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Polynomial worst-case iteration complexity of quasi-Newton

primal-dual interior point algorithms for linear programming

J. Gondzio∗ F. N. C. Sobral†

Technical Report ERGO, School of Mathematics, September 9, 2022

Abstract

Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an

approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the

Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the

Newton systems, instead of computing it from scratch at every iteration. In this work, we show that a simplified

quasi-Newton primal-dual interior point algorithm for linear programming enjoys polynomial worst-case iteration

complexity. Feasible and infeasible cases of the algorithm are considered and the most common neighborhoods

of the central path are analyzed. To the best of our knowledge, this is the first attempt to deliver polynomial

worst-case iteration complexity bounds for these methods. Unsurprisingly, the worst-case complexity results

obtained when quasi-Newton directions are used are worse than their counterparts when Newton directions are

employed. However, quasi-Newton updates are very attractive for large-scale optimization problems where the

cost of factorizing the matrices is much higher than the cost of solving linear systems.

Keywords: Quasi-Newton methods, Broyden update, Primal-dual Interior Point Methods, Polynomial worst-

case iteration complexity

MSC codes: 90C05, 90C51, 90C53

1 Introduction

Let us consider the following general linear programming problem

min cTx, s.t. Ax = b, x ≥ 0, (1)

where x, c ∈ R
n, b ∈ R

m and A ∈ R
m×n. We assume that (1) is feasible and the rows of A are linearly independent.

Define function F : R2n+m → R
2n+m by

F (x, λ, z) =





ATλ+ z − c
Ax− b
XZe



 , (2)

where X,Z ∈ R
n×n are diagonal matrices defined by X = diag(x) and Z = diag(z), respectively, and e is the vector

of ones of appropriate size. First order necessary optimality conditions for (1) state that, if x∗ ≥ 0 is a minimizer,
then there exist z∗ ∈ R

n, z∗ ≥ 0, and λ∗ ∈ R
m such that F (x∗, λ∗, z∗) = 0 holds.

Interior point methods (IPMs) try to follow the so-called central-path of problem (1), defined by the solution

of the perturbed KKT system F (x, λ, z) =
[

0 0 µe
]T

, as µ → 0. Instead of solving such a system exactly,
primal-dual IPMs apply one iteration of Newton method for a given value of µk at iteration k. In order to calculate
this step, the Jacobian of F is needed

J(x, λ, z) =





0 AT I
A 0 0
Z 0 X



 . (3)
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With an iterate (xk, λk, zk) at step k, the classical Newton direction is calculated by solving the following system





0 AT I
A 0 0
Zk 0 Xk









∆xk

∆λk

∆zk



 =





c− zk −ATλk

b−Axk

σkµke−XkZke



 , (4)

where µk is set to be the average complementarity gap xkT sk/n and σk ∈ (0, 1) determines its target reduction.
While the coefficient matrix in (4) can be efficiently evaluated and stored, it changes at each iteration. The

solution of (4) is usually accomplished by direct methods, using suitable matrix factorizations [9, 15], or by iterative
methods [4], computing preconditioners to improve their convergence properties. In this paper we are concerned
with classes of problems for which it is advantageous to approximate J(xk, λk, zk) in order to reduce the cost of
solving (4).

Usually, IPMs do not deal explicitly with the unreduced system (4), but rather consider its reduced form as
augmented system (which is symmetric) or as normal equations (whose coefficient matrix is positive definite) [8].
The interest in working directly with unreduced systems has attracted more attention in the recent years, since
they have good sparsity structure and also interesting spectral properties [14]. In [18], numerical experiments
comparing preconditioners for unreduced and augmented systems were made. The appeal for using preconditioners
for unreduced systems is their good conditioning close to the solution.

Gondzio and Sobral [10] considered unreduced systems in a way similar to [18]. They studied the Jacobian of F
and asked the question whether it is possible to approximate it by classical quasi-Newton approaches for nonlinear
systems. Although this might have seemed an obvious thing to attempt, the only previous use of quasi-Newton
strategies in IPMs was to update the preconditioners [1, 2, 12, 13]. Broyden low-rank updates were used and the
numerical experiments showed that this approach is effective for IPMs when the cost of solving linear systems is
considerably lower than the cost of computing the factorization of the Jacobian (or its associated reduced form).

Recently, Ek and Forsgren [6] presented a theoretical background and numerical experiments regarding a different
kind of low rank updates. The proposed update is based on the Eckart-Young-Mirsky theorem, rather than on the
secant equation satisfied by the Broyden update, and affects only the “third row” of matrix J(xk, λk, zk), related
to the nonlinear part of F . Convex quadratic optimization problems were considered and local convergence was
established for a simplified primal-dual interior point algorithm, but no complexity bound was provided. It is
worth mentioning that the iteration worst-case complexity of O(

√
n) was shown for a short-step primal algorithm

by Gonzaga [11], where low-rank updates were used to compute the projection matrix needed by such type of
algorithms. Secant equations were also used in [5] for the same purpose, but without complexity results.

Polynomial worst-case iteration complexity is a key feature of IPMs for linear and convex-quadratic problems [19].
It is achieved by taking steps in the Newton direction (4) such that the new iterate belongs to some neighborhood of
the central path. In case of linear programming, it is well known that the iteration worst-case complexity involves
polynomials of orders between

√
n and n2, depending on the type of neighborhood of the central path used and

whether feasible of infeasible iterates are allowed [21]. Those results have also been generalized to symmetric cone
optimization problems [20].

This work is intended to provide the first steps towards the study of iteration worst-case complexity of quasi-
Newton primal-dual interior point algorithms. We present non-trivial extensions of well known complexity results
from [21] and properties that arise when Broyden “bad” quasi-Newton updates are used. Worst-case complexity is
proven for both feasible and infeasible cases in the most commonly used neighborhoods. The theoretical study is
motivated by the very promising results from [10] in quadratic programming problems. As expected, the degrees
of polynomials in the complexity results are higher than those obtained when steps in Newton directions are made.

The paper is organized as follows. In Section 2 we review basic quasi-Newton concepts and the properties of
quasi-Newton algorithms presented in [10]. Then, in Section 3 we analyze the worst-case complexity for the feasible
case, considering two popular neighborhoods of the central path : N2 and Ns. Section 4 is devoted to the infeasible
case when the iterates are confined to the Ns neighborhood. Final comments, observations and possible directions
of future work are discussed in Section 5.

Notation We define ‖ · ‖ as the Euclidean norm for vectors and the induced ℓ2-norm for matrices. We will use
the short versions Fk and Jk to describe F (xk, λk, zk) and J(xk, λk, zk), respectively. In addition, we will use both

inline (xk, λk, zk) and matrix

[

xk

λk

zk

]

notations to address vectors in this work.
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2 Background

Given a function G : RN → R
N , suppose that we want to solve the nonlinear system G(x̄) = 0. Secant methods

iteratively construct a linear model Mk(x̄) of G which interpolates the last two computed iterates of the method.
At each iteration, they need to compute an approximation to the Jacobian of G, which has to satisfy the secant
equation

Bsk−1 = yk−1,

where sk−1 = x̄k − x̄k−1 and yk−1 = G(x̄k)−G(x̄k−1). There are infinitely many solutions to the secant equation
for N ≥ 2 and different approaches generate different secant methods [16]. Among them, the Broyden “bad”
approach uses the already computed approximation to the inverse of G at x̄k−1, called Hk−1, to compute the
current approximation Hk as

Hk = Hk−1 +
(sk−1 −Hk−1yk−1)y

T
k−1

yTk−1yk−1
= Hk−1Vk−1 +

sk−1y
T
k−1

ρk−1
, (5)

where Vk−1 =
(

I − yk−1y
T
k−1

ρk−1

)

and ρk−1 = yTk−1yk−1. The Broyden “bad” update is a rank-1 update where Hk

is the matrix closest to Hk−1 in the Frobenius norm which satisfies the secant equation. After ℓ updates of an
approximation Hk−ℓ, current approximation Hk is given by

Hk = Hk−1Vk−1 +
sk−1y

T
k−1

ρk−1

= Hk−ℓ





k−1
∏

j=k−ℓ

Vj



 +
ℓ
∑

i=1





sk−iy
T
k−i

ρk−i

k−1
∏

j=k−i+1

Vj



 .

(6)

For the specific case of this work, where G is given by F defined in (2), we have that N = 2n+m, x̄ = (x, λ, z)
and the vectors sk−1 and yk−1 from the secant equation assume a more specific description

sk−1 = ᾱk−1





∆xk−1

∆λk−1

∆zk−1



 and yk−1 =





ᾱk−1(A
T∆λk−1 +∆zk−1)

ᾱk−1A∆xk−1

XkZke−Xk−1Zk−1e



 , (7)

where ᾱk−1 ∈ (0, 1] is the step-size taken at iteration k − 1 towards the solution of (4).
In [10], the authors described an interior point method based on low rank quasi-Newton approximations to the

Jacobian of F . The Broyden updates were tested, and the computational experience revealed that the most efficient
one was the Broyden “bad” update.

Since we are interested in finding an approximate solution of the linear system given by the Newton method
(4), in the Broyden “bad” approach, given ℓ ≥ 0, the following direction is computed





∆xk

∆λk

∆zk



 = Hk





c−ATλk − zk

b− Axk

σkµke−XkZke



 . (8)

If Hk−ℓ = J−1
k−ℓ and ℓ = 0, system (8) turns out to be exactly (4). Therefore, in the same way as discussed in [10],

we assume that the initial approximation Hk−ℓ is given by the perfect approximation J−1
k−ℓ. When ℓ > 0, the

quasi-Newton procedure strongly uses the fact that the factorization of Jk−ℓ (or a good preconditioner) has already
been computed. In addition, Lemma 1, taken from [10], shows that, with this choice of initial approximation, the
Broyden “bad” update has an interesting alternative interpretation.

Lemma 1. Assume that k, ℓ ≥ 0 and Hk is the approximation of J−1
k constructed by ℓ updates (6) using initial

approximation Hk−ℓ = J−1
k−ℓ. Given v ∈ R

2n+m, the computation of r = Hkv is equivalent to the solution of

Jk−ℓr = v +









0
0

ℓ
∑

i=1

γi
[

ᾱk−i

(

Zk−ℓ∆xk−i +Xk−ℓ∆zk−i
)

−
(

Xk−i+1Zk−i+1 −Xk−iZk−i
)

e
]









,

where γi =
yTk−i

∏k−1
j=k−i+1 Vj

ρk−i
v, for i = 1, . . . , ℓ.
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Lemma 1 is the basis of the analysis developed in this work. It states that we can study quasi-Newton steps
using the Jacobian of the Newton step. The only difference is the right-hand side. Using this property of the
Broyden “bad” update we are able to extend the well known complexity results described in [21]. The difficulty in
the analysis will be mostly caused by the extra term, added to the usual right-hand side of (4). It is important to
note that Lemma 1 does not assume that the iterates are feasible, hence it is useful in both feasible and infeasible
cases. Although by (6), the sparsity structure of the third row of Bk (the inverse of Hk) is lost when ℓ ≥ 1, we can
see that the structural sparsity of Jk−ℓ can still be used to solve the linear systems.

Let us define a skeleton primal-dual quasi-Newton interior point algorithm. It is given by Algorithm 1 and
generates a sequence of alternating Newton and quasi-Newton steps. Clearly, by the nature of update (5), the first
step needs to be a Newton step.

Algorithm 1 Conceptual Quasi-Newton Interior Point algorithm.

Input: F , J and (x0, λ0, z0)
for k = 0, 1, . . . do

if k is odd then

ℓ← 1 ⊲ Quasi-Newton iteration
else

ℓ← 0 ⊲ Newton iteration
end if

Calculate (∆xk,∆λk,∆zk) by solving (8)
Calculate

(xk+1, λk+1, zk+1) = (xk, λk, zk) + ᾱk(∆xk,∆λk,∆zk)

for a suitable choice of ᾱk ∈ [0, 1], such that xk+1, zk+1 > 0
end for

Let us analyze what happens when a sequence of two steps is performed: at iteration k the Newton step is made
(with stepsize ᾱk) and then at iteration k + 1 the quasi-Newton step is taken (with stepsize ᾱ). For Newton step
at iteration k, we observe that

Xk+1Zk+1e =
(

Xk + ᾱk∆Xk
) (

Zk + ᾱk∆Zk
)

e

= XkZke+ ᾱk

(

Zk∆xk +Xk∆zk
)

+ ᾱ2
k∆Xk∆Zke

= XkZke+ ᾱk(σkµke −XkZke) + ᾱ2
k∆Xk∆Zke

= (1 − ᾱk)X
kZke+ ᾱkσkµke+ ᾱ2

k∆Xk∆Zke.

(9)

Later, in the proofs of several technical results, we will need to analyze the error produced when the quasi-Newton
direction (∆xk+1,∆λk+1,∆zk+1) is multiplied by Jk+1:





0 AT I
A 0 0

Zk+1 0 Xk+1









∆xk+1

∆λk+1

∆zk+1



 =









0 0 0
0 0 0

Zk+1 − Zk 0 Xk+1 −Xk



+





0 AT I
A 0 0
Zk 0 Xk













∆xk+1

∆λk+1

∆zk+1



 .

