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Abstract 25 

Background 26 

Accurate assignment of breed origin of alleles at a heterozygote locus may help to 27 

introduce a resilient or adaptive haplotype in crossbreeding. In this study, we 28 

developed and tested a method to assign breed of origin for individual alleles in 29 

crossbred dairy cattle. After generations of mating within and between local breeds as 30 

well as the importation of exotic bulls, five rounds of selected crossbred cows were 31 

simulated to mimic a dairy breeding programme in the low- and middle-income 32 

countries (LMICs). In each round of selection, the alleles of those crossbred animals 33 

were phased and assigned to their breed of origin (being either local or exotic).  34 

Results 35 

Across all core lengths and modes of phasing (with offset or no), the average 36 

percentage of alleles correctly assigned a breed origin was 95.76%, with only 1.39% 37 

incorrectly assigned and 2.85% missing or unassigned. On consensus, the average 38 

percentage of alleles correctly assigned a breed origin was 93.21%, with only 0.46% 39 

incorrectly assigned and 6.33% missing or unassigned. This high proportion of alleles 40 

correctly assigned a breed origin resulted in a high core-based mean accuracy of 0.99 41 

and a very high consensus-based mean accuracy of 1.00. The algorithm’s assignment 42 

yield and accuracy were affected by the choice of threshold levels for the best match 43 

of assignments. The threshold level had the opposite effect on assignment yield and 44 

assignment accuracy. A less stringent threshold generated higher assignment yields 45 

and lower assignment accuracy. 46 

Conclusions 47 

We developed an algorithm that accurately assigns a breed origin to alleles of 48 

crossbred animals designed to represent breeding programmes in the LMICs. The 49 
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developed algorithm is straightforward in its application and does not require prior 50 

knowledge of pedigree, which makes it more relevant and applicable in LMICs 51 

breeding programmes. 52 

 53 
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Background 54 

Dairy cattle production in low- and middle-income countries (LMICs) is characterised 55 

by low-input and low-output production systems. To increase the milk productivity of 56 

dairy cattle, crossbreeding between the high-producing breeds of developed countries 57 

and the low-producing, but resilient breeds of LMICs has been practised for decades. 58 

Crossbreeding, either via the importation of semen from elite bulls or the use of 59 

imported bulls, has substantially increased milk production and farmers’ income [1]. 60 

However, this genetic gain has not always been observed, and overreliance on import 61 

without judicious use of best alleles is not expected to deliver the best possible 62 

genetic gains. 63 

 64 

In many LMICs, including those in Eastern Africa, efforts are being undertaken to 65 

establish sustainable breeding programmes for long-term genetic gains with a focus 66 

on smallholder farmers [2]. In partnership with government and non-government 67 

organizations, projects like the African Dairy Genetic Gains (ADGG, 68 

https://africadgg.wordpress.com) have been able to import and provide improved 69 

dairy genetics to smallholder farmers in the Eastern Africa. However, because of the 70 

differences in environmental factors and breeding infrastructure, the importation and 71 

provision of improved genetics have not yet been sustainable and successful [2]. 72 

Instead, such crossbreeding practices have led to haphazardly admixed cattle 73 

populations with no or poor pedigree records [2]. 74 

 75 

For a sustainable breed improvement through genetic intervention and for the 76 

appropriate design of breeding programmes, accurate breed identification, on both the 77 

level of the individual and of the individual genetic variant, is important. In livestock 78 
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populations with little or no pedigree records, the use of genomic data could be 79 

transformational in determining breed composition and establishment of breeding 80 

programmes [2]. Estimates of breed composition and the breed origin of alleles from 81 

genomic data is superior to estimates from pedigree data due to invariably missing or 82 

inaccurate records and deviations from expected compositions due to Mendelian 83 

sampling [3,4]. Especially in populations with complex ancestries like the dairy cattle 84 

in the Eastern Africa, genomic data and knowledge of breed composition is essential 85 

to evaluate the performance and adaptability of the crossbreds [4], and to predict the 86 

effectiveness of any foreign germplasm in the production systems. 87 

 88 

Selection, genetic discovery and management decisions can be aided by determining 89 

the breed origin of alleles, particularly for genetic variants that only occur in one of 90 

