be observed341

at volumes larger than VC. Also, Fig. 3b shows an overall higher gas-phase342

temperature at volumes larger than VC. Recall that larger Voronoi volumes343

indicate lower local particle number density, which is typically found outside344

of particle clusters.345

After investigating the position of the individually ignited regions, the346

complete transient ignition process shown in Fig. 2 is quantified by calculat-347

ing the number of the ignited regions and their corresponding volumes during348

the ignition process. Fig. 4a shows an increase in the number of auto-ignited349

regions from τauto.ign ≃ 0.46ms until τint.ign ≃ 0.5ms. At this point, no new350

individual ignition kernels are formed. Subsequently, ignition kernels start351

to merge, leading to a decrease in the number of separate ignited regions. Si-352

multaneously, the total volume of the ignited regions starts to expand rapidly353

due to flame propagation. This mode of ignition was recently introduced as354
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Fig. 3. a) Normalized number of the ignited cells and b) gas temperature in normalized

Voronoi volumes at τauto.ign ≃ 0.46ms. Red dotted lines show the minimum and maximum

gas temperature in normalized Voronoi volumes. Volumes larger than VC represent regions

outside of clusters.

interaction ignition [58].355

To compare the correlation between the ignition region and turbulent356

scales, the Kolmogorov length (η) is utilized as a reference length. Figure 4b357

shows the PDF of the ignited region length scale lign normalized by the358

Kolmogorov length for different instances of the ignition process. The ignited359

region length scale is defined by assuming a spherical shape for the ignited360

region lign = (6/π)V
1/3
ign . Ignition kernels with different sizes are indicated by361

the broad PDF shape at t = 0.46ms and t = 0.5ms. After the ignition regions362

merge (t > 0.5ms), the PDFs become narrower, suggesting that the regions363

converge towards a certain size. According to the corresponding distributions364

for t > 0.5ms, the PDF shows a weak bimodal behavior. The prominent peak365

corresponds to the individual kernels and the large value of the PDF for large366

ignition lengths corresponds to the merged kernels. Later in the ignition367
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Fig. 4. a) Evolution of the number of separated ignited regions (Nign) and the total

normalized volume
∑

Vign of the ignited regions. The vertical red, blue, and black dotted

lines show the auto-ignition time, interaction ignition time, and end of the ignition process,

respectively. b) Distribution of the ignited region length scale compared to the Kolmogorov

scale η. The vertical dashed line corresponds to the Kolmogorov length scale.

process, the peak corresponding to the individual kernels shifts to smaller368

ratios, and the PDF value in the far right grows, indicating an increase in369

the number of merged kernels. An interesting observation is that the size370

of the ignited regions consistently remains around one order of magnitude371

larger than the Kolmogorov length scale. This is promoted due to the fact372

that ignition happens primarily outside of the particle clusters, where a more373

uniform volatile-oxidizer mixture with suitable thermo-chemical conditions374

for ignition exists and can be ignited on larger length scales.375

In order to study the suitable thermo-chemical conditions for ignition, the376

mixture fraction and scalar dissipation rate concepts are utilized. Mixture377

fraction indicates the amount of local volatile/oxidizer mixing and the scalar378

dissipation rate represents the local rate of diffusive mixing at the molecu-379
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lar level, and therefore, it is a key element for the modeling of turbulence-380

chemistry interaction. Figure 5 provides insights into the ignition conditions,381

utilizing the scalar dissipation rate and mixture fraction calculated based on382

Bilger’s definition, revealing that the ignition process primarily takes place in383

lean mixtures (Z ∼ 0.02), specifically away from the particles. Considering384

the fixed volatile composition assumption [5] for the released volatiles and385

their global reaction with the oxidizer, the stoichiometric mixture fraction386

is Zst = 0.117. This observation aligns with the findings from the Voronoi387

analysis. Larger Voronoi volumes indicate locations outside of a cluster that388

leads to lower released volatiles and, as a result, a lower amount of fuel in389

ignited regions. Additionally, Fig. 5a shows that at τauto.ign ≃ 0.46ms, some390

locations in the domain, characterized by the same mixture fractions, do not391

undergo ignition. Notably, for a given mixture fraction, regions with smaller392

scalar dissipation rate ignite first.393
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Fig. 5. OH mass fraction and mixture fraction colored by the scalar dissipation at t =

0.46ms and t = 0.5ms. The horizontal black line shows the ignition threshold for OH

mass fraction based on the ignition definition.

