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Review

Beyond prediction error: 25 years of modeling the
associations formed in the insect mushroom body

Barbara Webb
School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom

The insect mushroom body has gained increasing attention as a system in which the computational basis of neural learning

circuits can be unraveled. We now understand in detail the key locations in this circuit where synaptic associations are

formed between sensory patterns and values leading to actions. However, the actual learning rule (or rules) implemented

by neural activity and leading to synaptic change is still an open question. Here, I survey the diversity of answers that have

been offered in computational models of this system over the past decades, including the recurring assumption—in line

with top-down theories of associative learning—that the core function is to reduce prediction error. However, I will

argue, a more bottom-up approach may ultimately reveal a richer algorithmic capacity in this still enigmatic brain neuropil.

Understanding how brains implement learning is crucial to ex-
plain the flexibility of animal behavior. The insect mushroom
body (MB) has attracted increasing research attention as evidence
accumulates that modulation of connections in this circuit forms
a fundamental basis of learned associations (see papers in this is-
sue). But learned associations betweenwhat? InWebb (2013), I dis-
cussed the plurality of interpretations possible when an animal is
observed to alter its behavior to a stimulus as a result of pairing
that stimulus with innately rewarding or punishing events (e.g.,
a fly showing increased attraction or aversion to a previously neu-
tral odor depending on whether it has been paired with sugar or
electric shock). Does this behavior mean there is now a neural con-
nection from odor sensing to sugar sensing, resulting in the same
behavior to both? Or from odor sensing directly to the behavior
caused by sugar? As outlined in a crucial paper by Rescorla
(1988), neither of these putative associations captures the observed
phenomenon, as the behavior to the odor (typically, reorientation
in a concentration gradient) is not identical to that displayed to
sugar or shock (respectively, ingestion or freezing). Alternatively,
is the association formed between odor and a particular behavior
toward odor (e.g., either positive or negative chemotaxis, as appro-
priate to whether the odor predicts reward or punishment)? Or
more abstractly, does the odor become associated with a positive
or negative predicted value that can flexibly influence behavior ac-
cording to the current needs and situation of the animal? The latter
seems to be emerging as the dominant interpretation.

Although there may be reasons (indeed, some are already
raised in Rescorla 1988) to consider the associated prediction as
richer than a single dimension of value, for the purposes of the fol-
lowing discussion, I will assume a key question to answer in any
model of the MB is the following: How does MB circuitry support
the establishment of neural connections that encode the associa-
tion of a sensory pattern to its predicted value, based on the ani-
mal’s experience of innately valuable events being contingent on
the occurrence of the sensory pattern? Not surprisingly, formulat-
ing the question in this way leads to an obvious theoretical answer,
most commonly referred to in the form given by Rescorla and
Wagner (1972): An animal will alter its prediction of the value of
a sensory pattern proportionally to the error it perceives between

the predicted value and the actual value experienced. This assump-
tion remains the most widely accepted and influential account of
associative learning aswell as lying at the heart ofmodernmachine
learning.

Several key insights and a range of behavioral results follow
from this prediction error (PE) formulation. First, contingency
rather than simple contiguity is the key to the association: If rein-
forcement co-occurs with a stimulus equally often but in a random
rather than a consistentway, the associationwill not be formed (or,
more precisely, this will result in increases and decreases in associ-
ative strength that cancel out). Second, if there is a contingent re-
lationship, the associative strength will initially increase rapidly
but the rate of increase will slow as the prediction asymptotically
approaches the value of the reinforcer. If the reinforcer is subse-
quently increased in value, the association strength should under-
go a further increase. Similarly, if the reinforcer is omitted, there
will be a negative error that should weaken the strength of the as-
sociation. Note that in this formulation, the occurrence of a rein-
forcer without the stimulus should not alter the value associated
with that stimulus.

An originalmotivation for this influential account of the asso-
ciative learning process was that it explained the phenomenon of
blocking (Kamin 1969). If one sensory pattern already predicts a re-
ward, then the presentation of a second stimulus along with the
first, followed by a reward, should not produce any positive associ-
ation of value to the second stimulus, as there is no error in the pre-
diction. One reason for some skepticism over the applicability of
PE to insect learning has been the lack of robust demonstration
of blocking in insects. Smith and Cobey (1994) reported blocking
in bees for combined odor presentations, but the phenomenon
was not clearly reproduced under careful controls (Gerber and
Smith 1998; Gerber and Ullrich 1999); similar unimodal experi-
ments in flies failed to show a blocking phenomenon (Young
et al. 2011), but cross-modal blocking has been shown in crickets
(Terao et al. 2015; Terao and Mizunami 2017). However, it is im-
portant to note that whether a PE process should produce blocking
in any particular circumstance depends on assumptions about how
the simultaneous presentation of two stimuli together is actually
experienced or encoded by the animal. For example, presenting a
combination of two odors might be experienced as a novel new
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odor or at least modify the perception of the previously learned
component sufficiently to modulate the prediction.

The plausibility of PE as a fundamental insight into biological
learning was famously strengthened by the observation that dopa-
minergic neurons (DANs) in the monkey midbrain appeared to
have activity patterns that matched the PE during learning tasks
(Schultz et al. 1993). Specifically, it was observed that their re-
sponse to the occurrence of reward was reduced as the animal
learned that reward was predicted by a sensory cue, and indeed
the onset of activity was now associated with the occurrence of
the predictive cue. Particularly striking was that the omission of
the reward after the cue resulted in a reduction of dopaminergic ac-
tivity below baseline, matching the “negative prediction error” of
the theoretical account.