Applying Lemma 1 for iteration k + 1 with ℓ = 1 and then observing that (∆xk,∆λk,∆zk) solves the Newton
system (4) and using (9), the third block equation in Lemma 1 gives

Zk∆xk+1 +Xk∆zk+1 = σk+1µk+1e−Xk+1Zk+1e+ γ1
[

ᾱk

(

Zk∆xk +Xk∆zk
)

−
(

Xk+1Zk+1 −XkZk
)

e
]

= σk+1µk+1e−Xk+1Zk+1e+ γ1(ᾱkσkµke+ (1− ᾱk)X
kZke−Xk+1Zk+1e)

= σk+1µk+1e−Xk+1Zk+1e− γ1ᾱ
2
k∆Xk∆Zke.

(10)

Hence, using (7) and (10)

Zk+1∆xk+1 +Xk+1∆zk+1 = (Zk+1 − Zk)∆xk+1 + (Xk+1 −Xk)∆zk+1 + Zk∆xk+1 +Xk∆zk+1

= ᾱk

(

∆Zk∆Xk+1e+∆Xk∆Zk+1e
)

+ σk+1µk+1e−Xk+1Zk+1e− γ1ᾱ
2
k∆Xk∆Zke,

(11)

where ∆Zk, ∆Xk, ∆Zk+1 and ∆Xk+1 are given by diag(∆zk), diag(∆xk), diag(∆zk+1) and diag(∆xk+1), respec-
tively. Next we compute the new complementarity products obtained after a sequence of two steps, apply (11), and
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add and subtract the term ᾱ2
k∆Xk∆Zke to derive

Xk+2Zk+2e = (Xk+1 + ᾱ∆Xk+1)(Zk+1 + ᾱ∆Zk+1)e

= Xk+1Zk+1e+ ᾱ(Zk+1∆Xk+1 +Xk+1∆Zk+1)e+ ᾱ2∆Xk+1∆Zk+1e

= Xk+1Zk+1e+ ᾱᾱk(∆Zk∆Xk+1e +∆Xk∆Zk+1e) + ᾱ2∆Xk+1∆Zk+1e+ ᾱ2
k∆Xk∆Zke

− ᾱ2
k∆Xk∆Zke+ ᾱσk+1µk+1e − ᾱXk+1Zk+1e− γ1ᾱᾱ

2
k∆Xk∆Zke

= (1− ᾱ)Xk+1Zk+1e+ (ᾱk∆Xk + ᾱ∆Xk+1)(ᾱk∆Zk + ᾱ∆Zk+1)e

+ ᾱσk+1µk+1e − (1 + ᾱγ1)ᾱ
2
k∆Xk∆Zke.

(12)

By multiplying both sides of equation (12) with eT we get the complementarity product at iteration k + 2:

(xk+1 + ᾱ∆xk+1)T (zk+1 + ᾱ∆zk+1) =

= (1 − ᾱ(1− σk+1))x
k+1T zk+1 + (ᾱk∆xk + ᾱ∆xk+1)T (ᾱk∆zk + ᾱ∆zk+1)− (1 + γ1ᾱ)ᾱ

2
k∆xkT∆zk.

(13)

It is worth noting that the final expression in (12) involves a composite direction (ᾱk∆xk+ᾱ∆xk+1, ᾱk∆zk+ᾱ∆zk+1)
which corresponds to an aggregate of two consecutive steps: in Newton direction at iteration k and in quasi-Newton
direction at iteration k + 1. Much of the effort of the analysis presented in this paper is focused on this composite
direction. Let us mention that we will also use the component-wise versions of equations (9), (11) and (12). For
example, in case of (12) this gives

[

xk+1 + ᾱ∆xk+1
]

i

[

zk+1 + ᾱ∆zk+1
]

i
= (1− ᾱ)

(

xk+1
i zk+1

i

)

+
[

ᾱk∆xk + ᾱ∆xk+1
]

i

[

ᾱk∆zk + ᾱ∆zk+1
]

i
+ ᾱσk+1µk+1 − (1 + ᾱγ1)ᾱ

2
k[∆xk]i[∆zk]i.

(14)

Observe that equations (9)-(14) are valid for both feasible and infeasible algorithm. However, the analysis in
Sections 3 and 4 will distinguish between these two cases because in the feasible one we are able to take advantage
of the orthogonality of primal and dual directions and exploit it to deliver better final worst-case complexity results.

Before we conclude the brief background section and take the reader through a detailed analysis of different
versions of the primal-dual quasi-Newton interior point algorithm, let us observe that equation (12) involves an
important term γ1. By Lemma 1, γ1 can be seen as the scalar coefficient of the projection of vector v onto the
subspace generated by vector yk:

Pyk
(v) =

yTk v

yTk yk
yk = γ1yk.

Using the non-expansive property of projections we conclude that

‖Pyk
(v)‖ ≤ ‖v‖ ⇐⇒ ‖γ1yk‖ ≤ ‖v‖ ⇐⇒ |γ1| ≤

‖v‖
‖yk‖

. (15)

In the next lemma, a lower bound for ‖yk‖ is derived. It states that the denominator of (15) can be bounded
away from zero if a sufficient decrease of µ = xT z/n is ensured and non-null step-sizes are taken. The bound for
‖v‖ involves the right-hand side in (8) and therefore depends on the feasibility of iterates and on the choice of the
centering parameter σ.

Lemma 2. Let k + 1 be a quasi-Newton iteration of Algorithm 1 and yk be the quasi-Newton vector defined by (7)
to construct Hk+1 by the Broyden “bad” update (6). Suppose that µk+1 ≤ (1 − ρkᾱk)µk holds, for ᾱk, ρk ∈ [0, 1].
Then

‖yk‖ ≥
ρk
2
ᾱkµk.

Proof. If ᾱk = 0 or ρk = 0 the result trivially holds, so we can assume that ᾱk, ρk ∈ (0, 1]. Suppose, by contradiction,
that ‖yk‖ < ρkᾱkµk/2. Therefore, by definition of yk,

‖Xk+1Zk+1e−XkZke‖ ≤ ‖yk‖ <
ρkᾱk

2
µk ⇒ |xk+1

i zk+1
i − xk

i z
k
i | <

ρkᾱk

2
µk, i = 1, . . . , n

⇒ xk+1
i zk+1

i − xk
i z

k
i > −ρkᾱk

2
µk, i = 1, . . . , n

⇒ µk+1 − µk > −ρkᾱk

2
µk,

5



where the last result was obtained by adding up all the n previous inequalities and dividing by n. By hypothesis
we have that µk+1 ≤ (1− ρkᾱk)µk and, therefore,

−ρkᾱk

2
µk < µk+1 − µk ≤ −ρkᾱkµk,

which implies ρk/2 > ρk and is a clear absurd. Thus, we conclude that ‖yk‖ ≥ ρkᾱkµk/2.

3 Worst-case complexity in the feasible case

For all the results in this section, we suppose that (x0, λ0, z0) is primal and dual feasible, given by Assumption 1.

Assumption 1. (x0, λ0, z0) ∈ F .
= {(x, λ, z) | Ax = b, ATλ+ z = c, x > 0, z > 0}.

Our analysis follows closely the theory in [21]. Under Assumption 1 the primal and dual directions are orthogonal
to each other [21, Lemma 5.1]. We show that the same holds for quasi-Newton directions.

Lemma 3. If k + 1 is a quasi-Newton iteration of Algorithm 1, then ∆xk+1T∆zk+1 = 0.

Proof. Using Lemma 1 with r = Hv defined by their respective terms in (8) and by the primal and dual feasibility
of (x0, λ0, z0), we observe that the first two block rows of system (8) (at iteration k + 1) given by

{

AT∆λk+1 + ∆zk+1 = 0
A∆xk+1 = 0

are the same as in the system solved by the usual Newton step. Therefore,

∆xk+1T∆zk+1 = −∆xk+1TAT∆λk+1 = −
(

A∆xk+1
)T

∆λk+1 = 0.

Corollary 1. If k is a Newton iteration and k + 1 is a quasi-Newton iteration, then

(

ᾱk∆xk + ᾱ∆xk+1
)T (

ᾱk∆zk + ᾱ∆zk+1
)

= ∆xkT∆zk = ∆xkT∆zk+1 = ∆zk
T
∆xk+1 = 0.

Proof. Since, by equation (7), (∆xk,∆λk,∆zk) was computed by the Newton step at iteration k we have that

∆xkT∆zk = 0 by the same arguments of Lemma 3. By Lemma 1 the first two equations do not change between
iterations k and k + 1, and we have the desired results.

The second important result is that the quasi-Newton step can decrease the barrier parameter µ in exactly the
same way as the Newton step (see [21, Lemma 5.1]). Recall that by definition µ = (xT z)/n.

Lemma 4. Let k + 1 be a quasi-Newton iteration of Algorithm 1. Then for any feasible step-size ᾱ ∈ [0, 1]

µ(ᾱ) = (1− ᾱ(1− σk+1))µk+1. (16)

Proof. By equation (13) and using Corollary 1, we obtain

nµ(ᾱ) = (xk+2)T zk+2 = (xk+1 + ᾱ∆xk+1)T (zk+1 + ᾱ∆zk+1)

= (1− ᾱ)xk+1T zk+1 + (ᾱk∆xk+ᾱ∆xk+1)T (ᾱk∆zk+ᾱ∆zk+1) + ᾱσk+1nµk+1 − (1+ᾱγ1)ᾱ
2
k∆xkT∆zk

= (1− ᾱ(1− σk+1))nµk+1.

By dividing both sides of the last equation by n we get the desired result.

Then, using Lemma 4, after Newton step at iteration k and quasi-Newton step at iteration k + 1, we get

‖(µ(ᾱ)− µk)e‖2 = (µ(ᾱ)− µk)
2n = [(1− ᾱ(1 − σk+1))µk+1 − µk]

2n

= [(1− ᾱ(1 − σk+1))(1 − ᾱk(1− σk))µk − µk]
2n

= [1− (1− ᾱ(1 − σk+1))(1 − ᾱk(1− σk))]
2µ2

kn.

(17)

It is worth noting that (in the feasible case) the term γ1 originating from Lemma 1 does not have any influence on
the value of µ(ᾱ).
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3.1 The N2 neighborhood

In this section we will consider a short-step interior point method and employ the notion of N2 neighborhood of
the central path

N2(θ) = {(x, λ, z) ∈ F | ‖XZe− µe‖ ≤ θµ},
where F is the set of primal and dual feasible points such that x, z > 0, see Assumption 1. For all considerations
in this subsection we add the following assumption.

Assumption 2. (xk, λk, zk) ∈ N2(θk) and (xk+1, λk+1, zk+1) ∈ N2(θk+1), for θk, θk+1 ∈ (0, 1).

Our main goal is to show that the new iterate

(xk+2, λk+2, zk+2) = (xk+1, λk+1, zk+1) + ᾱ(∆xk+1,∆λk+1,∆zk+1)

also belongs to N2(θk+2), for suitable choices of θk+2 ∈ (0, 1), ᾱ and ᾱk. Therefore, we are interested in the analysis
of the Euclidean norm of the vector (Xk+1 + ᾱ∆Xk+1)(Zk+1 + ᾱ∆Zk+1)e−µ(ᾱ)e and to deliver it we will exploit
several useful results stated earlier in equations (12), (14) and Lemma 4. Combining (14) and Lemma 4 we get

[

xk+1 + ᾱ∆xk+1
]

i

[

zk+1 + ᾱ∆zk+1
]

i
− µ(ᾱ) =

= (1− ᾱ)
(

xk+1
i zk+1

i − µk+1

)

+
[

ᾱk∆xk + ᾱ∆xk+1
]

i

[

ᾱk∆zk + ᾱ∆zk+1
]

i
− (1 + ᾱγ1)ᾱ

2
k[∆xk]i[∆zk]i.

(18)

By (18) and Assumption 2, we deliver the following bound on the proximity measure of the N2 neighborhood of
the iterate after the quasi-Newton step

‖
(

Xk+1+ ᾱ∆Xk+1
) (

Zk+1 + ᾱ∆Zk+1
)

e− µ(ᾱ)e‖ =
= ‖

{

(1− ᾱ)
(

xk+1
i zk+1

i − µk+1

)

+
[

ᾱk∆xk + ᾱ∆xk+1
]

i

[

ᾱk∆zk + ᾱ∆zk+1
]

i

−(1 + ᾱγ1)ᾱ
2
k[∆xk]i[∆zk]i

}n

i=1
‖

≤ (1 − ᾱ)‖Xk+1Zk+1e− µk+1e‖+ ‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖
+ |1 + ᾱγ1|ᾱ2

k‖∆Xk∆Zke‖

≤ (1 − ᾱ)θk+1µk+1 + |1 + ᾱγ1|ᾱ2
k

θ2k + n(1− σk)
2

23/2(1− θk)
µk

+ ‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖.

