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SADDLE POINT PRECONDITIONERS FOR WEAK-CONSTRAINT 4D-VAR1

JEMIMA M. TABEART∗ AND JOHN W. PEARSON†2

Abstract. Data assimilation algorithms combine information from observations and prior model information3

to obtain the most likely state of a dynamical system. The linearised weak-constraint four-dimensional variational4

assimilation problem can be reformulated as a saddle point problem, which admits more scope for preconditioners5

than the primal form. In this paper we design new terms which can be used within existing preconditioners, such as6

block diagonal and constraint-type preconditioners. Our novel preconditioning approaches: (i) incorporate model7

information, and (ii) are designed to target correlated observation error covariance matrices. To our knowledge (i) has8

not previously been considered for data assimilation problems. We develop new theory demonstrating the effectiveness9

of the new preconditioners within Krylov subspace methods. Linear and non-linear numerical experiments reveal that10

our new approach leads to faster convergence than existing state-of-the-art preconditioners for a broader range of11

problems than indicated by the theory alone. We present a range of numerical experiments performed in serial.12

Key words. Saddle point systems, Variational data assimilation, Preconditioning13

AMS subject classifications. 65F08, 65F10, 65N2114

1. Introduction. Data assimilation has seen substantial interest in fields such as numeri-15

cal weather prediction [6, 32], ecology [30, 31], and hydrology [7, 44] in recent decades. The16

variational data assimilation problem can be written mathematically as follows: For a given17

time window [t0, tN ], let xti ∈ Rs be the true state of a dynamical system of interest at time ti,18

where s is the number of state variables. Data assimilation algorithms combine observations19

of a dynamical system, yi ∈ Rpi at times ti, with prior information from a model, xb ∈ Rs, to20

find xi ∈ Rs, the most likely state of the system at time ti. The prior, or background state, is21

valid at initial time t0 and can be written as an approximation to the true state via xb = xt0 + εb.22

We assume that the background errors εb ∼ N (0,B), where B ∈ Rs×s is a background23

error covariance matrix. In order to compare observations made at different locations, or of24

different variables to those in the state vector xi, we define a, possibly non-linear, observation25

operatorHi : Rs → Rpi which maps from state variable space to observation space at time ti.26

Observations at time ti are written as yi = Hi[xti] + εi ∈ Rpi , for i = 0, 1, . . . , N , where the27

observation error εi ∼ N (0,Ri) and Ri ∈ Rpi×pi are observation error covariance matrices.28

In weak-constraint four-dimensional varational data assimilation (4D-Var) the state xi−1

at time ti−1 is propagated to the next observation time ti using an imperfect forecast model,
Mi, to obtain xi =Mi(xi−1)+εmi . The model error at each time is given by εmi ∼ N (0,Qi),
where Qi ∈ Rs×s is the model error covariance matrix at time ti. It is typically assumed that
the error covariance matrices are mutually uncorrelated across different types and different
observation times. The analysis, or most likely state x0 at time t0, minimises the weak
constraint 4D-Var objective function given by

J(x0,x1, . . . ,xN ) = (x0 − xb)
>B−1(x0 − xb) +

N∑
i=0

(yi −Hi[xi])>R−1
i (yi −Hi[xi])

+

N∑
i=1

(xi −Mi(xi−1))>Q−1
i (xi −Mi(xi−1)).(1.1)
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Weak-constraint 4D-Var is used in numerical weather prediction (NWP) to estimate29

the initial condition for a weather forecast [42, 43]. Practical implementations of (1.1) pose30

mathematical and computational challenges. Firstly, the dimension of the problem can be large:31

in NWP [6] the dimension of the state can be of order 109, and the number of observations can32

be of order 106. This application is also time critical, so the time that can be allocated to the33

data assimilation procedure is very limited in operational situations. Computational efficiency34

is therefore vital, and designing techniques to ensure fast convergence of the minimisation35

of the objective function has been an ongoing area of research interest, see for instance36

[13, 5, 9, 21].37

The weak constraint objective function (1.1) is typically solved via an incremental ap-38

proach, where a small number of non-linear outer loops and a larger number of linearised39

inner loops are solved [16, 17]. Standard Krylov subspace solvers can then be applied for40

the inner loops. An alternative approach involves solving the linearised inner loop using a41

saddle point formulation [15, 13, 18, 8], which admits a richer choice of preconditioning42

structures compared to the primal form. Prior work has developed specific preconditioners for43

the saddle point data assimilation problem [15, 13], typically focusing on approximations to44

the term containing information about the linearised model. Block diagonal preconditioners45

are appealing, due to the potential to apply the MINRES algorithm and develop guaranteed46

theoretical insight about the convergence rates based on the eigenvalues of the preconditioned47

system, although inexact constraint preconditioners with GMRES have been found to yield48

better performance in data assimilation settings for a variety of problems [15, 14].49

Recent research on the primal form of the variational data assimilation problem has50

revealed that the observation error covariance matrices Ri play an important role in deter-51

mining the convergence of iterative methods [38, 40]. In the last decades, researchers have52

increasingly made use of observing systems that have correlated observation error covariance53

matrices [45, 37]. Previous saddle point preconditioners typically applied the exact inverses54

of Ri [15, 18], which is known to be computationally infeasible for many satellite observing55

systems [45, 39]. It is therefore expected that new terms within saddle point preconditioners56

which incorporate correlated information from Ri and are inexpensive to apply could be57

beneficial in terms of convergence for many observing systems. In what follows, we therefore58

consider preconditioners for the observation error covariance matrix that explicitly allow for59

full correlation matrices.60

In this paper, we consider novel terms within existing preconditioning structures for the61

saddle point framework, with particular focus on the correlated observation error setting. To62

our knowledge, our preconditioners account explicitly for model information within the model63

term for the first time. We begin in Section 2 by introducing the saddle point formulation of64

the weak-constraint 4D-Var data assimilation problem, and presenting existing state-of-the-art65

preconditioners for the saddle point setting. In Section 3 we prove bounds on the eigenvalues66

of a block diagonal preconditioned system in terms of constituent matrices of the saddle67

point problem. In Sections 4 and 5 we then analyse the effect of applying existing and new68

preconditioners for the model term and observation error covariance term respectively. In69

Section 6 we present our numerical framework for the experimental results in Section 7. For70

both the non-linear Lorenz 96 problem and linear heat equation problem we find that our new71

preconditioners result in a reduced iteration count compared to block diagonal and inexact72

constraint preconditioners in a variety of settings, in the presence of correlated observation73

errors. Although the theoretical guarantees only apply to the block diagonal preconditioner,74

qualitative behaviour is similar for the inexact constraint preconditioner, with large reductions75

in iterations and matrix–vector products. Finally, in Section 8 we present our conclusions.76

2. Background.77
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2.1. Data assimilation. In this section we introduce the saddle point formulation of the78

weak constraint four-dimensional variational (4D-Var) data assimilation problem (1.1). Given79

a time window [t0, tN ], split into N subwindows, we wish to find the state x ∈ Rs at time t080

that is closest in a weighted norm sense both to the observations throughout the time window,81

and to prior information at the initial time propagated by a model. The incremental primal82

formulation updates x
(l+1)
0 = x

(l)
0 + δx(l) by solving an objective function via a series of83

inner and outer loops to find a sequence of increments to the background state xb = x
(0)
0 .84

In the inner loop a linearised problem is solved, typically using iterative solvers such as the85

Conjugate Gradient method [23], and the outer loop is used to update linearisations of model86

and observation operators.87

For each outer loop l, the inner loop minimises a quadratic objective function to find88

δx(l) ∈ Rs(N+1), where δx(l) = x(l+1) − x(l). Writing δx = (δx>0 , δx>1 , . . . , δx>N )>,89

the full non-linear observation operator Hi (similarly the model operatorMi) is linearised90

about the current best guess x
(l)
i to obtain the linearised operator H

(l)
i (respectively M

(l)
i ).91

The updated initial guess δx
(l)
0 is propagated forward between observation times by M

(l)
i to92

obtain δx
(l)
i+1 = M

(l)
i δx

(l)
i . We note that the time between observations is likely to consist93

of multiple numerical model time-steps, hence M
(l)
i often corresponds to the composition of94

many discretised models for a single observation time-step.95

Alternatively, the quadratic objective function in the inner loop may be replaced with a
saddle point system. Following the notation of [18, Eq. (3.17)], we substitute the linearised
objective function with the following saddle point system:

(2.1)

D 0 L
0 R H

L> H> 0

δη
δν
δx

 =

b
d
0

 .