As shown in Fig. 5b, at later times during ignition (τint.ign ≃ 0.5ms), lo-394
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cations with higher scalar dissipation rates also ignite at higher mixture frac-395

tions, which are closer to the clusters, where volatiles are released. Also, high396

scalar dissipation rates near the clusters (higher mixture fractions) promote397

mixing, leading to a premixed mixture of volatiles and the oxidizer, which398

facilitates premixed flame propagation from the ignited regions toward the399

clusters.400

The particle clouds ignition process is inherently transient, and the pres-401

ence of particle clustering further affects the reactivity [31]. Therefore, it is402

crucial to carefully evaluate the assumptions made in reduced-order models403

for ignition and combustion to predict important flame characteristics in this404

particular configuration.405

4.2. A priori model assessment of clustering particle clouds in the prediction406

of the ignition process407

In this section, a systematic assessment based on error decomposition is408

used to evaluate the overall performance of the model from different perspec-409

tives. First, the performance of the tabulated chemistry in a flamelet/progress410

variable (FPV) model compared to DNS is studied to quantify the suitability411

of the tabulated thermo-chemical state. Second, the presumed PDF used to412

pre-integrate the table is compared with the filtered DNS dataset to find the413

optimal presumed PDF shapes for each input parameter of the table.414

The reference progress variable is defined as [4]415

Cref =
YCO2

MCO2

+
YCO

MCO

− YO2

MO2

, (9)

where Mi is the molar mass of species i.416
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The total modeling errors are systematically decomposed into the func-417

tional and irreducible errors employing the optimal estimator method de-418

scribed in Section 2.3.419

4.2.1. Assessment of the thermo-chemical states in tabulated chemistry420

In order to have a general overview of the FPV model performance, the421

volume-averaged ⟨Tg⟩ and ⟨ω̇C⟩ in the entire domain at different times during422

ignition and combustion are calculated, according to the model described423

in Section 2.2 and compared with the DNS data. To calculate a volume-424

averaged quantity ⟨ϕ⟩ in the DNS and the FPV model, the following equation425

is used426

⟨ϕ(t)⟩ = 1

N

N∑
i=1

(ϕi(t)) , (10)

where N is the total number of cells in the entire volume. As illustrated in427

Fig. 6, the comparison between the model and reference data shows good428

overall agreement in gas temperature, although increased deviations are ap-429

parent for later times. Comparing the progress variable source term shows430

a shift in the prediction of the FPV model compared to the DNS, which431

indicates later ignition delay time prediction by the model. However, nearly432

the same peak average value of the progress variable source term is observed433

in the FPV model. In order to investigate the differences during the igni-434

tion process, the progress variable source term (ω̇C) is chosen as the quantity435

of interest for modeling particle cloud ignition and combustion processes in436

isotropic turbulence.437

To understand the origin of the deviations in the FPV model from the438

DNS results, the performance of the model inside and outside of the particle439
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Fig. 6. Overall comparison between the DNS data and the FPV model in predicting the

volume-averaged a) gas temperature, and b) progress variable source term at different

times. Vertical dotted lines indicate the start and end of the ignition process based on

Fig. 4a.

clusters is studied in more detail. To this end, two different time instances,440

t = 0.5ms with the maximum number of ignited regions during the ignition441

process and t = 0.65ms, which is at the end of the ignition process, as shown442

in Fig. 4a, are chosen. First, the model parameters chosen to parameter-443

ize the flamelet table are assessed by the optimal estimator method. This444

enables calculating the irreducible errors for different sets of input parame-445

ters for predicting the quantity of interest. To obtain a meaningful value for446

the errors with respect to particle cluster locations, they are normalized by447

the maximum value of the conditionally averaged quantity of interest in the448

normalized Voronoi volumes (V/V ).449

ϵ =

√
ϵ2

max(⟨ Qint | V/V ⟩)
. (11)

Different combinations of mixture fraction, progress variable, and enthalpy,450

as well as the OH mass fraction, as it is one of the most important ignition451
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identifier species, are used to find the best possible set of parameters to452

characterize the composition space.453
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Fig. 7. Irreducible errors of different input parameters in predicting progress variable

source term at a) t = 0.5ms and b) t = 0.65ms. Volumes larger than VC represent regions

outside of clusters.