(19)

In the last inequality we used the bound on the error in the Newton step ‖∆Xk∆Zke‖, see [21, Lemma 5.4].
To further exploit (19) we need bounds on two terms which appear in it: 1 + ᾱγ1 and the second-order error

contributed by the composite direction ‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖. The following technical
result delivers a bound for |γ1|. (Observe that γ1 is evaluated only when the quasi-Newton iteration is performed.)

Lemma 5. Let k + 1 be a quasi-Newton iteration of Algorithm 1. Suppose that v in Lemma 1 is given by the
right-hand side of (4) and Assumption 2 holds. If ᾱk ∈ (0, 1] and σk ∈ [0, 1), then

|γ1| ≤
2(1− ᾱk(1− σk))

√

θ2k+1 + (1− σk+1)2n

ᾱk(1− σk)
,

where γ1 is defined in Lemma 1.

Proof. We use the assumptions of the lemma, the fact that the iterates are primal and dual feasible, the property
eT (µk+1e−Xk+1Zk+1e) = 0 and the relation µk+1 = (1− ᾱk(1− σk))µk to derive the result

‖v‖ = ‖σk+1µk+1e−Xk+1Zk+1e‖ = ‖(µk+1e−Xk+1Zk+1e)− (1− σk+1)µk+1e‖

=
√

‖µk+1e−Xk+1Zk+1e‖2 − 2(1− σk+1)µk+1eT (µk+1e−Xk+1Zk+1e) + ‖(1− σk+1)µk+1e‖2

≤
√

θ2k+1µ
2
k+1 + (1 − σk+1)2µ2

k+1n = (1− ᾱk(1− σk))µk

√

θ2k+1 + (1 − σk+1)2n .
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By defining ρk = 1− σk we can see that µk+1 = (1− (1− σk)ᾱk)µk = (1− ρkᾱk)µk which ensures the sufficient
decrease condition of Lemma 2. Since ᾱk > 0 and σk < 1, by the assumptions of the lemma, we have that ‖yk‖ > 0.
Then, by simple substitution of the previous equation and Lemma 2 in (15) we have

|γ1| ≤
‖vk‖
‖yk‖

≤
(1 − ᾱk(1− σk))µk

√

θ2k+1 + (1− σk+1)2n

1−σk

2 ᾱkµk

=
2(1− ᾱk(1 − σk))

√

θ2k+1 + (1− σk+1)2n

ᾱk(1− σk)
.

Next we turn our attention to the error in the composite direction ‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖
and start from a technical result.

Lemma 6. If k + 1 is a quasi-Newton iteration of Algorithm 1, then

Zk
(

ᾱk∆Xk + ᾱ∆Xk+1
)

e +Xk
(

ᾱk∆Zk + ᾱ∆Zk+1
)

e =

= (ᾱ+ ᾱk(1− ᾱ))
(

µke−XkZke
)

+ (µ(ᾱ)− µk)e− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke.

(20)

Proof. We use equations (4), (10) and (9) and some simple manipulations to obtain

Zk
(

ᾱk∆Xk+ᾱ∆Xk+1
)

e+Xk
(

ᾱk∆Zk+ᾱ∆Zk+1
)

e = ᾱk

(

Zk∆xk+Xk∆zk
)

+ ᾱ
(

Zk∆xk+1+Xk∆zk+1
)

= ᾱk(σkµke−XkZke) + ᾱ
(

σk+1µk+1e−Xk+1Zk+1e − γ1ᾱ
2
k∆Xk∆Zke

)

= ᾱk(σkµke−XkZke) + ᾱ
(

σk+1µk+1e− (1−ᾱk)X
kZke− ᾱkσkµke− ᾱ2

k∆Xk∆Zke − γ1ᾱ
2
k∆Xk∆Zke

)

= (1− ᾱ)ᾱkσkµke− (ᾱ+ ᾱk(1 − ᾱ))XkZke+ ᾱσk+1µk+1e− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke.

(21)

After adding and subtracting the term (ᾱ + ᾱk(1− ᾱ))µke we further rearrange the previous equation

Zk
(

ᾱk∆Xk + ᾱ∆Xk+1
)

e+Xk
(

ᾱk∆Zk + ᾱ∆Zk+1
)

e =

= (ᾱ+ ᾱk(1− ᾱ))
(

µke−XkZke
)

− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke

+ ((1 − ᾱ)ᾱkσk − (ᾱ + ᾱk(1− ᾱ)))µke+ ᾱσk+1µk+1e.

(22)

Then using µk+1 = (1 − ᾱk(1 − σk))µk (which clearly holds for a step in Newton direction) and Lemma 4 which
delivers a similar result for a step in quasi-Newton direction, we get:

((1 − ᾱ)ᾱkσk − (ᾱ+ ᾱk(1− ᾱ)))µke+ ᾱσk+1µk+1e = (ᾱkσk − ᾱᾱkσk − ᾱ− ᾱk + ᾱᾱk)µke+ ᾱσk+1µk+1e

= [−ᾱ(1 − ᾱk(1− σk))− ᾱk(1− σk)]µke+ ᾱσk+1µk+1e

= [−1− ᾱ(1 − ᾱk(1− σk)) + 1− ᾱk(1− σk)]µke+ ᾱσk+1µk+1e

= −µke− ᾱµk+1e+ µk+1e+ ᾱσk+1µk+1e = (1− ᾱ(1− σk+1))µk+1e− µke

= µ(ᾱ)e− µke.

(23)

By substituting (23) in (22), the desired result is obtained.

Lemma 7. Let k + 1 be a quasi-Newton iteration of Algorithm 1 and suppose that Assumption 2 holds. Then

‖ ( ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖ ≤

≤ µk

23/2(1−θk)

[

[1− (1−ᾱ(1−σk+1))(1−ᾱk(1−σk))]
2n+

(

(ᾱ+ ᾱk(1− ᾱ))θk + |1+γ1|ᾱᾱ2
k

θ2k + n(1−σk)
2

23/2(1− θk)

)2
]

.

Proof. Let us first define Dk = (Xk)1/2(Zk)−1/2 and the scaled vectors

uk = (Dk)
−1 (

ᾱk∆Xk + ᾱ∆Xk+1
)

e and vk = Dk
(

ᾱk∆Zk + ᾱ∆Zk+1
)

e.

Using Lemma 3, Corollary 1 and observing that all the involved matrices are diagonal, we get uT
k vk = 0. Hence

vectors uk and vk satisfy the assumptions of Lemma 5.3 in [21]. With Uk = diag(uk) and Vk = diag(vk), we write

‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖ = ‖(Dk)
−1 (

ᾱk∆Xk + ᾱ∆Xk+1
)

Dk
(

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖
= ‖UkVke‖ ≤ 2−3/2‖uk + vk‖2

= 2−3/2‖(Dk)
−1 (

ᾱk∆Xk + ᾱ∆Xk+1
)

e+Dk
(

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖2.
(24)
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After multiplying both sides of (20) by (XkZk)−1/2 and replacing it in (24) we obtain

‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖ ≤
≤ 2−3/2‖(XkZk)−1/2

{

(ᾱ+ ᾱk(1− ᾱ))
(

µke−XkZke
)

+ (µ(ᾱ)− µk)e− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke

}

‖2

= 2−3/2
n
∑

i=1

{

(ᾱ+ ᾱk(1− ᾱ))
(

µk − xk
i z

k
i

)

+ µ(ᾱ)− µk − (1 + γ1)ᾱᾱ
2
k[∆xk]i[∆zk]i

}2

xk
i z

k
i

≤ 2−3/2

(1− θk)µk
‖(ᾱ+ ᾱk(1− ᾱ))

(

µke−XkZke
)

− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke+ (µ(ᾱ)− µk)e‖2,

(25)

where the last inequality comes from the fact that (xk, λk, zk) belongs to N2(θk), hence (1 − θk)µk ≤ xk
i z

k
i ≤

(1 + θk)µk for all i. Now we use Lemma 3 again and the definition of µk to observe that

eT
(

(ᾱ+ ᾱk(1− ᾱ))
(

µke−XkZke
)

− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke

)

= 0 (26)

and further rearrange (25):

‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖ ≤

≤ 2−3/2

(1− θk)µk

[

∥

∥(ᾱ+ ᾱk(1 − ᾱ))
(

µke−XkZke
)

− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke

∥

∥

2
+ ‖(µ(ᾱ)− µk)e‖2

]

.
(27)

The second norm on the right-hand side of (27) is given by (17). Using the definition of N2(θk) neighborhood and
Lemma 5.4 from [21], for the first norm we get

‖(ᾱ+ ᾱk(1− ᾱ))
(

µke−XkZke
)

− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke

∥

∥

2 ≤
≤
(∥

∥(ᾱ+ ᾱk(1− ᾱ))
(

µke−XkZke
)∥

∥+
∥

∥(1 + γ1)ᾱᾱ
2
k∆Xk∆Zke

∥

∥

)2

≤
(

(ᾱ+ ᾱk(1− ᾱ))θk + |1 + γ1|ᾱᾱ2
k

θ2k + n(1− σk)
2

23/2(1− θk)

)2

µ2
k.

(28)

Finally, by substituting (17) and (28) in (27) we obtain the required result.

We are ready to state the main result of this subsection. In Theorem 1 we show that it is possible to choose
sufficiently small values for the step-sizes ᾱk and ᾱ such that (xk+2, λk+2, zk+2) ∈ N2(θk). Therefore, we ensure
that the quasi-Newton step taken after a Newton step remains in the N2 neighborhood. This implies that all the
iterates generated by the algorithm belong to N2. The upper bounds for the step-sizes as stated in the theorem are
then used to determine the worst-case complexity of Algorithm 1 operating in N2. First, recall [21, Theorem 5.6]
that it is possible to choose parameters θk, θk+1 ∈ (0, 1) and σk, σk+1 ∈ (0, 1) so that

θ2k + n(1− σk)
2

23/2(1− θk)
≤ θkσk and

θ2k+1 + n(1− σk+1)
2

23/2(1− θk+1)
≤ θk+1σk+1. (29)

Theorem 1. Let k + 1 be a quasi-Newton iteration of Algorithm 1. Suppose that Assumptions 1 and 2 hold and
that θk+1 = θk and σk+1 = σk. If the step-sizes in Newton and quasi-Newton iterations ᾱk and ᾱ satisfy

ᾱk ∈
(

0,min

{

1− σk

4σk
,

σk(1− σk)

10(1− σk) + 4

}]

and ᾱ ∈
[

ᾱk,
σk(1 − σk)

10(1− σk) + 4

]

(30)

for σk ∈ [0, 1) and θk ∈ (0, 16/25), then

(xk+2, λk+2, zk+2)
.
= (xk+1, λk+1, zk+1) + ᾱ(∆xk+1,∆λk+1,∆zk+1) ∈ N2(θk).

Proof. We will first show that for all ᾱk and ᾱ satisfying the conditions of the theorem

‖
(

Xk+1+ ᾱ∆Xk+1
) (

Zk+1 + ᾱ∆Zk+1
)

e− µ(ᾱ)e‖ − θkµ(ᾱ) ≤ 0 (31)

holds. This condition ensures that the Newton step at iteration k + 2 will be successfully performed and the
algorithm converges. By inequality (19), condition (31) is satisfied if

[(1− ᾱ)θk+1µk+1 − θkµ(ᾱ)] + |1 + ᾱγ1|ᾱ2
k

θ2k + n(1− σk)
2

23/2(1− θk)
µk

+ ‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖ ≤ 0.

(32)
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We will derive bounds to each term on the left-hand side of this inequality in order to find an expression in a form
K1ᾱ

2 −K2ᾱ, K1,K2 > 0, which will be nonpositive for small values of ᾱ.
For the first term, we use the fact that θk+1 = θk, σk+1 = σk and ᾱk ∈ (0, 1). In addition, we use Lemma 4 to

expand µ(ᾱ) and the fact that µk+1 was calculated in the Newton step k to obtain

(1− ᾱ)θk+1µk+1 − θkµ(ᾱ) = [(1 − ᾱ)(θk+1 − θk)− ᾱσk+1θk](1 − ᾱk(1− σk))µk ≤ −ᾱσ2
kθkµk. (33)

For the second and third terms, we first apply (29) in Lemma 5 to simplify the bound of γ1:

|γ1| ≤
2(1− ᾱk(1− σk))

√

23/2(1− θk+1)

√

θ2
k+1

+(1−σk+1)2n

23/2(1−θk+1)

ᾱk(1 − σk)

≤ 2(1− ᾱk(1− σk))
√

23/2(1− θk+1)
√

θk+1σk+1

ᾱk(1− σk)
≤ 4

ᾱk(1− σk)
− 4.

