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A B S T R A C T   

Breast cancer is a multifaceted disease and a leading cause of cancer morbidity and mortality in females across 
the globe. In 2020 alone, 2.3 million women were diagnosed and 685,000 died of breast cancer worldwide. With 
the number of diagnoses projected to increase to 3 million per year by 2040 it is essential that new methods of 
detection and disease stratification are sought to decrease this global cancer burden. 

Although significant improvements have been made in breast cancer diagnosis and treatment, the prognosis of 
breast cancer remains poor in some patient groups (i.e. triple negative breast cancer), necessitating research into 
better patient stratification, diagnosis and drug discovery. The UK Biobank, a comprehensive biomedical and 
epidemiological database with a wide variety of multiomics data (genomics, proteomics, metabolomics) offers 
huge potential to uncover groundbreaking discoveries in breast cancer research leading to improved patient 
stratification. Combining genomic, proteomic, and metabolic profiles of breast cancer in combination with 
histological classification, can aid treatment decisions through accurate diagnosis and prognosis prediction of 
tumor behaviour. 

Here, we systematically reviewed PubMed publications reporting the analysis of UK Biobank data in breast 
cancer research. Our analysis of UK Biobank studies in the past five years identified 125 publications, of which 76 
focussed on genomic data analysis. Interestingly, only two studies reported the analysis of metabolomics and 
proteomics data, with none performing multiomics analysis of breast cancer. A meta-analysis of the 76 publi
cations identified 2870 genetic variants associated with breast cancer across 445 genes. Subtype analysis 
revealed differential genetic alteration in 13 of the 445 genes and the identification of 59 well-established breast 
cancer genes. in differential pathways. Pathway interaction analyses illuminated their involvement in general 
cancer biomolecular pathways (e.g. DNA damage repair, Gene expression). While our meta-analysis only 
measured genetic differences in breast cancer due to current usage of UK Biobank data, minimal multi-omics 
analyses have been performed and the potential for harnessing multi-omics strategies within the UK Biobank 
cohort holds promise for unravelling the biological signatures of distinct breast cancer subtypes further in the 
future.   

1. Introduction 

Breast cancer is a global health challenge with an estimate of 2.26 
million new cases and 685,000 new deaths recorded worldwide in 2020 
[1] and 55,400 new cases and 11,585 new deaths in the UK [2] in 2023 

[3]. These stark statistics have led the disease to surpass lung cancer as 
the leading global cause of cancer incidence in women [1]. The disease 
is characterized by intricate clinical manifestations and diverse molec
ular mechanisms relating to disease stage and phenotype. Great strides 
have been made in developing stratified approaches that are being used 
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to direct therapy. The five PAM50 molecular intrinsic subtypes, luminal 
A, luminal B, HER2-enriched, basal-like and normal-like have distinct 
morphological features, biological properties, epidemiological risk fac
tors, prognoses, and response to therapy [4–6]. The basal-like subtype is 
for 80% defined as triple-negative breast cancer (TNBC) [7], charac
terised by the absence of oestrogen receptor (ER), progesterone receptor 
(PR), and human epidermal growth factor receptor 2 (HER2) expression. 
Current evidence considers TNBC as a hypernym covering a variety of 
entities including genetic, transcriptional, histological, and clinical dif
ferences [8]. TNBC is associated with poor prognosis and limited 
treatment options, highlighting the potential to shift from a targeted 
approach into personalised network-based approaches mapping the 
differential molecular sub phenotypes of TNBC. Technological break
throughs have been critical in developing this new shift of understand
ing in breast cancer stratification and the ability to analyse large sample 
cohorts, collected in highly similar ways through the development of 
disease specific biobanks, is one such vital component. 

