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Abstract. This paper investigates the nature of dispositional properties in the context of 

artificial intelligence systems. We start by examining the distinctive features of natural 

dispositions according to criteria introduced by McGeer (2018) for distinguishing between 

object-centered dispositions (i.e., properties like ‘fragility’) and agent-based abilities, 

including both ‘habits’ and ‘skills’ (a.k.a. ‘intelligent capacities’, Ryle 1949). We then explore 

to what extent the distinction applies to artificial dispositions in the context of two very 

different kinds of artificial systems, one based on rule-based classical logic and the other on 

reinforcement learning. Here we defend three substantive claims. First, we argue that artificial 

systems are not equal in the kinds of dispositional properties they instantiate. In particular, we 

show that logical systems instantiate merely object-centered dispositions whereas 

reinforcement learning systems allow for the instantiation of agent-based abilities. Second, we 

explore the similarities and differences between the agent-centered abilities of artificial 

systems and those of humans, especially as relates to the important distinction made in the 

human case between habits and skills/intelligent capacities. The upshot is that the agent-

centered abilities of truly intelligent artificial systems are distinctive enough to constitute a 

third type of agent-based ability — blended agent-based ability — raising substantial questions 

as to how we understand the nature of their agency. Third, we explore one aspect of this 

problem, focussing on whether systems of this type are properly considered ‘responsible 

agents’, at least in some contexts and for some purposes. The ramifications of our analysis will 

turn out to be directly relevant to various ethical concerns of artificial intelligence.  

 

Keywords. Dispositional properties; Artificial Intelligence; Object-centered 

dispositions; Agent-centered abilities; Skills; Habits; Artificial dispositions; 

Reinforcement learning systems; Responsibility; Responsibility gaps 
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1. Introduction  

In this paper, we explore the nature of dispositional properties in the context of 

artificial intelligence (AI) systems. Following Gilbert Ryle (1949), we argue there is nothing 

more to ‘being intelligent’ than possessing a rich array of dispositional properties. But 

dispositional properties are not all of a piece. Intelligent creatures, notably human beings, 

possess dispositional properties of a characteristically complex kind that Ryle called 

‘intelligent capacities’ or ‘skills’. Our question, then, is to what extent such properties could 

be instantiated in artificial systems; hence, to be or become ‘intelligent’ in the manner of 

human beings. It is a subsidiary question as to whether artificial systems could be or become 

‘intelligent’ in a different sense, however that comes to be defined.  

At first glance, these may seem to be merely definitional matters. But that would be 

misleading. As we shall argue, possessing intelligent capacities in the human sense is a 

normatively substantive condition, underwriting the attribution of responsible agency. So to 

explore this question in relation to artificial systems is to explore the extent to which they can 

and should be considered responsible agents. This latter question lies at the heart of many 

ethical concerns raised by the promise (or threat) of our growing reliance on ‘AI’ systems in 

the modern world. Hence, in this paper we shall use the term “intelligence” or “intelligent” in 

a more restricted way than is implied by the acronym ‘AI’; but for ease of reference, we shall 

also continue to use that acronym to refer more broadly to the variety of smart computational 

systems we discuss in this paper.  

Our discussion will proceed as follows. In Section 2, we briefly sketch our background 

view of the general nature of dispositional properties, leaving many nuanced issues about them 

to one side. In section 3, we turn to Ryle’s categorization of such properties, focussing on a 

fundamental distinction he makes between object-centered dispositions (i.e., properties like 

‘fragility’) and agent-based abilities, with abilities encompassing both ‘habits’ and ‘skills’. 

We discuss what is critical in these distinctions, focussing especially on why Ryle reserved 

the term ‘intelligent’ for skills alone. In the remainder of the paper (Sections 4-6), we explore 

the extent to which these Rylean distinctions apply to the properties of different kinds of 

artificial systems. In Section 4, we argue that artificial systems are not equal in the kinds of 

dispositional properties they instantiate. In particular, we show that logical systems (Nilsson, 

1991) instantiate merely object-centered dispositions whereas reinforcement learning systems 

(Sutton & Barto, 2018) allow for the instantiation of agent-based abilities. In Section 5, we 

explore how the agent-centered abilities of reinforcement learning systems are like and unlike 

human abilities, raising substantial questions as to how we understand the nature of their 
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agency. In a final Section 6, we explore one aspect of this problem – namely, to what extent 

it makes sense to view such systems as ‘responsible agents’, at least in some contexts and for 

some purposes. We consider some of the ethical ramifications to answering this question in 

the way our analysis suggests.  