After comparing the different combinations, Fig. 7 demonstrates that454

the inclusion of the progress variable and enthalpy alongside the mixture455

fraction strongly decreases the overall irreducible error, especially inside the456

clusters at early times, where the errors are highest. It is interesting also457

to note that consideration of enthalpy is not needed if only the chemical458

source term is of interest. Including YOH as an input parameter leads to459

a slight improvement in the overall irreducible error. However, the error460

corresponding to Z,Cn, YOH is still comparable with the error corresponding461

to Z,Cn and Z,Cn, hn. Also, creating a table with OH radical, which can462

perform well in the a posteriori LES, is very challenging, since OH radical463

is not readily available in LES. As a result, in this study, this radical is not464

considered as an additional input parameter.465
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Next, the functional errors are assessed at t = 0.5ms and t = 0.65ms.466

Using the parameters Z, hn, and Cn, as discussed earlier, a flamelet table467

is generated. The quantity of interest from the table are compared with468

the corresponding values from the DNS datasets to calculate the functional469

errors based on equation (5) and (6).470
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Fig. 8. Errors involved in the reference FPV model in comparison with the DNS results

in the prediction of progress variable source term at a) t = 0.5ms and b) t = 0.65ms.

Volumes larger than VC represent regions outside of clusters.

Figure 8 compares the progress variable source term between the flamelet471

table and the DNS. The tabulated flamelet model exhibits certain limitations472

in accurately predicting ω̇C, particularly within the particle clusters.473

Comparing the model performance at two different time instances shows474

that for ω̇C the modeling error is higher at ignition. The increased functional475

error observed during the ignition process primarily occurs within the particle476

clusters, specifically in close proximity to the particles themselves. This477

can be attributed to the limitations of the typically used flamelet tables in478

capturing the particle-chemistry interactions due to the fact that the particle479

effects in the flamelet table are not considered. This limitation is especially480
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prominent in the vicinity of particle clusters, which corresponds to a smaller481

mixing time scale compared to the chemical time scale. In these regions,482

where the volatiles mix with the oxidizer prior to ignition, the flame behavior483

resembles that of a premixed flame, which cannot be accurately captured by484

the non-premixed flamelet approach employed in this study.485

After assessing the reference FPV model’s input parameters and its per-486

formance in predicting the quantity of interest, the effects of changing the487

input parameters, such as excluding enthalpy and altering the progress vari-488

able definition in the model performance, are examined next.489

4.2.2. Effect of heat losses in flamelet tabulation490

In order to investigate the effect of heat losses in the table, a table with491

two input parameters (Z and Cn) is generated. Its performance is compared492

with the reference FPV model (Z, Cn, and hn). From Fig. 9, it is evident493

that including enthalpy in the table primarily affects the predictions.494
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Fig. 9. Effect of enthalpy in the errors of progress variable source term at a) t = 0.5ms

and b) t = 0.65ms. Solid color lines show the functional errors and dashed color lines are

the corresponding irreducible errors. Volumes larger than VC represent regions outside of

clusters.
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The results demonstrate that incorporating enthalpy as an input param-495

eter improves the accuracy inside the clusters, particularly during ignition.496

This suggests that the ignition phase is more sensitive to changes in enthalpy497

compared to later stages of combustion, especially inside the clusters. During498

the ignition phase, due to the particle heat-up process and the higher tem-499

perature gradients between particles and the gas phase, the heat loss effect500

is more dominant than at later times [16].501

4.2.3. Effect of progress variable definition502

In this section, the effect of altering the progress variables definition on503

model performance is investigated. To this end, three different progress vari-504

ables, as defined in Table 1, are compared with the reference definition (Cref)505

in equation (9). These definitions are employed to compare the typically506

used definitions in flamelet tabulated chemistry models [4, 7] for pulverized507

solid fuel combustion and to investigate the effect of removing certain species508

