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 38 

Abstract 39 

 40 

DNA base damage is a major source of oncogenic mutations (Alexandrov et al. 2020) and 41 

disruption to gene expression (Chiou et al. 2018). The stalling of RNA polymerase II (RNAP) 42 

at sites of DNA damage and the subsequent triggering of repair processes has major roles in 43 

shaping the genome wide distribution of mutations, clearing barriers to transcription and 44 

minimising the production of mis-coded gene products. Despite its importance for genetic 45 

integrity, key mechanistic features of this transcription coupled repair (TCR) process are 46 

controversial or unknown. Here we exploited a well-powered in vivo mammalian model 47 

system to explore the mechanistic properties and parameters of TCR for alkylation damage 48 

at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous 49 

interpretation, a generalisable mathematical model of DNA damage and TCR was 50 

developed. Fitting experimental data to the model and simulation revealed that RNA-51 

polymerases frequently bypass lesions without triggering repair, indicating that small 52 

alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst 53 

of damage, the efficiency of transcription coupled repair gradually decays through gene 54 

bodies with implications for the occurrence and accurate inference of driver mutations in 55 

cancer. The observed data is inconsistent with RNAP always reinitiating after repair, but is 56 

well explained by a model in which no reinitiation occurs, suggesting that RNAP reinitiation is 57 

not a general feature of transcription coupled repair. Collectively these results reveal how the 58 

directional, but stochastic activity of TCR shapes the distribution of mutations following DNA 59 

damage. 60 

 61 

Significance 62 

 63 

Damage to DNA can interfere with crucial cellular processes such as the transcription of 64 

genes into RNA and can ultimately lead to mutations, DNA sequence changes, that are 65 

inherited by subsequent generations of cells and organisms. Transcription coupled repair 66 

(TCR) works to ensure genes that are being used by a given cell are cleared of damage so 67 

they can continue to be utilised. We reveal mechanistic details of how TCR works, its 68 

efficiency and how that changes through the length of a gene. This helps understand how 69 

cells deal with a burst of DNA damage, for example from sunburn or chemotherapeutic 70 

treatment, and where the resulting genetic damage is likely to occur, with implications for 71 

cancer risk and treatment. 72 

 73 

Introduction 74 

 75 

Accurate and efficient DNA replication and DNA transcription are essential for life. However, 76 

cellular DNA is continuously assaulted with damage arising from both endogeneous and 77 

exogeneous sources. With hundreds of thousands of DNA adducts forming per genome per 78 

day, crucial molecular processes can be severely inhibited (Yousefzadeh et al. 2021). 79 

Damage falling within transcribed regions poses particularly acute challenges, potentially 80 

interfering with accurate and efficient transcription, as well as risking the formation of 81 

heritable, protein-altering mutations. Transcription coupled repair (TCR), a highly conserved 82 

branch of the nucleotide excision repair pathway (Gregersen and Svejstrup 2018; Sarsam et 83 

al. 2024), assists in minimising the risk of such aberrant outcomes (Fig 1.a). Triggered by the 84 

stalling of actively transcribing RNA polymerase II (RNAP), TCR excises the stalling-lesion 85 
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and, by using the non-transcribed strand as a template for synthesis, results in repaired, 86 

lesion-free DNA. 87 

 88 

Frequent RNAP stalling potentiates dysregulation of homeostatic expression and increased 89 

transcription-replication complex collisions (Lans et al. 2019). On the other hand, uncleared 90 

damage risks transcriptional mutagenesis (Brégeon and Doetsch 2011) and incorrect base-91 

pairing at replication. Thus, a balance between damage tolerance and clearance must be 92 

struck. Central to understanding this balance, and our ability to quantitatively map damage to 93 

cellular outcome, is the measurement of how the transcriptional machinery interacts with 94 

damage. In this study we focus on two key elements of this interaction: the sensitivity with 95 

which RNAPs detect damage and trigger TCR, and how frequently RNAPs reinitiate 96 

transcription following repair (Fig 1.b).  97 

The efficiency of TCR initiation is expected to be influenced by lesion type (Saxowsky and 98 

Doetsch 2006; Lans et al. 2019). Smaller adducts, such as the oxidative stress induced 8-99 

oxoguanine, are bypassed with relative ease by RNAP (Tornaletti et al. 2004), while more 100 

bulky, helix-distorting lesions, e.g. UV-caused pyrimidine-dimers, provide a more stringent 101 

roadblock to transcribing RNAP, which may only rarely be bypassed (Marietta and Brooks 102 

2007; Walmacq et al. 2012). When RNAP stalling and repair does occur, transcription must 103 

be rapidly resumed to maintain cellular function. It was commonly thought that stalled 104 

RNAPs resumed transcription from the damaged site (Geijer and Marteijn 2018), however 105 

recent work has demonstrated disassociation of RNAP following TCR at UV induced 106 

pyrimidine-dimers (Chiou et al. 2018). Without RNAP restart, further RNAP transcription 107 

initiations at a given gene's promoter are required, potentially necessitating numerous 108 

transcription initiations to clear a gene-body of multiple lesions and to generate a complete 109 

RNA transcript. While the bypass efficiency for varied lesions can be quantified in vitro (You 110 

et al. 2012), an integrative picture summarising the outcomes of transcriptional machinery 111 

encountering adducts in vivo is lacking.  112 

 113 

For TCR-inducing lesions, we reasoned that analysing mutation burden as a function of both 114 

gene-expression and genic-position would provide insight into TCR mechanics. DNA 115 

damage that avoids repair and persists to replication can result in incorrect base-pairing, 116 

thus generating heritable mutations that are detectable in the damaged cell’s progeny. 117 

Supposing that template strand lesions consistently stall RNAP, triggering lesion excision 118 

and repair and subsequent RNAP disassociation, then any downstream lesions will require a 119 

second RNAP for detection and clearance. Under this model the 5’ end of moderately 120 

expressed genes would be cleared of lesions but the 3’ end would remain unrepaired (Fig 121 

1.c). If this positional bias in lesions persists through to DNA replication then a sigmoidal 122 

mutational pattern through the gene bodies would be expected, with the curve progressively 123 

moving towards the 3’ end as transcription increases. Alternatively, if RNAPs consistently 124 

reinitiate transcription following lesion detection and repair, then no positional bias in lesion 125 

clearance should be expected, and hence a more uniform mutation burden through the gene 126 

body is predicted (Fig 1.c). Therefore, observing mutational patterns caused by template 127 

strand lesions as a function of genomic position and gene expression potentially offers a 128 

window into the mechanics of TCR. 129 

 130 

As RNAP is only expected to trigger the repair of damage on the transcriptional template 131 

strand, a prerequisite for using mutation patterns to accurately infer the activity of TCR is the 132 
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ability to resolve the lesion containing strand. Prior studies (Haradhvala et al. 2016; 133 

Seplyarskiy et al. 2019) have relied on inferences from the biochemistry of mutagenesis for 134 

lesion strand resolution, for example assuming that C->T mutations from UV photoadducts 135 

involve the C nucleotide rather than the G of the complementary strand. Such inferences can 136 

be confounded by atypical adducts (Vandenberg et al. 2023) and the spectrum of adducts 137 

produced by other mutagens is generally less well understood. An alternative strategy is to 138 

ab initio phase the stand of DNA damage. Following a burst of mutagenic damage in a single 139 

cell cycle, most mutations arise through replication using a damaged base as a template 140 