A biobank is a functional unit responsible for the collection, storage 
and provision of biological samples and their accompanying data, as 
vital resources for the progression and democratisation of clinical and 
biomedical research [9]. The collection and storage of biospecimens has 
been a long-existing practice for over 150 years [10]. More recently, the 
past 40 years has seen the rapid expansion of biobanking from small, 
predominantly university-based repositories to institutional or 
government-sponsored repositories, population-based biobanks and 
virtual biobanks [11]. This transformation has been driven by the 
evolving needs of larger research projects requiring higher powered 
analyses to help stratify disease via rapidly emerging fields such as ge
nomics, proteomics, metabolomics, big data and precision medicine 
[11]. In the early 2000s, the recognised value of data-driven, pop
ulation-based studies gave rise to the establishment of the Oxford Uni
versity based UK Biobank [12]. Since then, the UK Biobank has evolved 
into a unique research resource containing extensive genomic, pheno
typic, health-related and socioeconomic data from ~500,000 volunteers 
in the United Kingdom (Table 1) [13]. The pivotal advantage of 
large-scale population biobanks such as the UK Biobank, is their po
tential to accelerate discoveries in personalised medicine for the pre
vention, stratification, diagnosis and monitoring of disease progression 
and response to treatment, ultimately supporting better disease out
comes [14]. A well-recognized challenge in biomedical sciences is the 
issue of low statistical power, which can be caused by low sample size in 
research studies [15]. In such cases, there is a higher likelihood that the 
true effect size between variables is either zero or very small, rendering 
it challenging to detect significant findings from population level data
sets [15]. The large sample size of the UK Biobank dataset allows for the 
more precise estimation of effect sizes, increased statistical power, and 
improves the scalability of research findings. Beyond existing resources 
(Table 1), additional UK Biobank data will be released in Q4 2023, 
which will include imaging data, information on well-being, and an 
expanded release of proteomics data. 

The integration of these additional population level data available 
through the UK Biobank offers a unique opportunity for large-scale 
research. This has the potential to transform the current paradigm of 
conventional medicine based on a generalised ‘one size fits all’ approach 
to a personalised medicine approach tailored to individual patient pro
files. This shift is facilitated by the ability to leverage network-based 
analysis methods that move beyond a simplistic targeted approach 
treating different disease subtypes to enable more comprehensive un
derstanding and treatment of complex diseases. The incorporation of 
genetic, lifestyle, occupation, housing, and environmental data can aid 
further disease stratification into subpopulations translated by the in
dividual unique phenotype as shown in Fig. 1. By enabling large-scale, 
data-driven research and personalized medicine, the integration of UK 
Biobank population data holds significant potential to drive innovation 
and shape the future of medicine. 

To further advance breast cancer research, several additional 

Table 1 
Overview of the resources contained in the UK Biobank. The item count 
stands for the number of data ‘points’ corresponding to the central database. For 
example, the study involved 100 participants whose height was measured on 
three separate occasions using identical procedures. As a result, the cumulative 
item count for the height field in total is 300 observations. A data field corre
sponds to a specific subcategory or type of data. Item counts are up to date for 21 
July 2023.  

Resources  Total data 
items/fields 

Summary Data 
Participants 502,371  
Gender % 273,302 Female (54.4%) 535,991 data 

items covering 
501,495 
participants 

229,069 Male (45.6%) 

Ethnicity % White (94.4%) 506,136 data 
items 

Mixed (0.6%) 3109 data 
items 

Asian and Asian British (1.9%) 10,177 data 
items 

Black or Black British (1.5%) 8237 data 
items 

Chinese (0.3%) 1659 data 
items 

Other ethnicities (0.9%) 4703 data 
items 

Do not know (0.04%) 223 data items 
Prefer not to answer (0.3%) 1747 data 

items 
Clinical and Health Data 
Biological sampling Blood 587,222 data 

items covering 
501,215 
participants 

Urine 3560 items 
covering 3560 
participants 

Saliva 782 items 
covering 782 
participants 

Health data Cognitive function 453 data-fields 
Health outcomes 555 data-fields 
Physical measure summary 66 data-fields 
Family history 20 data-fields  
Lifestyle 461 data-fields  
Early life and reproductive factors 20 data-fields  
Image measures 1055 data- 

fields  
Socio-demographics 111 data-fields  
Geographical measures 38 data-fields 