The following survey of computational models of learning in
the MB focuses on the ebb and flow of PE as a guiding principle in
interpreting the circuit function. For the most part, I will discuss
the “insect MB” generically, rather than distinguish between spe-
cies—although theremay be important differences, these are large-
ly unaddressed in computational modeling to date. The basic
features common to all models (see Fig. 1, top) are the assumption
that sensory inputs are relayed to the calyx of the MB and are en-
coded by a pattern of activity in the Kenyon cells (KCs); that KC
outputs converge, in the lobes, on a small number of mushroom
body output neurons (MBONs) that will ultimately affect behavior;
and that the synapses between KCs and MBONs are plastic. Most
models additionally assume there is further MB input, influencing
the plasticity, from neurons signaling reinforcement, usually in
the form of dopamine (DANs). My aim here is not to examine
this neural architecture in detail (see an excellent recent review
in Modi et al. 2020, or other papers in this issue) but rather focus
specifically on the hypothesized interaction of inputs, KCs,
MBONs, DANs, and outputs that have been proposed and evaluat-
ed in computational models to date (for clarity, I will use the KC/
DAN/MBON terminology throughout even though different terms
might have been used originally in the papers discussed).

In particular, I will focus on the different learning rules that
have been implemented and their contrasting assumptions on
how the relative activity of KC,MBON, andDAN should affect syn-
aptic changes between them (Fig. 1, bottom). Consequently, I will
not discuss models that focus primarily on how sensory stimuli are
encoded by KCs, or on other salient features of this circuit, which
may nevertheless be important in ultimately understanding how
and what it computes. The survey is intended to be representative,
rather than comprehensive; and provides largely qualitative rather
than strict algorithmic descriptions (see also Table 1). Nevertheless,
it is hoped it will provide clear insight into some key computation-
al questions that remain unresolved, andmotivate new approaches
(both in modeling and neurobiology) to resolve them.

Early models

The first computational model claiming direct inspiration from
neural data from the MB was presented by Montague et al.
(1995). Specifically, it drew on reports from Hammer (1993) and
Hammer and Menzel (1995) of the response properties of the
VUMmx1 neuron in the bee. This octopaminergic neuron located
in the suboesophageal ganglion and projecting to the antennal
lobe, lateral protocerebrum, and MB calyx shows a strong and pro-
longed response to sucrose; depolarization of this neuron can be
substituted for sucrose in odor conditioning experiments; and
the response of VUMmx1 to an odor is differentially increased after
pairing of that odor with sucrose. However, althoughHammer and
Menzel (1995) and Hammer (1997) both suggest that MB output
could feed back to VUMmx1 to reduce its response to predicted re-

ward, such a reduction appears to be a hypothesis rather than a
quantified observation (one example trace, not clearly linked to a
published source, is presented in a later review paper [Menzel
2001]).

In actual implementation, the model in Montague et al.
(1995) does not provide an explicit parallel to known structures
in the MB other than assuming the MB provides a convergence
zone for sensory input (in this case visual) and reinforcement sig-
nals (based on taste or ingestion of nectar), and that its output
should bias orienting actions (here a decision to continue straight
or randomly reorient). For example, it does not effectively distin-
guish whether synaptic change could be taking place in the calyx
(input to KCs, the target of the VUMmx1) or lobes (output of
KCs onto MBONs, considered the key locus for learning in most
subsequent models). Indeed, with respect to modeling learning,
it is essentially equivalent to several earlier simulations, in which
the Rescorla–Wagner rule was used to match data from learning
paradigms in bees (Couvillon and Bitterman 1985; Greggers and
Menzel 1993). In these earlier studies, it was noted that somemod-
ifications to the rulewere needed to account for the data, including

Figure 1. Key features of the mushroom body (MB) and proposed learn-
ing rules. (Top) Sensory input is carried by projection neurons (PNs) which
make sparse connections to MB Kenyon cells (KCs). KC axons bifurcate
and connect to a small number of MB output neurons (MBONs).
Reward and punishment signals are carried by dopaminergic neurons
(DANs), which influence the plastic KC–MBON connections. MBONs
also connect (selectively) to each other and in feedback loops (direct
and indirect) to DANs; these connections can be excitatory or inhibitory.
Additional features not illustrated include neurons conveying global inhib-
itory feedback from the lobes to the calyx, connections between KCs, and
direct connections from KCs to DANs and from DANs to MBONs. (Bottom)
Four broad classes of learning mechanisms have been proposed in the
models discussed in the text (see also Table 1): Hebbian, in which simulta-
neous KC and MBON activation strengthens the synapse between them
(this might assume that the MBON’s initial activation is caused by direct
input from a DAN); Kandelian, in which DAN activation releases a neuro-
modulator that strengthens the active KC synapses onto MBONs; three-
factor, in which Hebbian learning is gated by DAN activation; and predic-
tion error, in which Kandelian learning is modulated by negative feedback
from MBON to DAN (note that if coincidence of KC–DAN activity is
assumed to depress the synapse, then “negative feedback” would be im-
plemented by an excitatory connection from MBON to DAN).
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Table 1. Comparison of a subset of mushroom body (MB) models discussed in the text

Model
reference # of MBONs # of DANs

KC–MBON weight change
Neural
model Task(s) used in evaluationFacilitate Depress

Montague et al.
(1995)

One One Δwt α kt−1(dt−mt−1)
a Linear units Foraging in a field of flowers, k is the visual

input, m is the probability to change
direction, and d is the nectar

Huerta et al.
(2004)

Multiple,
winner-take-all
circuit

None wt+1 = 1 with
probability P
if kt=1 and
mt>0

wt+1 = 0 with
probability P if kt
=0 and mt>0

McCulloch–
Pittsb

Sparse input code k, output m is the
classification

Huerta and
Nowotny
(2009)