In this paper we focus on new preconditioners for the saddle point coefficient matrix:

(2.2) A =

D 0 L
0 R H

L> H> 0

 ∈ R(2s+p)(N+1)×(2s+p)(N+1),

where D, R, H are the following block diagonal matrices:

D = blkdiag (B,Q1,Q2, . . . ,QN ) ∈ R(N+1)s×(N+1)s,

R = blkdiag (R0,R1,R2, . . . ,RN ) ∈ R(N+1)p×(N+1)p,

H = blkdiag
(
H

(l)
0 ,H

(l)
1 ,H

(l)
2 , . . . ,H

(l)
N

)
∈ R(N+1)p×(N+1)s,

with the ith diagonal block in each case being the relevant matrix for time ti. Here, the96

MATLAB-style notation ‘blkdiag’ is used to describe a block diagonal matrix in terms of its97

block diagonal entries.98

The matrix L ∈ R(N+1)s×(N+1)s contains the linearised model information that evolves
x0 between the N observation times, or subwindows, written

(2.3) L =


I

−M
(l)
1 I

−M
(l)
2 I

. . . . . .
−M

(l)
N I

 ,
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where I denotes the s × s identity matrix. As we consider preconditioners for the inner99

loop only, for the remainder of the paper we drop the superscripts that denote the outer loop100

iteration, and simply use Hi and Mi.101

As the saddle point system is indefinite, methods such as the Conjugate Gradient algorithm102

cannot be used. Depending on the choice of preconditioner, MINRES [28] or GMRES [35] are103

examples of viable algorithms for solving linear systems of the form (2.1). We note that one104

challenge of the saddle point formulation is that monotonic decrease of the objective cost is no105

longer guaranteed [15]. This can be challenging in operational settings where a very limited106

number of iterations are performed. In this paper we design new preconditioners and study107

their numerical performance when iterative methods are permitted to reach convergence. The108

goal is the design of sufficiently effective and efficient preconditioners to allow convergence109

of MINRES or GMRES approaches in an operational setting.110

Numerical methods for saddle point systems are well-studied in the optimisation literature111

(see [1] for a comprehensive survey). In order to devise suitable approximations of such112

systems, as in the forthcoming section, one powerful approach is to approximate the ‘leading’113

(1, 1) block of the matrix, along with its Schur complement [25, 27]. For saddle point114

problems arising from data assimilation, not only does the (1, 1) block often have complex115

structure, but the constraint block contains evolution of the model terms forward/backward116

in time, leading to a Schur complement which is very difficult to approximate cheaply [13].117

Therefore, approximating the constraint block cheaply is an important consideration for a118

good preconditioner of the matrix (2.2). The work presented here therefore attempts to119

combine suitable approximations for the (1, 1) block, the constraint block, and hence the120

Schur complement.121

2.2. Preconditioners for saddle point systems from data assimilation. We now intro-
duce some preconditioners that have been applied to the saddle point formulation of the data
assimilation problem described above. We start by considering two classes of preconditioner:
the block diagonal preconditioner and the inexact constraint preconditioner. Although the
standard constraint approach [2, 3] would include Ĥ, an approximation to H, the use of
Ĥ = 0 is popular in the data assimilation setting where it is commonly called the ‘inexact’
constraint preconditioner [13, 15, 14]. In this paper we use the same forms that are considered
in [15], which are given by

(2.4) PD =

D̂ 0 0

0 R̂ 0

0 0 Ŝ

 , PI =

D 0 L̂

0 R̂ 0

L̂> 0 0

 ,

where D̂ and R̂ are approximations to D and R which are easier to apply than the original
matrices, and L̂ is an efficient approximation of L. The exact (negative) Schur complement is
given by

S = L>D−1L + H>R−1H,

which we may approximate by Ŝ. For instance, one may drop the second term and take an122

approximation L̂ to L: that is a Schur complement approximation of the form L̂>D−1L̂.123

One attraction of the block diagonal preconditioner is that one may guarantee a fixed124

convergence rate based on the eigenvalues of the preconditioned system P−1
D A. In Section 3125

we present bounds on the eigenvalues of the preconditioned system for the block diagonal126

preconditioner. The inexact constraint preconditioner has been found to yield improved127

convergence for both toy and operational-scale data assimilation problems, compared to the128
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block diagonal preconditioner for the same choices of L̂ and R̂ [13, 15, 14]. However, it is129

difficult to develop any theoretical results apart from in the unrealistic setting where L̂ = L,130

Ĥ = H, R̂ = R [13].131

In this paper we consider new preconditioners L̂ and R̂ for the model and observation132

error terms. We now present choices of L̂ and R̂ that have been studied before. Applying the133

exact choice of L−1 in a preconditioner can be prohibitively expensive as it requires serial134

products of model terms and their adjoints [13]. Evaluations of the model acting on a vector135

can dominate the computational cost of data assimilation algorithms, so reducing the total136

number of matrix–vector products of the form Miv or M>
i v is an important consideration137

when designing new preconditioners. A common choice of preconditioner for L replaces all138

of the sub-diagonal terms Mi with 0 [15, 18]. We shall denote this choice of preconditioner139

as L0, and note that L0 is the (N + 1)s× (N + 1)s identity matrix, hence so is its inverse.140

Another choice of preconditioner that was considered in [13, 15] is given by

LI =


I
−I I

−I I
. . . . . .

−I I

 ,

where the sub-diagonal blocks are replaced with the negative s× s identity matrix. This was141

found to perform well experimentally when used in the inexact constraint preconditioner for a142

two-layer quasi-geostrophic model [13]. However, it does not include any model information,143

and may not be expected to perform well for all problems. In Section 4 we introduce a new144

preconditioner that incorporates model information.145

Within the outer–inner loop structure of the weak-constraint solver, information from146

previous outer loops can be used to cheaply update the preconditioners in subsequent loops.147

This has been found to be computationally beneficial [12]. Such approaches could be combined148

with the method considered in this paper, and are expected to provide value. However, we149

consider preconditioners for the first outer loop where there is no additional information, and150

hence developing computationally feasible stand-alone preconditioners is crucial.151

In most prior work the exact observation error covariance matrix has been used in pre-152

conditioners. This is due to the fact that the cost of applying R−1 is assumed not to be153

prohibitive, due to the inherent block diagonal structure of R. However, the rising use of more154

complex correlation structures (such as inter-channel observation errors, see [45]) means that155

applying R−1 exactly is not always affordable and may be a computational bottleneck. One156

option is to apply a computationally cheap approximation of R within the preconditioner,157

such as the diagonal of R, however this is typically an inaccurate approximation which can158

significantly delay convergence. In this paper we consider new classes of preconditioners for159

the observation error covariance term which we expect to improve convergence in the presence160

of correlated observation error.161

3. Bounds on eigenvalues for the block diagonal preconditioner. For a symmetric162

positive definite block diagonal preconditioner of the form PD, it is possible to describe the163

convergence of the preconditioned MINRES algorithm by analysing the eigenvalues of the164

preconditioned system P−1
D A (see [11, Chapter 4], for instance). In the data assimilation165

setting PD is symmetric positive definite, as all proposed approximations D̂, R̂ as well as the166

Schur complement approximation Ŝ are themselves defined to be symmetric positive definite.167

We note that for the preconditioned GMRES algorithm spectral information is insufficient to168

describe convergence (see e.g. [19]). Therefore the theoretical bounds presented in Sections169
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3–5 are informative strictly for the block diagonal preconditioner, with experiments for the170

inexact constraint preconditioner PI being presented in Section 7 for numerical comparison.171

The matrices A and PD defined in (2.2) and (2.4) can be written as

(3.1) A =

(
Φ Ψ>

Ψ 0

)
, PD =

(
Φ̂ 0

0 Ŝ

)
,

where

Φ =

(
D 0
0 R

)
, Ψ =

(
L> H>

)
,

and with Φ̂ and Ŝ approximations of Φ and the (negative) Schur complement S = ΨΦ−1Ψ>.
We now denote

S̃ = L>D−1L, Ŝ = L̂>D−1L̂,

where D̂, R̂, L̂ are approximations of D, R, L. For the forthcoming theory, we suppose that
D, D̂, R, R̂, S, S̃, Ŝ are symmetric positive definite, with