(34)

Therefore, using (29) again, we derive the following bound to the second term

|1 + ᾱγ1|ᾱ2
k

θ2k + n(1− σk)
2

23/2(1− θk)
µk ≤

[

1 + ᾱ

(

4

ᾱk(1− σk)
− 4

)]

ᾱ2
kθkσkµk

= ᾱ2
kθkσkµk + 4ᾱᾱk

(

1− ᾱk(1 − σk)

1− σk

)

θkσkµk ≤ ᾱ2

[

1 +
4

1− σk

]

θkσkµk,

(35)

where in the last inequality we used the condition ᾱk ≤ ᾱ ≤ 1 from (30). For the third term in (32), we use the
bound obtained in Lemma 7 and analyze each part of it independently. First, since ᾱk ≤ ᾱ and σk+1 = σk, we
observe that

[1− (1− ᾱ(1 − σk+1))(1− ᾱk(1− σk))]
2n = [ᾱk(1− σk) + ᾱ(1− ᾱk(1− σk))(1 − σk))]

2n

≤ ᾱ2(1− σk)
2[1 + (1− ᾱk(1 − σk))]

2n ≤ 4ᾱ2(1− σk)
2n.

(36)

Using bound (34), assumption ᾱk ≤ (1− σk)/(4σk) in (30), and (29) again, we also obtain

[

(ᾱ+ ᾱk(1− ᾱ))θk + |1 + γ1|ᾱᾱ2
k

θ2k + n(1 − σk)
2

23/2(1− θk)

]2

≤
[

ᾱ+ ᾱk(1− ᾱ) +

(

4

ᾱk(1 − σk)
− 3

)

ᾱᾱ2
kσk

]2

θ2k

≤
[

ᾱ+ ᾱk(1− ᾱ) +
4

ᾱk(1− σk)
ᾱᾱ2

kσk

]2

θ2k

≤ ᾱ2

[

1 + (1 − ᾱ) +
4ᾱkσk

(1− σk)

]2

θ2k

≤ 9ᾱ2θ2k.

(37)

By combining (36) and (37) in the statement of Lemma 7 and applying (29) once more, we derive a bound to the
third term of (32)

‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖ ≤ µk

23/2(1− θk)

(

4ᾱ2(1− σk)
2n+ 9ᾱ2θ2k

)

≤ 9ᾱ2θkσkµk. (38)

By (33), (35) and (38), the following bound on expression in (32) is obtained

(1− ᾱ)θk+1µk+1 − θkµ(ᾱ) + |1 + ᾱγ1|ᾱ2
k

θ2k + n(1− σk)
2

23/2(1− θk)
µk

+ ‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖

≤ −ᾱσ2
kθkµk + ᾱ2

[

1 +
4

1− σk

]

θkσkµk + 9ᾱ2θkσkµk

≤ ᾱ

[

10ᾱ+
4ᾱ

1− σk
− σk

]

θkσkµk,

(39)

which is negative only if ᾱ ≤ σk(1 − σk)/(10(1− σk) + 4), as requested by (30). This bound on ᾱ implies a bound
on ᾱk, due to condition ᾱk ≤ ᾱ. Therefore, we arrive in the step-size conditions (30) of the theorem. Using (31)
we also have that

(

xk+1
i + ᾱ[∆xk+1]i

) (

zk+1
i + ᾱ[∆zk+1]i

)

≥ (1 − θk)µ(ᾱ) > 0. (40)
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We now show that the new iterate belongs to F . By Assumption 1 and Lemma 1 we know that all iterates
remain primal and dual feasible. It remains to show that xk+2 and zk+2 are strictly positive. We follow the same
arguments as [17] and adapt them to our case. Suppose by contradiction that xk+2

i ≤ 0 or zk+2
i ≤ 0 hold for some

i. By (40), we have that xk+2
i < 0 and zk+2

i < 0 and that implies xk
i z

k
i < (ᾱk[∆xk]i + ᾱ[∆xk+1]i)(ᾱk[∆zk]i +

ᾱ[∆zk+1]i) ≤ 9ᾱ2θkσkµk by inequality (38). Since (xk, λk, zk) ∈ N2(θk) and ᾱ ≤ 1/4, by (30), we conclude that
(1 − θk)µk < (9/16)θkµk and, therefore, θk > 16/25, which contradicts the choice of θk. Hence, (xk+2, λk+2, zk+2)
belongs to N2(θk) and the Newton step at iteration k + 2 also falls in the N2(θk) neighborhood.

For the polynomial convergence of Algorithm 1, we define σk = σk+1 = 1− 0.4/
√
n and θk = θk+1 = θk+2 = 0.4,

which satisfy condition (29) [21] and maintain all the previous results. By Lemma 4, µ(ᾱ) ≤ µk+1 ≤ µk. So it is
enough to look just at the Newton steps, which are easier to analyze. Using (30) it is not hard to see that

ᾱk ≥ min

{

1− σk

4σk
,

σk(1− σk)

10(1− σk) + 4

}

≥ min

{

0.1√
n
,
0.03√
n

}

=
0.03√

n
.

Therefore,

µk+1 ≤
(

1− 0.03√
n

0.4√
n

)

µk =

(

1− 0.012

n

)

µk, k = 0, 2, 4, . . . ,

from which the convergence with the worst-case iteration complexity of O(n) can be derived.

3.2 The N
s
neighborhood

Colombo and Gondzio [3] used the symmetric neighborhood Ns(γ), defined by

Ns(γ)
.
=

{

(x, λ, z) ∈ F | γµ ≤ xizi ≤
1

γ
µ, i = 1, . . . , n

}

,

for γ ∈ (0, 1), which is related with the N−∞(γ) neighborhood used in long-step primal-dual interior point al-
gorithms. The idea of the symmetric neighborhood is to add an upper bound on the complementarity pairs, so
that their products do not become too large with respect to the average. The authors showed that the worst-case
iteration complexity for linear feasible primal-dual interior point methods remains O(n) and the new neighborhood
has a better practical interpretation. As HOPDM [7] implements the Ns neighborhood and it was used in the numer-
ical experiments in [10] for quasi-Newton IPM, it is natural to ask about the iteration complexity of Algorithm 1
operating in the Ns neighborhood. The analysis presented below will follow closely that from Subsection 3.1. We
start from an assumption, but it is worth observing that, from [3, 21], this assumption holds if the step-size in the

Newton direction is sufficiently small: ᾱk ∈
[

0,min
{

23/2 1−γ
1+γ

σk

n , 23/2γ 1−γ
1+γ

σk

n

}]

.

Assumption 3. Let γ ∈ (0, 1) and (xk, λk, zk) ∈ Ns(γ). Let the iterate after a step ᾱk in Newton direction also
satisfy (xk+1, λk+1, zk+1) ∈ Ns(γ).

Our main goal is to show that the next iterate obtained after a step in the quasi-Newton direction

(xk+2, λk+2, zk+2) = (xk+1, λk+1, zk+1) + ᾱ(∆xk+1,∆λk+1,∆zk+1)

also belongs to Ns(γ) if suitable step-sizes ᾱ and ᾱk are chosen. To demonstrate this, we will consider lower and
upper bounds on the complementarity products in the Ns(γ) neighborhood using two possible values of ζ ∈ {γ, 1

γ }.
We start the analysis from expanding the complementarity product at the quasi-Newton iteration

[

(Xk+1 + ᾱ∆Xk+1)(Zk+1 + ᾱ∆Zk+1)e
]

i
− ζµ(ᾱ), (41)

where ᾱ ∈ (0, 1) is the step-size associated with the quasi-Newton direction. To guarantee that the new iterate
belongs to Ns(γ), for ζ = γ the expression in (41) should be non-negative and for ζ = 1/γ it should be non-positive,
for i = 1, . . . , n. Using (14) and Lemma 4, we rewrite the expression in (41)

[

xk+1 + ᾱ∆xk+1
]

i

[

zk+1 + ᾱ∆zk+1
]

i
− ζµ(ᾱ) = (1− ᾱ)(xk+1

i zk+1
i − ζµk+1) + (1− ζ)ᾱσk+1µk+1

+
[

ᾱk∆xk + ᾱ∆xk+1
]

i

[

ᾱk∆zk + ᾱ∆zk+1
]

i
− (1 + γ1ᾱ)ᾱ

2
k[∆xk]i[∆zk]i.

(42)

To deliver the main result of this section we will need a bound for the quasi-Newton term γ1 defined in Lemma 1
when the algorithm operates in the Ns(γ) neighborhood.
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Lemma 8. Let k+1 be a quasi-Newton iteration of Algorithm 1 operating in the Ns(γ) neighborhood. Suppose that
v in Lemma 1 is given by the right-hand side of (4) and Assumption 3 holds. If ᾱk ∈ (0, 1] and σk ∈ [0, 1), then

|γ1| ≤
2
√
n

(1 − σk)ᾱkγ
.

Proof. Using the conditions of the lemma, the definition of µ and the fact that σk+1 ∈ [0, 1], we have that

‖v‖ = ‖σk+1µk+1e−Xk+1Zk+1e‖ =

√

√

√

√σ2
k+1µ

2
k+1n− 2σk+1µ2

k+1n+
n
∑

i=1

(xk+1
i zk+1

i )2

≤
√

(1/γ2)µ2
k+1n− (2− σk+1)σk+1µ2

k+1n ≤
√

(1/γ2)− σk+1

√
nµk+1

≤
√
n

γ
µk+1 =

(1 − ᾱk(1− σk))
√
n

γ
µk ≤

√
n

γ
µk.

Since ᾱk ∈ (0, 1] and σk ∈ [0, 1), by defining ρk = 1 − σk > 0 we can again use µk+1 = (1 − ᾱk(1 − σk))µk and
Lemma 2 to ensure that ‖yk‖ > 0. Therefore, by (15), Lemma 2 and the previous result,

|γ1| ≤
‖v‖
‖yk‖

≤ (1 − ᾱk(1− σk))
√
nµk

γ

2

(1− σk)ᾱkµk
=

2(1− ᾱk(1− σk))
√
n

(1− σk)ᾱkγ
≤ 2

√
n

(1 − σk)ᾱkγ
.

The next lemma delivers a bound for term
[

ᾱk∆xk + ᾱ∆xk+1
]

i

[

ᾱk∆zk + ᾱ∆zk+1
]

i
under Assumption 3. Most

of the calculations have already been made in the proof of Lemma 7. Let us mention that Lemmas 7 and 9 can be
viewed as the quasi-Newton versions of [21, Lemma 5.10].

Lemma 9. Let k + 1 be a quasi-Newton iteration of Algorithm 1 and suppose that Assumption 3 holds. Then,

‖ ( ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖ ≤

≤ nµk

23/2γ

{

[

(ᾱ+ ᾱk(1− ᾱ)) +
|1 + γ1|ᾱᾱ2

k

23/2

]2(
1 + γ

γ

)2

n+ [1− (1− ᾱ(1− σk+1))(1 − ᾱk(1− σk))]
2

}

.

Proof. We observe that many arguments used at the beginning of the proof of Lemma 7 remain valid for the Ns

neighborhood. (Only the bound xk
i z

k
i ≥ (1− θk)µk needs to be replaced with xk

i z
k
i ≥ γµk.) Then inequalities (25)

and (27) are replaced with the following

‖
(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖ ≤

≤ 2−3/2
n
∑

i=1

{

(ᾱ+ ᾱk(1− ᾱ))
(

µk − xk
i z

k
i

)

+ µ(ᾱ)− µk − (1 + γ1)ᾱᾱ
2
k[∆xk]i[∆zk]i

}2

xk
i z

k
i

≤ 1

23/2γµk
‖(ᾱ+ ᾱk(1− ᾱ))

(

µke−XkZke
)

+ (µ(ᾱ)− µk)e − (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke‖2

=
1

23/2γµk

[

‖(ᾱ+ ᾱk(1− ᾱ))
(

µke−XkZke
)

− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke‖2 + ‖(µ(ᾱ)− µk)e‖2

]

,

(43)

where in the last equality we have used equation (26). We already have the expression for ‖(µ(ᾱ)−µk)e‖2 (see (17)),
but we need a bound for the first norm in (43). We observe that

‖µke−XkZke‖ =

√

√

√

√

n
∑

i=1

(xk
i z

k
i )

2 − 2µ2
kn+ µ2

kn ≤
√

µ2
kn

γ2
− µ2

kn ≤
1

γ

√
nµk ≤

1 + γ

γ

√
nµk. (44)

Therefore, by (44) and the bound on
∥

∥∆Xk∆Zke
∥

∥ obtained in [21, Lemma 5.10] (which also holds for Ns [3])
∥

∥(ᾱ+ ᾱk(1− ᾱ))
(

µke−XkZke
)

− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke

∥

∥

2 ≤
≤
[

(ᾱ+ ᾱk(1− ᾱ))
∥

∥µke−XkZke
∥

∥+ |1 + γ1|ᾱᾱ2
k

∥

∥∆Xk∆Zke
∥

∥

]2

≤
[

(ᾱ+ ᾱk(1− ᾱ))

(

1 + γ

γ

)√
nµk +

|1 + γ1|ᾱᾱ2
k

23/2

(

1 + γ

γ

)

µkn

]2

≤
[

(ᾱ+ ᾱk(1− ᾱ)) +
|1 + γ1|ᾱᾱ2

k

23/2

]2(
1 + γ

γ

)2

n2µ2
k,

(45)
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since n ≥ 1. Using (17) and (45) in (43), we obtain the desired result.