(Aitken et al. 2020). Through the semi-conservative replication of DNA, the two 141 

complementary strands of a DNA duplex will template the new synthesis of two sister 142 

chromatids that, through mitosis, segregate into separate daughter cells (Fig 1.a). Each 143 

daughter cell lineage receives the DNA lesions, and ultimately mutations, from just one of 144 

the parental DNA strands. This DNA lesion segregation (Aitken et al. 2020) results in 145 

chromosome scale, strand asymmetric mutation patterns that can be used to confidently 146 

discriminate the DNA lesion strand (Aitken et al. 2020) and through comparison to gene 147 

annotation, resolve it as either the transcriptional template or non-template strand (Fig 1.a; 148 

(Anderson et al. 2022)). 149 

 150 

To explore the mechanism and efficiency of TCR in vivo, with spatial precision and lesion 151 

strand resolution, we have exploited an established mouse model of diethylnitrosamine 152 

(DEN) induced liver cancer (Verna, Whysner, and Williams 1996; Connor et al. 2018) (Fig 153 

1.d). DEN is bioactivated into a potent but short-lived mutagen by the hepatocyte expressed 154 

enzyme Cyp2e1. This generates a range of DNA alkylation adducts, including the principal 155 

mutagenic lesion O4-ethyldeoxythymidine (Verna, Whysner, and Williams 1996). Tumours 156 

reliably develop within 24 weeks of a single acute exposure to DEN; each of these 157 

represents a clonal expansion of one post-mutagenesis cell whose genome typically 158 

contains 60,000 base substitution mutations, and exhibits the pronounced mutation 159 

asymmetry of lesion segregation (Aitken et al. 2020).  160 

 161 

Here, we examine strand-phased mutational patterns as a function of gene-expression and 162 

lesion-position to quantify the mechanics of TCR. We present a probabilistic mathematical 163 

model, incorporating the key mechanistic features of the TCR process, which is able to 164 

recapitulate the mutation patterns of DEN-induced tumour genomes. Analysing the murine 165 

liver data through the mathematical model we show that, for alkylation DNA adducts such as 166 

those created via DEN exposure, the initiation of TCR is stochastic, with frequent 167 

transcription occurring over mutagenic lesions. Overall our modelling approach provides a 168 

framework for translating strand-phased mutation data to the mechanics of TCR. 169 

 170 

Results 171 

 172 

TCR shapes mutation patterns through the gene-body in DEN-induced tumour genomes 173 

 174 

We aimed to identify the speculated mutational patterns in the genomes of DEN-induced 175 

murine liver tumours. As previously described (Aitken et al. 2020), using lesion segregation 176 

we were able to call approximately 1.7 million high confidence, strand-resolved mutations 177 

within transcribed regions from 237 tumour genomes. Matching gene expression measures 178 

were generated contemporaneously by total cellular RNA sequencing on healthy liver tissue 179 
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from untreated litter-mates (Aitken et al. 2020), and nascent transcription rates estimated 180 

from intron mapping reads (Anderson et al. 2022). 181 

 182 

We first assessed the relationship between strand-specific mutation burden and gene 183 

expression. Consistent with TCR playing a dominant role in DEN-induced lesion repair, the 184 

mutation rate due to template strand lesions (hereafter, template mutation rate) markedly 185 

decreased with increasing transcription (Fig 2.a). We also observed that the mutation rate 186 

due to non-template strands lesions (hereafter, non-template mutation rate) was modestly 187 

reduced (Fig 2.a), which may occur due to greater chromatin accessibility in highly 188 

expressed genes (Anderson et al. 2022).  189 

 190 

To isolate the signal of only TCR, we use the non-template mutation rate as the expected 191 

mutation rate (TCR absent), and compare with the observed mutation rate (TCR present) on 192 

the template strand. The observed:expected mutation rate quantifies the reduction in 193 

mutation burden due to template strand repair; observed:expected values of 1 imply equal 194 

lesion burden on both the template and non-template strand at DNA replication, suggesting 195 

a lack of TCR. In contrast an observed:expected value of 0 implies the complete removal of 196 

template strand lesions. This resulted in dose-response type patterns in each of the 237 197 

tumour genomes (Fig 2.b). Mutation rates from different tumours may be expected to 198 

depend on the state of the tumour’s ancestral cell at mutagenesis, for example the cell cycle 199 

phase at DEN exposure. However, by fitting log-logistic functions (Ritz et al. 2015) - 200 

commonly used to quantify dose-response relationships - the shape of the mutation rate 201 

decay was found to be remarkably homogeneous (Extended Data Fig 1.a,b). As described 202 

previously (Anderson et al. 2022) at high transcription levels the mutation rate plateaued, 203 

suggesting that the remaining mutagenic lesions were largely invisible to TCR. Invisible 204 

lesions potentially reflect subsets of lesions that are less efficient at stalling RNAPs or 205 

lesions in less recognisable genomic contexts; prior analysis of this data supports that 206 

lesions in certain trinucleotide contexts are less permissive to repair (Anderson et al. 2022). 207 

Given the consistency of the TCR pattern over individual genomes, henceforth we analysed 208 

the aggregated data across all genomes. 209 

 210 

In order to jointly examine the effect of both expression and the genic position of lesions, the 211 

gene expression distribution was binned into six expression strata (Fig 2.b, top panel; 212 

Extended Data Fig 1.c). Strata boundaries were chosen to balance accurately reflecting the 213 

variation over expression, and to diminish noise by ensuring a sufficient number of genes 214 

per stratum. For each stratum, we measured the mutation rate aggregated over all genes in 215 

that stratum in consecutive 5 kb windows from the transcription start site (TSS). This 216 

demonstrated subtly (approximately 3.5%) lower mutation rates for both template and non-217 

template strand lesions at the 5’ end of non-expressed genes (Fig 2.c). This trend was also 218 

seen for the non-template strand at all expression strata (Fig 2.d).  219 

 220 

We extended our analyses of observed:expected mutation rates (defined above) to focus on 221 

positional biases in mutation burden specifically due to TCR, negating potential confounding 222 

factors such as 5’ end effects and enhanced non-TCR surveillance. We also recognised that 223 

as transcription is a processive and directional process, the probability of an upstream lesion 224 

on the same template strand could influence the TCR efficiency at a given gene-position. 225 

Consequently, both the upstream sequence composition and per tumour burden of lesions 226 

(inferred from mutations) could influence the repair efficiency of a focal analysis window. 227 
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Addressing these concerns, we created a normalised gene-position measure based on the 228 

expected number of upstream lesions that was calculated for each analysis window of each 229 

gene, in each tumour, prior to aggregated analysis (Methods) (Fig 2.e). 230 

 231 

Comparison of the observed:expected mutation rates to the expected upstream lesion 232 

number (Fig 2.f; Extended Data Fig 1.d-k) leads to several immediate conclusions. First, the 233 

observed:expected mutation rate is approximately 1 for the lowest expressed genes (stratum 234 

1), which indicates that, as expected, there is no TCR in the absence of detected 235 

transcription. Second, for intermediately expressed genes (strata 2-5) we see a linear 236 

increase in the mutation rate through the gene body - consistently found when considering 237 

only short, or only long genes (Extended Data Fig 1.i-j); suggesting that TCR efficiency 238 

decays approximately linearly with the upstream lesion number. Finally, the highly expressed 239 

genes, with >10 nascent transcripts per millions (nTPM), show negligible decay in TCR 240 

efficiency through the gene body, indicating that all detectable lesions have been removed. 241 

By comparing the observed linear decay in TCR efficiency through gene bodies to the 242 

hypothetical mutation pattern scenarios (Fig 1.c), these data support a model in which RNAP 243 

repairs 5’ lesions before downstream 3’ lesions, with regular disassociation of RNAP 244 

following repair. To robustly quantify the mechanistic origins of these effects we developed a 245 

mathematical model of TCR. 246 

 247 

Mathematical model for transcription coupled repair dynamics 248 

 249 

We defined a Markov chain model (Fig 3.a) characterising the dynamics of transcribing 250 