λ(D̂−1D) ∈ [λD,ΛD], λ(R̂−1R) ∈ [λR,ΛR],

λ(S̃−1S) ∈ [λS,ΛS], λ
(

(L̂>L̂)−1(L>L)
)
∈ [λL,ΛL],

where λ(·) denotes the eigenvalues of a matrix. We may then prove the following result:172

THEOREM 3.1. With the definitions as stated above, the eigenvalues of P−1
D A are real,

and satisfy:

λ(P−1
D A) ∈

λΦ −
√
λ2

Φ + 4ΛΦΛSΛLκ(D)

2
,

ΛΦ −
√

Λ2
Φ + 4λΦλSλL

κ(D)

2


∪ [λΦ,ΛΦ] ∪

λΦ +
√
λ2

Φ + 4λΦλSλL

κ(D)

2
,

ΛΦ +
√

Λ2
Φ + 4ΛΦΛSΛLκ(D)

2

 ,
where λΦ = min{λD, λR}, ΛΦ = max{ΛD,ΛR}, and κ(·) denotes the condition number173

of a matrix.174

Proof. Applying well-known results (see [34, p. 2906], [33, Theorem 4.2.1]), we have
(3.2)

λ ∈

[
δ −
√
δ2 + 4∆Φ

2
,

∆−
√

∆2 + 4δφ

2

]
∪[δ,∆]∪

[
δ +

√
δ2 + 4δφ

2
,

∆ +
√

∆2 + 4∆Φ

2

]
,

where δ, φ denote the minimum eigenvalues of Φ̂
−1

Φ, Ŝ−1S for a general block diagonal175

saddle point preconditioner (3.1), and ∆, Φ represent the corresponding maximum eigenvalues.176

Clearly, for this problem δ = λΦ and ∆ = ΛΦ. It remains to analyse the minimum and
maximum eigenvalues of the preconditioned Schur complement, which we note is within the
range of the Rayleigh quotient (for v 6= 0):

(3.3)
v>Sv

v>Ŝv
=

v>Sv

v>S̃v
· v
>S̃v

v>Ŝv
=

v>Sv

v>S̃v
· v
>L>D−1Lv

v>L>Lv
· v
>L>Lv

v>L̂>L̂v
· v>L̂>L̂v

v>L̂>D−1L̂v
.
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Observing that

v>Sv

v>S̃v
∈ [λS,ΛS],

v>L>D−1Lv

v>L>Lv
=

y>y

y>Dy
∈
[

1

ΛD
,

1

λD

]
,

v>L>Lv

v>L̂>L̂v
∈ [λL,ΛL],

v>L̂>L̂v

v>L̂>D−1L̂v
=

z>Dz

z>z
∈ [λD,ΛD],

where y = D−1/2Lv 6= 0, z = D−1/2L̂v 6= 0, we may write that

v>Sv

v>Ŝv
∈
[
λSλLλD

ΛD
,

ΛSΛLΛD

λD

]
=

[
λSλL

κ(D)
,ΛSΛLκ(D)

]
.

Therefore, it holds that φ ≥ λSλL

κ(D) and Φ ≤ ΛSΛLκ(D). Substituting the bounds for δ, ∆, φ,177

Φ into (3.2) then gives the result.178

REMARK 3.2. Theorem 3.1 is an extension of known results, for example [34, p. 2906]
and [33, Theorem 4.2.1], in particular an application of this methodology to saddle point
systems arising from weak constraint 4D-Var. We highlight that eigenvalue results of this
form are important because they lead to concrete convergence properties of MINRES. As in
[11, Theorem 4.14], if λ(P−1

D A) ∈ [−µ1,−µ2] ∪ [µ3, µ4], with µ1, µ2, µ3, µ4 > 0 such that
µ1 − µ2 = µ4 − µ3, then after 2` iterations of MINRES:

‖r(2`)‖P−1
D
≤ 2

(√
µ1µ4 −

√
µ2µ3√

µ1µ4 +
√
µ2µ3

)`
‖r(0)‖P−1

D
,

where r(·) denotes the residual vector at a given iteration. Note that both positive or negative179

intervals for the eigenvalues of P−1
D A can always be stretched such that µ1 − µ2 = µ4 −180

µ3 holds, so this result holds without loss of generality. This allows one to ascertain the181

convergence behaviour of MINRES when we apply approximations of L>L, R (as well as182

D), including those discussed in Sections 4 and 5.183

REMARK 3.3. Due to the way the Rayleigh quotient is factored in (3.3), Theorem 3.1184

gives a potentially very weak bound when D is ill-conditioned. We find the main features185

which affect the quality of the preconditioner, as predicted by the result, are the approximations186

of D and R, the effect of dropping the second term of the Schur complement, and the quality187

of the approximation of L>L (characterised by the eigenvalues of L̂−>L>LL̂−1). The latter188

quantity is the subject of the forthcoming analysis.189

4. Approximations L̂. Theorem 3.1 suggests that the eigenvalues of the preconditioned190

system are influenced by the quality of the approximation of L̂>L̂ to L>L in the block191

diagonal preconditioner. In this section we consider existing and new choices of L̂ and192

analyse the eigenvalues and structure of L̂−>L>LL̂−1, which is similar to (L̂>L̂)−1(L>L).193

The first choice of L̂, L0, has previously been used for saddle point preconditioners for194

the data assimilation problem [15, 18]. We also propose LM , a new class of parallelisable195

preconditioners that depends on a user-defined parameter and incorporates model information.196

4.1. A new preconditioner, LM , and the eigenvalues of L−>M L>LL−1
M . We begin by197

defining our proposed preconditioner, LM , which incorporates model information explicitly.198

For a user chosen parameter 1 ≤ k ≤ N + 1, every kth block sub-diagonal of LM (i.e.199

Mk,M2k,M3k, . . . ) is set equal to 0. The other entries of LM correspond to those of L.200

Formally we write this as in the definition below.201

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

8 J.M. TABEART AND J.W. PEARSON

DEFINITION 1. Let k ∈ N, and let LM = LM (k) ∈ R(N+1)s×(N+1)s be a block matrix
made up of s× s blocks. For i,j = 1, . . . , N + 1 we define

the (i, j)th block of LM =


I if i = j,

−Mj if i = j + 1 and j is not divisible by k,
0 otherwise.

Similarly we can write the inverse of LM as follows, using straightforward linear algebra:202

LEMMA 1. Let k ∈ N, and let LM = LM (k) ∈ R(N+1)s×(N+1)s be a block matrix made
up of s× s blocks. For i, j = 1, . . . , N + 1 we may evaluate that

the (i, j)th block of L−1
M =


I if i = j,∏i−j
m=1 Mi−m if 1 ≤ i− j ≤ (i− 1) mod(k),

0 otherwise.

We note that L−1
M is lower triangular, and both the number of non-zero blocks of L−1

M203

and the number of terms in each of the products of L−1
M are controlled by the parameter k.204

Note that L, defined in (2.3), satisfies L = LM (N + 1) according to this notation. To further205

justify the effectiveness of this approximation, we now study the eigenvalues of L−>M L>LL−1
M206

theoretically. We begin by stating the structure of L−>M L>LL−1
M in terms of the linearised207

model matrices Mi, using straightforward linear algebra.208

LEMMA 2. We can write L−>M L>LL−1
M = I + A(M) where the block entries of

A(M) ∈ Rs(N+1)×s(N+1) are defined as follows. For n = 1, . . . ,
⌊
N
k

⌋
,

[A(M)]i,j =


(
∏nk
t=i M

>
t )(
∏nk
q=j Mnk−q+j) for (n− 1)k + 1 ≤ i, j ≤ nk,

−
∏nk
t=j Mnk−t+j for i = nk + 1, (n− 1)k + 1 ≤ j ≤ nk,

−
∏nk
t=i M

>
t for j = nk + 1, (n− 1)k + 1 ≤ i ≤ nk,

0 otherwise,

where [A(M)]i,j denotes the (i, j)th block of A(M).209

We now briefly describe the structure of A(M). The matrix is made up of
⌊
N
k

⌋
over-210

lapping diagonal blocks, where the size of each block is (k + 1)s × (k + 1)s. Each block211