Multiple One As for Huerta
et al. (2004)
but gated by
dt

As for Huerta et al.
(2004) but gated
by dt

McCulloch–
Pitts

Handwritten digit image for k, m is the
identification, and d is the correct
classification

Balkenius et al.
(2008)

One One Δwt= kt(dt−mt)
c,

normalized
Δwt<0 if kt=0,
dt>0

Binary KC,
linear
MBON

k encodes odor/color identity, d is the
reward, and m is the choice probability

Wessnitzer et al.
(2007)

Two, dt activates
correct MBON

None STDP: Δwt α tk− tm, where tk or tm are
the spike times of the KC or
MBON, respectively, and there is
constant slow decay

Spiking
(integrate
and fire)

Simple target orientation: k is the visual
field, m is the movement direction, and d
is an innate response

Smith et al.
(2008)

Multiple One Δwt α ktdt
d Gradual decay,

counteracted by
retrograde signal
mt

Spiking
(integrate
and fire)

Sparse input code k, output m is the
classification, and d is the reward

Hausler et al.
(2011)

Multiple,
winner-take-all
circuit

None Δwt>0 if ktmt>
0, for correct
MBON

Δwt<0 if ktmt>0,
for wrong MBON

McCulloch–
Pitts

Sparse input code k,e output m is the
classification

Wessnitzer et al.
(2012)

One One Δwt α tk− tm, if dt>0, where tk or tm
are the spike times of the KC or
MBON, respectively

Spiking,
Izhikevich
(2007)

Olfactory lobe model to sparsely activate k,
m is the learned value, and d is the
punishmentf

Peng and
Chittka
(2017)

Two, positive and
negative
valence

Two, of
opposing
valence to
MBON

No recovery
mechanism

Δwt<0 for active kt,
if dt>0

Binary KC,
linear
MBON

Input projected to sparse code k,g m is the
learned value, and d is the reward/
punishment

Cope et al.
(2018)

Multiple One Δwt>0 if ktmt>
0 and dt>0

Δwt<0 if ktmt>0
and dt=0

Rectified
linear units

Learning of same/difference distinction, c.f.
Giurfa et al. (2001), sparse input code k,h

m is the go/no-go decision, and d is the
reward

Eschbach et al.
(2020)

Multiplei Multiple Δwt α Dtkt− Ktdt, where Dt and Kt are
the low-pass filtered dt and kt, this
results in depression if kt precedes
dt, and facilitation if dt precedes kt

Rectified
linear units

Sparse input code k, collective output of m
is the value, and d is the reward/
punishment + feedback

Jiang and
Litwin-Kumar
(2021)

20j 20 (one per
MBON)

As for Eschbach et al. (2020), also
considered a version with an extra
recovery term Δwt>0 if dt>0

Rectified
linear units

Sparse input pattern k, m is the learned
value, or novelty, or controls agent
moving in gradient

Bennett et al.
(2021)

Two, positive and
negative
valence

Two,k of
opposing
valence to
MBON

Recover when kt
>0 and dt=0

Δwt α kt(dt+mt−1) Rate-based Sparse input code k, collective output of m
is the value, and d is the reward/
punishment + KC input

Springer and
Nawrot
(2021)

Fourl Twol Nonem Δwt α kt(dt+mt−1) Spiking
(integrate
and fire)

Sparse input code k, collective output of m
is the value, and d is reward/punishment

Zhao et al.
(2021)

Onen Onen Δwt α kt(dt−mt−1)
n Linear units k is the odor presence, m is the escape

probability, and d is the shock value
Gkanias et al.
(2022)

Sixo Sixo Δwt α dt(kt−wk), where wk is a fixed
recovery value for the synapse, and
different DANs depress or facilitate,
i.e., produce dt>0 or dt<0

Rate-based
(linear)

Sparse input pattern k, punishment d, m
compared to calcium imaging, and m
controls agent moving in gradient

The learning rule leading to a change in synaptic strength w at time t, denoted Δwt, is indicated qualitatively as proportional (or having a positive or negative
sign) in relation to the activation level at time t of KCs, kt, MBONs, mt, and DANs, dt. The models are broadly grouped (although some details of the learning rules
can differ, see text or original papers) into those utilizing (1) Hebbian learning (pink), in which the weight change depends on coactivation of KCs (kt) and
MBONs (mt); (2) Kandelian learning (green), in which the weight change depends on coactivation of KCs (kt) and DANs (dt); (3) three-factor learning (yellow), in
which the weight change depends on coactivation of KCs (kt) and MBONs (mt), but is gated by the reinforcing signal from the DANs (dt); or (4) prediction error
(blue), in which weight change (for active KCs, kt>0) depends on the difference between the MBON output (mt−1) and reinforcer input (dt) (see also Fig. 1).
(KC) Kenyon cell, (DAN) dopaminergic neuron, (MBON) mushroom body output neuron, (STDP) spike timing-dependent plasticity.
aIn the agent implementation, weight changes are also gated by dt>0.
bReimplemented using spiking neurons in Nowotny et al. (2005).
cThe use of this rule for facilitation only, and the normalization process, differs from standard PE.
dAlso included a form of prediction error by having dt inhibited by mt−1.
eSome KCs are activated (via calyx microcircuit) by inactivity of PNs.
fIn Ardin et al. (2016), visual input from a simulated ant activates k, m is the familiarity to select direction, and d is the progress toward the goal.
gAlso has three-factor plasticity at input to KC, with Δwt>0 for reward, Δwt<0 for punishment.
hAdds an accommodation response in KC and feedforward collective inhibition of MBONs.
iBased on larval connectome, specifically including feedback connections from MBONs to DANs.
jMBON connections via feedback neurons to MBONs and DANs are set using an optimization process.
kDANs also get direct input from KCs, and various MBON/DAN connections are explored.
lNeurons and connections (including MBON–MBON and MBON–DAN) are based on the connectome.
mIn Juergensen et al. (2024) a similar model has recovery when mt> 0.
nExtended with subsystems for positive and negative valence, and flipped sign for depression.
oNeurons and connections (including MBON–MBON and MBON–DAN) are based on the connectome.
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differential learning rate parameters for positive andnegative PEs, a
nonlinear function from predicted value to behavioral choice, and
the inclusion of both short- and long-term memory factors.