the constituent populations of crossbred animals [5]. Unlike determining the average 91 

breed composition of an individual, determining the breed origin of an individual’s 92 

haplotypes and associated alleles can allow breed-specific genetic evaluations to be 93 

conducted, which can increase the accuracy of genetic selection, particularly when the 94 

linkage disequilibrium pattern is different in the two breeds [6]. Thus, recent studies 95 

in admixed cattle populations have shown that the Breed Origin of Allele (BOA) 96 

method has increased the accuracy of genomic prediction [7,8]. 97 

 98 

Using only genomic data and no pedigree data, Vandenplas et al. [5] developed an 99 

approach that traces haplotypes of crossbred animals and assigns each allele of the 100 

haplotypes to their breed of origin. To develop the algorithm that assigns alleles of 101 

crossbreds a breed origin, they simulated a three-way pig-crossbreeding programme 102 

with five generations of random selection. They evaluated the accuracy of the 103 
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algorithm and reported that more than 90% of alleles of crossbred animals were 104 

correctly assigned a breed origin. Thus, for up to 10% of all alleles of crossbred 105 

animals, they could not assign a breed origin. However, accurate determination of the 106 

breed origin of alleles of crossbred populations is very important to estimate breed-107 

specific effects of alleles when performing genomic evaluations [9]. If we could 108 

accurately assign breed origin for alleles at heterozygote loci of crossbred animals, we 109 

may be able to detect which haplotypes should be promoted to genetically improve 110 

dairy cows in the LMICs. 111 

 112 

In the current study, we developed an algorithm to assign a breed of origin for alleles 113 

in crossbred dairy cattle and tested it on a simulated smallholder dairy cattle 114 

population dataset. To resolve the breed origin of alleles, the algorithm aligns the 115 

haplotypes of crossbred dairy cows to the haplotypes of likely constituent breeds, i.e., 116 

imported (exotic) and/or local breeds and assigns the breed of origin based on the best 117 

match. We then evaluated the algorithm's accuracy using a simulated crossbreeding 118 

programme designed to mimic the ADGG smallholder genotype data. The average 119 

percentage of alleles correctly assigned a breed origin was 95.76%, resulting in a high 120 

core-based mean accuracy of 0.99 and a very high consensus-based mean accuracy of 121 

1.00. The developed algorithm does not require prior pedigree knowledge and is, 122 

hence, straightforward to apply in LMIC breeding programmes. 123 

124 
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Methods 125 

The design of the breeding programme and development of the allele assignment 126 

algorithm involved two steps.  127 

1. We designed a breeding programme and simulated genotype data on which we 128 

tested the algorithm's performance. The simulated genotype data had an ancient 129 

cattle founder that is assumed to have split into African (local) and European 130 

(exotic) cattle populations. After generations of mating within and between 131 

local breeds and the importation of exotic bulls, crossbred dairy cows were 132 

created to mimic the dairy cows kept by smallholders in the LMICs. 133 

2. We developed an allele assignment algorithm that traces haplotypes and 134 

assigns a breed origin for each allele of the crossbred cows. The haplotypes are 135 

phased and defined for different core lengths to improve the accuracy and 136 

efficiency of the allele assignment algorithm. 137 

The following subsections describe the details for simulating and phasing 138 

genotypes and developing the allele assignment algorithm. 139 

Simulation of genotype data 140 

Genotype and haplotype data for an ancient cattle breed were simulated using the 141 

AlphaSimR package [10], designed for stochastic simulations of breeding 142 

programmes. A total of 2500 individual animals with a genome structure of 1000 143 