Using (42) and the bounds obtained so far, we now show that, for sufficiently small step-sizes ᾱk and ᾱ, in the
Newton and quasi-Newton iterations, respectively, the point (xk+2, λk+2, zk+2) also belongs to Ns(γ). The upper
bounds for the step-sizes delivered by the theorem below are then used to determine the O(n3) iteration worst-case
complexity of Algorithm 1 operating in Ns(γ).

Theorem 2. Suppose that k + 1 is a quasi-Newton iteration of Algorithm 1 and Assumption 3 holds. Define

l =
1
2σmin

3
23/2γ

(

2 + 1
γ(1−σmax)

)2 (
1+γ
γ

)2 ,

where 0 < σmin ≤ σk ≤ σmax < 1 for all k = 0, 1, 2, . . . If

ᾱk ∈
(

0,
(1− γ)l

2n3

]

and ᾱ ∈
[

2ᾱk,
(1− γ)l

n3

]

(46)

then γµ(ᾱ) ≤ xk+2
i zk+2

i ≤ (1/γ)µ(ᾱ) for all i = 1, . . . , n. If, in addition, γ ≥ σmin/4, then (xk+2, λk+2, zk+2) ∈
Ns(γ).

Proof. By construction we guarantee that ᾱ ≥ 2ᾱk as needed in (46). We start the proof by setting ξ = γ in (42)
and showing that

[

xk+1 + ᾱ∆xk+1
]

i

[

zk+1 + ᾱ∆zk+1
]

i
− γµ(ᾱ) ≥ 0 for sufficiently small step-sizes. By (42), using

Assumption 3, Lemma 9 and [21, Lemma 5.10], we obtain

[

xk+1 + ᾱ∆xk+1
]

i

[

zk+1 + ᾱ∆zk+1
]

i
− γµ(ᾱ) =

= (1− ᾱ)(xk+1
i zk+1

i − γµk+1) + (1− γ)ᾱσk+1µk+1

+
[

ᾱk∆xk + ᾱ∆xk+1
]

i

[

ᾱk∆zk + ᾱ∆zk+1
]

i
− (1 + γ1ᾱ)ᾱ

2
k[∆xk]i[∆zk]i

≥ (1− γ)ᾱσk+1(1− ᾱk(1 − σk))µk − (1 + γ1ᾱ)ᾱ
2
k

(

1+γ

γ

)

n

23/2
µk

− n

23/2γ

{

[

ᾱ+ ᾱk(1−ᾱ) +
|1+γ1|ᾱᾱ2

k

23/2

]2(
1+γ

γ

)2

n+ [1− (1− ᾱ(1−σk+1))(1−ᾱk(1−σk))]
2

}

µk

= µk

{

(1− γ)ᾱσk+1(1− ᾱk(1− σk))− (1 + γ1ᾱ)ᾱ
2
k

(

1 + γ

γ

)

n

23/2

−
[

ᾱ+ ᾱk(1−ᾱ) +
|1 + γ1|ᾱᾱ2

k

23/2

]2(
1+γ

γ

)2
n2

23/2γ
− [1−(1−ᾱ(1−σk+1))(1−ᾱk(1−σk))]

2 n

23/2γ

}

.

(47)

We will rearrange this expression and represent it in a form K1ᾱ−K2ᾱ
2 with K1,K2 > 0. Next, we will show that

(47) is non-negative for sufficiently small values of ᾱk and ᾱ. To deliver the desired results every term inside the
curly brackets in (47) will be bounded. Since ᾱk ≤ 1

2 ᾱ ≤ 1
2 , we have 1− ᾱk(1− σk) ≥ 1− 1

2 (1− σk) ≥ 1
2 hence for

the first term in (47) we obtain

(1− γ)ᾱσk+1(1− ᾱk(1− σk)) ≥
1

2
[(1− γ)σk+1]ᾱ. (48)

Using condition ᾱ ≥ 2ᾱk (guaranteed by (46)), n ≥ 1 and Lemma 8, the second term becomes

(1 + γ1ᾱ)ᾱ
2
k

(

1 + γ

γ

)

n

23/2
≤ (ᾱ2

k + |γ1|ᾱᾱ2
k)

(

1 + γ

γ

)

n

23/2
≤
(

ᾱ2
k +

2
√
n

γ(1− σk)
ᾱᾱk

)(

1 + γ

γ

)

n

23/2

≤
(

ᾱ2

4
+

√
n

γ(1− σk)
ᾱ2

)(

1 + γ

γ

)

n

23/2
=

(

1

4
+

√
n

γ(1− σk)

)(

1 + γ

γ

)

n

23/2
ᾱ2

≤
(

2 +
1

γ(1− σk)

)(

1 + γ

γ

)

n
√
n

23/2γ
ᾱ2.

(49)

By applying condition ᾱ ≥ 2ᾱk again, we conclude that

ᾱ+ ᾱk(1 − ᾱ) = ᾱ+ ᾱk − ᾱᾱk ≤ ᾱ+
1

2
ᾱ− ᾱᾱk ≤

3

2
ᾱ (50)
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and, using (50) and the same arguments as before, for the third term in (47) we obtain

[

ᾱ+ ᾱk(1− ᾱ) +
|1 + γ1|ᾱᾱ2

k

23/2

]2(
1 + γ

γ

)2
n2

23/2γ
≤
[

3

2
ᾱ+

(

1 +
2
√
n

γ(1− σk)ᾱk

)

ᾱᾱ2
k

23/2

]2(
1 + γ

γ

)2
n2

23/2γ

≤
(

3

2
+

1

2
+

√
n

γ(1− σk)

)2(
1 + γ

γ

)2
n2

23/2γ
ᾱ2

≤
(

2 +
1

γ(1− σk)

)2(
1 + γ

γ

)2
n3

23/2γ
ᾱ2.

(51)

In a similar fashion, the last term of (47) can be bounded as

[1−(1−ᾱ(1−σk+1))(1− ᾱk(1− σk))]
2 n

23/2γ
= [1−(1−ᾱk(1−σk)) + ᾱ(1−σk+1)(1−ᾱk(1−σk))]

2 n

23/2γ

= [ᾱk(1 − σk) + ᾱ(1− σk+1)(1− ᾱk(1 − σk))]
2 n

23/2γ

≤
[

(1− σk)

2
+ (1 − σk+1)(1 − ᾱk(1− σk))

]2
n

23/2γ
ᾱ2 ≤ 4

n

23/2γ
ᾱ2.

(52)

Since n ≥ 1 and assuming without loss of generality that
(

2 + 1
γ(1−σk)

)(

1+γ
γ

)

≥ 4, using (48), (49), (51) and (52)

in (47) we have that

[

xk+1 + ᾱ∆xk+1
]

i

[

zk+1 + ᾱ∆zk+1
]

i
− γµ(ᾱ) ≥

≥
{

1

2
[(1− γ)σk+1]ᾱ− 3

(

2 +
1

γ(1− σk)

)2(
1 + γ

γ

)2
n3

23/2γ
ᾱ2

}

µk

≥
{

1

2
[(1− γ)σmin]ᾱ− 3

(

2 +
1

γ(1− σmax)

)2(
1 + γ

γ

)2
n3

23/2γ
ᾱ2

}

µk.

Therefore, in order to guarantee that
[

xk+1 + ᾱ∆xk+1
]

i

[

zk+1 + ᾱ∆zk+1
]

i
≥ γµ(ᾱ) for i = 1, . . . , n, it is sufficient

that the quasi-Newton step-size ᾱ satisfies

ᾱ ≤
1
2 (1− γ)σmin

3
23/2γ

(

2 + 1
γ(1−σmax)

)2 (
1+γ
γ

)2

n3

=
(1− γ)l

n3
. (53)

We now set ξ = 1/γ in (42). In order to show that the resulting expression is non-positive, we use the same

14



arguments as before, that is, Lemma 9 and equations (48), (49), (51) and (52) to obtain

[

xk+1 + ᾱ∆xk+1
]

i

[

zk+1 + ᾱ∆zk+1
]

i
− (1/γ)µ(ᾱ) =

= (1 − ᾱ)(xk+1
i zk+1

i − (1/γ)µk+1) + (1− (1/γ))ᾱσk+1µk+1

+
[

ᾱk∆xk + ᾱ∆xk+1
]

i

[

ᾱk∆zk + ᾱ∆zk+1
]

i
− (1 + γ1ᾱ)ᾱ

2
k[∆xk]i[∆zk]i

≤ (1 − (1/γ))ᾱσk+1µk+1 +
[

ᾱk∆xk + ᾱ∆xk+1
]

i

[

ᾱk∆zk + ᾱ∆zk+1
]

i
+ |1 + γ1ᾱ|ᾱ2

k|[∆xk]i[∆zk]i|

≤ (1 − (1/γ))ᾱσk+1(1− ᾱk(1− σk))µk + |1 + γ1ᾱ|ᾱ2
k

(

1 + γ

γ

)

n

23/2
µk

+
n

23/2γ

{

[

ᾱ+ᾱk(1−ᾱ)+
|1+γ1|ᾱᾱ2

k

23/2

]2(
1+γ

γ

)2

n+ [1−(1−ᾱ(1−σk+1))(1−ᾱk(1−σk))]
2

}

µk

= µk

{

|1 + γ1ᾱ|ᾱ2
k

(

1 + γ

γ

)

n

23/2
+

[

ᾱ+ ᾱk(1− ᾱ) +
|1 + γ1|ᾱᾱ2

k

23/2

]2(
1 + γ

γ

)2
n2

23/2γ

+ [1− (1− ᾱ(1 − σk+1))(1 − ᾱk(1− σk))]
2 n

23/2γ
−
(

1− γ

γ

)

ᾱσk+1(1 − ᾱk(1− σk))

}

≤ µk

{

3

(

2 +
1

γ(1− σk)

)2(
1 + γ

γ

)2
n3

23/2γ
ᾱ2 − 1

2
σk+1

(

1− γ

γ

)

ᾱ

}

≤ µk

{

3

(

2 +
1

γ(1− σmax)

)2(
1 + γ

γ

)2
n3

23/2γ
ᾱ2 − 1

2
σmin

(

1− γ

γ

)

ᾱ

}

.

(54)

Therefore, if

ᾱ ≤

(

1− γ

γ

)

l

n3
, (55)

then by (54) we have that
[

xk+1 + ᾱ∆xk+1
]

i

[

zk+1 + ᾱ∆zk+1
]

i
≤ (1/γ)µ(ᾱ) for all i = 1, . . . , n. Observe that

bound (53) is tighter than (55) because γ ∈ (0, 1) hence (53) appears as an upper bound on ᾱ in (46). The
remaining bounds in (46) are consistent with the need to satisfy ᾱ ≥ 2ᾱk.

It remains to show that xk+2 and zk+2 are strictly positive. Similarly to Theorem 1, if, by contradiction,
xk+2
i ≤ 0 or zk+2

i ≤ 0 for some i, then we must have xk+2
i < 0 and zk+2

i < 0. On one hand, we already know that
xk
i z

k
i ≥ γµk, by Assumption 3. Hence, by Lemma 9, (51), (52) and similar arguments to those used in this proof

xk
i z

k
i <

[

ᾱk∆xk + ᾱ∆xk+1
]

i

[

ᾱk∆zk + ᾱ∆zk+1
]

i
≤ ‖

(

ᾱk∆Xk + ᾱ∆Xk+1
) (

ᾱk∆Zk + ᾱ∆Zk+1
)

e‖

≤ 3

23/2γ

(

2 +
1

γ(1− σmax)

)2(
1 + γ

γ

)2

ᾱ2µkn
3 =

σminᾱ
2µkn

3

2l
.

Hence we conclude that γ < σminn
3ᾱ2/(2l) which, together with condition γ ≥ σmin/4 and (46), implies the

following absurd
σmin

4
≤ γ <

σminn
3ᾱ2

2l
≤ σminn

3ᾱ

2l
≤ σmin(1 − γ)

4
≤ σmin

4
.

By Assumption 1, we have that (xk+2, λk+2, zk+2) belongs to F , hence we conclude that it belongs to Ns(γ).

To deliver the worst-case polynomial complexity, we follow the same arguments as those presented after the
proof of Theorem 1 and consider only Newton iterations which are simpler to analyze. By (46), we have that

ᾱk ≥
(1− γ)l

2n3

and, by [21, Lemma 5.1],

µk+1 = (1− ᾱk(1− σk))µk ≤
(

1− (1− γ)l

2n3

)

µk, k = 0, 2, 4, . . . ,

from which the convergence with the worst-case iteration complexity of O(n3) can be established easily.
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Because of the close relation of the symmetric neighborhood and the N−∞(γ) neighborhood, one should expect
similar complexity results to that of Theorem 2. However, if the Ns(γ) neighborhood is not applied in Lemma 8,

then a naive approach is to bound
∑n

i=1

(

xk+1
i zk+1

i

)2
by µ2

k+1n
2. Such approach would increase the worst-case

iteration complexity to O(n4), as the degree would be increased in equation (51). A different approach to reduce
the worst-case polynomial degree when working with the N−∞(γ) neighborhood is subject to future developments.