RNAPs in the interim period between DNA damage and replication. To model the initial 251 

damage distribution, we selected random positions through gene bodies. Following damage 252 

RNAPs sequentially initiate transcription and, upon encountering a lesion, the lesion is 253 

detected and repaired with probability Pd. Following repair, the RNAPs reinitiate transcription 254 

at the site of the damage with restart probability Pr, else they disassociate from the strand. 255 

Since the efficiency of repair appears to saturate at high levels of transcription without 256 

complete lesion removal (Fig 2.b),  we assumed two types of lesions exist: lesions that are 257 

visible to TCR and so can be detected with probability Pd, and TCR-invisible lesions which 258 

will not be detected. As mentioned above, TCR-invisible lesions could have altered 259 

biochemistry or lie in less recognisable genomic contexts (Anderson et al. 2022); agnostic to 260 

mechanism, we include a parameter Pv in the mathematical model for the proportion of 261 

lesions that are visible. 262 

 263 

To match the experimental analysis we consider 6 expression strata in the model such that 264 

the kth strata has an associated average expression level, ek, measured in units of nascent 265 

transcripts per million (nTPM). We fixed the numerical values of (e1,..,e6) as the median 266 

nTPM for each strata in the experimentally defined expression data. For genes in a given 267 

stratum, we assumed that an average of nk RNAPs initiated transcription between damage 268 

and replication. To relate the RNAP initiations in the model to the RNA sequencing 269 

measures, we included an expression multiplication factor (m) and specify that nk = m*ek. As 270 

the per-strata expression values are fixed, the number of RNAP initiations per gene is 271 

controlled only through their associated stratum and m. Under mild assumptions, such as 272 

each produced RNA transcript having equal chance of being sampled in the RNA 273 

sequencing, m has the further interpretation as the total number of RNA transcription 274 
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initiations between damage and replication, in units of transcription initiations (x106) 275 

(Methods). 276 

 277 

Using techniques from Markov process theory (Supplementary File 1), we numerically 278 

determined the mathematical expectation of the template strand lesion count in the model, 279 

as a function of genic-position and the expression multiplier, m. The coding strand lesion 280 

burden is obtained by suppressing transcription in the model. Dividing the modelled template 281 

lesion count by the coding lesion count gives the proportion of unrepaired lesions 282 

obs:exptheory, which is directly analogous to the experimentally measured observed:expected 283 

mutation rates. Matching the hypothesised lesion patterns (Fig 1.c), if RNAPs always restart 284 

following repair (Pr=1), then obs:exptheory is constant over gene position (Fig 3.b). With no 285 

RNAP restart and high RNAP sensitivity, obs:exptheory adopts a sigmoidal shape; while linear 286 

gradients emerge for low to medium values of RNAP sensitivity, similar to the experimental 287 

observed:expected mutation rates (Fig 2.f). 288 

 289 

To examine the utility of the model to infer the mechanistic parameters of TCR, DNA 290 

damage followed by TCR was simulated at scales mimicking the murine liver data 291 

(Methods). A wide grid of parameter values was used, with Pd and Pr ranging between 0 292 

and 1, while the expression multiplier m was constrained within a literature-informed 293 

plausible regime. As ~20% of lesions remain unrepaired even in highly expressed genes 294 

(Fig 2.f), we fixed the proportion of TCR-visible lesions, Pv, to be 0.8. For a given parameter 295 

combination, damage and repair was simulated for ~1.95 million genes (Methods), with 296 

genes stratified into 6 expression strata as in the experimental data. Each expression strata 297 

was associated with the same nascent expression values ek measured for the murine liver. 298 

Thus, for a given m and a gene in strata k, an average of m*ek transcription initiations 299 

occurred per gene. For a given parameter combination, we aggregated over all simulated 300 

genes to construct the simulated observed:expected mutation rates as a function of 301 

expected upstream lesions (Fig 3.b). The Manhattan distance between the simulated data 302 

and the analytically determined obs:exptheory was minimised to estimate the underlying 303 

parameters (Fig 3.c).  304 

 305 

Intuitively, certain parameter combinations could be challenging to uniquely identify, for 306 

example the same amount of damage may be cleared by many polymerases with low 307 

detection sensitivity, or a few polymerases with high lesion detection rates. Indeed, 308 

correlations in parameter estimates were observed in two dimensional heat maps illustrating 309 

plausible parameter fits (Fig 3.c), defined as those parameters such that the distance from 310 

obs:exptheory to the simulated data is less than the distance between the original data and 311 

bootstrapped original data. For example, overestimation of detection sensitivity often co-312 

occurred with an underestimate of the expression multiplier. Despite this, as model outputs 313 

were required to match simulated data over both spatial (position in gene body) and 314 

transcriptomic (expression strata) dimensions, we broadly found the true parameters were 315 

identifiable in simulated data, with median percent errors of 10%, 22%, and 16% when 316 

estimating Pd, Pr, and m, respectively (Fig 3.d).  317 

 318 

The results above indicate that we can accurately infer model parameters. However, the 319 

expression strata thresholds used for the simulated datasets were the same as those that 320 

were constructed to be highly informative on the experimental murine data. As a result the 321 

inference accuracy was dependent on the expression multiplier m, with an eightfold increase 322 



 

 

in the median percent error for Pd inference between m=0.5 and m=8.5. Consequently our 323 

simulation work likely underestimates the true accuracy of the inference workflow. 324 

        325 

TCR is stochastic and RNAP frequently does not restart 326 

 327 

We analysed the DEN-induced murine liver tumour mutation data using our mathematical 328 

model of TCR, fitting the data as described for the simulations. Despite its simplicity, the 329 

model is able to capture the key features of the experimental data (R2 = 0.99), including 330 

linear decays in the efficiency of TCR for intermediate expression levels (Fig 4.a). For 331 

lesions visible to TCR, the lesion detection sensitivity, Pd, was estimated to be 0.42, with the 332 

95% confidence interval of (CI95: 0.24, 0.74) (Fig 4.b,c). As the proportion of visible lesions, 333 

Pv, was estimated to be 0.8 (CI95: 0.79, 0.81), we infer that RNAP frequently transcribes 334 

over damage, failing to stall and trigger repair in 66% of lesion encounters (Fig 4.d). 335 

 336 

The principal mutagenic adduct from DEN exposure is thought to be O4-ethyldeoxythymidine 337 

(O4-EtdT) (Verna, Whysner, and Williams 1996) and the relative bypass efficiency of O4-338 

EtdT by mammalian RNAP in vitro is ~60% (You et al. 2014), in close agreement with our 339 

inference from in vivo data. For those lesions accessible to TCR, our estimate suggests that 340 

each lesion will be transcribed over ~1.5 times before stalling an RNAP and initiating TCR. 341 

Transcription over template strand O4-EtdT by mammalian Pol II misincorporates 342 

ribonucleotides in RNA at a rate of ~50% (You et al. 2014), suggesting wide-spread 343 

transcriptional mutagenesis occurred post-damage in the murine experiments. 344 

 345 

The expression multiplier m was estimated as 1.59 (CI95: 0.79, 3.18), implying that in the 346 

mouse liver cells exposed to DEN, 1.59 million RNAPs initiated transcription between 347 

damage and replication. For highly expressed (stratum 6) genes with median expression of 348 

11.15 nTPM, ~18 polymerases are expected to initiate transcription. To assess the validity of 349 

this inference, an orthogonal estimate of m was determined using estimates of transcription 350 

parameters obtained through analysis of single-molecule fluorescence in situ hybridisation 351 

imaging (Methods). Briefly, Bahar Halpern et al. (Bahar Halpern et al. 2015) measured the 352 

transcription rate and proportion of promoters actively transcribing for 7 genes, for which 353 

nascent RNA sequencing estimates (e) are available in the murine liver experimental data. 354 