Multiomic data 
Genomics Genotype data 825,927 

markers 
covering 
438,427 
participants 

Whole exome sequencing 470,000 
participants 

Whole genome sequencing 200,000 
participants 

Proteomics OLink Protein biomarkers 2923 markers 
covering 52 
749 
participants 

Metabolomics Nightingale NMR biomarkers 249 markers 
covering 
120,000 
participants 

Access and output 
Costs for accessing datasets Core data (£3000) (e.g., questionnaires, linked health 

data) 
Assay data and enhanced measures (£6000) 
(e.g., biochemical, and haematological assays, 
measures, and imputed genotypes) 

(continued on next page) 
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population-based biobanks have emerged in the recent decades, as 
indicated in Table 2. The emergence of these biobanks is driven by the 
growing recognition of their invaluable role as resources for studying 
genetic, environmental (e.g., pollution levels), and lifestyle factors that 
contribute to breast cancer development, progression, and response to 
treatment. By harnessing the power of large-scale population-based 
studies, scientists can gain deeper insights into the complex mechanisms 

underlying breast cancer and ultimately improve prevention, diagnosis, 
and treatment strategies. Upon comparison of the UK Biobank (Table 1) 
with other population-based biobanks dedicated to breast cancer 
research (Table 2), we observe that the UK Biobank provides a more 
comprehensive resource encompassing a wide range of data types, 
including those related to lifestyle, environmental factors, and particu
larly multi-omics applications. 

2. Study aim 

In this study, we aim to identify the gaps in breast cancer research 
utilising the UK Biobank as a resource. We analyse the prevalent data 
types within the UK Biobank used in breast cancer research, visualise 
their interconnections, and subsequently determine which are most used 
in the UK Biobank, visualise how these were linked together and sub
sequently determine the most frequently utilised data type to assess its 
contribution to advancing breast cancer research. 

Table 1 (continued ) 

Resources  Total data 
items/fields 

Very large datasets (£9000) (e.g., imaging data, whole 
genome/exome data) 

Publications per year 2008 (1), 2012 (1), 2013 (6), 2014 (16), 2015 (30), 
2017 (173), 2018 (310), 2019 (429), 2020 (664), 
2021 (931), 2022 (584)  

Fig. 1. Personalised Medicine potential of the UK Biobank. An individual’s unique biomolecular phenotype arises from the interplay between nature (hereditary 
factors) and nurture (environmental factors). This biomolecular phenotype can inform healthcare professionals on an individual’s health and disease status. Created 
with BioRender.com. 
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3. Methods 

3.1. Data search strategy and selection criteria 

A systematic search of the PubMed database (https://pubmed.ncbi. 
nlm.nih.gov/) was performed in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 
guidelines [29]. The following search terms were used: “UK Biobank” 
and “Breast cancer”, and all articles were published in the 2017–2022 
period. The systematic search yielded 230 studies from the initial search 
in PubMed, of which 125 articles met the inclusion criteria of reporting 
findings from breast cancer datasets using UK Biobank as a source 
(please refer to Supplementary Tables 1–10 for links to article references 
and data type). The other 105 records were removed as they did not 
meet the inclusion criteria or were not associated with research papers. 

3.2. Analysis of genomic data 

From the total of 125 papers included, 76 focused on genetic data 
available in the UK Biobank or other resources. These papers focussed on 
genetic variations such as single nucleotide polymorphisms (SNPs). 
From the total of 76 genetic data studies, 20 reported genetic variants 
related to breast cancer, meaning both prevalent and incident breast 
cancer, and 1 reported significant genes related to breast cancer. As 
some papers incorporated data from additional genome-wide associa
tion studies, these findings were also integrated in the analysis of 
genomic data. The excluded papers focused on genetic variants that 
were not directly associated with breast cancer. For example, they were 
investigating the causal relationship between a risk factor for breast 
cancer and the development of breast cancer, employing a method 
known as Mendelian randomization. All publications featuring genetics 
as data type, as well as their reason for exclusion and source for inclusion 

Table 2 
UK Biobank in comparison with other population-based biobanks available for breast cancer research with participant numbers over 100,000.  