4 Worst-case complexity in the infeasible case

In this section, we analyze worst-case iteration complexity for linear programming problems without assuming
feasibility of the starting point. The analysis uses some ideas developed in Section 3 and follows [21, Chapter 6], by
adding extra requirements on the computation of step-size ᾱk. The proofs are modified to consider the symmetric
neighborhood and admit the quasi-Newton steps.

We start by defining rkb and rkc to be the primal and dual infeasibility vectors at point (xk, λk, zk) which appear
in the right-hand side of equation (4):

rkb = Axk − b and rkc = ATλk + zk − c.

Then, given an initial guess (x0, λ0, z0) and parameters β ≥ 1 and γ ∈ (0, 1), the infeasible version of the symmetric
neighborhood is defined as follows

Ns(γ, β)
.
=

{

(x, λ, z)
∣

∣

∣ ‖(rb, rc)‖ ≤
‖(r0b , r0c)‖

µ0
βµ, x > 0, z > 0 and γµ ≤ xizi ≤

1

γ
µ, i = 1, . . . , n

}

.

In order to obtain complexity results, ᾱk needs to be computed in such a way that the new iterate remains in
Ns(γ, β) and a sufficient decrease condition for µk is satisfied. More precisely, given αdec ∈ (0, 1), ᾱk is the largest
value in [0, 1] (or a fixed fraction of it) such that

(xk, λk, zk) + ᾱk(∆xk,∆λk,∆zk) ∈ Ns(γ, β) and µ(ᾱk) ≤ (1− αdecᾱk)µk. (56)

The goal of this section is to show that, assuming that one quasi-Newton step is performed from a point in Ns(γ, β)
by Algorithm 1, then conditions (56) are satisfied by the new point. When only Newton steps are taken, it is shown
in [21, Lemma 6.7] that there is an interval [0, α̂] such that (56) holds for the N−∞(γ, β) neighborhood. This is the
case if a special starting point is used and α̂ ≥ δ̄/n2, where δ̄ is a constant independent of n. In Lemma 10, we
extend those results in order to ensure that the iterates belong to Ns(γ, β) when only Newton steps are taken.

First, let us recall some results from [21] that will be used frequently. We define the scalar νk =

k−1
∏

i=0

(1 − ᾱi),

which allows us to write vectors rkb and rkc as rkb = νkr
0
b and rkc = νkr

0
c , respectively. The parameter σk used in (8)

satisfies 0 < σmin ≤ σk ≤ σmax < 1 for all k. We also assume that a special initial point is used in Algorithm 1,
given by

(x0, λ0, z0) =
[

ξe 0 ξe
]T

, (57)

where ξ is such that ‖(x∗, z∗)‖∞ ≤ ξ, for some primal-dual solution (x∗, λ∗, z∗).
Let k be a Newton iteration, (xk, λk, zk) ∈ Ns(γ, β) and Dk = (Xk)1/2(Zk)−1/2. Also, let ω = 9β/γ1/2 be a

constant independent of n. When (57) is used as the starting point, the following bounds hold:

νk‖(xk, zk)‖1 ≤
4β

ξ
nµk (58)

µ0 = ξ2 (59)

‖(Dk)−1∆xk‖ ≤ ωnµ
1/2
k and ‖Dk∆zk‖ ≤ ωnµ

1/2
k . (60)

The proofs for these bounds can be found in Lemmas 6.4 and 6.6 of [21], respectively.
We start the analysis from looking at Newton step in Ns(γ, β) neighborhood.

Lemma 10. If (xk, λk, zk) ∈ Ns(γ, β) and the Newton step is taken at iteration k, then there exists a constant ¯̄δ

independent of n and a value α̂ ≥ ¯̄δ/n2, independent of k, such that for all ᾱk ∈ [0, α̂]

(1− ᾱk)x
kT zk ≤ (xk + ᾱk∆xk)T (zk + ᾱk∆zk) ≤ (1− αdecᾱk)x

kT zk (61)

γµ(ᾱk) ≤ [xk + ᾱk∆xk]i[z
k + ᾱk∆zk]i ≤

1

γ
µ(ᾱk) (62)
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Proof. We only need to address the right inequality of (62), since all the other results were detailed in [21,
Lemma 6.7]. Since k is a Newton iteration, by (60), we obtain

|∆xk
i∆zki | ≤ |[(Dk)−1]ii∆xk

i ||[Dk]ii∆zki | ≤ ‖(Dk)−1∆xk‖‖Dk∆zk‖ ≤ ω2n2µk.

As (∆xk,∆λk,∆zk) solves (4) and (xk, λk, zk) ∈ Ns(γ, β), using a component-wise version of (9) we get

[xk + ᾱk∆xk]i[z
k + ᾱk∆zk]i = (1− ᾱk)x

k
i z

k
i + ᾱkσkµk + ᾱ2

k∆xk
i∆zki

≤ 1− ᾱk

γ
µk + ᾱkσkµk + ᾱ2

kω
2n2µk.

(63)

Using similar arguments and equation (9) again, we also obtain

1

γ
µ(ᾱk) =

1

γ

(xk + ᾱk∆xk)T (zk + ᾱk∆zk)

n
≥ 1− ᾱk

γ
µk +

ᾱkσk

γ
µk −

ᾱ2
k|∆xkT∆zk|

γn

≥ 1− ᾱk

γ
µk +

ᾱkσk

γ
µk −

ᾱ2
kω

2n

γ
µk.

(64)

Using (63), (64) and the fact that n ≥ 1, we obtain

[xk + ᾱk∆xk]i[z
k + ᾱk∆zk]i −

1

γ
µ(ᾱk) ≤ ᾱkσk

(

1− 1

γ

)

µk + ᾱ2
kω

2n2

(

1 +
1

γ

)

µk.

The right-hand side of this inequality is non-positive if ᾱk ≤
σmin(1 − γ)

ω2n2(1 + γ)
. By defining ¯̄δ as the minimum of

σmin(1 − γ)

ω2(1 + γ)
and δ̄ defined in [21, Lemma 6.7], we obtain the desired result.

By Lemma 10, if k is a Newton iteration of Algorithm 1 and ᾱk ≤ ¯̄δ/n2, then point (xk+1, λk+1, zk+1) satis-
fies (56). If only Newton steps are made, then O(n2) worst-case iteration complexity can be proved for Ns(γ, β)
(see [21, Chapter 6]).

Based on the previous paragraphs, we set some assumptions that will be used in the remaining of this section. As
usual, at iteration k the Newton step is taken and at iteration k+1 the quasi-Newton step is made. We assume that
(x0, λ0, z0) satisfies (57), both (xk, λk, zk) and ᾱk satisfy (56), and (xk+1, λk+1, zk+1) ∈ Ns(γ, β). In our analysis,
we will use extensively various well known results for Newton steps, such as properties (58)–(62). We observe that,

while in the standard Newton approach one has to compute bounds for ∆xkT∆zk, in the quasi-Newton approach
(see for example (13)), it is necessary to additionally get bounds for γ1 and (ᾱk∆xk+ ᾱ∆xk+1)T (ᾱk∆zk+ ᾱ∆zk+1).
In the next lemma, we give a bound for γ1 without assuming feasibility of iterates.

Lemma 11. Let k + 1 be a quasi-Newton iteration of Algorithm 1. Suppose that v in Lemma 1 is given by the
right-hand side of (4) at iteration k + 1 and ᾱk ∈ (0, 1]. Then, there exists a constant C3 ≥ 1, independent of n
and k such that

|γ1| ≤ C3

√
n

ᾱk
. (65)

Proof. Using scalar νk+1 defined in the beginning of this section, vector v at iteration k + 1 is given by

v =





0
0

σk+1µk+1e



− F (xk+1, λk+1, zk+1) =





−rk+1
c

−rk+1
b

σk+1µk+1e−Xk+1Zk+1e



 =





−νk+1r
0
c

−νk+1r
0
b

σk+1µk+1e−Xk+1Zk+1e



 . (66)

We observe that, since eT (µk+1e−Xk+1Zk+1e) = 0, by (56) we obtain

‖σk+1µk+1e−Xk+1Zk+1e‖2 = ‖(σk+1 − 1)µk+1e+ (µk+1e −Xk+1Zk+1e)‖2

= (σk+1 − 1)2µ2
k+1n+ ‖µk+1e−Xk+1Zk+1e‖2

= (σk+1 − 1)2µ2
k+1n+ ‖Xk+1Zk+1e‖2 − nµ2

k+1

≤ −(2− σk+1)σk+1nµ
2
k+1 + γ−2nµ2

k+1 ≤ γ−2nµ2
k+1.

(67)
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Taking the 2-norm in (66) and using (59) and (67), we get

‖v‖2 = ‖(rk+1
c , rk+1

b )‖2 + ‖σk+1µk+1e−Xk+1Zk+1e‖2 ≤
(‖(r0c , r0b )‖β

µ0

)2

µ2
k+1 + γ−2nµ2

k+1

≤
[

(‖(r0c , r0b )‖β
ξ2

)2

+ γ−2

]

nµ2
k+1.

(68)

By defining ρk = αdec > 0, we can see that condition (56) results in the sufficient decrease condition of Lemma 2.
Since ᾱk ∈ (0, 1], this ensures that ‖yk‖ > 0. Using Lemma 2, (56) and (68) in equation (15), we conclude that

|γ1| ≤
‖v‖
‖yk‖

≤

[

(‖(r0c , r0b )‖β
ξ2

)2

+ γ−2

]1/2
√
nµk+1

αdecᾱk

2 µk
≤ C3

√
n

ᾱk
,

with C3 = 2(γαdec)
−1

[

(‖(r0c , r0b )‖βγ
ξ2

)2

+1

]1/2

. In the last inequality we used (56) to yield µk+1/µk ≤ 1.

Our goal now is to bound the term (ᾱk∆xk + ᾱ∆xk+1)T (ᾱk∆zk + ᾱ∆zk+1) in (13). We follow the same
approach as [21] but compute, instead, bounds of (Dk)−1(ᾱk∆xk + ᾱ∆xk+1) and Dk(ᾱk∆zk + ᾱ∆zk+1), where
Dk = (Xk)1/2(Zk)−1/2. It is important to note that matrix Dk is related to the Newton iteration, hence we can
use Lemma 1 and the enjoyable properties of the true Jacobian.

First, we show what happens when matrix A multiplies the combined direction ᾱk∆xk + ᾱ∆xk+1:

A(ᾱk∆xk + ᾱ∆xk+1) = ᾱkA∆xk + ᾱA∆xk+1 = −ᾱk(Ax
k − b)− ᾱ(Axk+1 − b)

= −ᾱk(Ax
k − b)− ᾱ(A(xk + ᾱk∆xk)− b) = −ᾱk(Ax

k − b)− ᾱ(Axk − b) + ᾱkᾱ(Ax
k − b)

= (ᾱkᾱ− ᾱk − ᾱ)(Axk − b) = (ᾱkᾱ− ᾱk − ᾱ)νk(Ax
0 − b)

= A
[

(ᾱkᾱ− ᾱk − ᾱ)νk(x
0 − x∗)

]

,

where x∗ is the primal solution of (1) used to define constant ξ in (57). By defining ν̂k = −(ᾱkᾱ − ᾱk − ᾱ)νk =
(1− (1− ᾱk)(1− ᾱ))νk, we can see that the point x̂ = ᾱk∆xk + ᾱ∆xk+1 + ν̂k(x

0− x∗) is such that Ax̂ = 0. Similar

arguments can be used to show that ẑ = ᾱk∆zk + ᾱ∆zk+1 + ν̂k(z
0 − z∗) and λ̂ = ᾱk∆λk + ᾱ∆λk+1 + ν̂k(λ

0 − λ∗)

satisfy AT λ̂+ ẑ = 0. Therefore, it is not hard to see that

x̂T ẑ =
(

ᾱk∆xk + ᾱ∆xk+1 + ν̂k(x
0 − x∗)

)T (
ᾱk∆zk + ᾱ∆zk+1 + ν̂k(z

0 − z∗)
)

= 0. (69)

We now multiply the third row of the coefficient matrix in (4) by
[

x̂ λ̂ ẑ
]

to obtain

Zkx̂+Xkẑ = Zk
(

ᾱk∆xk + ᾱ∆xk+1 + ν̂k(x
0 − x∗)

)

+Xk
(

ᾱk∆zk + ᾱ∆zk+1 + ν̂k(z
0 − z∗)

)

= Zk(ᾱk∆xk + ᾱ∆xk+1) +Xk(ᾱk∆zk + ᾱ∆zk+1) + ν̂kZ
k(x0 − x∗) + ν̂kX

k(z0 − z∗).

Multiplying this equation on both sides by (XkZk)−1/2, we get

(Dk)−1x̂+Dkẑ = (XkZk)−1/2
[

Zk(ᾱk∆xk + ᾱ∆xk+1) +Xk(ᾱk∆zk + ᾱ∆zk+1)
]

+ ν̂k(D
k)−1(x0 − x∗) + ν̂kD

k(z0 − z∗).
(70)

Using (69) and (70), we conclude that

‖(Dk)−1x̂‖2 + ‖Dkẑ‖2 = ‖(Dk)−1x̂+Dkẑ‖2

=
∥

∥

∥(XkZk)−1/2
[

Zk(ᾱk∆xk + ᾱ∆xk+1) +Xk(ᾱk∆zk + ᾱ∆zk+1)
]

+ ν̂k(D
k)−1(x0 − x∗) + ν̂kD

k(z0 − z∗)
∥

∥

∥

2

.