Nevertheless, the model presented in Montague et al. (1995)
raises some interesting issues that are still relevant to more recent
models. One is the question of how to interpret the output of a
neural model. Many subsequent models assume that the activity
of simulated MBONs can be directly compared to the learning in-
dex produced in experimental paradigms involvingmultiple direc-
tional choices over time by multiple individual animals (e.g.,
Wessnitzer et al. 2012; Peng and Chittka 2017; Bennett et al.
2021). Others argue that the circuit needs to be embedded in a
behavioral simulation to really understand how it affects observed
outcomes in animal experiments (e.g., Helgadottir et al. 2013;
Jiang and Litwin-Kumar 2021; Gkanias et al. 2022). In Montague
et al. (1995), they suggest that the simulated bee provides useful in-
sight into how the “structure of the environment played an impor-
tant role in shaping [its] behavioral decisions.”

A second issue is whether the output of the MB circuit is con-
sidered as a monolithic signal (using either just one MBON, or as-
suming the balance of activity across MBONs represents value or
causes behavior) or as supporting multiple, potentially indepen-
dent associations (e.g., one MBON encoding the association of
odors with reward, and anotherMBON of odors with punishment,
or even more fine-scale category distinctions for individual
MBONs). In Montague et al. (1995), there is a single output, which
effectively sidesteps the issue of how to make the alteration of KC
activity selective in its effect on different MBONs. This is relevant
to the issue of calyx versus lobe as the site of learning. Although
there may indeed be adaptive processes in the calyx that change
the responsiveness of KCs to rewarded or punished odors, these ef-
fects would be relayed equivalently to all MBONs to which those
KCs connect.

A final issue is a terminological one. The learning rule in
Montague et al. (1995) is described as an implementationof “predic-
tive Hebbian learning,” following the approach in Sutton and Barto
(1981). Hebb’s rule specifies that a change in the strength (or
“weight”) of a synaptic connection between two neurons depends
on the correlated activity of the respective pre- and postsynaptic
neurons (and no other factor: “neurons that fire together wire
together”). As presented, the rule in Montague et al. (1995) is
Hebbian in the sense that the weights between the sensory neurons
and the output neuron P (which also receives the reward as input)
are altered based on their joint activity; however (to obtain a PE sig-
nal), P’s activity depends not just on its current inputs (reward plus
weighted sensory inputs) but on thedifference of this value fromthe
“prediction”made by theweighted sensory inputs alone on the pre-
vious time step. This inherently implies some additional factor is in-
volved to enable the appropriate comparison to occur. That is, if
neurons aremodeled as single compartments (as is the case for near-
ly all models discussed below) such that their output activity is a
function of the sum of their weighted inputs, then a simple correla-
tion between the activity of two connected neurons cannot provide
sufficient information to derive a PE signal to guide a change in syn-
aptic strength between them. On the other hand, it is possible in
more complex neural models to devise mechanisms of interaction
of dendritic activity traces, or backpropagating spikes, etc. to create
such a signal (e.g., Mikulasch et al. 2023). However, as will be dis-
cussed further below, the most recent “prediction error” encoding
models of the MB do not take this form, but instead suggest an ex-
ternal circuit motif (in practice, involving the DAN, although it is
not essential that this signal is neuromodulatory) to perform the
comparison of predicted to expected reward. As such, these models
are (for themost part) no longer Hebbian, because the activity of the
postsynaptic MBON does not (directly) enter into the learning rule
that changes the weight of its input from a specific presynaptic KC.

Hebbian learning

Perhaps surprisingly, the subsequent generation of computational
MBmodels moved away from a PE framework and instead focused
on theMB as a classification system, explicitly addressing the selec-
tive strengthening of KC inputs to particular MBONs. Hebbian as-
sociation was taken to be the key mechanism, in a particular form:
It was assumed that the coactivation of a sparse set of KCs with a
specific MBON would result in a strengthening of the connection
between them. This approach was motivated at least in part from
the demonstration that in the locust MB, spike timing–dependent
plasticity (STDP) could be observed between KCs andMBONs (Cas-
senaer and Laurent 2007). For example, inWessnitzer et al. (2007),
simple visual pattern learning is explored in a spikingnetworkwith
sparsely activated KCs altering, through STDP, the weight of their
connection onto two MBONs. The relevant MBON was caused to
be spiking in the relevant temporal relation to the KCs by being ac-
tivated directly by an innate reflex pathway to avoid punishment.
Note that in contrast to PE, a Hebbian learning rule provides no im-
plicit asymptote for the synapse strength. As a consequence,
this model (and many subsequent ones) assumed that synaptic
strength eventually saturates, beyondwhich no further change oc-
curs (alternatively, if using an “anti-Hebbian” rule, in which syn-
apse strength decreases when neurons fire together, there is a
natural limit of zero effectiveness). Synapses in this model could
be weakened either through uncorrelated KC–MBON firing (the
negative part of STDP) or a slow constant decay producing a “for-
getting” process.