Biobanks Launch 
date 

Funding body Number of 
participants 

Data types Omics data Accessibility 

UK Biobank  2012 Core funders:Wellcome Trust 
medical charity, Medical 
Research Council, 
Department of Health, 
Scottish Government and the 
Northwest Regional 
Development Agency. 

500,000 (UK) Genetic data, lifestyle data, 
linkage to electronic health- 
related records, environmental 
data, biological samples, 
imaging data, follow-up data. 

Genomic, proteomic and 
metabolomic data. 

Researchers can apply 
to access data through 
the biobank website. 

Women’s 
Health 
Initiative[16]  

1992 The National Heart, Lung, 
and Blood Institute (NHLBI) 
and the US Department of 
Health and Human Services. 

161,000 
postmenopausal 
women (USA) 

Biological samples, including 
blood, urine, and saliva, and 
physical exam findings. Breast 
cancer incidence, risk factors, 
outcomes, other diseases, and 
health conditions. 

Genomic[17], proteomic[18] 
and metabolomic data[19]. 

Researchers can apply 
to access data and 
samples through the 
biobank website. 

Breast Cancer 
Now Tissue 
Bank[20]  

1992 Breast Cancer Now, a UK 
charity dedicated to funding 
breast cancer research and 
support services 

120,000 samples 
from 10,000 patients 
with breast cancer 
(UK). 

Range of tissue samples: tumor 
tissue, normal breast tissue and 
blood samples. Clinical data 
such as tumor stage and grade, 
treatment history and patient 
demographics. 

Genomic data. Researchers can apply 
for access to the tissue 
bank’s resources 
through an online 
application process. 

Million Women 
Study[21]  

1996 Medical Research Council 
(MRC), Cancer Research UK 
(CRUK), the UK National 
Health Service (NHS), and 
the British Heart Foundation 
(BHF) 

> 1 million women 
participants (UK). 

Breast cancer incidence, risk 
factors, outcomes, other 
diseases, and health 
conditions. Self-reported 
lifestyle factors such as diet, 
exercise, smoking, hormone 
therapy use, medical history. 

Genomic data[22]. Researchers can apply 
to access data and 
samples through the 
biobank’s website. 

Estonian 
Biobank[23]  

2000 Estonian Genome Centre 
(University of Tartu and the 
Ministry of Education and 
Research of Estonia). 

> 200,000 
participants 
(Estonia) 

Genomic data (genotyping, 
exome sequencing, whole- 
genome sequencing), health 
data (hospital discharge data, 
prescription data, death 
registry data, biobank data), 
and lifestyle data 
(questionnaire data). 

Genomic and some other 
-omic (proteomic, 
metabolomic data) However, 
the availability of -omic data 
varies depending on the 
specific study and sample 
collection within each 
biobank. 

Estonian Biobank 
provides access to 
their data and samples 
for scientific research 
via a data access 
application process. 

Breast Cancer 
Association 
Consortium 
(BCAC)[24]  

2005 Various organisations, 
including Cancer Research 
UK, the US National Cancer 
institute, and the European 
Union. 

300,000 participants 
(September 2021) 
(Global) 

Clinical data and lifestyle 
factor – depending on the 
individual study. 

Genomic data[25]. To access BCAC data, 
researchers need to 
submit a data access 
request through the 
consortium website. 

Partners 
Healthcare 
Biobank[26]  

2007 Partners Healthcare, a US- 
based health system and 
research institution 

100,000 participants 
(USA) 

Biospecimens: blood, urine, 
tissue samples. Clinical data 
(medical history, and health 
behaviours). 

Genomic data[27]. Researchers can apply 
to access to the 
biobank’s resources 
through an online 
application process. 

FinnGen[28]  2017 The Finnish government, 
universities, hospitals, and 
foundations. 

Currently, 330,000 
Finnish individuals, 
the aim is to reach 
500,000. 