Combining these values with literature estimates of the time between damage and 355 

replication, provides estimates of the transcript number produced for each gene (n) 356 

(Extended Data Fig 2.a). By the relation n=m*e, this suggests 2.77 million RNAP initiations 357 

occur between damage and replication. As plausible bounds for m range over nearly 2 358 

orders of magnitude (Extended Data Fig 2.b) (Methods), the concordance between the 359 

orthogonal estimate to our inferred estimate of 1.59 confirms the robustness of our analytical 360 

approach despite the simplifications made. 361 

 362 

RNAPs were estimated to restart transcription after 65% (CI95: 24%, 89%) of repair events. 363 

As the 95% confidence interval excludes 100%, the null hypothesis that RNAP always 364 

restarts from the damaged site after repair is not consistent with these data. Further, 365 

parameter combinations that include Pr=0, denoting the complete absence of polymerase 366 

restart, are within the plausible regions as defined above for simulations (Fig 4.c). When we 367 

considered a reduced model without RNAP restart (Pr=0), the optimal fit provided a near 368 

identical fit to the model with restart (Extended Data Fig 2.c) and model selection analysis, 369 

assuming normally distributed errors, indicated that the model without RNAP restart is 370 
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marginally preferred (Akaike information criterion (AIC) with restart = -997.57, AIC without 371 

restart = -997.76). In the model without restart, lesion detection sensitivity is estimated as 372 

0.19 (CI95: 0.11, 0.25), compared to that of 0.42 for the alternative model. Given that 373 

consistent RNAP restart is incompatible with the data, we conclude that transcription restart 374 

from the site of stalling is not an obligate feature of TCR. Application of Occam’s razor 375 

favours the conclusion that RNAP restart is not a feature of TCR, though the present data 376 

does not allow us to exclude the possibility that restart occurs following some TCR events.  377 

 378 

Discussion  379 

In this study, we quantified the interactions between DNA damage and RNAP following 380 

exposure of murine hepatocytes to an alkylating agent (DEN) in vivo. DNA lesions that 381 

persist to replication are the templates for mutational changes inherited by daughter 382 

lineages, which are clonally expanded during tumorigenesis. The resulting mutational 383 

readout provides an integrated picture of the repair processes that occur between damage 384 

and replication; this offers a complimentary approach to the measurements of repair maps, 385 

which provide snapshots of repair at specific timespoints (Hu et al. 2015, 2017). By 386 

combining strand-phased whole genome sequencing data from 237 mouse liver tumours 387 

with RNA sequencing, we showed that transcription coupled repair leaves a highly 388 

reproducible and mechanistically informative footprint when comparing mutation burden to 389 

both gene expression and mutation position. To translate the mutation patterns into 390 

quantitative estimates of the mechanisms of TCR, we developed a mathematical model of 391 

damage and repair able to recapitulate the key features of the data. By analysing the mouse 392 

data through our model we demonstrated that (i) lesion bypass of small alkyl adducts is a 393 

common feature of transcription, and (ii) when lesions do stall RNAPs and elicit TCR, it is 394 

common for transcription not to restart from that damaged site (Fig 4.d).  395 

 396 

Our finding that RNAP frequently bypasses DEN-induced lesions in vivo, extends previous in 397 

vitro studies (You et al. 2014; Xu et al. 2017) that have considered RNAP bypass of O4-398 

EtdT, the principle mutagenic adduct of DEN, and complements findings for other non-bulky 399 

adducts (Saxowsky and Doetsch 2006; You et al. 2012). However, the exact molecular 400 

mechanisms that lead to lesion bypass versus stalling and repair are presently unclear. For 401 

alkyl adducts, both nucleotide insertion and RNAP extension past damage can cause 402 

prolonged pausing, potentially facilitating damage recognition (Xu et al. 2017). Thus, 403 

contributing factors to the stochasticity of TCR upon lesion encounter may include the 404 

sequence of the DNA-RNA hybrid and/or local nucleotide concentrations. Regardless of the 405 

mechanism of lesion bypass, combining our estimates of lesion bypass frequency with the 406 

lack of fidelity of RNAP over alkyl adducts (You et al. 2014), suggests that alkylating agents 407 

can induce considerable transcriptional mutagenesis. 408 

 409 

Following completion of TCR, it has been widely thought that RNAP restarts transcription 410 

from the site of damage (Geijer and Marteijn 2018). However, recent work on bulky UV-411 

induced cyclobutane pyrimidine dimers (Chiou et al. 2018) challenges the universality of this 412 

model, reporting that RNAP dissociates from DNA at the damaged site and subsequent 413 

transcription initiation at the genic promoter is required for transcript synthesis. Our results 414 

corroborate these latter findings and extend them to the alkylation damage induced by DEN. 415 

The observed 5’ bias of repair coupled with mathematical modelling indicates that RNAP 416 

does not always restart following repair. Furthermore, through analysing parameter regimes 417 
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within bootstrap uncertainty (Fig. 4c) and model selection analysis (Fig. 4d), we conclude 418 

that our data are entirely consistent with RNAP always disassociating after repair. The 5’ 419 

repair bias echoes the enhanced 5’ repair found in the damage and repair maps generated 420 

from pyrimidine dimers (Hu et al. 2017) and agrees with the finding that TCR efficiency 421 

corresponds to gene length (Zeitler et al. 2022). Our finding that transcription does not 422 

consistently restart from the stall site following repair is particularly relevant when multiple 423 

lesions exist per gene, suggesting that damage-induced expression repression will 424 

disproportionately affect long (Stoeger et al. 2022), and lowly expressed genes. Supporting 425 

this hypothesis, in vitro damage experiments show that the degree of expression reduction 426 

was correlated with gene length following exposure to UV, the chemotherapeutic cisplatin, 427 

and the cigarette smoke component benzo(a)pyrene (Merav et al. 2024).  428 

 429 

The gradient of mutation density we observe through gene bodies has implications for the 430 

accurate modelling of mutation patterns (Alexandrov et al. 2020; Vöhringer et al. 2021), 431 

necessary for the prediction of oncogenic selection (Muiños et al. 2021). Our model provides 432 

sufficient damage for this gradient to manifest, arising due to inefficient repair at downstream 433 

positions caused by the dissociation of RNAP. The co-dependency of damage burden and 434 

expression level enriches the developing mechanistic understanding of mutation patterns 435 

over the genome (Alexandrov et al. 2020; Seplyarskiy and Sunyaev 2021). Mutation patterns 436 

resulting from a high damage burden are not simply an amplification of the patterns 437 

expected from a lower dose of damage. 438 

 439 

Quantitatively mapping the consequences of endogenous and exogenous DNA damage is 440 

necessary to understand mutagenesis, gene expression dysregulation, and the impact of 441 

environmental and therapeutic agents. Here, we have developed an integrative view of TCR 442 

following alkyl damage, complementing existing experimental assays that measure individual 443 

aspects of this fundamental repair process. Our results exemplify how mechanistic 444 

quantitative modelling can be used to bridge the molecular processes of damage and repair 445 

through to their presentation in large-scale genomics data. 446 

  447 

Methods  448 

 449 

DNA sequencing variant calling 450 

The C3H/HeJ mouse strain reference genome assembly C3H_HeJ_v1 (Lilue et al. 2018) 451 

was used for read mapping, annotation and analysis. Mutation calling and quality filtering 452 

was performed using whole genome sequencing of 371 DEN induced liver tumours from 453 

n=104 male C3H mice, as previously reported (Aitken et al. 2020). A minimum variant allele 454 

frequency (VAF) threshold of 10% was applied to remove mutation calls from contaminating 455 

non-clonal cells. All mutation data was derived from sequence data in the European 456 