SNPs in one autosomal chromosome were simulated. The ancient cattle breed split 144 

into two, each representing an exotic breed and an indigenous breed. The indigenous 145 

breed further split into four more closely related local founder populations. Variation 146 

in the demographic history of these founder populations were accounted for in the 147 

simulated biallelic haplotypes of the breeds using the Markovian Coalescent 148 

Simulator (MaCS) software [11] embedded in the AlphaSimR package [10]– [See 149 
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Additional file 1, Script S1] for details. As described in the AlphaSimR, the 150 

genotypes and haplotypes of the descendants, i.e., the crossbred animals, were then 151 

derived from these haplotypes using simulated mating between the exotic and local 152 

breeds. After within and between breed random mating of indigenous animals for 10 153 

generations, the 1000 best females were selected on genetic merit of a single 154 

hypothetical trait with a small amount of dominance (mean dominance degree of 0.1 155 

and variance of dominance degree of 0.1) and heritability of h2=0.3. The 1000 156 

selected local cows were then mated to 25 imported Holstein bulls to produce the first 157 

crossbred animals (crossbred1). The local cows were allowed to calve twice 158 

producing a total of 2000 offsprings with the assumption of 1000 female and 1000 159 

male calves. The breeding programme continued by using all the 1000 female calves 160 

(crossbred1) as replacement heifers and mating these to 25 newly imported Holstein 161 

bulls to produce the next crossbred cows (crossbred2), while both exotic and local 162 

populations were kept as purebred and source of purebred animals. This importation 163 

of exotic bulls and mating to the crossbred cows was repeated for up to five rounds of 164 

selections, hereafter referred as generations (Fig. 1). Simulated genotype and 165 

haplotype data were generated in 10 replicates. 166 



 167 

Figure 1 Schematic representation of the simulated breeding programme. A 168 

founder population on the top of the figure is split into exotic and local breeds.  169 

Genetic structure of the simulated SNP genotype data 170 

To assess the genetic similarity between the founders and developed crossbred 171 

animals, we performed principal component analysis (PCA) of SNP genotypes on the 172 

simulated data. The PCA was performed using the prcomp command of the R 173 

statistical software [12]. 174 



Phasing of simulated genotype data  175 

True simulated genotype and haplotype data enabled us to calculate the phasing yield 176 

and allele assignment accuracy. From the genotype data, haplotypes were 177 

reconstructed and compared with the simulated haplotypes. The reconstruction of 178 

possible haplotypes from the genotype data via phasing was performed using the 179 

software AlphaPhase [13]. Different core and tail lengths govern the length of desired 180 

haplotype segments used to phase the alleles in the genotype data. As illustrated in 181 

Fig. 2, a core is a string of consecutive SNP loci used to phase a given genome region 182 

[13].  183 

Phasing of the simulated genotype data was performed using a wide range of core and 184 

tail lengths. Preliminarily analyses suggested that core lengths of 100 to 280 SNPs 185 

would yield optimum allele assignments. Therefore, for the final analyses, we defined 186 

10 different core lengths centred around 280 SNPs (Table 1) and phasing was 187 

performed for each core length both in the offset and no-offset modes of the 188 

AlphaPhase [13]. We moved 50% of the core length forward to define Offset. In total, 189 

there were 2000 scenarios: 10 (replicates) x 10 (core lengths) x 10 (thresholds) x 2 190 

(offset or no offset modes). 191 

 192 

Figure 2 Illustration of a core and offset. Phasing was performed in two modes: 193 

either using the whole length of a core or by moving it forward 50% of the core length 194 

(offset) to define the begging of a given core. 195 

 196 
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Table 1 Core lengths (in terms of numbers of SNPs) used to phase the genotype 197 

data 198 

Core  1 2 3 4 5 6 7 8 9 10 

Core length (SNPs) 100 120 140 160 180 200 220 240 260 280 

Development of allele assignment algorithm 199 

To develop the allele assignment algorithm, we defined 10 different core lengths 200 

(Table 1). The alleles of crossbred animals were assigned a breed origin for each core 201 

length, and we call this core-based allele assignment. In the core-based assignment 202 

each allele could be assigned a breed origin as many as the different core lengths 203 

defined. If breed origin assignments of an allele were not the same across the different 204 

cores the most frequent breed assignment was considered as a consensus breed origin 205 

of an allele. 206 

 207 

Core-based allele assignment  208 

Haplotype libraries were simulated based on the phased purebred individuals in each 209 

population. The assignment algorithm takes phased genotypes for individuals in the 210 

crossbred population as inputs, along with haplotype libraries for the indigenous and 211 

exotic populations (Fig. 3). To perform allele assignment, we determined whether the 212 

exotic or local haplotype contained the best matching haplotype, i.e. the haplotype 213 