Genomic data (whole-genome 
sequencing, exome 
sequencing, genotyping), 
health data (hospital discharge 
data, prescription data, cancer 
registry data, death registry 
data, biobank data), and 
lifestyle data (questionnaire 
data). 

Genomic and other -omic 
(proteomic, metabolomic 
data) However, the 
availability of -omic data 
varies depending on the 
specific study and sample 
collection within each 
biobank. 

FinnGen provides 
access to their data 
and samples for 
scientific research via 
a secure online 
platform.  
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can be found in Supplementary Table 1 and 9. 
These variants, all linked to both prevalent and incidence breast 

cancer risk, were merged together, and duplicates were removed until 
2870 variants with reference SNP ID’s (rsID) remained. If rsIDs were not 
initially provided, Kaviar was utilised to identify and complete the 
missing rsIDs [30]. In this process, Kaviar utilised the reported chro
mosome and position information to generate all known rsIDs associated 
with that genetic position. The reference allele and alternate/effect 
allele provided in the study were then cross-checked against the genetic 
variant data given in the paper to complete and validate the rsID as
signments. Next, to obtain rsID-related genes and pathways, SNPnexus 
was utilised (https://www.snp-nexus.org/v4/). SNPnexus is a 
web-based tool designed for the analysis of single nucleotide poly
morphisms (SNPs) and their potential functional implications [31]. The 
2870 variants were inserted, GRCh38/hg38 was selected and under 
‘Annotation Categories’ Reactome was selected. Gene and pathway data 
were subsequently subtracted from the GeneProtein and Reactome data 
[32] provided via SNPnexus, respectively. 

The GeneMANIA plug-in in Cytoscape software (v 3.9.1) was utilised 
to visualise the gene-gene interaction based on co-expression [33]. 
GeneMANIA serves as a valuable tool and database for predicting gene 
functions by leveraging a wide array of networks derived from diverse 
genomic and proteomic datasets [33]. We utilised cBioPortal, an open 
access resource for cancer genomics widely employed for investigating 
common gene alterations in various cancer types [34–36], to examine 
gene alteration levels in different subyptes of breast cancer. Initially, all 
breast cancer studies were selected, and the ’Pam50 + Claudin-low 
subtype’ option was chosen from the ’Charts’ dropdown menu. Subse
quently, within the ’Pam50 + Claudin-low subtype’ category, we 
further refined our search by selecting the following subtypes: Luminal 
A, Luminal B, HER2, Normal, and Basal. Mutated gene data were then 
downloaded for each subtype.The overall results were visualised using R 

(v 4.2.3) in R Studio (Build 421) and using Circos software package [37].  
. 

4. Results 

4.1. Quantifying UK Biobank data-types utilised in breast cancer 
research. 

All 125 studies included UK Biobank data as either stand alone or in 
conjunction with other biobanks or databases. These studies focused on 
investigating breast cancer, with 25.6% (n = 32) specifically targeting 
breast cancer, 49.6% (n = 62) exploring multiple cancers, and 24.8% 
(n = 31) examining various pathologies. To test their hypotheses, all the 
studies utilised one or more data types. The predominant data type 
utilised across the publications was genetic data (60.8%), followed by 
body mass index (12.8%) and blood sample data (10.4%) – highlighted 
in Fig. 4. All 125 studies are referenced in the Supplementary 
Tables 1–10, categorized by their respective categories where 
applicable. 

4.2. Linking of data types 

We examined the combinations made between the exploited data 
types in breast cancer research. The 125 included publications utilised a 
total of 58 datatypes. As shown through the cord diagram in Fig. 5 
(created using the Circos software package - http://circos.ca/), certain 
data types are studied together with other datatypes more frequently, 
while other datatypes are used on their own. Notably, among the 58 
different data types explored, 36 were used in a single study, encom
passing drug use, environmental chemicals, and proteomic data. 