Nucleotide Archive (ENA) under accession PRJEB37808 and processed files directly used 457 

as input for this work are publicly available https://doi.org/10.1038/s41586-020-2435-1. Gene 458 

annotation in C3H_HeJ_v1 coordinates was obtained from Ensembl v.91 (Howe et al. 2021). 459 

 460 

Mutation phasing 461 

Genomic segmentation on mutational asymmetry was performed as previously reported 462 

(Aitken et al. 2020). In brief, mutational strand asymmetry was scored for each genomic 463 

segment using the relative difference metric S=(F-R)/(F+R) where F is the rate of mutations 464 

from T on the forward (plus) strand of the reference genome and R the rate of mutations 465 
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from T on the minus strand (mutations from A on the plus strand). The phasing of mutation 466 

asymmetry is agnostic to which base harbours the mutagenic lesion, orthogonal data is 467 

required to resolve which asymmetry indicates the lesion containing strand. In the case of A 468 

versus T asymmetry from DEN damage prior studies have established T rather than A 469 

modification as the principal mutagenic lesion (Singer 1985; Mientjes et al. 1998; Aitken et 470 

al. 2020). A mutational asymmetry score of S >0.33 was used to identify the inheritance of 471 

forward strand lesions and S <-0.33 as the inheritance of reverse strand lesions. Analyses 472 

were confined to n=237, clonally distinct DEN induced tumours that met the combined 473 

criteria of: (i) not labelled as symmetric (mutationally symmetric tumours defined as >99% of 474 

autosomal mutations in genomic segments with abs(S) <0.2, see (Anderson et al. 2022)), (ii) 475 

tumour cellularity >50%, and (iii) >80% of substitution mutations attributed to the DEN1 476 

signature (Aitken et al. 2020) by sigFit (v.2.0) (Gori and Baez-Ortega 2018). 477 

 478 

Relative to the reference genome sequence, a plus (P) strand gene is transcribed using the 479 

reverse (R) strand as a template. So a P strand gene in a genomic segment with R strand 480 

lesions (denoted RP orientation) is expected to be subject to transcription coupled repair. A 481 

minus strand (M) gene with forward (F) strand lesions (FM orientation) is also expected to be 482 

subject to transcription coupled repair, as the retained lesions are on the transcription 483 

template strand. Conversely FP and RM orientation combinations will have lesions on the 484 

non-template strand for transcription and are therefore not expected to be subject to 485 

transcription coupled repair. 486 

 487 

Gene expression 488 

Paired-end, stranded total RNA-seq from C3H male mouse livers not exposed to DEN (n=4, 489 

matching the developmental time of mutagenesis, postnatal day 15, P15) was previously 490 

generated and is available from Array Express under accession E-MTAB-8518. RNA-seq 491 

was aligned to the reference genome C3H_HeJ_v1 using the splice aware aligner Star 492 

(v2.7.6a). A C3H liver specific splice junction database was generated from an initial round 493 

of RNA-seq read alignment to the C3H_HeJJ_v1 reference genome guided by Ensembl 494 

(v.91) genomic annotation. Using the sex, strain, and tissue matched splice junction 495 

database, a second iteration of Star alignment produced a final RNA to genome alignment 496 

with output attribute flags set to preserve read orientation information (outSAMattributes: NH 497 

HI AS nM). The transcription strand of RNA-seq reads was resolved using read-end and 498 

mapping orientation extracted by Samtools view (v.1.7.0) and read-pairs exclusively 499 

mapping within annotated exons were identified using Bedtools intersect (v.2.29.2). Intronic 500 

read-pairs were defined as those mapping within a genic span, derived from a sense-strand 501 

transcript, and not in the exonic set. Only read-pairs with a mapping quality (MAPQ) >10 502 

were used to quantify gene expression. Nascent transcription was quantified by counting 503 

read-pairs in the intronic set using Bedtools multicov (v.2.29.2). The read count was 504 

normalised to reads per kilobase of analysed intron for each gene in each sequence library, 505 

and then normalised to nascent transcripts per million (nTPM) for each library. The final 506 

nascent transcript expression estimate per gene was taken as the mean of nascent TPM 507 

over replicate libraries. Nascent transcription estimates could be generated for 85% 508 

(n=17,304) of protein coding genes. Overlapping genes, defined by primary transcript 509 

coordinates, were hierarchically excluded from analysis: Starting with the most expressed 510 

gene, any overlapping less-expressed genes were excluded. Code for this analysis is 511 

available at: https://github.com/CraigJAnderson/lce-si_nascent.  512 

 513 
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Genes with similar estimates of nascent expression were aggregated for analysis of 514 

transcription coupled repair. The sigmoidal distribution relating nascent transcription rate to 515 

mutation rate (Fig 2.b) was segmented using linear regression models in the R package 516 

Segmented (v.1.3-3) (Muggeo 2003). This defined n=4,649 genes with zero or low detected 517 

nascent expression (<0.287 nTPM) in which reduced mutation rates associated with 518 

transcription coupled repair are essentially undetectable; subsequently stratum 1 genes 519 

(light blue in plots). Genes expressed at a greater rate than segmentation threshold >3.73 520 

nTPM do not show a further decrease in mutation rate with increased expression; these 521 

n=7,176 highly expressed genes were defined as stratum 6 (bright red in plots). The n=4,005 522 

genes with intermediate expression (0.287-3.73 nTPM) exhibited a log-linear relationship 523 

between expression and mutation rate. These were quantile split into strata 2 to 5, 524 

containing approximately 1,000 genes each. The median nascent expression for the six 525 

expression strata were (0, 0.49, 1.16, 2.07, 3.14, 11.15 nTPM). 526 

 527 

Mutation rates 528 

Strand resolved mutation rates were calculated as previously described (Aitken et al. 2020; 529 

Anderson et al. 2022). Vectors of 192 categories representing every possible single-530 

nucleotide substitution conditioned on the identity of both the upstream and downstream 531 

nucleotides. Each rate being the observed count of a mutation category divided by the count 532 

of the trinucleotide context in the analysed sequence. To report a single aggregate mutation 533 

rate, the three rates for each trinucleotide context were summed to give a 64 category vector 534 

and the weighted mean of that vector reported as the mutation rate. The vector of weights 535 

being the fraction of each trinucleotide in a reference sequence, for example the composition 536 

of the whole genome. Strand-specific mutation rates were calculated with respect to the 537 

lesion containing strand, with both mutation calls and sequence composition reverse 538 

complemented for reverse strand lesions. Autosomal chromosomes were considered diploid 539 

and the X chromosome haploid (all mice were male) for the purposes of calculating mutation 540 

rates and sequence composition.  541 

 542 

Mutation rate versus expression 543 

For those genes with measured nascent expression, genes with mean nTPM <0.01 were 544 

grouped (n=1757), as were genes with mean nTPM>100 (n=587). The remaining genes 545 

were equally split amongst 15 bins, resulting in a total of 17 expression bins. For each 546 

tumour, for each expression bin, the mutation rate due to template strand and non-template 547 

strand lesions was calculated as detailed above (proportion of mutated bases for given 548 

trinucleotide context). The average mutation rate for each strand was calculated similarly but 549 

without grouping genes by expression. Observed:expected as a function of expression (Fig  550 

2.b, lower panel) was calculated as the ratio of template strand mutation rate to the non-551 

template strand mutation rate. For each tumour, the expression-dependent 552 

observed:expected was fit to a four-parameter log-logistic model using the R package drc 553 