with the fewest number of markers than the target haplotype. The haplotype is then 214 

assigned as originating from that haplotype library. If both haplotype libraries contain 215 

an equally good match, then the haplotype is set to missing. For example, in Fig. 3, 216 

the haplotype with a core length of 10 SNPs of the individual animal should be 217 



assigned to the local haplotype as it displays the least error matches with the last core 218 

in the local haplotype library.  219 

 220 

Figure 3 Haplotype libraries based on a core length of ten SNPs. To assign origin 221 

to the haplotype of an individual (bottom genotype sequence), the algorithm searches 222 

for the best match in each position in the exotic (top left genotype sequence) and local 223 

(top right genotype sequence) haplotypes. In this case, the individual’s haplotype 224 

should be assigned as a local haplotype because the local haplotype library contains 225 

the haplotype with the fewest number of errors, i.e., mismatches (red). 226 

Consensus allele assignment 227 

Allele assignment was compared in each phased genotype and each scenario. Phasing 228 

of simulated genotype data was performed in two modes: either using the whole 229 

length of a core or by moving it forward 50% of the core length (offset) to define the 230 

beginning of a given core (see next section). Assignment was performed across 231 

multiple core lengths and two modes of phasing (no offset and offset). Assignment 232 

results of each core and mode of phasing were compared and merged across cores to 233 

calculate consensus-based assignment. Merging was done by taking a consensus 234 

estimate of the breed of origin across multiple cores. The most frequently observed 235 
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assignment across all the replicates, core lengths, and phasing modes was then taken 236 

as the consensus-based assignment.  237 

To optimise and fine-tune the algorithm’s sensitivity, we applied 10 different 238 

thresholds for best SNP count of match of haplotypes (Table 2). When the threshold 239 

was 0.9, this meant that the breed assignment for the allele needed to be consistent 240 

across 90% of the cores, otherwise the assignment was set to missing. To elaborate a 241 

threshold of 50%, an allele would have been assigned a breed origin of “A” if the 242 

allele had been assigned to breed “A” in more than 50% times of the assignments 243 

across all the different core lengths and phasing modes. In every generation, every 244 

allele of the crossbred animals was assigned a breed origin in at least 2000 scenarios 245 

and results were merged to calculate consensus assignment. 246 

 247 

Table 2 The different thresholds used for the best count of match of haplotypes 248 

Threshold  1 2 3 4 5 6 7 8 9 10 

%Matched 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 249 

Performance of the allele assignment algorithm 250 

To evaluate the performance of the allele assignment algorithm, assignment yield and 251 

assignment accuracy were assessed in the following ways: 252 

1. %Correct: the percentage of correctly assigned alleles was computed by 253 

comparing the algorithm-derived breed origin with the true breed origin of 254 

alleles traced with the “pullIbdHaplo()” function of the AlphaSimR [10]. 255 

2. %Incorrect: the percentage of alleles across all scenarios that were incorrectly 256 

assigned and was computed by comparing the algorithm-derived breed origin 257 
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with the true breed origin of alleles traced with the “pullIbdHaplo()” function 258 

of the AlphaSimR [10]. 259 

3. %Unassigned: the percentage of alleles that were not assigned, including 260 

missing or unknown breed origin; and  261 

4. Accuracy: the accuracy of assigned alleles, calculated as the ratio of correctly 262 

and incorrectly assigned alleles. We used the proportion of correctly assigned 263 

alleles as an allele assignment accuracy metric for each core and tail lengths. 264 

  265 



Results 266 

Genetic structure of the simulated SNP genotype data 267 

Principal component analysis (PCA) of the simulated SNP genotype data separated 268 

the crossbreds from the founder breeds (local and exotic breeds). As shown in the 269 

PCA plot (Fig. 4a), the first generation of crossbred animals (crossbred1) were 270 

positioned in between the founder populations (exotic and local). The PCA plot 271 

further revealed the genetic sub-structure from the crossbreeding programme. As we 272 

continued the crossbreeding and increased the proportion of exotic genotypes, the 273 

crossbreds and the exotic breed were observed to converge into a single cluster (Fig. 274 