Fig. 2. PRISMA flowchart displaying the study selection process. A total of 230 studies were identified from PubMed. Following the screening of titles and 
abstracts, 105 studies were excluded. A total of 125 articles that met the inclusion criteria were included. 
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4.3. Discovery analysis of genetic alteration stratified by breast cancer 
subtypes 

Out of the 74 publications investigating genetic data related to breast 
cancer, 20 studies identified a collective total of 2870 unique breast 
cancer related rsIDs associated with breast cancer. Additionally, one 
study identified 10 significant genes linked to breast cancer. We inves
tigated the relationship of the 2870 rsIDs to genes using SNPnexus, 
adding in the significant related genes of one study, resulting in 455 
breast cancer related genes. 

Further analysis of genetic alterations among breast cancer intrinsic 
subtypes (Normal-like; Basal-like; Luminal-A; Luminal-B; HER-2) [38] 
revealed varying levels of alterations in a total of 13 genes, as depicted in  
Fig. 6. The mutation rates differed significantly across subtypes, with 
basal-like tumors exhibiting the highest overall mutation rate (11.32%), 
while luminal A (3.42%) and luminal B (4.25%) breast cancers displayed 
comparatively lower rates. Notably, tumour protein p53 (TP53) 
(43.50%) and dynein axonemal heavy chain 11 (DNAH11) (10.42%) 
emerged as the most frequently altered genes in breast cancer tumors, 
followed by T-box transcription factor 3 (TBX3) (4.98%), AKT ser
ine/threonine kinase 1 (AKT1) (3.60%), and breast cancer gene 2 
(BRCA2) (2.53%). Some breast cancer subtypes, appeared to have no 
mutation in certain genes: normal-like in BRCA2 and forkhead box p1 
(FOXP1) and basal like in checkpoint kinase 2 (CHEK2) and FOXP1. 
Supplementary Table 11 lists all 455 genes, along with their percentage 
mutation rates, average mutation rates per subtype and per gene. 

4.4. Pathways potentially affected by genetic alteration 

We then investigated the potential pathways affected by mutations 
by utilising the initial SNP pool of 2870 breast cancer SNPs derived from 
21 publications. These SNPs were subsequently queried in SNPnexus 
using Reactome. The 20 most significant pathways containing the 10 
breast cancer associated genes (TP53, epidermal growth factor receptor 
(EGFR), BRCA2, caspase 8 (CASP8), erb-b4 receptor tyrosine kinas 4 
(ERBB4), FOXP1, breast cancer gene 1 (BRCA1), cyclin dependent ki
nase inhibitor 2a (CDKN2A), AKT1, CHEK2) were visualised in Fig. 7. 
Three genes (DNAH11, TBX2, ALK receptor tyrosine kinase (ALK)) were 
not included due to the absence of related pathways. 

Among the 20 pathways, we observed that 50% were linked to DNA 
repair mechanisms, while 20% were associated with gene expression. 
Out of the 10 subtyped genes, BRCA1 was found to be the most common 
across these pathways, followed by BRCA2, AKT1 and TP53. TP53 
brought forward by its high difference in mutation rate among subtypes 
(Fig. 6), is present in 9 of the 20 significant pathways across 4 different 
pathway categories. 

5. Discussion 

Breast cancer remains the leading cause of cancer-related mortality 
for women globally. In this study, we investigated how UK Biobank data 
is utilised in breast cancer research. We have observed a lack of studies 
that have effectively combined these data types thus far. Our findings 
demonstrate that the majority studies published in the last 5 years have 
primarily focused on incorporating genetic data from breast cancer pa
tients. The combination of breast cancer-related variants found in ge
netic data studies gave rise to a list of both well-known and unknown 
genes to be related to breast cancer. Different genetic alteration rates 
were found in these genes across subtype. These genes are mainly 
clustered in DNA repair and signal transduction pathways. 

Over the past few years, there has been a significant increase in the 
utilisation UK Biobank data, evidenced by the rising number of 
approved proposals and published studies [39,40]. The most frequently 
requested data type in the UK Biobank comprises of mortality, cancer 
and genetics corresponding to the common usage of genetic data in 
breast cancer studies as shown in Fig. 4. 