(Ritz et al. 2015) (Extended Data Fig 1.a,b).  554 

 555 

Modelling transcription coupled repair 556 

We defined a probabilistic model of lesion detection by RNAP (variable parameter Pd), and 557 

its subsequent re-initiation (Pr) or disassociation (1-Pr). The model also incorporated 558 

variables for the fraction of lesions that are visible to TCR (Pv) and a multiplier parameter 559 

(m) to translate experimental measurements of nascent TPM (nTPM) to the number of 560 

transcription initiations between mutagenesis and DNA replication. The model is illustrated in 561 
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Fig 3.a, and a detailed description is given in Supplementary File 1. The model was 562 

analysed both by stochastic simulations (details below) and analytic methods (details in 563 

Supplementary File 1). The analytic methods were used for parameter inference, which were 564 

assessed by simulation. The experimental nascent expression values determined for each 565 

strata (see ‘Gene Expression’, above) were used both for simulated data and for analysis of 566 

the tumour data. 567 

 568 

Simulated mutagenesis and transcription coupled repair 569 

For a given parameter set (Pd, Pr, m, Pv), we simulated damage and TCR on 1,940,237 570 

phaseable genes, which is the cumulative number of phaseable genes from the mouse liver 571 

experiment. For each phaseable gene, the gene length was sampled from the length 572 

distribution of the filtered C3H gene list (see above, ‘Gene Expression’). The gene length 573 

was multiplied by the median per base mutation rate (13 x 10-6/bp (Aitken et al. 2020)) 574 

resulting in the expected lesion number for that gene. The realised lesion number was 575 

obtained by sampling a Poisson distribution with mean given by the expected lesion number. 576 

Each lesion was placed on the gene at a location determined by sampling from a uniform 577 

distribution over [0, gene length]. Each gene was assigned to 1 of 6 expression strata with 578 

probabilities given by the strata proportions in the murine data. Each stratum is associated 579 

with a measured nascent transcription value e, and of the genes in a given stratum we 580 

assume a proportion c have floor(e.m) RNAPs that initiate transcription, while the other 1-c 581 

fraction of genes have floor(e.m) +1 RNAPs that initiate transcription. For given (m, e), c is 582 

uniquely given by 1-(e.m - floor(e.m)) (see Supplementary File 1). Thus, for our simulated 583 

gene in stratum e, we assign either floor(e.m) or floor(e.m) +1 RNAPs to initiation 584 

transcription with probabilities (c, 1-c). The RNAPs sequentially initiate transcription, and 585 

lesion detection and restart of the polymerases follow the rules illustrated in Fig 3.a, 586 

potentially resulting in lesion clearance. After all RNAPs have initiated and terminated 587 

transcription (potentially even bore the TES in the case of non-restart), the remaining lesion 588 

locations were recorded.  589 

 590 

Lesion locations were converted to their position in units of ‘expected upstream lesions’ 591 

(base-pair location times 13 x 10-6) and a spatial grid of 40 windows of width 0.1 expected 592 

lesions was applied (only few genes are long enough for >4 expected upstream lesions, thus 593 

further spatial grids would harbour substantial noise). Aggregating over all simulated genes, 594 

the summed number of lesions with positions within each spatial window was determined, 595 

resulting in the ‘observed’ lesion count. In the absence of TCR, for a given spatial bin, the 596 

aggregated lesion number is 0.1 multiplied by the number of phaseable genes with upstream 597 

lesion length not exceeding the right boundary of the spatial bin, resulting in the ‘expected’ 598 

lesion count for that bin. For each bin, the ratio of the ‘observed’ to the ‘expected’ resulted in 599 

the simulated observed:expected mutation rates.  600 

 601 

Parameter inference on simulated or murine liver tumour data 602 

With input as observed:expected mutation rates with 6 expression strata and 40 spatial 603 

windows through the gene in units of expected upstream lesions, parameter inference was 604 

performed as follows. Using the numerical output from the obs:exptheory expressions, the 605 

Manhattan distance (L1 norm) between those 6x40 measures and the equivalent input data 606 

was minimised. Parameter space was initially explored as a grid-search. Probabilities Pd, Pr, 607 

and Pv were bounded at min=0, max=1 with steps of 0.01.  608 

 609 
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For both simulation and fitting of real data, the parameter range for the expression multiplier 610 

m was bounded at min=0.25, max=10 with steps of 0.25. This range was defined following 611 

initial grid search exploration with m=50/i for i=1, ..., 200, the rationale for the parameter 612 

bounds is given below in the paragraph ‘Plausible expression multiplier parameter ranges’. 613 

The optimal parameters obtained from the grid search were provided as the starting point for 614 

optimisation implemented in the R optim function (R Core Team 2020) with default 615 

parameters to return the final optimised parameter values. 616 

 617 

To calculate confidence intervals, the observed:expected mutation rates for the six 618 

expression strata were re-calculated from the bootstrap sampling of genes (sampling with 619 

replacement to original gene list size, n=1,000 replicates for murine data, n=100 for 620 

simulated data). The inference procedure outlined above was performed for each 621 

bootstrapped dataset and reported 95% confidence intervals were calculated as the 0.025 622 

and 0.975 quantiles of bootstrapped parameter estimates.  623 

 624 

For AIC-based model selection on the murine data, the measured obs:exp values were 625 

assumed to be drawn from a normal distribution with mean obs:exptheory computed as 626 

detailed in Supplementary File 1, with a common variance v. Optimal fits were found by 627 

maximising the likelihood using the ‘L-BFGS-B’ method using the mle2 function from the R 628 

package bbmle2 (Ben Bolker and R Development Core Team 2022). Maximum likelihood 629 

estimates for parameters allowing restart were Pd=0.42, Pr=0.66, m=1.59, Pv =0.8, 630 

v=8.8*10-4; maximum likelihood estimates for parameter without restart were Pd=0.18, Pr=0, 631 

m=4.14, Pv =0.8, v=8.9*10-4. 632 

 633 

Interpretation of expression multiplier m 634 

For each expression stratum k we assume that, for each gene in that stratum, the average 635 

number of transcription initiation events between damage and replication, nk, is related to the 636 

average expression (nTPM) over all genes in that stratum, ek, by  637 

 638 

nk=m*ek. 639 

 640 

The variable m can be viewed solely as part of our statistical model, however it can be given 641 

a biological interpretation under some assumptions. Let the number of genes in stratum k be 642 

gk. We assume that the gene expression for a given stratum is constant over time and that 643 

the RNA sequencing is reflective of this stable expression in the mutagenised cell. If RNA 644 

pol II can fail to restart transcription after repair (Pr<1) then not every transcription initiation 645 

will result in a transcript, hence let sk be the probability a transcription initiation of a stratum k 646 

gene results in a transcript. Further, assume that a proportion pk of these transcripts are 647 

detected in the RNA sequencing. Then the number of transcripts from stratum k detected in 648 

the RNA seq would be gk* nk*sk*pk .  649 

 650 

Recall that by using units of nTPM, the interpretation of the expression level is that for every 651 

million nascent transcripts measured, ek transcripts are apportioned to each gene in stratum 652 

k. Therefore, a total of gk*ek transcripts would be apportioned to stratum k for every million 653 

transcripts. 654 

 655 

Hence  656 
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gk* ek =  106 *gk*nk*sk*pk / ∑
6
𝑘=1 gk* nk*sk*pk , 657 

where the right hand side of the equation arises from multiplying 1 million with the proportion 658 

of transcripts produced and detected from stratum k genes.  659 

 660 

So, as by definition nk=m*ek,  661 

    m  = ∑6
𝑘=1 (gk* nk*sk*pk ) / (106 *sk*pk). 662 

Assuming that the sk and pk remain constant over each stratum, 663 

 664 

     m = 10-6 ∑6
𝑘=1 gk* nk . 665 

Hence m is the number of transcription initiation events (measured in units of million 666 

initiations) between damage and replication.  667 

 668 

Plausible expression multiplier m parameter ranges 669 

We draw on prior literature for plausible parameter values for m, which, as discussed above, 670 

is the number of transcription initiations (x106) in a cell between DNA damage and 671 

replication. Note that when modelling the DEN mutagenesis murine experiment, the number 672 

of transcription initiations may not be directly equal to the number of transcripts produced as 673 

polymerases may not restart after lesion detection (in the most extreme case with Pd=1, 674 