4b). 275 

 276 

Figure 4 Plot of principal component analysis of SNP genotypes (PC1 vs. PC2 277 

and PC1 vs. PC3). Showing the genetic data structure of the founders and the first 278 

crossbred cows (a) and of all animals across generations (b). 279 
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 280 

Allele assignment yield and accuracy 281 

Allele assignment for each core  282 

The average number of alleles in the crossbred animals assigned a breed origin is 283 

given in Table 3. The highest average number of unassigned alleles (29 out of 1000 284 

SNPs) was observed in the first generation of the crossbred animals (crossbred1). The 285 

number of unassigned alleles decreased as the crossbreeding continued and the 286 

distance between the local founders and the crossbreds decreased. For example, in 287 

crossbred5, where the germplasm is upgraded to almost the exotic breed, 23 out of 288 

1000 SNPs were unassigned (Table 3).  289 

 290 

Table 3 Assignment yield and average number of alleles in crossbred cows 291 

assigned to local, exotic or not assigned at all 292 

Crossbred Local Exotic Unassigned 
Assignment 

Yield 
Crossbred1 486 486 29 0.95 
Crossbred2 246 730 24 0.95 
Crossbred3 123 853 24 0.96 
Crossbred4 61 916 24 0.96 
Crossbred5 29 947 23 0.97 
Mean 189 786 25 0.96 
 293 

The genetic distance and core lengths had a clear effect on the phasing and 294 

assignment yield. For longer core lengths (core length of 220-280 SNPs), we 295 

observed a more concise and higher phasing yield (Fig. 5a). A core length of 200 296 

SNPs was observed to be optimal for allele assignment yield (Fig. 5b). The overall 297 

average allele assignment accuracy was 0.99 (Table 4). On average, more than 95% 298 

of the assigned alleles in the crossbred animals were correctly assigned, with only less 299 

than 2% of incorrectly assigned alleles (Table 4). Both, the incorrectly assigned and 300 



unassigned proportion of alleles, either because of missing or ambiguity, were less 301 

than 5% (Table 4). 302 

 303 

Figure 5 Effect of core length on assignment yield. Phasing yield (a) was very high 304 

for all core lengths but more concise for longer core lengths (core length of 220-280 305 

SNPs). The assignment yield (b) was optimal for a core length of 200 SNPs. 306 

 307 

Table 4 Percentages of alleles correctly assigned a breed origin (%Correct), 308 

incorrectly assigned (%Incorrect), missing or unassigned (%Unassigned), and 309 

accuracy of assignment (Accuracy) for each core-length (Core) 310 

 Core %Correct %Incorrect %Unassigned  Accuracy 
100 94.70 1.35 3.95  0.99 
120 94.89 1.12 3.99  0.99 
140 96.14 1.11 2.75  0.99 
160 96.40 1.16 2.44  0.99 
180 97.39 1.25 1.35  0.99 
200 98.35 1.36 0.29  0.99 
220 97.27 1.46 1.27  0.99 
240 94.22 1.54 4.24  0.98 
260 92.32 1.69 5.98  0.98 
280 95.93 1.84 2.23  0.98 
Mean 95.76 1.39 2.85  0.99 

 311 
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Consensus allele assignment across all cores  312 

On consensus, the average percentage of incorrectly assigned alleles was nearly zero 313 

(Table 5). The overall mean consensus-based assignment accuracy (accuracy = 1, 314 

Table 5) was higher than the overall mean core-based assignment accuracy (accuracy 315 

= 0.99, Table 4).  316 

 317 

Table 5 Consensus-based percentages of alleles correctly assigned (%Correct), 318 

incorrectly assigned (%Incorrect), missing or unassigned (%Unassigned) a breed 319 

origin, and accuracy of assignment (Accuracy) across all core-lengths and 320 

generation for each threshold 321 

Threshold %Correct %Incorrect %Unassigned Accuracy 
0.50 98.40 1.60 0.00 0.98 
0.55 98.16 0.78 1.06 0.99 
0.60 97.84 0.66 1.50 0.99 
0.65 96.26 0.42 3.32 1.00 
0.70 95.79 0.36 3.86 1.00 
0.75 93.56 0.25 6.19 1.00 
0.80 92.94 0.20 6.86 1.00 
0.85 89.10 0.12 10.78 1.00 
0.90 88.41 0.10 11.48 1.00 
0.95 81.67 0.08 18.26 1.00 
Mean 93.21 0.46 6.33 1.00 
 322 