Given the increasing utilisation of UK Biobank data and the promi
nent role of genetic data in breast cancer studies, it is notable that the UK 
Biobank provides a valuable resource, allowing for the integration of 
various omics approaches, including proteomic and metabolomic anal
ysis, to further advance our understanding of breast cancer subtypes. 
This concept is evidenced by a recent study stating that combining UK 
Biobank genomics data to other omics data facilitates the dissection of 
the molecular underpinnings of disease [41]. Another study demon
strated the utilisation of multiomic data aiding the classification sub
types of endocrine hypertension [42]. Multiomic analysis has emerged 
as a powerful tool in breast cancer research, propelling advancements in 
areas such as subtype classification [41], therapeutic response [43] or to 

Fig. 3. Flowchart displaying the analysis of genetic data from the filtering process to the multiomics and visualisation tools used. Further analysis was 
carried out in papers containing genetic data related to breast cancer. A final list of 2870 breast cancer related-rsIDs was run through SNPnexus and SNP-associated 
gene and pathways were visualised using Cytoscape (v 3.9.1) and R (v 4.2.3). Stratification by breast cancer subtype was analysed using cBioPortal, obtaining data 
from study by Pereira et al. 
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study the role of specific genes [44]. However, it is worth noting that the 
sample sizes of these studies have been relatively small; 487, 168 and 
1109 cases, respectively. In this regard, the UK Biobank presents a sig
nificant opportunity for multiomics research, as breast cancer is the 
most common cancer diagnosed within the UK Biobank with a sub
stantial cohort of 9117 prevalent and 8761 incident breast cancer pa
tients [45]. 

As of the time of composing this review and the timeline of when 
these studies were analysed (2017–2022), there is a scarcity of published 
datasets and research focusing on the analysis of proteomics and 
metabolomics datasets. The limited utilisation of multiomic data in 
studying breast cancer could arise from several factors. Firstly, the 
delayed release of these specific datasets, with genetic data having been 
made available prior to the proteomic and metabolomic counterparts. 
Furthermore, the intricacies associated with integrating diverse datasets 
for comprehensive model development pose a significant challenge, 
contributing to the observed to the observed constraints in incorporating 
multi-omic approaches in breast cancer research. 

Our investigation brings to light that a considerable number of 
studies draw upon genetic data sourced from the UK Biobank to explore 
breast cancer. Most cancers, including breast cancer are characterised by 
irregular and uncontrolled cellular growth caused in some degree by 
genomic instability. Genomic instability differs among intrinsic sub
types and manifests as mutations and is intrinsically associated with 
variations in patient survival, clinical outcome, the development of 
metastatic or recurrent tumors, and serves as a predictive indicator of 
tumor responsiveness to anti-cancer drugs [46,47]. Our findings support 
the appearance of alterations in DNA repair pathway genes known to 
drive additional genetic mutations in breast cells. More specifically, 
SNPs in BRCA1 and BRCA2 genes are well-known risk factors for breast 
cancer in addition to other DNA repair genes such as EXO1 and CHEK2. 
Additionally, we observed significant disparities in genetic alterations 
among the intrinsic subtypes of breast cancer, a trend not fully captured 
by the number of breast cancer-related SNPs identified in our analysis. 
For instance, despite BRCA1 and BRCA2 exhibiting lower mutation 
rates, the number of breast cancer-associated SNPs reported in literature 

Fig. 4. Data types utilised in UK Biobank breast cancer studies. All studies explored one or more datatypes classified in 12 categories. The 12 categories of data 
types encompass a wide array of information, ranging from demographic and clinical data to imaging and biomarker data. Among these data types, genetic data 
emerged as the most extensively investigated in breast cancer research. Aspects created with BioRender.com. 
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is notably higher, particularly in comparison to TP53. Upon closer ex
amination of the variants highlighted by the UK Biobank studies, it be
comes apparent that rs78378222 and rs35850753 have been previously 
investigated as rare germline variants in neuroblastoma [48], however, 
no studies linking them to breast cancer have been identified. 