In fact, an earlier MBmodel from Huerta et al. (2004) embod-
ied a similar learning principle in a more abstracted form. Using
McCulloch–Pitts neurons (i.e., units that compare the sum of their
inputs to a threshold and output a 1 or 0) and binary KC–MBON
synapses, it is also assumed that input patterns are projected as a
random sparse encoding in KCs, and a Hebbian association to
MBONs is formed. In this case, the rule is that KC–MBON synapses
are switched from 0 to 1 with a certain probability when a KC and
MBON are simultaneously active, and to zero with a different
probability when the MBON is active without the KC. A process
of competition between MBONs (lateral inhibition creating a
winner-take-all circuit) leads to one particularMBONbecoming as-
sociated with each class of similar input patterns. It is demonstrat-
ed that this is sufficient for the classification of random patterns
with different degrees of overlap and argued that the circuit is func-
tionally analogous to the computation in a support vector ma-
chine (Burges 1998). This model architecture was implemented
in a spiking network form inNowotny et al. (2005) and used to pre-
dict an upper limit for the number of odor classes theMB could dis-
criminate relative to the number and connectivity of neurons. A
variant on the (nonspiking) model (Muezzinoglu et al. 2008)
used a supervised learning approach in which the “correct”
MBON is directly activated, similar to Wessnitzer et al. (2007)
above.

In Hausler et al. (2011), synapses for active KCs are altered
only for the strongest responding MBON, with the sign of the
weight change modulated in a supervised fashion (i.e., weights of
active KCs increased if this was the “correct” MBON output, and
decreased if it was “incorrect”). In this investigation, it was shown
to be necessary to also include calyx microcircuits such that some
KCs would signal when a PN was not active to be able to separate
stimulus classes that were not separable on the identity diagonal.

Kandelian learning

An alternative “Kandelian” learning rule was proposed in the MB
model presented in Smith et al. (2008), following insights into
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synaptic plasticity mechanisms underlying classical conditioning
in Aplysia (Hawkins et al. 1983; Carew et al. 1984). This was moti-
vated by the increasing body of evidence (beautifully synthesized
inHeisenberg 2003) thatmemory formation in theMBwas crucial-
ly dependent on the coincidence of KC activity and neuromodula-
tor (specifically dopamine) release and could still occur in the
absence of MBON activation (Dubnau et al. 2001; McGuire et al.
2001; Schwaerzel et al. 2003). The model in Smith et al. (2008)
used a single DAN that released a neuromodulator in response to
a reward and produced short-term facilitation of the connection
of any active KCs to MBONs, irrespective of MBON activity.
However, long-term consolidation in this model did depend on
MBON activity: It was assumed a retrograde signal would change
the baseline strength (i.e., the value toward which it decays follow-
ing short-term facilitation) of any KC synapse with currently facil-
itated connections to that MBON. This allows, over time, for
selective association of different patterns to different MBONs. In
fact, this mechanism could set up a positive feedback loop that
could further strengthen selected synapses even in the absence of
the neuromodulator. This model also included an inhibitory feed-
back fromMBONs to the DAN, effectively forming a PE circuit that
would limit further learning for patterns already associatedwith an
MBON output.

Another non-Hebbian learning rule was explored in a more
abstracted model of conditioning in hawkmoths (Balkenius et al.
2008). Here, it was assumed that when a reward occurs, active
KCs will have synapses strengthened (toward an asymptote set
by reward strength) and also that inactive KCs will simultaneously
have synapses weakened (by a constant amount) such that the
MBON forms a “template” of the rewarded pattern. Note this mod-
el did not address the issue of selecting a specific MBON to allow
different templates to form.

Helgadottir et al. (2013) describe a “reward-modulated
Hebbian plasticity,”whichmultiplies a reward signal with an eligi-
bility trace following spikes in KCs to alter their synaptic weight
onto MBONs. The spiking network is implemented on a robot
that learns to approach a color input associated with a reward. It
is not fully clear if the implemented rule is in fact meant to repre-
sent a (non-Hebbian) Kandelian mechanism (i.e., the release of
neurotransmitter fromaDANmodulating active KC synapses inde-
pendently of MBON activity) or whether it is assumed the reward
signal is activating the MBON—hence, a Hebbian rule similar to
that described above for Wessnitzer et al. (2007). This confusion
—using “Hebbian” to describe a change in KC–MBON synapses
caused by the simultaneous firing of DAN and KC, independently
of MBON activity—remains a common one in more recent papers
and can obscure important differences between models.

It is relevant to note that in the models discussed so far (and
several that follow), it was assumed that associative learning in
the MB principally involves a facilitation of KC–MBON synapses
from initially weak connections. However, direct evidence was
building that paired activation of DANs and KCs (or more specifi-
cally, DAN activation following KC activation) produces synaptic
depression, such that later presentation of the same stimulus, acti-
vating the same KCs, will produce a weaker output from the corre-
sponding MBONs (Séjourné et al. 2011; Cohn et al. 2015). Later
models that mimic this effect often describe it as an “anti-
Hebbian” learning rule but as above, this is misleading if the activ-
ity of the postsynaptic MBON has no direct influence on the
synaptic change. Considered in purely computational terms, po-
tentiation versus depression of the synapse does notmake a critical
difference to the models discussed here, which are sufficiently ab-
stract that a simple change in the sign of the learning rule, and
some corresponding adjustments in positive or negative effects
on behavior or feedback, can produce equivalent phenomenolog-
ical results.