Effect of admixture level and thresholds on assignment yield and 323 

accuracy 324 

The threshold level had the opposite effect on assignment yield and accuracy (Fig. 6). 325 

Increasing the threshold decreased the assignment yield and increased the accuracy, 326 

whereas a less stringent threshold generated higher assignment yields. Increasing the 327 

threshold stringency further reduced the assignment yield (Fig. 6a). On the contrary 328 

and as expected, the less stringent threshold reduced the accuracy (Fig. 6b). 329 



 330 

Figure 6 Percentage of allele assignment yield (a) and accuracy (b) of 331 

assignment. Using the consensus-based allele assignment algorithm as a function of 332 

threshold level 333 

 334 

The effect of admixture level on assignment yield and accuracy was not as clear as 335 

that of threshold level. However, the assignment yield appeared to increase from the 336 

first to the later generations of crossbreds (Fig. 7a). On the other hand, the higher 337 

threshold stringency decreased the assignment yield (Fig. 7b). 338 

 339 
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Figure 7 Percentage of allele assignment yield (a) and accuracy (b) of 340 

assignment. Using the consensus-based allele assignment algorithm as a function of 341 

crossbreeding (admixture) level. 342 

Discussion 343 

In low- and middle-income countries (LMICs), such as those in Eastern Africa, a 344 

large proportion of dairy production is carried out by smallholders who keep fewer 345 

than 10 cattle [14]. These cattle are mostly crosses between indigenous African breeds 346 

and exotic dairy breeds, with little phenotypic or pedigree data available [14]. Despite 347 

the need and efforts to increase the productivity of those dairy cattle, it has not been 348 

possible to implement conventional breeding programmes in these populations. In 349 

populations with no or poor pedigree and phenotype records, genomic selection and 350 

other novel methods, such as an efficient algorithm to assign the breed origin of 351 

alleles in those crossbred animals, are of interest. To evaluate the performance and 352 

adaptability of the crossbreds in the LMICs, methods to accurately identify the breed 353 

origin of alleles on both the individual level and the individual genetic variant are 354 

important. Such methods could also provide ways to predict the effectiveness of 355 

foreign germplasm in a low-input production system [4]. For the smallholder farmers 356 

in Eastern Africa, providing methods to assign a breed origin of alleles would enable 357 

better choice of exotic bulls to introduce and which local bulls to use to sustainably 358 

harness the genetics of local adaptation traits of the indigenous breeds and the high 359 

milk yield potential of exotic dairy breeds. 360 

 361 

Different genomic tools and algorithms [5,9] have been developed to assign a breed 362 

origin to alleles in crossbred pig populations without needing pedigree records. Using 363 
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simulated genotype data, we have developed an algorithm to assign alleles a breed 364 

origin in a dairy cattle breeding programme that would represent haphazardly 365 

admixed local cows and imported exotic bulls as commonly practised in LMICs. As 366 

shown in Fig. 1, we used the exotic bulls as a source of purebred genotype data to 367 

cross with the admixed local cows for five subsequent generations. The simulated 368 

genotypes of exotic purebred and local admixed breeds were phased and the origins of 369 

haplotypes and associated alleles of the newly created crossbred cows were assigned a 370 

breed origin. In agreement with earlier studies in crossbred pig populations [5,9], our 371 

results demonstrated that alleles of admixed crossbred cattle populations could be 372 

accurately assigned a breed origin without the need for pedigree records. 373 

 374 

The assignment of alleles to a breed origin was performed according to haplotypes 375 

defined by different core lengths. In a simulation study, Vandenplas et al. [5] assessed 376 

the impact of core length and observed higher assignment yield for haplotypes of 377 

longer core lengths. While this appears to be supported in our results, a core- and tail-378 

length of 200 SNPs was observed as the optimal length for maximum assignment 379 

yield. Similarly, the impact of genetic relationship on assignment yield is comparable 380 

to values reported in simulated and empirical studies. Using simulated data, 381 

Vandenplas et al. [5], showed that a greater distance between breeds favourably 382 