Upon closer examination of the variants within these genes, certain 
variants such as rs11571833 and rs17879961, were previously associ
ated with other cancer types, including lung cancer [49], urinary tract 
cancer [50] and pancreatic ductal adenocarcinoma [51]. However, 
rs11571833 and rs17879961 are located on well-established breast 
cancer susceptibility genes BRCA2 and CHECK2 respectively [52]. 
Alongside BRCA2 and CHECK2, other well-known breast cancer-related 
genes involved in DNA repair mechanisms, such as TP53, EXO1 and 

PALB2 were identified in this study. 
Our subtype-specific analysis and pathway analysis confirmed the 

involvement of all genes previously associated with breast cancer. 
However, it is important to note that this observation may be attributed 
to limitations within the utilized study providing mutation rates across 
different cancer subtypes. While our findings support existing knowl
edge regarding the role of these genes in breast cancer, further in
vestigations are needed on the other genes we found to comprehensively 
assess their significance within specific subtypes and to address any 
potential biases inherent in the mutation rate data. However, no other 
studies report on this at this time point. 

In conclusion, utilisation of the UK Biobank has not, until now, been 
effectively used to identify previously unknown breast cancer associated 

Fig. 5. Circos plot shows combinations of data types used in UK Biobank breast cancer research. All included studies explored one or more datatype classified 
in 12 color-coded categories. The bidirectional connections between the data types are coloured according to data type which are most linked to other data types in 
general. For instance, as genetic data types are most linked, the link between ‘genetic’ and ‘proteomic’ is coloured orange and not pink. The colour-intensity of 
connections between data types indicates their degree of association within UK Biobank breast cancer publications. Genetic, BMI, smoking, alcohol consumption and 
physical activity data exhibit higher connectivity, while proteomic and metabolomic data show lower or no connections. Abbreviations clockwise: FHBC = Family 
History of Breast Cancer; BMI = Body Mass Index; FMI = Fat Mass Index; AP = Anthropometry; BP = Blood Pressure; OWC = Optimal Waist Circumference; GS 
= Grip Strength; LM = Lean Mass; HR = Heart rate; FFMI = Fat Free Mass Index; BIA = Bioelectrical Impedance Analysis; AC = Alcohol Consumption; BS = Blood 
Samples; US = Urine Samples; PA = Physical Activity; DST = Daily Screen Time; FT = Fasting Time; ST = Sedentary Time; SLT = Sleep Traits; TWT = Total Walking 
Time; WP = Walking Pace; PAFBC = Parity and Age at First live Birth Combined; PAD = Parental Age at Death; NLB = Number of Life Births; AMP = Age at 
Menopause; AM = Age at Menarche; HRT = Hormone Replacement Therapy; OCU = Oral Contraceptive Use; Hyst = Hysterectomy; HMS = History of Mammogram 
Screening; SS = Socioeconomic Status; TDI = Townsend Deprivation Index; DR = Demographic Region; DA = Disease Association; TD = Thyroid Dysfunction; PHD 
= Parental History of Diseases; MDAFLD = Metabolic Dysfunction-Associated Fatty Liver Disease; HDP = Hypertensive Disorders of Pregnancy; DO = Diagnosis with 
osteoporosis; CP = Chronic Pain; PB = Physiological Biomarkers; MH = Mental Health; CF = Cognitive Function; FDFS = Fried-Defined Frailty Status; CMFI 
= Cumulative Morbidity Frailty Index; EC = Environmental Chemicals. Aspects created with BioRender.com. 
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genes. However, the findings reveal the promising potential of har
nessing multiomics approaches, or other combinations of data types 
using the extensive UK Biobank cohort to unravel the intricate cancer 
biology underlying distinct subtypes of breast cancer. This can 
contribute to enhancing breast cancer diagnosis, prognosis, the identi
fication of biomarkers and precise treatment targets, thereby advancing 
personalized medicine in breast cancer care. 
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