Three-factor models

Although described as Hebbian, the learning rule used in
Montague et al. (1995) in practice included an additional term
(not shown in the equations) that gated any synaptic change to oc-
cur only when the simulated bee was in contact with a flower. A
gating signal for the occurrence of learning was later (Huerta and
Nowotny 2009) added to the Hebbian MB model described in
Huerta et al. (2004) when it was used to perform the classification
task of handwritten digit recognition (a standard benchmark for
pattern classification). That is, in Huerta and Nowotny (2009), a
particular KC–MBON connection is strengthened, when both are
active, only if the “correct” MBON has been activated, with this
modulation assumed to be carried by a reinforcing signal. In
Bazhenov et al. (2013), using a similar architecture to Huerta
et al. (2004) and Huerta and Nowotny (2009), unsupervised
Hebbian learning (strengthened connections when KC and
MBON are active, weakened if KC is active without MBON; al-
though note the conditions for weakening connections appear to
differ from Huerta et al. 2004) is combined with supervised learn-
ing inwhich KC–MBON synapses are alteredwhen reward/punish-
ment occurs, with increase/decrease dependent on whether the
respective MBON promotes a positive or negative response to the
stimulus. In Cope et al. (2018), a related model is extended to in-
clude an accommodation process in KCs (reduced response to rep-
etition of the same stimulus) and a feedforward collective
inhibition signal from KCs to MBONs to account for the reported
ability of bees to learn to distinguish “same” and “different” (in
this case, repeat vs. novelty of successive stimuli) as an abstract
concept (Giurfa et al. 2001). This model used an explicit three-
factor rule in which simultaneous activation of KC and MBON is
required for weight change and the sign of the change depends
on the occurrence of reward or not.

The combination of new evidence that the KC–MBON STDP
observed in locusts is gated or modulated by the activity of dopa-
mine neurons (Cassenaer and Laurent 2012) with theoretical de-
velopments (Izhikevich 2007) motivated more explicit models of
how a three-factor rule might operate in the MB. Izhikevich
(2007) had proposed that a neuromodulatory reward signal was
necessary to consolidate synaptic changes tagged by STDP. The
MB circuit modeled in Wessnitzer et al. (2012) used only one
MBON to which all KCs were connected and explicitly included
a DAN assumed to respond to reinforcement. As in previous mod-
els, odor patterns produced sparse activation of the KC layer. KCs
that spiked before the MBON (hence, likely produced the MBON
response) had their synapse onto the MBON tagged with an expo-
nentially decreasing signal. The subsequent occurrence of DAN ac-
tivation would then strengthen KC synapses proportionally to the
value of their tag.

This model, developed to explain olfactory conditioning par-
adigms (including nonelemental learning, in which the value of
combinations of stimuli may differ in sign from the sum of their
individual values), was also shown to be directly adaptable to a vi-
sual learning scenario that can account for route following in nav-
igating insects (Ardin et al. 2016). This work built upon the
hypothesis that navigating insects store memories of viewpoint-
dependent vistas, and can subsequently use simple matching of
the current visual input to these memories to determine a familiar
view and hence a direction in which to proceed (Baddeley et al.
2012). Using views experienced along a route to the nest to pro-
duce sparse KC patterns, and a singleMBONoutput as a familiarity
signal, changing theweight of active KC synapses onto thatMBON
was shown to be sufficient to support navigation behavior. In prac-
tice, it was also shown that if a single output neuron is used, then
the learning rule could be simplified to a binary change in connec-
tivity of activated KCs to the MBON whenever a memory needs to
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be stored (e.g., signaled by DAN activity), effectively reducing this
to the basic Kandelian mechanism described in the previous
section.

Peng and Chittka (2017) use such a Kandelian form of the
learning rule for KC–MBON connections in a bee-inspiredMBmod-
el, but assume the existence of two DANS (for reward and punish-
ment) that modulate exclusively the connections to one of two
MBONs to independently encode appetitive and aversivememories.
They also assume (in line with the emerging biological evidence
mentioned above) that simultaneous KC–DAN activity results in
synaptic depression rather than potentiation. The model is further
extended by adding three-factor plasticity at the input-KC connec-
tions, which they argue is necessary to reproduce certain features
seen in bee learning experiments, and,more generally, can enhance
generalization. In Delahunt et al. (2018), a model of the olfactory
lobe and MB calibrated to moth data uses a Hebbian learning rule
for both input-KC and KC–MBON connections, gated by a reward
signal indicated by widespread octopamine release.

Faghihi et al. (2017) also present a model in which dopamine
modulates a (positive) weight change for coactive KC–MBON con-
nections. They add a retrograde signal inspired by nitric oxide (NO)
which is emitted by MBON activity and affects the coupling
strength of input connections to KCs. In a simulated fly, they dem-
onstrate this can support second-order conditioning.

A return to prediction error

The previous models, although reflecting more closely some neu-
robiological details, in general did not include a number of increas-
ingly salient features of the MB circuit. Somemodels (such as Peng
and Chittka 2017) started to reflect the lobe and compartment
structure by implementing separate signaling pathways for reward
and punishment (DANs signaling different valence) linked to spe-
cific output units producing, respectively, aversion or attraction
(MBONs of opposite valence). However, the full compartmental
structure with multiple such pairings, each potentially with differ-
ent learning properties (Aso et al. 2014; Hige et al. 2015; Aso and
Rubin 2016; Takemura et al. 2017), had not been represented in
models up to this point. Another crucial feature, also previously ne-
glected inmostmodels, is the extent of feedback connections from
MBONs to DANs. Such feedback, allowing MBON activity to mod-
ulate the learning signal, had been anticipated in early discussions
of the VUMmx1 neuron (Hammer and Menzel 1995; Hammer
1997) and in some early models (Smith et al. 2008) and was explic-
itly raised again as a potential substrate for PE in Terao et al. (2015)
to account for blocking effects observed in cricket experiments.
Several recent models have now explored this idea in more detail.