affected the percentage of allele assigned, which is consistent with the highest 383 

percentage of allele assignment yield observed in crossbred5 (97%, Table 3) that are 384 

relatively distant to the local pure breeds. 385 

 386 

The accuracy of allele assignment, both in the core-based (0.99, Table 3) and 387 

consensus-based (1.00, Table 4), across all scenarios was very high. This allele 388 
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assignment accuracy is better than the results obtained from simulated (0.98) and 389 

empirical (88.57- 92.45) data [9]. The performance of the current algorithm is better 390 

than reported allele assignment accuracies of 96% using STRUCTURE 2.2 and 85% 391 

using GENECLASS 2 reported by Negrini et al. [15]. The relative performance 392 

improvement could be attributed to the optimization process of developing the current 393 

allele assignment algorithm. For example, the breed origin of alleles in crossbred 394 

animals was determined after an allele assignment was evaluated for every core and 395 

haplotype library in different scenarios to reach a consensus assignment. The choice 396 

of threshold for best SNP match in haplotypes can also affect the algorithm’s 397 

assignment yield and accuracy. Instead of using fixed allele frequency and best SNP 398 

matches to assign a breed origin to alleles, the observed expected trade-offs between 399 

assignment yield and accuracy (Fig. 6) have been optimized. When the best SNP 400 

match counts in haplotypes are too low, there will be a high assignment yield but low 401 

accuracy and vice versa. In the current simulated genotype data, the best SNP match 402 

count threshold of 50-60% appeared optimal. 403 

 404 

Despite some suggestions to use haplotype instead of allele to reduce the effects of 405 

incorrect allelic assignments [5], the current algorithm was able to assign a breed 406 

origin to alleles as accurate as the assignment of a breed origin to haplotypes. The 407 

developed algorithm can be used to determine a breed origin of alleles in genomic 408 

predictions with models where breed-specific effects are required [16,17]. The 409 

developed algorithm can also be used in modelling breeding programmes of admixed 410 

populations. Accurate breed identification, on both the level of the individual and of 411 

the individual genetic variant is critical to achieving sustainable breed improvement. 412 

In the current simulation study, we developed an algorithm, which assigns haplotypes 413 
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in crossbred dairy cows to the haplotypes of likely constituent breeds, i.e. either to 414 

exotic or local breeds. With high accuracy of assigning the breed of origin to alleles, 415 

we may be able to introduce a resilient or adaptive haplotype into the crossbred cows. 416 

In livestock, we infer haplotypes from multigenerational pedigrees from which tracing 417 

of breed origin of alleles can be challenging. With the developed algorithm, alleles in 418 

crossbred animals could be accurately assigned a breed of origin without the need for 419 

a multigenerational pedigree. 420 

 421 

It's important to acknowledge that the African dairy cattle populations are 422 

characterized by extensive crossbreeding involving many breeds of Taurine and 423 

Indicine origin. This broad genetic diversity may challenge the accurate estimation of 424 

SNP effects despite the accurate assignment of breed origin of alleles. While the BOA 425 

method relies on the recent local ancestry for each SNP marker allele, it ignores 426 

deeper ancestry, which is important for estimating SNP marker effects across many 427 

breeds with different genomic histories. Furthermore, the BOA method does not take 428 

full advantage of linkage information (correlation between nearby SNP markers) and 429 

does not fully reflect the underlying genomic history of a study population [18]. 430 

Future studies developing algorithms and methods that consider the BOA and the 431 

genomic history of individuals and that would work for any level of crossbreeding 432 

and admixture in a population will be needed. 433 

 434 

Conclusions  435 

The developed algorithm assigns a breed origin to alleles with an accuracy of 99% in 436 

admixed animals from a crossbreeding programme designed to mimic breeding 437 

programmes in the LMICs. The algorithm is straightforward in its application and 438 
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does not require prior knowledge of pedigree and relationships between crossbred and 439 

purebred animals, making it relevant and applicable in breeding programmes 440 

practised in LMICs. However, it should be noted that the algorithm was developed 441 

and tested on simulated data. Further studies are required to test and apply the 442 

algorithm on real data. 443 
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