‘overlaps’ at the (nk + 1, nk + 1)th block of A(M), meaning that the maximum number of212

non-zero blocks in any row or column is given by 2k+ 1. We use this structure to demonstrate213

that our new preconditioner LM yields a number of unit eigenvalues for the preconditioned214

term L−>M L>LL−1
M .215

PROPOSITION 1. Let L be defined as in (2.3) and LM as in Lemma 2. For 2 ≤ k ≤ N+1,216

L−>M L>LL−1
M has at least rs unit eigenvalues where r = N + 1− 2

⌊
N
k

⌋
.217

Proof. From Lemma 2 we can construct eigenvectors corresponding to zero eigenvalues of218

A(M), which will yield unit eigenvalues of L−>M L>LL−1
M . Let et define the canonical vector219

taking unit value in position t and zero elsewhere. Observe that A(M) is block diagonal220

matrix with a (N−k
⌊
N
k

⌋
)s×(N−k

⌊
N
k

⌋
)s zero block in the final position. We can construct221

(N − k
⌊
N
k

⌋
)s linearly independent eigenvectors corresponding to the zero eigenvalue for this222

block using et for t = (k
⌊
N
k

⌋
)s+ 1, . . . , Ns.223

For each value of n in Lemma 2 we obtain (k − 2)s eigenvectors corresponding to a zero
eigenvalue, of the form

(0, . . . ,0,v>t ,−(Mrvt)
>,0, . . . ,0)>
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for rs + 1 ≤ t ≤ (r + 1)s and nk + 2 ≤ r ≤ (n + 1)k − 1. Therefore these contribute224

(k−2)s
⌊
N
k

⌋
linearly independent eigenvectors corresponding to the zero eigenvalue across the225

whole matrix. From the first block in the matrix we obtain an additional s linearly independent226

eigenvectors corresponding to the zero eigenvalue via (v>t ,−(M1vt)
>,0, . . . ,0)> for t =227

1, . . . , s.228

Combining the above reasoning, we obtain rs unit eigenvalues of L−>M L>LL−1
M as

required, where

r = 1 + (k − 2)

⌊
N

k

⌋
+N − k

⌊
N

k

⌋
= N + 1− 2

⌊
N

k

⌋
.

229

We see that r does not decrease as k increases, i.e. incorporating information from more230

timesteps will generally lead to a larger number of unit eigenvalues of the preconditioned231

model term. Increasing the number of observation times N will broadly lead to an increase in232

the number of unit eigenvalues of L−>M L>LL−1
M , but this behaviour is non-monotonic.233

If we introduce assumptions on the spectral radii of the model operator terms, we can234

obtain explicit bounds on the eigenvalues of L−>M L>LL−1
M .235

PROPOSITION 2. If ‖MiM
>
i ‖2 ≤ 1 ∀i then the eigenvalues of L−>M L>LL−1

M can be236

bounded above by k + 1 + 2
√
k.237

Proof. We bound the eigenvalues of A(M) by splitting the matrix into three sub-matrices238

A(M) = A1 + A2 + A3, where A1,A2,A3 are symmetric and will be defined explicitly239

in what follows. As all matrices being considered are symmetric, using [4, Fact 5.12.2]240

we can bound the maximum eigenvalue of A(M) above by λmax(A(M)) ≤ λmax(A1) +241

λmax(A2) + λmax(A3).242

Let A1 be a block diagonal matrix with blocks of size nk × nk, with entries defined by:

the (i, j)th block of A1 =

{
the (i, j)th block of A(M) for (n− 1)k + 1 ≤ i, j ≤ nk,
0 otherwise.

Each ks× ks block has rank s, as the first (k − 1)s rows are multiples of the final s× s rows.
Substitution yields the eigenvalue problemM>

nk

nk∑
t=(n−1)k+1

(
nk∏
p=t

Mnk−p+t

)(
nk−1∏
q=t

M>
q

)v = µv.

We apply [24, Theorem 1.3.20], which states that exchanging the order of matrix multiplication
for two compatible matrices has no effect on the non-zero eigenvalues of the product, so we
instead consider  nk∑

t=(n−1)k+1

(
nk∏
p=t

Mnk−p+t

)(
nk∏
q=t

M>
q

) v̄ = µv̄.

We can separate the contribution of each individual term by applying [4, Fact 5.12.2] to obtain

µ ≤ λmax

 nk∑
t=(n−1)k+1

(
nk∏
p=t

Mnk−p+t

)(
nk∏
q=t

M>
q

)
≤

nk∑
t=(n−1)k+1

nk∏
p=t

‖MpM
>
p ‖2 ≤

nk∑
t=(n−1)k+1

1 = k.
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The maximum eigenvalue of each block is bounded above by k, and hence λmax(A1) ≤ k.243

Without loss of generality, assume that
⌊
N
k

⌋
is odd. For n = 1, 3, 5, . . . , 2

⌊
N
2k

⌋
+ 1 we

define A2 by a block diagonal matrix, with blocks of size (k + 1)s × (k + 1)s and entries
given by

[A2]i,j =


the (i, j)th block of A(M) for i = nk + 1, (n− 1)k + 1 ≤ j ≤ nk,
the (i, j)th block of A(M) for j = nk + 1, (n− 1)k + 1 ≤ i ≤ nk,
0 otherwise.

The (k + 1)s× (k + 1)s blocks have rank 2s with non-zero eigenvalues that solve nk∑
t=(n−1)k+1

(
nk∏
p=t

Mnk−p+t

)(
nk∏
q=t

M>
q

)v = µ2v.

By the same argument as above we can bound µ2 ≤ k. Hence λmax(A2) ≤
√
k.244

For n = 2, 4, 6, . . . , 2
⌊
N
2k

⌋
, A3 is a block diagonal matrix with blocks of size (k+ 1)s×

(k + 1)s and entries given by

[A3]i,j =


the (i, j)th block of A(M) for i = nk + 1, (n− 1)k + 1 ≤ j ≤ nk − 1,

the (i, j)th block of A(M) for j = nk + 1, (n− 1)k + 1 ≤ i ≤ nk − 1,

0 otherwise.

All blocks have the same structure as the blocks of A2, and hence have eigenvalues245

bounded above by
√
k.246

The largest eigenvalue of A(M) is therefore bounded above λmax(A(M)) ≤ k + 2
√
k.247

By adding the identity matrix, we obtain the upper bound on the eigenvalues in the proposition248

statement.249

REMARK 4.1. For smaller values of N , A3 does not enter the working. We can therefore250

apply a similar argument with A = A1 +A2 to obtain the tighter bounds λ(L−>M L>LL−1
M ) ≤251

1 + k +
√
k if k ≤ N < 2k, that is

⌊
N
k

⌋
= 1.252

REMARK 4.2. A similar approach is not illustrative when examining a lower bound for253

the eigenvalues, as this would yield negative bounds, whereas all eigenvalues of L−>M L>LL−1
M254

are clearly greater than zero by construction.255

5. Approximations R̂i. Theorem 3.1 suggests that the eigenvalues of the preconditioned256

system are also influenced by the quality of the approximation of R̂ to R in the block diagonal257

preconditioner. In this section we consider four choices of R̂i, each of which we apply258

blockwise to Ri. Similarly to the preconditioners for L, we consider an existing choice of259

preconditioner that is diagonal, and three new choices of preconditioner that include corre-260

lation information. We expect the new preconditioners to be beneficial for highly correlated261

observation error covariance matrices. Correlated observation errors are currently implemented262

operationally at a number of numerical weather prediction centres for hyperspectral satellite263

instruments (see e.g. [45, 41]) and Doppler Radar Winds (DRW) (e.g. [36]). Hyperspectral264

instruments have a block covariance structure with a number of highly correlated off-diagonal265

entries, and DRW error statistics are spatially correlated. We focus on the observation error266

covariance matrix in this section as efficient approximations for this term have previously267

been overlooked. In the following we describe the approaches in terms of R without loss of268

generality, as the methods can also be applied to approximate the blocks of D.269

REMARK 5.1. We note that R has a block diagonal structure. Each of the preconditioners270

in this section is applied blockwise, yielding a block diagonal R̂ with at least N + 1 blocks.271

The two preconditioners presented in Section 5.1 further increase the sparsity of R̂.272
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5.1. Choices of R̂i which increase sparsity. Many previous studies of the saddle point273

data assimilation formulation assume that R is diagonal or easy to invert [15, 12]. For those274

instruments with uncorrelated or diagonally dominant observation error covariance matrices,275

it is likely that a diagonal approximation R̂ will be sufficient. However for more complicated276

structures, it is unlikely that the exact inverse of R can be applied efficiently in terms of277

storage or computation. The approaches we present here are designed to perform well in terms278

of effectiveness and efficiency for correlation structures that are currently used operationally.279