Pr=0 and i initial lesions, then the number of transcripts produced is equal to the 675 

transcription initiations - i). However, when comparing to non-mutagenesis experiments, 676 

where lesion numbers are expected to be greatly reduced, we equate transcript number and 677 

the number of transcription initiations.  678 

 679 

For a lower bound on m, the number of transcription initiations (x106) between damage and 680 

replication, we note that an average time of 2,280 minutes between damage and DNA 681 

replication was estimated from the cell-cycle times of DEN mutagenised rat hepatocytes 682 

(Rotstein et al. 1984). As the the median mRNA half-life has been estimated as 139 minutes 683 

(Rabani et al. 2014), the transcript number measured at any moment can serve as a lower 684 

bound for the transcript initiation number; as the typical range estimated is 200-300k 685 

transcripts per mammalian cell (Velculescu et al. 1999; Marinov et al. 2014; Shapiro, 686 

Biezuner, and Linnarsson 2013), we adopt a lower bound of m=0.25. For a generous upper 687 

bound, we assume: 180,000 chromatin associated RNA Pol II complexes exist per cell 688 

(Kimura et al. 1999); all polymerases are continuously actively transcribing and only 689 

transcribing annotated genes; an average transcription rate of 2 kb min-1 in mouse liver 690 

(Bahar Halpern et al. 2015); a median gene length of 60 kb; and again 2,280 minutes 691 

between damage and replication. This implies 13.68 million transcripts are produced, hence 692 

m=13.68, and thus m=50 is a further upper bound for the parameter space used in 693 

inference. For a reduced upper bound, we note that of the 180,000 chromatin associated 694 

RNA Pol II complexes per cell measured in Kimura et al, only 110,000 were of the 695 

hyperphosphorylated form IIO - implying active elongation. Assuming only 110,000 RNA Pol 696 

II complexes actively transcribe between damage and replication implies that 8.36 million 697 

transcripts are produced; for this reason our simulated datasets were generated over a grid 698 

with an upper bound of m=8.5. 699 

 700 

Orthogonal estimate of expression multiplier m 701 

Bahar Halpern et al. (Bahar Halpern et al. 2015) estimated the transcription rate and 702 

proportion of time a gene is being transcribed in mouse hepatocytes using single molecule 703 
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transcript counting; we focus on their periportal samples from mice in the “fed” condition. 704 

Taking the product of the estimated transcription parameters, and multiplying by the time 705 

between damage and replication (again assumed to be 2,280 minutes), provides an estimate 706 

for the number of transcripts produced by these genes before replication, a per gene 707 

estimate of n. Seven genes were both measured by single molecule transcript counting 708 

(Bahar Halpern et al. 2015) and quantified as nTPM from our RNA-seq data. Throughout we 709 

have assumed that for each set of genes that are associated to an expression stratum k, that 710 

nk=m*ek. If now, we assume this holds on a per-gene basis, that is for each gene n=m*e, 711 

then as both n and e are estimated per gene, we can readily infer m. The optimal least 712 

square fit for log10(n)= log10(e)+log10(m) resulted in an m estimate of 2.77 (Extended Data Fig 713 

2.a). Note that as the experiments of Bahar Halpern et al. occurred outside of a mutagenesis 714 

setting, we have again equated the number of transcripts with the number of transcription 715 

initiations n. 716 
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 878 

Figure 1 | Quantifying the dynamics of transcription coupled DNA repair with lesion-879 

strand phased mutations and gene expression measures. a, Template strand DNA 880 

damage is alleviated during transcription by transcription coupled repair. Lesions that persist 881 

to replication can cause heritable mutations created through incorrect base-pairing. b, 882 

Alternate possible outcomes from transcription over a lesion-containing template DNA 883 

strand. c, Schematic of lesion clearance due to TCR following damage. The pattern of 884 

remaining lesions as a function of both expression and genic-position is dependent on the 885 

sensitivity of RNAP and whether the RNAP restarts following repair. d, We utilise strand-886 

phased mutation data from 237 liver tumours induced by exposing male C3H mice to a 887 

single dose of DEN.  888 

 889 

Figure 2 | Transcription coupled repair shapes the distribution of mutations through 890 

the body of expressed genes. a, Tumours (grey curves) consistently show the same 891 

normalised profile of transcription coupled repair: Increased expression (x-axis; plotted on 892 

log scale) corresponding to reduced mutation rate (y-axis) for lesions on the transcription 893 

template strand (upper panel). The mutation rate per tumour is normalised to the average for 894 

all genes in the tumour. For lesions on the non-template strand (lower panel), increased 895 

expression only subtly influences normalised mutation rate. Black line is the median of the 896 

per tumour rates. b, Lower panel shows observed versus expected mutations (y-axis) 897 

calculated as the ratio of template strand mutation rate to non-template strand mutation rate 898 

plotted against nascent transcription rate per tumour (x-axis). Expression >3.73 nascent 899 

transcripts per million (nTPM) does not further decrease the mutation rate. In subsequent 900 

analyses gene expression is binned into six strata of nascent gene expression (upper panel) 901 

blue→red denotes increasing expression, dashed lines demarcating strata boundaries 902 

(Methods). c, Mutation rates for genes with template strand lesions. Genes classified by 903 

expression strata and mutation rates calculated in 5 kb consecutive windows from the 904 

transcription start site (TSS). Points show observed data and curves show best-fit splines (3 905 

degrees of freedom). d, As for c but considering genes with non-template strand lesions. e, 906 

Schematic of per-tumour normalisation to calculate the number of expected upstream 907 
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lesions (red triangles) for each analysis window (Methods). f, Observed versus expected 908 

mutations (y-axis) calculated as the ratio of template to non-template strand. Expected 909 

upstream lesion count (x-axis) categories as per e. Points represent data while curves show 910 

best-fit splines (3 degrees of freedom). Genes with intermediate levels of expression (strata 911 

2-5) exhibit a lower mutation rate at their 5’ end.  912 

 913 

Figure 3 | Mathematical model of transcription coupled repair dynamics. a, 914 

Mathematical model of TCR dynamics. A string of nucleotides (yellow line) with DNA lesions 915 

(red triangles) is subject to transcription (grey arrows), and probabilistic TCR events (black 916 

arrows). On encountering a lesion, the probability of its detection (Pd) and of polymerase 917 

restart following lesion repair (Pr) are independent model variables. The fraction of lesions 918 

visible to TCR (Pv) and an expression multiplier parameter (m) are additional independent 919 

variables. b, Example mutation rate profiles generated analytically by the model under varied 920 

qualitative parameter regimes. Numerical parameters of (Pd, Pr, m, Pv) used were (left to 921 

right): (1,0.25,1.5,1); (0.25,1,1.5,1); (0.25,0.25,1.5,1). Expression level of gene sets denoted 922 

by colour with red to blue representing high to low expression, respectively (as per Fig 2.b). 923 

c, An analytic inference scheme was developed to infer model parameters. Heat map of the 924 

manhattan distance between obs:exptheory to simulated data is shown. Shading is determined 925 

by whether the obs:exptheory to simulation distance is smaller than the distance between 926 

bootstrapped simulated data and the original simulated data, at the displayed quantile levels. 927 