Using this relation we get

‖(Dk)−1x̂‖ ≤
∥

∥

∥
(XkZk)−1/2

[

Zk(ᾱk∆xk + ᾱ∆xk+1) +Xk(ᾱk∆zk + ᾱ∆zk+1)
]

∥

∥

∥

+ ν̂k‖Dk−1
(x0 − x∗)‖+ ν̂k‖Dk(z0 − z∗)‖

(71)
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and observe that the same bound holds for ‖Dkẑ‖. In the next two lemmas, we compute the bounds for the terms
in the right-hand side of (71).

Lemma 12. Let k + 1 be a quasi-Newton iteration of Algorithm 1. Let ω and C3 be the constants (independent of
k and n) defined in equation (60) and Lemma 11, respectively. Then

∥

∥

∥(XkZk)−1/2
[

Zk(ᾱk∆xk + ᾱ∆xk+1) +Xk(ᾱk∆zk + ᾱ∆zk+1)
]

∥

∥

∥ ≤

≤ γ−1/2
[

(σmax + γ−1)(ᾱk + ᾱ) + (ᾱk + C3)ᾱᾱkω
2
]

n5/2µ
1/2
k .

Proof. First, we observe that the diagonal matrices ∆Xk and ∆Zk were computed in the Newton iteration and
use (60) to obtain

‖∆Xk∆Zke‖ ≤ ‖(Dk)−1∆Xk‖‖Dk∆Zke‖ ≤ ‖(Dk)−1∆Xk‖ωnµ1/2
k .

Since both (Dk)−1 and ∆Xk are diagonal matrices, using the property of the induced 2-norm of matrices, we get

‖(Dk)−1∆Xk‖ = max
i=1,...,n

|[∆xk]i|
[Dk]ii

= ‖(Dk)−1∆Xke‖∞ ≤ ‖(Dk)−1∆Xke‖ ≤ ωnµ
1/2
k .

Hence,
‖∆Xk∆Zke‖ ≤ ω2n2µk. (72)

Now, we use equation (21) (which does not depend on the feasibility of the iterate or the type of the neighborhood)
to expand the desired expression in the statement of this Lemma. Additionally, we use equation (56) to bound
µk+1 and XkZke as well as Lemma 11 and equation (72) to derive:

∥

∥(Xk Zk)−1/2
[

Zk(ᾱk∆xk + ᾱ∆xk+1) +Xk(ᾱk∆zk + ᾱ∆zk+1)
]

∥

∥

∥ =

=

(

n
∑

i=1

(

(1− ᾱ)ᾱkσkµk − (ᾱ+ ᾱk(1− ᾱ))xk
i z

k
i + ᾱσk+1µk+1 − (1 + γ1)ᾱᾱ

2
k[∆xk]i[∆zk]i

)2

xk
i z

k
i

)1/2

≤ (γµk)
−1/2

∥

∥(1− ᾱ)ᾱkσkµke− (ᾱ+ ᾱk(1− ᾱ))XkZke+ ᾱσk+1µk+1e− (1 + γ1)ᾱᾱ
2
k∆Xk∆Zke

∥

∥

≤ (γµk)
−1/2

[

(1− ᾱ)ᾱkσk

√
nµk + (ᾱ+ ᾱk(1− ᾱ))γ−1

√
nµk + ᾱσk+1

√
nµk + |1 + γ1|ᾱᾱ2

kω
2n2µk

]

≤ γ−1/2

[

(

(σk + γ−1)(1− ᾱ)ᾱk + (σk+1 + γ−1)ᾱ
)√

n+

(

1 + C3

√
n

ᾱk

)

ᾱᾱ2
kω

2n2

]

µ
1/2
k

≤ γ−1/2
[

(σmax + γ−1)(ᾱk + ᾱ)
√
n+ (ᾱk + C3)ᾱᾱkω

2n5/2
]

µ
1/2
k

≤ γ−1/2
[

(σmax + γ−1)(ᾱk + ᾱ) + (ᾱk + C3)ᾱᾱkω
2
]

n5/2µ
1/2
k .

Lemma 13. Let k + 1 be a quasi-Newton iteration of Algorithm 1. Let ω and C3 be the constants (independent of
k and n) defined before. Then,

‖(Dk)−1(ᾱk∆xk + ᾱ∆xk+1)‖ ≤
[

(σmax + γ−1 + 8β)(ᾱk + ᾱ) + (ᾱk + C3)ω
2ᾱkᾱ

]

γ−1/2n5/2µ
1/2
k

‖Dk(ᾱk∆zk + ᾱ∆zk+1)‖ ≤
[

(σmax + γ−1 + 8β)(ᾱk + ᾱ) + (ᾱk + C3)ω
2ᾱkᾱ

]

γ−1/2n5/2µ
1/2
k .

Proof. We will only consider ‖(Dk)−1(ᾱk∆xk+ᾱ∆xk+1)‖, since getting a bound for ‖Dk(ᾱk∆zk+ᾱ∆zk+1)‖ follows
the same arguments. We use the definition of x̂ (see (69)), add and subtract ν̂k(D

k)−1(x0 − x∗) inside the norm,
and then use the triangle inequality and (71) to obtain

‖(Dk)−1(ᾱk∆xk + ᾱ∆xk+1)‖ = ‖(Dk)−1x̂− ν̂k(D
k)−1(x0 − x∗)‖ ≤ ‖(Dk)−1x̂‖+ ν̂k‖(Dk)−1(x0 − x∗)‖

≤
∥

∥

∥(XkZk)−1/2
[

Zk(ᾱk∆xk + ᾱ∆xk+1) +Xk(ᾱk∆zk + ᾱ∆zk+1)
]

∥

∥

∥

+ 2ν̂k‖(Dk)−1(x0 − x∗)‖+ 2ν̂k‖Dk(z0 − z∗)‖,

(73)

where another term ν̂k‖Dk(z0 − z∗)‖ was added in the last inequality. We already have bounds for the first term
in the right-hand side of (73), by Lemma 12. From [21, Lemma 6.6] we know that

‖(Dk)−1(x0 − x∗)‖ ≤ ‖(x0 − x∗)‖‖(Dk)−1‖ ≤ ξ‖(Dk)−1‖ = ξ max
i=1,...,n

1

[Dk]ii
= ξ‖(Dk)−1e‖∞

≤ ξ‖(Dk)−1e‖ = ξ‖(XkZk)−1/2Zke‖ ≤ ξ‖(XkZk)−1/2‖‖zk‖1
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and, similarly, ‖Dk(z0 − z∗)‖ ≤ ξ‖(XkZk)−1/2‖‖xk‖1. We recall that ν̂k = (1 − (1 − ᾱk)(1 − ᾱ))νk and apply all
these inequalities together with (58) to obtain

2ν̂k‖(Dk)−1(x0 − x∗)‖+ 2ν̂k‖Dk(z0 − z∗)‖ ≤ 2ξ(1− (1− ᾱk)(1 − ᾱ))‖(XkZk)−1/2‖νk‖(xk, zk)‖1

≤ 2ξ(1− (1− ᾱk)(1 − ᾱ))(γµk)
−1/2 4β

ξ
nµk

= (1 − (1− ᾱk)(1− ᾱ))
8β

γ1/2
nµ

1/2
k ,

which provides bounds for the last two terms in (73). Therefore, using Lemma 12 and the above inequality we write

‖Dk−1
(ᾱk∆xk + ᾱ∆xk+1)‖ ≤

[

(σmax + γ−1)(ᾱk + ᾱ) + (ᾱk + C3)ᾱᾱkω
2

γ1/2
n5/2 +

8β(1− (1− ᾱk)(1 − ᾱ))

γ1/2
n

]

µ
1/2
k

≤ (σmax + γ−1)(ᾱk + ᾱ) + (ᾱk + C3)ᾱᾱkω
2 + 8β(1− (1− ᾱk)(1 − ᾱ))

γ1/2
n5/2µ

1/2
k

≤
[

(σmax + γ−1 + 8β)(ᾱk + ᾱ) + (ᾱk + C3)ω
2ᾱkᾱ

]

γ−1/2n5/2µ
1/2
k

and the lemma is proved.

If we restrict the choices of ᾱk and ᾱ, then the bounds obtained in Lemma 13 can be significantly simplified as
shown in the corollary below.

Corollary 2. If ᾱk ≤ (σmax+γ−1+8β)((1+C3)ω
2)−1 and ᾱ ≤ C−1

3 ᾱk, then there exists a constant C6, independent
of n, such that

‖(Dk)−1(ᾱk∆xk + ᾱ∆xk+1)‖ ≤ C6ᾱkn
5/2µ

1/2
k and ‖Dk(ᾱk∆zk + ᾱ∆zk+1)‖ ≤ C6ᾱkn

5/2µ
1/2
k .

Proof. Using the bounds on ᾱ and ᾱk assumed in the lemma we obtain (ᾱk +C3)ω
2ᾱk ≤ (σmax+γ−1+8β), hence,

by ᾱ ≤ C−1
3 ᾱk,

(σmax + γ−1 + 8β)(ᾱk + ᾱ) + (ᾱk + C3)ω
2ᾱkᾱ ≤ (σmax + γ−1 + 8β)(ᾱk + 2ᾱ)

≤ (σmax + γ−1 + 8β)(1 + 2C−1
3 )ᾱk,

and the conclusion follows by defining C6 = (σmax + γ−1 + 8β)(1 + 2C−1
3 )γ−1/2.

We are now ready to prove the polynomial worst-case iteration complexity of Algorithm 1 in the infeasible case.
Lemma 10 dealt with the Newton step of the method. Theorems 3 and 4 provide the results for the quasi-Newton
step.

Theorem 3. Suppose that k + 1 is a quasi-Newton step of Algorithm 1 and all the hypotheses of this section hold.
If the following condition holds

αdec + σmax ≤ 1− σmin (74)

then, there exists a constant C5, independent of n, such that, if

ᾱk ∈
(

0,min

{

1,
(

(1 + C3)ω
2
)−1

,
C5

n5

}]

and ᾱ ∈
[

(C3C5)
−1n5ᾱ2

k, C−1
3 ᾱk

]

, (75)

then the iterate after the quasi-Newton step satisfies

(xk+1 + ᾱ∆xk+1)T (zk+1 + ᾱ∆zk+1) ≥ (1− ᾱ)xk+1T zk+1 (76)

(xk+1 + ᾱ∆xk+1)T (zk+1 + ᾱ∆zk+1) ≤ (1− αdecᾱ)x
k+1T zk+1 (77)

[xk + ᾱk∆xk]i[z
k + ᾱk∆zk]i ≥ γµ(ᾱ) (78)

[xk + ᾱk∆xk]i[z
k + ᾱk∆zk]i ≤

1

γ
µ(ᾱ). (79)
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Proof. By Lemma 11 we know that C3 ≥ 1. Hence, the given intervals for ᾱ and ᾱk are well defined. We begin the
proof with inequality (76). Using (60), we get

ᾱ2
k∆xkT∆zk ≤ ᾱ2

k‖Dk−1
∆xk‖‖Dk∆zk‖ ≤ ᾱ2

kω
2n2µk. (80)

By Corollary 2, we obtain

(ᾱk∆xk + ᾱ∆xk+1)T (ᾱk∆zk + ᾱ∆zk+1) ≤ ‖(Dk)−1(ᾱk∆xk + ᾱ∆xk+1)‖‖Dk(ᾱk∆zk + ᾱ∆zk+1)‖
≤ C2

6n
5µkᾱ

2
k.

(81)

Finally, by using inequality (61) from Lemma 10, we get

ᾱσk+1x
k+1T zk+1 ≥ ᾱ(1− ᾱk)σk+1x

kT zk ≥ σminᾱ(1− ᾱk)nµk. (82)

Starting from equation (13), using (80)–(82), and then applying the bounds for |γ1| from Lemma 11 together with

the bound ᾱ ≤ C−1
3 ᾱk (assumed in (75)) to deliver 1 + ᾱ|γ1| ≤ 1 + C−1

3 ᾱkC3

√
n

ᾱk
= 1 +

√
n, we get

(xk+1 + ᾱ∆xk+1)T (zk+1 + ᾱ∆zk+1)− (1− ᾱ)xk+1T zk+1 ≥
≥ σminᾱ(1 − ᾱk)nµk − C2

6n
5µkᾱ

2
k − (1 + γ1ᾱ)ᾱ

2
k∆xkT∆zk

≥ σminᾱ(1 − ᾱk)nµk − (1 + ᾱ|γ1|)ᾱ2
k|∆xkT∆zk| − C2

6n
5µkᾱ

2
k

≥
(

σminᾱ− σminᾱᾱk − (1 + n1/2)ᾱ2
kω

2n− C2
6n

4ᾱ2
k

)

nµk

≥
[

σminᾱ−
(

C−1
3 σmin + 2ω2 + C2

6

)

ᾱ2
kn

4
]

nµk.