The first two choices of R̂i considered in this section allow for additional sparsification280

of the observation error component of the preconditioners. The first preconditioner, denoted281

Rdiag , takes the diagonal of the original observation error covariance matrix Ri. This is often282

a first approximation of Ri or its inverse for simple covariance structures. This choice of R̂i283

is cheap to apply and extremely sparse, but is expected to perform poorly if there is significant284

off-diagonal correlation structure.285

The second sparsifying choice of R̂i, denoted Rblock in Algorithm 3 in the Appendix, is286

designed to exploit existing block structure in Ri. In applications, Ri itself often has a block287

structure, with the strength of off-diagonal correlations varying, e.g. for different instruments288

or measurement types (see e.g. [45]). The idea of Rblock is to retain the sub/super-diagonal289

blocks of Ri with the largest norm. Neglecting off-diagonal blocks of Ri with smaller290

norm ensures that Rblock is decoupled into a block diagonal matrix. Let Ri ∈ Rpi×pi be a291

covariance matrix with an associated vector pvec ∈ Rpn that specifies the size of ‘blocks’292

such that
∑pn
k=1 pveck = pi. Algorithm 3 returns a block covariance matrix Rblock where293

only off-diagonal blocks with scaled Frobenius norm larger than a user-defined tolerance tol294

are retained. In order to maximise computational efficiency only norms of the blocks on the295

first super-diagonal are computed. If two (or more) adjacent blocks are retained, information296

from higher level super-diagonals is also included. This does not change the overall block297

structure of the new preconditioner, but allows for the inclusion of more information from298

Ri. This will not lead to a large increase in the cost of applying its inverse and we deem that299

retaining the additional correlation information is likely to be beneficial for the preconditioner.300

5.2. Preconditioning methods motivated by reconditioning. The next two choices301

of R̂i are motivated by reconditioning methods [39]. These are commonly used in data302

assimilation implementations to mitigate the issues associated with ill-conditioned sample303

covariance matrices [45]. These methods do not increase the sparsity of R̂i compared to Ri,304

but can be applied to non-block matrices, such as the spatially varying error covariances used305

for Doppler Radar Winds. In this application we consider the use of such methods to develop306

new terms in the preconditioner only.307

Algorithm 1: Ridge regression method
Inputs: Matrix Ri, target condition number κmax.
Define γ = λmax(Ri)−λmin(Ri)κmax

κmax−1 .
Set RRR = Ri + γI.

Algorithms 1 and 2 define parameter-dependent preconditioners. Typically in the re-308

conditioning setting γ and T are selected such that reconditioned matrices have condition309

number κmax. However, in the preconditioning approach we select γ and T directly, with310

larger parameter values yielding smaller condition numbers of R̂i.311

Algorithms 1 and 2 can be used to construct preconditioners for Ri that retain much of312

the structure of the original matrix, but are better conditioned. Additionally, we can prove how313
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Algorithm 2: Minimum eigenvalue method

Inputs: Matrix Ri = VΛV>, target condition number κmax.
Set λmax(RME) = λmax(Ri).
Define T = λmax(Ri)

κmax
> λmin(Ri).

Set the remaining eigenvalues of RME via

λk(RME) =

{
λk(Ri) if λk(Ri) > T,

T if λk(Ri) ≤ T.

Construct the reconditioned matrix via RME = VΛMEV>, where ΛME is a
diagonal matrix with diagonal entries given by λk(RME).

the eigenvalues of the preconditioned term that appears in Theorem 3.1 change as we vary γ314

and T , respectively. The following results determine the spectra of the preconditioned terms315

R−1
RRRi and R−1

MERi for any choice of parameters γ and T .316

PROPOSITION 3. Let λk(Ri) denote the eigenvalues of Ri. The eigenvalues of R−1
RRRi

are given by

λk(R−1
RRRi) =

λk(Ri)

λk(Ri) + γ
.

Proof. Let Ri = VΛV>, where Λ = diag(λk), be the eigendecomposition of Ri.
Then

RRR = V(Λ + γI)V>

and hence

R−1
RRRi = V

(
diag

(
λk

λk + γ

))
V>.

317

We note that for any value of γ, 0 < λ(R−1
RRRi) < 1. For small values of γ all318

eigenvalues are closer to 1 and as γ increases, more eigenvalues move towards zero.319

PROPOSITION 4. The eigenvalues of R−1
MERi are given by

λk(R−1
MERi) =

{
1 if λk > T,
λk

T < 1 if λk ≤ T.

Proof. Let Ri = VΛV>, where Λ = diag(λk), be the eigendecomposition of Ri.
Then

RME = VΛMEV>,

where ΛME is a diagonal matrix with diagonal entries given by max{T, λk(Ri)}. Hence

R−1
MERi = V

(
diag

(
λk

max{T, λk}

))
V>,

which has eigenvalues corresponding to the expression in the theorem statement.320
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All of the eigenvalues of R−1
MERi lie in the range (0, 1]. For small values of T most321

of the eigenvalues are units, with a few smaller than 1. As T increases a larger number of322

eigenvalues become strictly smaller than 1.323

Therefore both choices of preconditioner maintain the ordering of eigenvalues and yield324

eigenvalues of the preconditioned matrix lying between 0 and 1. For both approaches increas-325

ing the parameter leads to larger differences between the eigenvalues of the preconditioned326

matrix and 1. Smaller parameter values may yield choices of R̂ that are themselves ill-327

conditioned, and hence expensive to evaluate as part of a preconditioner. Therefore, there is a328

balance to be struck when choosing a parameter value to avoid poor conditioning of either329

the preconditioner R̂ or the preconditioned term R̂−1R. A natural question is therefore how330

to select appropriate parameter values, and how to implement this automatically. Heuristics331

for automated parameter selection are discussed in Section 6 for our numerical experiments,332

but it is likely that some initial investigation would be necessary to identify suitable meth-333

ods for specific problems of interest. In Section 7 we compare the performance of the four334

approximations Rdiag , Rblock, RRR, and RME , applied block-wise to each block Ri of R.335

6. Numerical framework. In this section we introduce the numerical framework for the336

experiments presented in Section 7. We begin in Section 6.1 by defining the parameters for the337

data assimilation problem. The same data assimilation framework is used for all experiments.338

In Section 6.2 we discuss implementation aspects relating to the preconditioners. We note339

that all results are computed using MATLAB version 2019b on a machine an a 1.8GHz Intel340

Intel quad-core i7 processor with 15GB RAM on an Ubuntu 20.04.2 LTS operating system.341

6.1. Data assimilation parameters. We now describe the data assimilation problem that342

is studied in Section 7. The size of the state space s is determined by the spatial discretisation343

s = 1
∆x . For each choice of s we fix the observation operator Hi ∈ Rp×s to be the same for344

all observation times, i. We choose p = s
2 , and observations of alternate state variables are345

smoothed equally over 5 adjacent state variables, with entries either being 0 or 1
5 . The full346

observation operator H is then assembled by taking H = IN+1 ⊗Hi, where ⊗ denotes the347

Kronecker product.348

We assume that the model error Qi is the same at each observation time, i.e. Qi ≡ Q for
i = 1, . . . , N . Although this is a simplified choice of model error, we note that treating Qi is
not the focus of this work. More complicated formulations could be taken into account for
operational problems, and the preconditioning approaches for R discussed in Section 5 can
also be applied to the blocks of Q. Both B and Q are created using the same routine, based
on a SOAR correlation matrix [46]. This routine constructs spatial local correlations whilst
ensuring that the matrix has high sparsity. Both B and Q are s× s circulant matrices fully
defined by a single row. The number of non-zero entries in each row is fixed irrespective of
the value of s. The non-zero entries are computed using a modified SOAR function following
the procedure in [22]:

(6.1) ci = σ

(
1 +

2| sin
(
iθ
2

)
|

L
exp

(
−

2| sin( iθ2 )|
L

))
, θ =

π

maxval
,

where L is the correlation lengthscale (0.6 for B, 0.5 for Q), maxval determines the number349

of non-zero entries (100 for B, 120 for Q), and σ is the amplitude of the correlation function350

(0.4 for B, 0.2 for Q). To ensure positive definiteness of the function, if the smallest eigenvalue351

of the full matrix is negative a constant δ = |λmin(B)|+ ψ is added to the diagonal, where ψ352

is a random number in [0, 0.5]. We then assemble D by taking the first block diagonal entry to353

be B and the remaining block diagonal entries to be N copies of Q.354
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Experiment Model D Ri H p/s

A Lorenz 96 Modified SOAR Block Direct observations 0.5
B Heat equation Modified SOAR Block Direct observations 0.25

TABLE 6.1
Summary of experimental design for Section 7. The modified SOAR function is described in (6.1), the block

method to construct Ri is described in Section 6.1, as is the direct observation structure of H. The final column
shows the ratio of observations to state variables at each observation time.