Eschbach et al. (2020) present original data for the feedback
circuits in the larval brain, showing that DANs could receive
>50% of their total dendritic input from direct or indirect feedback
pathways from MBONs. Feedback motifs include within- and
cross-compartment feedback, sometimes integrating inhibitory
and excitatory inputs from compartments of opposing valence,
and activation of feedback neurons is shown to be able to drive
learning in a similar way to direct activation of DANs. A model
was constructed by using the connectome data to define themodel
structure and then tuning it to perform several conditioning tasks.
This used a plasticity rule based on the level of dopamine and activ-
ity of KC such that synapses are depressed if KC activity precedes
DAN activity and increased if vice versa. The outcome produced
a variety of DAN responses in the simulation, some, but not all,
of which resembled PE (e.g., by showing a reduction in response
when an expected reinforcer was omitted).

Bennett et al. (2021) explore what connectionmotifs exist (or
might be predicted) in the KC–DAN–MBON system to support pre-

cise PE—that is, to ensure that (collective) MBON output accurate-
ly predicts the expected reinforcement and that (collective) DAN
activity reflects the difference between this prediction and the rein-
forcement received. The compartmental structure is represented by
two DANs (D+ and D−) that depress the KC connections to two
MBONS (M− andM+) of opposite valence; themodel also includes
direct (fixed) KC–DAN connections and excitatory feedback from
MBONs to their respective DANs. Thus DAN responses to KC pat-
terns paired with reinforcement are reduced proportionally to
the depression they have so far induced in the relevant KC–
MBON synapses (negative feedback). They note that for this circuit
to function, it requires an additional mechanism to potentiate
weights (otherwise all KC–MBON synapses will be driven to 0)
and introduce this as a parameter that will increase synaptic
weights toward a constant, nonzero, value when KC is active but
DAN activity is low. This model appears to capture well a range
of existing experimental data for flies but predicts an upper bound
to the magnitude of reward predictions that can be learned. They
consequently develop an alternative model that can show un-
bounded predictive accuracy, which requires DANs that have biva-
lent responses (a base rate increased by reward and reduced by
punishment, or vice versa) and both depressing and potentiating
effects on KC–MBON synapses, as well as inhibitory feedback
from MBONs to DANs of the same valence.

Springer and Nawrot (2021) provide a model that is more
closely linked to specific Drosophila neuroanatomy but produces
a similar (although less precise) effect of PE encoding in DANs
because of MBON feedback. There is a similar use of two DANs to
represent the PAM (reward) and PPL (punishment) clusters which,
respectively, depress KC synaptic input to MBONs controlling
avoidance or approach when KC and DAN activity coincide. In
this case, four MBONs are used (corresponding to anatomically
identified neurons in the Drosophila MB). Each DAN affects two
MBONs, one of which controls behavior and also inhibits the ac-
tivity of a neuron in the opposite valence pair; the other (the one
receiving MBON inhibition) feeds back excitation to its own
DAN. In effect, the initial learning signal from DANs includes
both direct reinforcement and positive feedback from activated
MBONs; as learning decreases the strength of KC input to the
MBONs, the positive feedback, and hence theDAN learning signal,
is reduced. As presented, there is no mechanism to increase the
strength of synapses, and instead it is explored how this network
can produce behavioral extinction of memory by generating a sec-
ond memory of opposing valence when the reinforcer is omitted.
Juergensen et al. (2024) present a similar model for larval learning,
this time implemented in a spiking network, with only two
MBONs that excite their own and inhibit their opposite DAN; a
similar learning rule depresses KC–MBON weights for recently ac-
tive KCs when a DAN is active, but in this case, depressed synapses
are restored toward their initial state when MBONs spike.

Zhao et al. (2021) argue that simple associative learning in the
form of a KC–MBON weight change proportional to a (temporal
trace of) KC activity correlated with reinforcer strength cannot ac-
count for data in which different reinforcer strengths are delivered
in different temporal relationships to odor (e.g., one large shock de-
livered at the start or end of odor presentation vs. multiple small
shocks throughout). Instead, they propose an abstract learning
rule that includes a PE term, subtracting the output from the rein-
forcer, which determines the degree and sign of synaptic change.
Although not explicitly implemented as a computational model
of a neural circuit, they suggest the rule could be realized in the
MB either by a negative feedback connection from an MBON to
its own DAN (reducing DAN activity and preventing further
change) or by a “target-setting” influence of DANs on the KC–
MBON connection (following a dendritic adaptation to somatic
target mechanism suggested by Urbanczik and Senn 2014). They
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note that these two alternative implementations predict different
effects of learning on DAN activity (respectively, decrease vs.
increase), and of MBON silencing on learning (respectively, in-
crease vs. decrease), but also note that contradictory evidence
exists regarding these effects in Drosophila (Aso et al. 2014; Hige
et al. 2015; Felsenberg et al. 2017), suggesting that perhaps both
mechanisms coexist. Themodel is further extended to include sub-
systems for positive and negative valence and to allow weight
change to be reversed by the experience of opposite valence.

What lies beyond?

This recent focus on interpreting the dopamine signal in theMB as
embodying PE learning is understandable, given that it would
ground MB learning mechanisms in a strong theoretical founda-
tion. Nevertheless, this is not the only possible interpretation of
the feedback circuitry. Two recent models take contrasting ap-
proaches to explore further how circuit properties that have been
uncovered in recent connectomic and related work might be func-
tionally understood.