Yellow shading concentrated around true parameters illustrates that while errors in estimates 928 

are correlated, the true parameters are identifiable. d, Across a wide range of simulated 929 

datasets, true parameters can be recovered with small errors. Vertical black line denotes 930 

median percentage error. 931 

 932 

Figure 4 | Stochastic dynamics of transcription coupled repair (TCR) in murine liver 933 

tumour genomes. a, Best fit between mathematical model (lines, model parameters in grey 934 

text) and data from murine liver genomes (points). Blue→red denotes increasing expression 935 

strata (as per Fig 2.b). b, Density of parameter estimates obtained from fitting the 936 

mathematical model to 1,000 bootstrap samples of mutation data. Red dashed lines indicate 937 

bootstrap confidence intervals, black vertical line denotes the estimate from original murine 938 

data. c, Heat map (left) showing optimal fits for all grid-search tested values of Pd and Pr 939 

(8.4x108 parameter combinations tested). Optimal fits (pink shapes; circle Pr≥0, triangle 940 

Pr=0) identified from gradient descent exploration initialised by high-quality grid-search fits. 941 

Landscape shading from the quantile distribution of fits between the observed data and 942 

bootstrap samples of it (right). d, Schematic summary of point estimates of interactions 943 

between RNAP and DNA lesions, for the full mathematical model including RNAP restart, 944 

and the reduced model without restart. Parameters values for the full model given as optimal 945 

in a, and for the reduced model as given in Extended Data Fig 2.c 946 

 947 

 948 

 949 

 950 

 951 



a
Incorrect base due to
template strand lesion

Incorrect base due to
non-template strand lesionRNA-Pol II

Mutagenic DNA lesion

Lesion undetected
Mutant RNA 

transcript

b

RNA-Pol II
encounters 
lesion

Lesion repair &
RNA-Pol II 
disassociates

Lesion repair &
restart transcription

Template strand
Non-template strand

transcription DNA replication
Inherited by

daughter cell 1

Inherited by 
daughter cell 2

c

T
ra

ns
cr

ip
tio

n 
in

iti
at

io
ns

po
st

 m
ut

ag
en

es
is

High lesion detection
Low Pol II restart

Low lesion detection
High Pol II restart

More efficient repair
near TSS

Uniform position
of unrepaired lesions

TSS TES

Initial lesion positions
after damage

d

 phasing via 
lesion segregation

WGS + filteringDEN

n=104 ~1.7 million strand-phased mutations
within gene bodies237 liver tumours

~7.2 million mutations
genome-wide



n=7176

n=4649 n=1086
n=1016

n=959

n=944

1 2 3 4 5 6

a b

e f

dc

1 22 3 4 5 6

Expression strata

0 50 100 150 200 250

Distance from TSS (kb)

0

5

10

15

M
ut

at
io

n 
ra

te
 (

M
b-

1)
te

m
pl

at
e 

st
ra

nd
 le

si
on

s

0 50 100 150 200 250

Distance from TSS (kb)

0

5

10

15

M
ut

at
io

n 
ra

te
 (

M
b-

1)
no

n-
te

m
pl

at
e 

st
ra

nd
 le

si
on

s

0 1 2 3 4

Expected upstream lesions (count)

0.0

0.2

0.4

0.6

0.8

1.0

M
ut

at
io

ns
 (

ob
s/

ex
p)

0 1 2 3 4

T
um

ou
rs

 
(m

ut
at

io
n 

lo
ad

)

0 50 100 150 200

Distance from TSS (kb)

0.0

0.5

1.0

1.5

2.0
N

or
m

al
is

ed
 t

em
pl

at
e 

st
ra

nd
m

ut
at

io
n 

ra
te

 (
fo

ld
 c

ha
ng

e)

≤ 10
−2

10
−1

10
0

10
1

≥ 10
2

0.0

0.5

1.0

1.5

2.0

Nascent transcription (nTPM)

N
or

m
al

is
ed

 n
on

-t
em

pl
at

e 
st

ra
nd

m
ut

at
io

n 
ra

te
 (

fo
ld

 c
ha

ng
e)

0.0

0.5

G
en

e 
de

ns
ity

≤ 10
−2

10
−1

10
0

10
1

≥ 10
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nascent transcription (nTPM)

M
ut

at
io

ns
 (

ob
s/

ex
p)

0.29 3.73



a
e.m

start initiate terminateforward stop

Pv

repair

lesion

1-Pr

1-Pd

Pr
Pd

Invisible lesion

RNA pol-II
Lesion

Restart probability
Detection probability
Lesion proportion visible
Expression multiplier

Pr
Pd
Pv
m

Measured expression in nTPMe

b

c

d

0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

Detection probability(Pd)

Re
st

ar
t p

ro
ba

bil
ity

 (P
r)

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

Restart probability (Pr)

Ex
pr

es
sio

n 
m

ult
ipl

ier
 (m

)

0.3 0.5 0.7

2

4

6

8

10

Detection probability(Pd)

Ex
pr

es
sio

n 
m

ult
ipl

ier
 (m

)

High detection probability
Low restart probability

Low detection probability
High restart probability

Low detection probability
Low restart probability

True

M
od

el
:d

at
a

L1
-n

or
m

90%

68%

50%

Estimate

10 6 10 4 10 2 100 102
0.0

0.5

De
ns

ity

Percent error in estimate (Pd)

Median error = 
10%

10 6 10 4 10 2 100 102
0.0

0.5

De
ns

ity

Percent error in estimate (Pr)

Median error = 
22%

10 2 100 102
0.0

0.6

De
ns

ity

Percent error in estimate (m)

Median error = 
16%

low

high 

Expression 

0 1 2 3 4
Expected upstream lesions

0

1

M
ut

at
ion

s 
(o

bs
/e

xp
)

0 1 2 3 4
Expected upstream lesions

0

1

M
ut

at
ion

s 
(o

bs
/e

xp
)

0 1 2 3 4
Expected upstream lesions

0

1

M
ut

at
ion

s 
(o

bs
/e

xp
)



0.0

0.2

0.4

0.6

0.8

1.0

Detection probability (Pd)

R
es

ta
rt 

pr
ob

ab
ilit

y 
(P

r )

0.0 0.2 0.4 0.6 0.8 1.0

Model:data
Manhattan distanceGlobal optima

Optima with Pr=0
90% 68% 50%

Bootstrap percentile fit

5.226.2

d

c

a b

RNA-Pol II
encounters 
lesion

Lesion undetected

Lesion repair &
RNA-Pol II 
disassociates

Lesion repair &
restart transcription

Event Formula

Pv*Pd*Pr

Pv*Pd*(1-Pr)

(1-Pv)+Pv*(1-Pd)

22%

12%

66%

0%

15%

85%

Total 100% 100%

Frequency under
full model       
(AIC=-997.57)

Frequency under
  reduced model    

(AIC=-997.76)

0.2 0.6
0

4

De
ns

ity
(b

oo
ts

tra
p 

es
tim

at
es

)

Detection probability
(Pd)

0.0 0.4 0.8
0

3

Restart probability
(Pr)

0 2 4 6
0

1

De
ns

ity
(b

oo
ts

tra
p 

es
tim

at
es

)
Expression multiplier

(m)

0.78 0.79 0.80 0.81
0

80

Lesion proportion
visible (Pv)

0 1 2 3 4
Expected upstream lesions

0.0

0.2

0.4

0.6

0.8

1.0

M
ut

at
ion

s 
(o

bs
/e

xp
)

Pd=0.42, Pr=0.65, m=1.59, Pv=0.8
R^2=0.99

0

50

100

150

4 5 6 7 8

Bo
ot

st
ra

p 
fre

qu
en

cy

Fit to observed (Manhattan distance)


	Manuscript File
	Figure 1
	Figure 2
	Figure 3
	Figure 4