The spatial structure for B and Q introduced above is similar to numerical frameworks355

that have been considered previously for weak-constraint data assimilation experiments [8, 10].356

However, we note that for realistic data assimilation systems the true structure of Qi is not well357

known. Improved understanding of model error covariance matrices, and their estimation in358

preconditioners, is of research interest, but will not be considered here. For our experiments we359

apply the ridge regression preconditioner to B and Q given by Algorithm 1, for the inflation360

parameter γ = 0.01 to obtain BRR and QRR. We apply D̂−1 using the incomplete Cholesky361

factors of BRR and QRR, respectively, computed with the MATLAB function ichol with362

zero-fill, i.e. using the same sparsity structure as B and Q.363

Many experiments that account for correlated observation error covariance matrices use364

spatial correlations and circulant matrix structures (similar to those we are using for B,Q).365

However, in NWP error correlations often arise from hyperspectral satellite-based instruments366

which have interchannel uncertainty structures (see for instance [45, 37]), which appear as367

block structures within a matrix. Therefore for these experiments we construct a matrix with368

block structure, designed to replicate many of the properties of realistic interchannel error369

correlations.370

To construct Ri ∈ Rp×p we define two vectors: pvec ∈ Rplen such that p =371 ∑plen
k=1 pveck which gives the size of the blocks, and pcorr ∈ Rplen(plen−1)/2 which372

gives the a multiplication factor for each off-diagonal block (note if pcorrk = 0 the corre-373

sponding off-diagonal block is uncorrelated). Diagonal blocks are correlated and constructed374

as the Hadamard product of a sparse random matrix and a sparse SOAR matrix (using the same375

approach as for B and Q above). Off-diagonal blocks are sparse random matrices with entries376

in (0,pcorrk). The matrix Ri is assembled by adding the diagonal blocks and upper half of377

the matrix and then symmetrising. This also increases the weight of the diagonal blocks. A378

similar approach to that used for B and Q is applied to guarantee that Ri is positive definite,379

where if the minimum eigenvalue of Ri is less than 1 it is increased to a small positive value.380

This value is fixed at 0.41, in order to control the conditioning of Ri, and ensure that the381

condition numbers of D and R are comparable. We assemble R by taking R = IN+1 ⊗Ri,382

where ⊗ denotes the Kronecker product and the choice of Ri ∈ Rp×p is fixed for a given383

data assimilation problem. This method of construction ensures we have adequate sparsity384

for high-dimensional experiments, that Ri is positive definite with significant correlations,385

and that it is well-conditioned. In practice R may be very ill-conditioned compared to D,386

in which case we expect selecting a good choice of R̂ would be even more vital to ensure387

fast convergence. The combination of model and data assimilation parameters used in our388

experiments is summarised in Table 6.1.389

Finally, we wish to apply the reconditioning-inspired preconditioner to Ri in an online390

way. One way to do this is to use the small eigenvalues of Ri to select γ and T . For the391

ridge regression approach, we set γ = λmin(Ri). For the minimum eigenvalue method we392

compute the smallest two eigenvalue–eigenvector pairs, and set the threshold equal to the393

second smallest, meaning only a single eigenvalue is changed. The small eigenvalues are394

computed using eigs(R,1,’sr’) in MATLAB. For both approaches we use information395

from Ri, but computing a small number of eigenvalues ensures this is computationally efficient.396
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Ri R−1
diagRi R−1

blockRi R−1
RRRi R−1

MERi

p λmin λmax λmin λmax λmin λmax λmin λmax λmin

125 0.4100 108.63 0.0131 2.7466 0.6779 1.3221 0.2908 1.0000 0.2602
250 0.4100 200.55 0.0077 3.3466 0.7886 1.2114 0.2908 1.0000 0.6021
500 0.4100 312.05 0.0061 4.4236 0.8889 1.1110 0.2908 1.0000 0.1129
1250 0.4100 540.99 0.0044 5.5440 0.9335 1.0665 0.2908 1.0000 0.1077
2500 0.4100 650.67 0.0055 6.0254 0.7556 1.2444 0.2908 1.0000 0.1302
5000 0.4100 706.94 0.0057 6.8106 0.6058 1.3941 0.2908 1.0000 0.1725

TABLE 6.2
Minimum and maximum eigenvalues of preconditioned Ri for different choices of R̂i computed using the eigs

function in MATLAB.

Finally, for all correlated choices of R̂i we apply R̂−1
i using the incomplete Cholesky factors397

computed with the MATLAB function ichol with the same sparsity structure as Ri. For398

RME this means the reconditioning method is applied as a low-rank update to the Cholesky399

factors via the Woodbury identity as this is more efficient in terms of storage.400

Table 6.2 shows the extreme eigenvalues of R̂−1
i Ri for each of the preconditioners401

discussed in Section 5. We recall that the maximum eigenvalue of R−1
MERi is 1 by definition.402

We fix the smallest eigenvalue of Ri, λmin(Ri) = 0.41, to ensure that Ri is well-conditioned.403

We see that the maximum eigenvalue of Ri increases with p. Eigenvalues are more extreme404

for R−1
diagRi than for any other preconditioned matrix. Including correlation information is405

beneficial in terms of the extreme eigenvalues. As the parameter choice for RRR only depends406

on the smallest eigenvalue of Ri (which is fixed), the minimum and maximum eigenvalues407

of R−1
RRRi do not change with increasing p. The block approach clusters both minimum and408

maximum eigenvalues of R−1
blockRi either side of 1, whereas the reconditioning approaches409

lead to a maximum eigenvalue of the preconditioned matrix which is very close or equal to410

1. For the approach used here, where T is set to the second smallest eigenvalue of Ri, all411

eigenvalues bar the smallest of R−1
MERi are equal to 1.412

6.2. Aspects of numerical linear algebra implementation. In this section we briefly413

discuss some of the numerical linear algebra aspects of our implementation to run the numerical414

experiments in Section 7.415

We take advantage of the specific matrix structures in (2.2), and store only the non-416

zero blocks of the matrix, i.e. Ri ∈ Rp×p, B,Qi ∈ Rs×s and Hi ∈ Rp×s. Each of417

these (relatively) small matrices is stored as a sparse matrix. We also precompute and store418

R̂i ∈ Rp×p prior to the iteration of the Krylov subspace method.419

We compute the matrix–vector products Av, and the preconditioner solves P−1
D v and

P−1
I v, via the action of a matrix on a vector rather than building the full matrices. We now

describe this process briefly. Note first that

Av = A

v1

v2

v3

 :=

c1

c2

c3

 =

 Dv1 + Lv3

Rv2 + Hv3

L>v1 + H>v2

 .

We compute c1, c2, c3 separately by looping over the N + 1 blocks of D, R, and H. The420

action of L and L−1 on a vector is applied via a function. We note that for each evaluation of421

the matrix–vector product we require one evaluation each of L> and L.422

To apply the inverse of the block diagonal preconditioner to a vector, we have that

P−1
D v =

D̂−1 0 0

0 R̂−1 0

0 0 Ŝ−1


v1

v2

v3

 =

 D̂−1v1

R̂−1v2

L̂−1DL̂−>v3

 .
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We see that each application of P−1
D to a vector requires one evaluation each with D̂−1, R̂−1, L̂−1,

and L̂−>. To apply D̂−1 and R̂−1 we loop over the N + 1 blocks of the matrices, and for
L̂−1 and L̂−> we loop over the k blocks of the relevant sub-matrices. Now,

P−1
I v =

 0 0 L̂−>

0 R̂−1 0

L̂−1 0 −Ŝ−1


v1

v2

v3

 =


c1︷ ︸︸ ︷

L̂−>v3

R̂−1v2

L̂−1(v1 −Dc1)

 .