By defining

κ = 2ω2 + C2
6 and C4 = C−1

3 σmin

(

C−1
3 σmin + κ

)−1
,

the right-hand side of the previous inequality is non-negative if ᾱ ≥ (C4C3)
−1n4ᾱ2

k and ᾱk ≤ C4/n
4. The lower

bound for ᾱ is necessary to avoid too small step in the quasi-Newton direction. It is obtained by writing ᾱ as a
function of ᾱk, in order to guarantee its non-negativity. The upper bound for ᾱk is obtained by requesting that ᾱk

has to be chosen such that (C4C3)
−1n4ᾱ2

k ≤ C−1
3 ᾱk holds.

For inequality (77), we start by subtracting (1− αdecᾱ)x
k+1T zk+1 from both sides of equation (13)

(xk+1 + ᾱ∆xk+1)T (zk+1 + ᾱ∆zk+1)− (1 − αdecᾱ)x
k+1T zk+1 =

= −(1− αdec − σk+1)ᾱx
k+1T zk+1 + (ᾱk∆xk + ᾱ∆xk+1)T (ᾱk∆zk + ᾱ∆zk+1)− (1 + ᾱγ1)ᾱ

2
k∆xkT∆zk.

We observe that the first term is negative by the assumption (74) of the Theorem, since σk+1 ≤ σmax. Next, from
the left inequality in (61), we have (1− ᾱk)nµk ≤ nµk+1 and then by using the condition αdec + σmax ≤ 1− σmin,
(80) and (81), we conclude that

(xk+1 + ᾱ∆xk+1)T (zk+1 + ᾱ∆zk+1)− (1− αdecᾱ)x
k+1T zk+1 ≤

≤ −σminᾱ(1 − ᾱk)nµk + (1 + ᾱ|γ1|)ᾱ2
k|∆xkT∆zk|+ |(ᾱk∆xk + ᾱ∆xk+1)T (ᾱk∆zk + ᾱ∆zk+1)|

≤ −σminᾱ(1 − ᾱk)nµk + (1 + n1/2)ᾱ2
kω

2n2µk + C2
6 ᾱ

2
kn

5µk

≤
[

−σminᾱ+
(

σminC
−1
3 + κ

)

ᾱ2
kn

4
]

nµk,

where in the last inequality we used the bound ᾱ ≤ C−1
3 ᾱk to deliver σminᾱᾱknµk ≤ σminC

−1
3 ᾱ2

knµk. The
right-hand side of the previous inequality will be non-positive if, as before, ᾱ ≥ (C4C3)

−1n4ᾱ2
k and ᾱk ≤ C4/n

4.
To prove inequalities (78) and (79), we first look at (14) which is a component-wise version of (12). We also

need to derive component-wise versions of (81) and (80). For (81) we have

[ᾱk∆xk + ᾱ∆xk+1]i[ᾱk∆zk + ᾱ∆zk+1]i ≤ |[(Dk)−1]ii[ᾱk∆xk + ᾱ∆xk+1]i| |[Dk]ii[ᾱk∆zk + ᾱ∆zk+1]i|
≤ ‖(Dk)−1(ᾱk∆xk + ᾱ∆xk+1)‖‖Dk(ᾱk∆zk + ᾱ∆zk+1)‖
≤ C2

6n
5µkᾱ

2
k,

(83)
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and, by a similar approach, equation (80), Lemma 11 and the assumption of the theorem ᾱ ≤ C−1
3 ᾱk we get

(1 + ᾱγ1)ᾱ
2
k[∆xk]i[∆zk]i ≤ (1 + ᾱ|γ1|)ᾱ2

k|[∆xk]i[∆zk]i|
≤ (1 + n1/2)ᾱ2

k‖(Dk)−1∆Xk‖‖Dk∆Zk‖
≤ 2ᾱ2

kω
2n5/2µk.

(84)

Now, taking (14) and applying (62) and (83)–(84) we get

[xk+1+ᾱ∆xk+1]i[z
k+1 + ᾱ∆zk+1]i ≥

≥ (1− ᾱ)γµk+1 − |[ᾱk∆xk + ᾱ∆xk+1]i[ᾱk∆xk + ᾱ∆zk+1]i| − (1 + ᾱ|γ1|)ᾱ2
k|[∆xk]i[∆zk]i|+ ᾱσk+1µk+1

≥ (1− ᾱ)γµk+1 + ᾱσk+1µk+1 − C2
6n

5µkᾱ
2
k − 2ᾱ2

kω
2n5/2µk

≥ (1− ᾱ)γµk+1 + ᾱσk+1µk+1 − κn5ᾱ2
kµk

and from (13), using (80)–(81) we get

γµ(ᾱ) = γ
(xk+1 + ᾱ∆xk+1)T (zk+1 + ᾱ∆zk+1)

n
≤

≤ γ

[

(1− ᾱ(1 − σk+1))µk+1 +
1 + ᾱ|γ1|

n
ᾱ2
k|∆xkT∆zk|+ |(ᾱk∆xk + ᾱ∆xk+1)T (ᾱk∆zk + ᾱ∆zk+1)|

n

]

≤ (1 − ᾱ)γµk+1 + ᾱσk+1γµk+1 + (1 + n1/2)γω2nᾱ2
kµk + C2

6γn
4ᾱ2

kµk

≤ (1 − ᾱ)γµk+1 + ᾱσk+1γµk+1 + κγn4ᾱ2
kµk.

By combining the above two inequalities, then using (82) and (61) and ᾱ ≤ C−1
3 ᾱk, we obtain

[xk+1 + ᾱ∆xk+1]i[z
k+1 + ᾱ∆zk+1]i − γµ(ᾱ) ≥ (1− γ)ᾱσk+1µk+1 − (1 + γ)κn5ᾱ2

kµk

≥ (1− γ)σminᾱ(1 − ᾱk)µk − (1 + γ)κn5ᾱ2
kµk

≥
[

σminᾱ−
(

C−1
3 σmin +

(

1 + γ

1− γ

)

κ

)

n5ᾱ2
k

]

(1− γ)µk.

The right-hand side of this inequality is non-negative, and hence (78) holds, if ᾱ ≥ (C3C5)
−1n5ᾱ2

k and ᾱk ≤ C5/n
5,

with

C5 = C−1
3 σmin

(

C−1
3 σmin +

(

1 + γ

1− γ

)

κ

)−1

.

Finally, in order to show (79), we use the same ideas to obtain the following two inequalities

[xk+1 + ᾱ∆xk+1]i[z
k+1 + ᾱ∆zk+1]i ≤

1− ᾱ

γ
µk+1 + ᾱσk+1µk+1 + κn5ᾱ2

kµk

and
1

γ
µ(ᾱ) ≥ 1− ᾱ

γ
µk+1 +

ᾱσk+1

γ
µk+1 −

κn4ᾱ2
k

γ
µk.

By combining these two inequalities and using (61) and ᾱ ≤ C−1
3 ᾱk once more, we have that

[xk+1 + ᾱ∆xk+1]i[z
k+1 + ᾱ∆zk+1]i −

1

γ
µ(ᾱ) ≤

(

1− 1

γ

)

σk+1ᾱµk+1 +

(

1 +
1

γ

)

κn5ᾱ2
kµk

= −
(

1− γ

γ

)

σk+1ᾱµk+1 +

(

1 + γ

γ

)

κn5ᾱ2
kµk

≤ −
(

1− γ

γ

)

σminᾱ(1− ᾱk)µk +

(

1 + γ

γ

)

κn5ᾱ2
kµk

≤
[

−σminᾱ+

(

C−1
3 σmin +

(

1 + γ

1− γ

)

κ

)

n5ᾱ2
k

](

1− γ

γ

)

µk.

Again, the right-hand side of this inequality is non-positive if ᾱ ≥ (C3C5)
−1n5ᾱ2

k and ᾱk ≤ C5/n
5, with C5 defined

before. Since C5 ≤ C4, we observe that (C3C5)
−1n5 ≥ (C3C4)

−1n5, and this explains the lower bound on ᾱ. We
also observe that in (75), ᾱk is bounded from above by C5/n

5 hence (C3C5)
−1n5ᾱ2

k ≤ C−1
3 ᾱk, which guarantees

that the interval for ᾱ is not empty. Similar observations can be made to justify the upper bound of ᾱk in (75) and
this concludes the proof.
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To further show that (xk+2, λk+2, zk+2) belongs to the Ns(γ, β) neighborhood, and therefore satisfies (56), we
need to ensure that γ is not too close to 0.

Theorem 4. Let the hypotheses of Theorem 3 hold. If, in addition, we request that

γ ≥ 2

(

−8β +

√

(8β + 2)2 +
4

3σmin

)−1

(85)

then (xk+2, λk+2, zk+2) satisfies (56).

Proof. Using inequality (76) in Theorem 3

‖(rk+2
b , rk+2

c )‖
µk+2

≤ (1− ᾱ)‖(rk+1
b , rk+1

c )‖
(1− ᾱ)µk+1

≤ ‖(r
0
b , r

0
c )‖

µ0
β

and, by (78) and (79)

0 < γµk+2 ≤ xk+2
i zk+2

i ≤ 1

γ
µk+2.

To show that xk+2 > 0 and zk+2 > 0, we suppose by contradiction that xk+2
i ≤ 0 or zk+2

i ≤ 0 occurs for some i and
follow the same arguments as those used in Theorems 1 and 2 to conclude, using inequality (83), that γ < C2

6n
5ᾱ2

k

should hold.
By using the fact that C3 ≥ 1, defined in Lemma 11, and κ ≥ 1 and C6 ≥ 1, defined in Theorem 3, and basic

manipulation, we conclude that C6 ≤ 3(1 + γ−1 + 8β)γ−1/2 and C5 ≤ σmin(1 − γ), where C5 was also defined in
Theorem 3. Then, using (75) for ᾱk we obtain

γ < C2
6n

5ᾱ2
k ≤

(C5C6)
2

n5
≤ 9(1 + γ−1 + 8β)2(1− γ)2

γ
σ2
min (86)

which implies that γ < 2
(

−8β +
√

(8β + 2)2 + 4
3σmin

)−1

and contradicts (85). The above inequality has been

obtained by rearranging (86) namely, dropping the squares and solving the resulting (quadratic) inequality with an
unknown 1/γ. Therefore, we conclude that (xk+2, λk+2, zk+2) ∈ Ns(γ, β). Earlier proved inequality (77) guarantees
that iteration k + 1 satisfies (56).

For sufficiently large n, we clearly have

min

{

1,
(

(1 + C3)ω
2
)−1

,
C5

n5

}

=
C5

n5
<

¯̄δ

n2
,

where ¯̄δ comes from Lemma 10 and this guarantees that the hypotheses of this section hold. By (75) we have that

both ᾱk and ᾱ are greater than or equal to
C−1

3
C5

n5 hence

µk+1 ≤ (1 − αdecᾱk)µk ≤
(

1− αdecC
−1
3 C5

n5

)

µk,

for all k = 0, 1, . . . , which yields O(n5) worst-case iteration complexity for the infeasible case of Algorithm 1.
Unlike in the feasible case, because of the close relation of the symmetric neighborhood and the N−∞(γ, β)

neighborhood, we expect that a similar complexity result to that of Theorem 3 should hold for the algorithm which
operates in N−∞(γ, β). However, to save space we do not derive it here.

5 Conclusions and final observations

This work provided theoretical tools to analyze the worst-case iteration complexity of quasi-Newton primal-dual
interior point algorithms. A simplified algorithm was considered, which consisted of alternating Newton and quasi-
Newton steps. The quasi-Newton approach was based on the Broyden “bad” low-rank update of the inverse of the
unreduced system. Feasible and infeasible algorithms and well established neighborhoods of the central path have
been considered.
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The results showed that in all cases, the degree of the polynomial in the worst-case result has increased. This
behavior has already been observed by [10], where the number of overall iterations increased, but the number of
factorizations of the true unreduced system actually decreased.

Complexity results might also be obtained in the feasible case for convex quadratic programming problems and
the N2(θ) neighborhood, following [8], for example. However, since Lemma 3 does not hold anymore and thus γ1 is
not eliminated from µ(ᾱ), a further study needs to be carried out.

Another interesting and complicated question is the case ℓ > 1, where we allow more than one quasi-Newton
step after a Newton step. The authors in [10] observed a trade-off between the number of consecutive quasi-Newton
iterations and the overall speed of convergence of the algorithm. Numerical results showed that ℓ = 5 is a reasonable
choice. We expect that similar worst-case complexity bounds should be obtained for the case ℓ > 1, with possibly
higher degrees of polynomials, but this still remains an open question.

The worst-case complexity results obtained when the Ns neighborhood was considered in both feasible and
infeasible cases seem rather pessimistic. The high polynomial degrees originate from Lemma 9 for the feasible
and from Lemma 13 for the infeasible cases. Finding new ways of reducing the degrees of such expressions would
definitely result in better complexity results, since all the other terms are at most of order n.
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