In Gkanias et al. (2022), a partial MB circuit (comprised of six
DANs and six MBONs, plus KCs to carry the input pattern) is con-
structed “bottom-up” by linking together evidence from several
well-explored microcircuits in Drosophila (Cohn et al. 2015;
Ichinose et al. 2015; Felsenberg et al. 2018; Pavlowsky et al.
2018; Li et al. 2020; McCurdy et al. 2021). On the basis of symme-
try (for learning attractive vs. aversive events) some additional neu-
rons and connections are identified resulting in a tightly linked
architecture that supports both rapid learning and transfer to long-
term memory. The circuit uses multiple connections between
MBONs and from MBONs to DANs, but notably, none of these
form a direct negative feedback loop as required for PE. Instead,
positive feedback loops help to stabilize learning processes and
transfer information between compartments. This model also de-
parts from most previous work in specifying a learning rule, in-
spired by Handler et al. (2019), that alters (in different ways) the
synapses onto MBONs of both active and inactive KCs when
DANs are active (consistent also with biological results from
Berry et al. 2018, Faghihi et al. 2017, and Schleyer et al. 2018,
2020). The model outputs are first compared directly to calcium
imaging data from the respective neurons and then tested in a sim-
ulated agent. Interestingly, the latter reveals asymmetric learning
indices for punishment versus reward, despite the underlying cir-
cuit being entirely symmetric.

Jiang and Litwin-Kumar (2021) take an alternative
“bottom-up” approach by using some architectural features of
the MB to constrain a recurrent network (consisting of 200 KCs,
20 MBONs, 20 DANs, and 60 feedback neurons) which is then pa-
rameterized through stochastic gradient descent to produce out-
puts matching those expected for various learning paradigms.
Specifically, KCs activate MBONs, each DAN acts (in a compart-
mentalized fashion) to modify KC connections for one MBON,
feedback neurons get inputs from reinforcement or contextual
states, and all MBONs and all feedback neurons can potentially
connect to one another and to DANs. The KC–MBON plasticity
is governed by the relative timing of activation of the relevant
DAN and KC, again following the phenomenology of synaptic
change described inHandler et al. (2019); themodel is also later en-
hanced to performmore continuous learning by adding a potenti-
ation term for all synapses when a DAN is active, consistent with
observations from Cohn et al. (2015). Interesting observations
from the optimization process include that simple conditioning
does not require recurrent connectivity, but extinction and
second-order conditioning do, and that adding KC–DAN connec-
tions does not seem to provide any additional function. The

emergingDAN response properties are highly varied, including en-
coding the valence of the US, the predicted valences of trained CS,
showing reduced response to omission of an expected reward, or
increased response to omission of reward of opposite valence.
The collective dynamics of the DANs can be interpreted as encod-
ing PE, but the diversity of responses appears to be important for
function. In addition, optimizing for a different target behavior
such as novelty detection produced different dominant DAN dy-
namics. Using this circuit to control an agent moving in a simulat-
ed odor gradient revealed a continuing role for DAN-modulated
plasticity during the approach to odors and an additional correla-
tion of DAN activity with movement.

In summary, neither of these “bottom-up” models assumed
that PE played a fundamental role and both concluded that a richer
interpretation of the function of MBON feedback to DANs is war-
ranted. Looking forward, it will be relevant to explore further in
computational models the potential role of other forms of plastic-
ity in the MB than just the KC–MBON synapse that has been the
focus of this review. The potential role of plasticity in the calyx
(i.e., changing how inputs map to KCs [Peng and Chittka 2017]
or adaptive responses of KCs to input [Cope et al. 2018]) has al-
ready been briefly mentioned. But it also seems plausible that
KC–DAN, MBON–MBON, and MBON–DAN connections could
undergo modulation or long-term change. Consideration of the
MB connectome for larval and adult Drosophila (Eichler et al.
2017; Li et al. 2020) has highlighted extensive KC–KC connectivi-
ty. Some earlier MB-inspired models suggested that such connec-
tivity could allow dynamic recurrent patterns to emerge in KC
firing (Payne et al. 2010; Arena et al. 2013), followed by adaptive
linear readout by the MBONs, resembling a reservoir network
(Schrauwen et al. 2007). Amore recentmodel has explored if adap-
tive connections between KCs could contribute to learning se-
quences of sensory patterns in a visual navigation context (Zhu
et al. 2023).

Another consideration for future work is the need to
strengthen our understanding and intuitions about how the sur-
rounding context of this circuitry may determine its function.
This includes the rest of the brain, the body, and the environment
of a learning animal. A more ecological consideration of what asso-
ciative learning is for may be important. For example, few experi-
mental paradigms, or the simulations that mimic them, represent
the natural conditions in which animals appear able to extract rele-
vant regularities andmake continuous control decisionswhen expe-
riencing a complex and continually varying sensory stream. Amore
comparative approach, understanding how the form and function
of the MB differ across species, is perhaps also overdue.

In all neural modeling, there is an ongoing tension between
models that explore the rich variety of the circuit, and those that
focus on unifying simplifications, with the hope of more funda-
mental understanding. In particular, the possibility of finding a di-
rect mapping from MB properties to effective, general learning
algorithms seems attractive. However, a risk is that interpreting
the MB through the lens of existing theory, such as PE learning,
might distort our perspective. Although the plurality of existing
models, and their apparent failure to converge, may seem disap-
pointing, a more positive perspective is that the computation
and capabilities of the MB are still wide open questions, and we
can look forward to the insights another 25 years of research will
bring.
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