By computing the first component of P−1
I v, c1, prior to the final component, we can apply the423

inexact constraint preconditioner with the same dominant costs-per-iteration as an application424

of the block diagonal preconditioner. This saves the cost of a second application of L̂−>. An425

additional advantage of the inexact constraint preconditioner is that it does not require the426

application of D̂−1 to a vector, and hence may result in significant computational savings for427

challenging choices of D.428

We note that all of the experiments in Section 7 run the Krylov subspace methods to429

convergence to a relative tolerance of 10−6. This is in contrast to most operational data430

assimilation implementations, where a small number of fixed iterations are applied. Due to the431

inclusion of the Lagrange multipliers in the residual of the saddle point formulation, we no432

longer have monotonic decrease of the objective cost. Running our experiments to convergence433

ensures a fair comparison between each preconditioner. We leave the investigation of the434

non-monotonicity for each preconditioner to future work.435

7. Numerical experiments. In this section we present numerical experiments for the436

two problems described in Section 6. We use the MINRES implementation of [29] for the437

block diagonal preconditioner, with a residual-based convergence criterion in the two norm.438

For the inexact constraint preconditioner we use the GMRES implementation of [20] with no439

restarts, and a convergence criterion given by the relative residual in the two norm. We use a440

tolerance of 10−6 for both problems of interest.441

We note that all of our experiments converge within the maximum number of iterations442

we allow (1000).443

7.1. Lorenz 96 model. The main problem of interest concerns the Lorenz 96 model
[26], a non-linear problem that is often considered as a test problem for data assimilation
applications (see for example [8, 18] for use within the saddle point formulation for data
assimilation). The Lorenz 96 model consists of s coupled ordinary differential equations
which are discrete in space and continuous in time. Consider s equally spaced points on the
unit line, i.e. ∆x = 1

s . For i = 1, . . . , s,

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + 8,

where we have periodic boundary conditions (so x−1 = xs−1, x0 = xs, xs+1 = x1). The444

choice of forcing constant F = 8 induces chaotic behaviour, and is typical for data assimilation445

applications. We use the numerical implementation of [10], where the model is integrated446

in time with a fourth-order Runge–Kutta scheme. For all experiments we consider N = 15447

subwindows. We consider ∆t = 10−4 for all the experiments, although similar results were448

obtained for other values of ∆t and are not presented here.449

As we are interested in assessing the performance of preconditioners within the linearised450

inner loops, we consider a single outer loop of the weak constraint formulation. The Lorenz451

96 example can be considered as a study of how well the proposed preconditioners perform452
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L̂ R̂ λmin(P−1
D A) max(λ(P−1

D A) < 0) min(λ(P−1
D A) > 0) λmax(P−1

D A)

LM Rblock −15.3994 −0.1233 0.7886 16.4061
LM RRR −14.2002 −0.0574 0.2908 14.8536
LM R −13.8536 −0.1773 1.0000 14.8536
L0 R −12.2360 −0.0551 1.0000 13.2360
LM Rblock −3.5516 −0.1773 0.8295 4.5535
LM RRR −2.5351 −0.1773 0.3878 3.2438
LM R −3.6119 −0.1773 1.0000 4.6119
L0 R −2.0415 −0.0551 1.0000 3.0415

TABLE 7.1
Experiment A: (Top:) Bounds on negative and positive eigenvalues from Theorem 3.1 for s = 500, N = 5,

k = 3 with parameters from Experiment A in Table 6.1; (Bottom:) Extreme negative and positive eigenvalues for this
problem computed using the eigs function in MATLAB.

k Ri Di D̂−1
i Mi/M

>
i Ri R−1

block Di D̂−1
i Mi/M

>
i

1 22496 44992 22496 42180 10704 10704 21408 10704 20070
2 18368 36736 18368 34440 8240 8240 16480 8240 15450
3 16688 33376 16688 47978 7536 7536 15072 7536 21666
4 13168 26336 13168 41150 6624 6624 13248 6624 20700
7 11776 23552 11776 41216 6080 6080 12160 6080 21280

10 9520 19040 9520 34510 4816 4816 9632 4816 17458
16 3520 7040 3520 12760 1376 1376 2752 1376 4988

TABLE 7.2
Experiment A: Total number of matrix–vector products with component matrices for PD for increasing k for

Rdiag (left) and Rblock (right).

in a realistic setting where the linearised model operators Mi differ in each subwindow.453

We note that the setting of of Proposition 1 holds, and hence using LM guarantees that454

L−>M L>LL−1
M possesses a number of unit eigenvalues depending on the choice of k. However,455

we cannot bound the maximum eigenvalue of L−>M L>LL−1
M using the theory of Section 4:456

the assumptions of Proposition 2 are not satisfied as λmax(M>
15M15) > 1 for all choices of457

∆x that were studied.458

Table 7.1 shows the values of the bounds from Theorem 3.1 (top four rows) and the459

computed eigenvalues (bottom four rows) when using PD with LM (3), and a number of460

choices for R̂ introduced in Section 5. We note that these experiments consider D = I, as461

the condition number of D appears in all terms in the bound. In the more realistic case where462

B,Qi 6= I we expect the bounds given by Theorem 3.1 to be much weaker. We note that even463

with this choice of D the bounds provide pessimistic estimates of the eigenvalues. However,464

the qualitative behaviour of the bounds is similar to that of the computed eigenvalues for465

different choices of R̂ and LM . The eigenvalues of smallest absolute value are mainly affected466

by the choice of LM (for the negative eigenvalue with largest magnitude) or R̂ (for the smallest467

positive eigenvalue). This is not true for the bounds in the case of the negative eigenvalue with468

smallest magnitude. The computed eigenvalues of largest magnitude and the corresponding469

bounds are affected by changes to both LM and R̂, but these changes are rather small in all470

cases. As the largest magnitude computed eigenvalues are small for this problem (all less than471

five), the improvements to the small magnitude eigenvalues with LM and correlated choices of472

R̂ are likely to have the most significant influence on the convergence of the iterative methods.473

We now study the performance of the proposed choices of preconditioners for the Lorenz474

96 problem (Experiment A in Table 6.1). The left panel of Figure 7.1 shows how the number475

of iterations required for convergence changes with the choice of L̂ and R̂ within PD as k476
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FIG. 7.1. Experiment A: Number of iterations required for convergence of MINRES for different choices of
R̂ within the block diagonal preconditioner PD (left) and the the inexact constraint preconditioner PI (right) for
the Lorenz 96 problem, with increasing k. The dimension of the problem is given by A ∈ R100,000×100,000. The
dashed line shows the results for k = 1 i.e. LM = I = L0. We note that k = 16 corresponds to LM ≡ L. Legend
entries correspond to different choices of R̂ as described in Section 5.

k Ri Di Mi/M
>
i Ri R−1

block Di Mi/M
>
i

1 8624 17248 16170 3344 3344 6688 6270
2 7088 14176 13290 2704 2704 5408 5070
3 6304 12608 18124 2400 2400 4800 6900
4 6064 12128 18950 2336 2336 4672 7300
7 5264 10528 18424 2000 2000 4000 7000

10 5040 10080 18270 1904 1904 3808 6902
16 4384 8768 15892 1648 1648 3296 5974

TABLE 7.3
Experiment A: Total number of matrix–vector products with component matrices for PI for increasing k for

Rdiag (left) and Rblock (right).

increases. Including some model information in L̂ leads to a reduction in iterations compared477

to k = 1 for all choices of R̂. For k < 5 including more model information leads to faster478

convergence. However, for k ≥ 5 the change in iterations is non monotonic. Including479

correlation information in R̂ results in large improvements to convergence. We note that480

the lines corresponding to the correlated choices of R̂ (Rblock, RRR, and RME) lie almost481

directly on top of the line for R. Indeed, if using Rdiag we require k ≥ 8 to obtain fewer482

iterations than using L0 with an improved choice of R̂. There is very little difference in483

performance between the correlated choices of R̂. For all choices of R̂ the smallest number484

of iterations occurs when using k = N + 1, i.e. the exact choice of L. Table 7.2 shows485

the number of matrix–vector products required to reach convergence for the block diagonal486

preconditioner using Rdiag and Rblock. Results using RRR and RME are similar to those487

with Rblock. The number of matrix–vector products with Di, D̂−1
i and Mi is reduced when488

using Rblock compared to Rdiag . For some choices of k the total number of evaluations with489