from the progress variable definition.509

Table 1: Different progress variable definitions

C Definition

C1 YCO2 + YCO

C2 YCO2 − YO2

C3 YCO2/MCO2 + YH2O/MH2O − YO2/MO2

Figure 10 shows the effect of progress variable definition on the overall510

model performance. It can be observed that excluding CO or O2 from the511

model significantly amplifies the functional errors of predicting the progress512
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variable source term (ω̇C), indicating that C1 and C2 are not suitable choices513

for representing the progress variable. On the other hand, replacing CO with514

H2O (C3) resulted in an improvement in predicting the quantity of interest,515

particularly within the clusters.516
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Fig. 10. Effect of progress variable definition in the errors of progress variable source

term at a) t = 0.5ms and b) t = 0.65ms. Solid color lines show the functional errors

and dashed color lines are the corresponding irreducible errors. Volumes larger than VC

represent regions outside of clusters.

4.2.4. Assessment of the presumed PDF shapes in comparison with subgrid517

scalar PDF518

In the context of LES, only filtered scalars are transported, which cannot519

be used directly for table access. The unresolved subgrid distribution of the520

transported scalars is often modeled by a presumed-β PDF for the mixture521

fraction Z, whereas the distributions of the remaining scalars are modeled by522

a δ function [1, 14]. These assumptions will be examined in the following by523

employing different presumed PDF shapes for the table input parameters.524

By comparing the results to the DNS data, the suitability of considering525
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subgrid-scale fluctuations can be analyzed.526

In order to evaluate the model performance when coupled to LES, the527

DNS dataset is filtered using a box filter of width ∆f = 8∆x, ensuring528

an averaged resolved energy of about 90% with respect to the DNS field,529

which is a typical value for a well-resolved LES [59]. After filtering, the530

distribution of the input parameters (Z, hn, Cn) from the DNS is examined to531

determine suitable PDF shapes that accurately represent the behavior of each532

input parameter. In Fig. 11, various PDF shapes (δ, β, and Top-hat (TH)533

distributions), which are widely used in the pulverized solid fuel modeling [4,534

6, 22, 47], based on the Favre-averaged mean and variance of the filtered535

dataset are compared with the distribution of the input parameters obtained536

from the DNS dataset at two different time instances within a specific filter537

cell of the DNS field.538

It should be noted that in the context of point-particle DNS, distribut-539

ing the particles’ source term over a specific kernel shape can impact the540

evolution of the mixture fraction PDF. Distributing the source term across541

a Gaussian kernel, a technique applied to better account for finite size ef-542

fects of particles [32, 38, 60] results in a broader source term distribution,543

diminishing peak values on the fuel side. Consequently, both the mean and544

variance of the mixture fraction decrease, affecting the PDF shape. How-545

ever, it is expected that the overall shape of the PDF remains similar, and546

only the width of the distribution would be affected by the distribution of547

the source term compared to fully resolved simulations, which incorporate548

particle boundary layer effects. Incorporating boundary layer effects into the549

present study, as evidenced by Wang et al. [61], would complicate the model550
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assessment procedure and require further investigation using fully resolved551

simulations. However, considering the finite-size particle effects ensures a552

more realistic benchmark for the subgrid scalar PDF assessment.553
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Fig. 11. Comparing different presumed PDF shapes for mixture fraction, normalized

enthalpy, and normalized progress variable with subgrid scalar PDF in an example DNS

filter cell at t = 0.5ms (top row) and t = 0.65ms (bottom row).

Comparing different presumed PDF shapes based on Fig. 11 shows that554

all presumed approaches have difficulties in approximating the DNS distribu-555

tion. Top-hat distributions are symmetrical with respect to the mean and, as556

a result, cannot capture the non-symmetrical DNS, which is originated from557

the particle clustering effects. Mixture fraction distribution shows higher558

probabilities in smaller mixture fractions, which is due to more data points559

outside of clusters. It can also be observed that for the mixture fraction, as560

suggested in the original formulation for single-phase combustion [42], the561

β distribution yields a more accurate distribution than other PDF shapes562

31



compared to the DNS for clustering particle cloud ignition.563

To complement the qualitative investigation of the presumed PDF shapes564

shown in Fig. 11, the errors involved in the model when using presumed PDF565

assumption during clustering particle cloud ignition and combustion is eval-566

uated. Since the selected PDF shapes can be represented by the first two567

moments, meaning mean and variance, incorporating different PDF shapes568

for mixture fraction, progress variable, and enthalpy would require their mean569