Ri and R−1
block is slightly larger than in the Rdiag case. Increasing k broadly decreases the490

number of matrix–vector products with the error covariance matrices and their inverses. For491

some choices of k > 1 more evaluations of Mi and M>
i are required than when using L0.492

However, this increase is small compared to the decrease in the other components.493

The right panel of Figure 7.1 shows how the number of iterations required for convergence494

changes with the choice of L̂ and R̂ within PI as k increases. We see a clear benefit of495

including model information in terms of a reduction in iterations. Increasing k leads to a496

reduction in the number of iterations required for convergence when using LM for all choices497
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Rblock RRR R Rblock RRR R

L0 759 822 822 359 275 275
LM , k = 3 433 466 467 244 205 205
LM , k = 4 348 335 336 228 200 200
LM , k = 5 367 354 355 206 182 182

TABLE 7.4
Experiment A: Number of iterations required for convergence of MINRES with the block diagonal preconditioner

PD (left) and PI (right) applied to the Lorenz 96 problem, using Rblock , RRR, R in combination with L0, LM

(k = 3, 4, 5). Here, A ∈ R1,600,000×1,600,000.

of R̂, unlike when using PD. The benefit of using an improved estimate of R̂ is even more498

stark, with any choice of correlated R̂ and L0 leading to fewer iterations than Rdiag even499

when using L̂ ≡ L. Again, the lines for the correlated choices of R̂ (Rblock, RRR, and RME)500

lie almost directly on top of the line for R. Table 7.3 shows the total number of matrix–vector501

products required to reach convergence for the inexact constraint preconditioner for Rdiag502

and Rblock. Results using RRR and RME are similar to those with Rblock. In this case, using503

Rblock leads to a large reduction in the number of matrix–vector products for all components.504

Increasing k can lead to increases in the number of model matrix–vector evaluations, but leads505

to decreases in the total number of matrix–vector products.506

Table 7.4 shows the performance of the block diagonal preconditioner and inexact con-507

straint preconditioner, respectively, for a higher-dimensional problem when using Rblock,508

RRR, and R itself to approximate R within the preconditioner. Similarly to the smaller509

dimensional problem considered in Figure 7.1 using LM leads to improved convergence in510

terms of iterations compared to L0. The different choices of R̂ lead to comparable iteration511

numbers and we recall that Rblock has additional sparsity structure. Increasing k leads to a512

slight reduction in the number of iterations, but increases the computational cost of each itera-513

tion. For this problem, choosing k = 3 or 4 allows decreased iteration counts compared to L0,514

without too many more matrix–vector products with Mi. Iteration counts are much smaller515

for the inexact constraint preconditioner than the block diagonal preconditioner. Overall,516

using our new preconditioners LM and correlated choices of R̂ result in fewer iterations and517

matrix–vector products compared to those obtained when using L0 or Rdiag for the Lorenz518

96 problem.519

7.2. Heat equation with Dirichlet boundary conditions. The second problem of inter-
est that we consider here is the one-dimensional heat equation on the unit line

(7.1)
∂u

∂t
= α

∂2u

∂x2
,

with homogeneous Dirichlet boundary conditions. We discretise (7.1) using the forward Euler
method in time and second-order centred differences in space. This means we can write the
model evolution in matrix form for a single time model step as ut+∆t = M∆tu

t, where M∆t

denotes the application of a single model time-step of length ∆t to the heat equation with
Dirichlet boundary conditions; this is given by

M∆t =



0 0 0 0 · · · 0
0 1− 2r r 0 · · · 0

0 r 1− 2r
. . .

...

0 0
. . . . . . r 0

...
... r 1− 2r 0

0 0 · · · 0 0 0


,
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FIG. 7.2. Experiment B: Number of iterations required for convergence using L0 (left) and LM (right) for
different choices of R̂ within the inexact constraint preconditioner PI for the heat equation, for large choices of s.
Two observation ratios are shown: p = s

2
(dashed line) and p = s

4
(solid line). The dimension of the problem ranges

from A ∈ R150,000×150,000 (right) to A ∈ R750,000×750,000 (left) for p = s
2

, and A ∈ R135,000×135,000

(right) to A ∈ R675,000×675,000 (left) for p = s
4

. Legend entries correspond to different choices of R̂ as described
in Section 5.

where r = α∆t
(∆x)2 . The case of non-homogeneous boundary conditions would follow similarly,520

by applying a source term to the model evolution equation. For the numerical experiments521

presented here we fix α = 1 and vary spatial and temporal resolutions together, setting the522

ratio r = ∆t
(∆x)2 = 0.4 for all experiments.523

One advantage of the heat equation test problem is the ability to consider how our new524

preconditioners scale with problem size. We now consider the best-performing preconditioners525

for a high-dimensional example, namely the inexact constraint preconditioner for Rblock,RRR,526

and R. Experiment B studies the behaviour of the inexact constraint preconditioner for527

high-dimensional problems. In particular, for ∆x = 2 × 10−5 the dimension of the full528

saddle point problem is 750, 000× 750, 000 for s = 2p. In Figure 7.2 we only consider the529

inexact constraint preconditioner and the three best choices of R̂. We find that even for a530

high-dimensional problem the number of iterations is small, with only a modest difference531

between the results for Rblock and R (as well as RRR). Similarly to the lower dimensional532

case, using LM requires fewer iterations than using L0. Figure 7.2 also considers two533

observation networks. We see that using a larger number of observations requires a larger534

number of iterations to reach convergence, which coincides with the findings of [8] for the535

unpreconditioned case. However, the qualitative behaviour across the different choices of L̂536

and R̂ is the same for both observation networks.537

8. Conclusions. We proposed new preconditioners for the saddle point formulation of538

the weak-constraint 4D-Var data assimilation problem in the presence of correlated observation539

errors. Our approach for approximating the model term, L̂, incorporated model information for540

the first time. We also proposed a range of approaches that permit inclusion of computationally541

efficient correlation information within the observation error covariance term, R̂. In summary:542

• We developed new bounds for the eigenvalues of the preconditioned saddle point543

system in the case of a block diagonal preconditioner.544

• We investigated how the constituent terms within the bounds behave for existing and545

proposed choices of L̂ and R̂. Including model information via LM yields many546

repeated unit eigenvalues of L−>M L>LL−1
M . Our new approaches yield eigenvalues547

of this matrix that are frequently bounded above by moderate numbers.548
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• We considered two numerical examples: the Lorenz 96 problem and the heat equation.549

Including model information via LM reduced iterations for both problems.550

The use of preconditioners that account for correlated observation information led to a551

significant reduction in iterations for all experiments. For many problems where R is very552

ill-conditioned, we would expect the improvements in performance to be even greater than553

in the experiments presented here. We find that including additional model information in554

LM leads to reduced iterations, but increases the computational expense of each iteration. We555

therefore suggest that selecting k = 3 or k = 4 represents a sensible trade-off. Future work for556

this problem includes developing efficient approximations of D, multi-core implementations557

of our new preconditioners, and experiments within a full-scale operational NWP system.558
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Appendix: Block preconditioner for R̂. We state below the algorithm used to apply563

the block preconditioner Rblock for R, as described in Section 5.1.564

Algorithm 3: Block preconditioner for R̂

Inputs: Ri, pvec = vector of block sizes, tol = tolerance for retaining blocks,
maxsize = maximum size permitted on a single processor, numproc = number
of available processors.

Compute p = sum(pvec), pn = |pvec|.
Define pst = starting index for each new block.
Initialise Rblock = Ri.
for j = 1:pn-1

Compute scaled Frobenius norm of super-diagonal blocks via
normvec(j) = 1/sqrt(pvec(j)*pvec(j+1))*
norm(R(pst(j):pst(j+1)-1,pst(j+1):pst(j+2)-1),‘fro’).

end
Retain blocks where normvec(j) >= tol:
for j = 1:pn-1

if normvec(j) < tol
Set Rblock(pst(j+1):p,1:pst(j+1)-1) = 0.
Set Rblock(1:pst(j+1)-1,pst(j+1):p) = 0.

end
end
if size of largest block > maxsize

Split largest block into two components.
end
if number of distinct blocks > numproc

Combine two smallest adjacent blocks in Rblock.
elseif number of distinct blocks < numproc− 2

Split largest block of Rblock into two components.
end

565
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