and variance as inputs of the model. It should be noted that utilizing higher-570

order moments can lead to a more accurate representation of the DNS distri-571

bution. However, this can lead to a further increase in the table dimensions.572

In order to determine the optimal input sets, including the variances, the573

concept of optimal estimator is employed to calculate the irreducible error574

associated with each set.575
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Fig. 12. Effect of adding the variance of different input parameters in the irreducible error

of filtered progress variable source term at a) t = 0.5ms and b) t = 0.65ms. Volumes

larger than VC represent regions outside a cluster.
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Figure 12 shows the irreducible error for predicting the filtered progress576

variable source term using different sets of input parameters, including vari-577

ances. It can be observed that at ignition, adding the variances to the ref-578

erence Favre-averaged input set (Z̃, C̃n, h̃n) does not improve the results579

very much. This shows that the model is not sensitive to variances of input580

parameters at ignition. The mixture fraction distribution in Fig. 11 shows581

a smaller variance during ignition compared to the end of ignition due to a582

lower total volatile release. Also, considering variances of progress variables583

and enthalpy is not sufficient for the correct prediction of the quantity of584

interest in the filter cells at ignition.585

It should be mentioned that at t = 0.65ms, adding variances to the586

reference input set improves the irreducible error. This improvement in the587

prediction is due to the larger variances (especially Z̃ ′′2) and non-linearity588

of the progress variable source term with respect to input parameters in the589

filter cells.590

After analyzing different input parameter sets and studying the effect of591

PDF shape on irreducible error, it is necessary to investigate the impact of592

including variances in the functional errors for predicting the filtered quantity593

of interest. The non-symmetrical characteristic of the DNS distribution due594

to particle clustering can be better represented by a β-PDF. Therefore, this595

study focuses on investigating the performance of using β-PDF in comparison596

with a δ function and the filtered model results. The δ function corresponds597

to not considering the sub-filter distributions in the model, and the filtered598

model inherently considers the correct sub-filter joint distributions of the599

DNS data without the assumption of presumed PDF shapes.600
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To this end, four different combinations of PDF shapes, as shown in601

Fig. 13, are applied. First, a δ function for all input scalars (3δ) is assumed.602

Then the typical assumption of a β distribution for mixture fraction while603

maintaining a δ function for progress variable and enthalpy (1β) serves as604

the reference model. In addition, the performance of the model is evaluated605

by employing β distribution for mixture fraction and progress variable (2β).606

Finally, a β distribution for all input parameters (3β) is investigated.607
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Fig. 13. Functional errors of filtered progress variable source term at a) t = 0.5ms and

b) t = 0.65ms for different PDF assumptions in the FPV model. Volumes larger than VC

represent regions outside of clusters.

Figure 13 shows the normalized functional errors for ω̇C. These errors are608

calculated based on equations (4), (5), (6), and (11). The functional error for609

each PDF combination is compared with the respective error for the filtered610

FPV model results, which inherently considers the correct sub-filter joint611

distributions of the DNS data.612

Around the ignition phase (t = 0.5 ms), all of the investigated PDF613

shapes exhibit comparable performance to the filtered FPV model results614
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in predicting ω̇C. This finding aligns with the results from Fig. 12, which615

indicate that including variances as additional input parameters does not616

improve the errors. Hence, using the δ function as PDF shape for all input617

parameters can capture the ignition process as well as other models. This618

indicates that the distribution of sub-filters does not significantly affect the619

prediction of the progress variable source term during ignition, and the main620

contribution to the total modeling error is due to the performance of the621

non-premixed flamelet table.622

However, towards the end of the ignition phase (t = 0.65ms), the mixture623

fraction in the subgrid has a larger variance compared to the time of ignition.624

Consequently, it has a more pronounced influence on the PDF shapes, par-625

ticularly within the particle clusters, as shown in Fig. 11. In these regions,626

the reference model 1β shows a better overall performance in predicting ω̇C.627

However, 2β and 3β models show worse predictions, which shows that choos-628

ing the β distributions for progress variable and enthalpy is not a good choice629

for predicting the quantity of interest in clustering particle cloud combustion.630

The performance of different presumed PDF assumptions in predicting631

the quantity of interest is further analyzed in Fig. 14. Here, the prediction632

of ω̇C using three models 3δ, 1β, and 3β is compared with the filtered FPV633

predictions.634

This comparison is chosen to provide further insight into the effect of635

including input parameter distributions in the final prediction of the quantity636

of interest. Similar to the results from Fig. 13, Fig. 14 show that around637

ignition, all presumed PDF shapes show the same performance. However,638

at the end of the ignition process (t = 0.65ms), using the 3δ and 3β model639
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can lead to worse predictions compared to 1β model for higher progress640

variable source terms. This is due to incorrectly assumed PDF shapes at641

these conditions.642

5. Conclusions643

This study presents a comprehensive investigation of modeling the homo-644

geneous ignition in clustering particle clouds in isotropic turbulence. For this645

purpose, a DNS of pulverized coal particles using the point-particle model646

for the dispersed phase and detailed chemical kinetics for the gas phase was647

performed.648

Initially, auto-ignition was found at positions with favorable thermo-649

chemical states, followed by growing and merging the individual ignition650

kernels. It was observed that particle clustering has a significant impact on651

the ignition process. Ignition predominantly occurs in regions outside of the652

clusters, where higher temperatures are present due to reduced energy sink653

associated with particle heating. These ignition locations exhibit a lean mix-654

ture of released volatiles and oxidizer, resulting in lower scalar dissipation655

compared to the cluster locations.656

This study employed a systematic error decomposition approach, utilizing657

the optimal estimator concept, to assess tabulated flamelet models in parti-658

cle clustering conditions. The assessment focused on determining the errors659

associated with the reference flamelet/progress variable (FPV) model inputs660

and evaluating its functional model performance both inside and outside of661

particle clusters. The assessment of the FPV model revealed its good perfor-662

mance in predicting the progress variable source term. However, around the663
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ignition phase, a higher deviation from the prediction by the DNS data was664

observed, particularly for the progress variable source term inside particle665

clusters. This study identified an efficient set of input parameters that yields666

the smallest irreducible errors, consisting of mixture fraction Z, normalized667

progress variable Cn, and enthalpy hn. Not including the enthalpy resulted in668

higher errors, especially during the ignition phase, highlighting the increased669

sensitivity of quantity of interest to enthalpy in the ignition phase. Regard-670

ing the progress variable definition, it was found that including CO2, CO,671

and O2 as the set of parameters showed good performance in predicting the672

quantity of interest. Omitting either CO or O2 led to a significant increase673

in functional modeling errors when predicting the progress variable source674

term. Also, replacing CO with H2O improved the prediction of the progress675

variable source term during the ignition phase, especially inside the clusters.676

The findings reveal that incorporating the variances of the input param-677

eters improves the irreducible errors, especially inside particle clusters, pri-678

marily at the end of the ignition process, where the sub-filter distribution679

of the DNS data exhibits larger variances. In contrast, during the ignition680

onset, when individual kernels with small variances dominate due to particle681

clustering effects on ignition location, a δ function shows a good performance.682

However, in the case of functional errors, the presumed marginal PDF shape683

assumption is prone to errors originating from the shape function. Choosing684

the correct presumed PDF shape that matches the DNS sub-filter distribu-685

tion is challenging and has an important impact on the model’s performance.686
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Appendix A696

The turbulence statistics for the studied isotropic turbulence configura-697

tion during different time instances are briefly summarized in table 2.698

Table 2: Turbulence statistics at different time instances

time [ms] Reλ ReTurb η[m] lt[m] tη[ms] tl[ms] St

0 30.7 141.8 1.04E-04 4.27E-03 4.47E-02 5.33E-01 6.199

0.46 30.9 143.9 9.94E-05 4.13E-03 4.16E-02 4.99E-01 6.207

0.5 30.5 140.1 9.96E-05 4.06E-03 4.27E-02 5.05E-01 6.333

0.55 29.4 129.8 1.01E-04 3.88E-03 4.34E-02 4.94E-01 6.032

0.6 28.5 122.1 1.02E-04 3.76E-03 4.46E-02 4.92E-01 5.775

0.65 27.7 115.2 1.04E-04 3.66E-03 4.48E-02 4.81E-01 5.365

η and tη are the respective Kolmogorov length and time scales, and lt and tl699

correspond to integral length and time scales.700
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