 

2. The nature of dispositional properties 

Dispositional properties are modal properties: they are properties of things that are 

attributable in virtue of how those things can be expected to behave under a range of 

characteristic conditions, actual or non-actual. Some examples: A vase is ‘fragile’ just in case 

there are a range of characteristic conditions under which it can be expected to break 

(strikings, throwings, droppings, etc.). A person is ‘contagious’ just in case there are a range 

of characteristic conditions under which they can be expected to infect others with a disease 

they are carrying. An animal is ‘well-trained’ just in case there are a range of characteristic 

conditions under which it can be expected to act in a way it was trained to do (e.g., sitting on 

command).  

Notice that the attribution of modal properties seemingly has nothing to do with how 

frequently, if at all, the behaviour in question is manifested. A fragile vase may never break 

despite its fragility. By contrast, a well-trained animal may do what it was trained to do on a 

recurring basis. The difference between these two cases has nothing to do with what might be 

called the ‘strength’ of the dispositional property – how likely it is to manifest under the relevant 

range of characteristic eliciting conditions. Rather it has to do with how frequently these 

eliciting conditions obtain in the actual world. Hence, though a well-trained animal may often 

display the trained behaviour (e.g., sitting on command), it may not be as strongly disposed to 

sit on command as the fragile vase is disposed to break. That is to say, the probability of the 

animal’s sitting is lower than the probability of the vase’s breaking under conditions that are 

characteristic for each. Theorists may capture this idea by speaking of the degree to which the 

relevant dispositional property is ‘sure-fire’ under the relevant eliciting conditions.  

There is another degree of variation for dispositional properties beyond their ‘strength’– 

we might call this their ‘robustness’. Robustness concerns the range of conditions under which 

the thing in question would manifest the relevant behaviour: the wider the range of such 

conditions, the more robust the dispositional property. For instance, a dog may be strongly 

disposed to sit on command, manifesting this behaviour quite reliably under certain specific 

conditions; but it may not be robustly disposed to sit on command, as it does so only in response 
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to its master’s voice. Other people may tell it to sit, but that command falls, as it were, on deaf 

ears. The dog is sensitive only to its master voice, thereby manifesting this dispositional 

property to sit on command less robustly than other dogs that sit when commanded to do so by 

others as well. Of course, conditions may range along various dimensions. A dog may reliably 

sit on command, but only when the ground is dry; it may refuse point-blank to sit in puddles. 

Or it may reliably sit on command, but only when the command is delivered vocally (hand 

gestures won’t work). Hence, a dog may have a fairly robust disposition to sit on command in 

some respects (sits in all sorts of weather), but it may be significantly less robust in others 

(responds only to its master’s voice).  

Needless to say, robustness in certain respects could matter to us far more than robustness 

in others, either generally speaking (because certain types of conditions rarely occur) or relative 

to certain purposes. For instance, we might call a dog “well-trained” so long as it is robustly 

responsive to its master’s commands; being responsive to other people doesn’t matter so much 

because they are not responsible for managing the dog’s activities. A similar latitude in 

attributing dispositional properties can occur with regard to their strength. For instance, under a 

given range of circumstances, a dog may not be reliably aggressive (disposition to aggression is 

fairly weak), but the probability of it showing some aggression is not zero; and for some 

precautionary purposes that may be enough for us to call the dog “aggressive”.  

Such variability in the nature and attribution of dispositional properties is well noted in 

the literature. Does this make the attribution of dispositional properties so arbitrary as to 

undermine their value? Not at all – and for two main reasons. The first is pragmatic. As 

suggested by the discussion so far, our interest in attributing dispositional properties is deeply 

connected to how we interact with the things in question. We want to know if the dog is likely 

to attack, or the vase to break, in the kind of quotidian circumstances that govern our interactions; 

and we adjust our own behaviour accordingly. Or we may want to know the range of 

circumstances under which something can be relied upon to ‘operate normally’; hence, for 

instance, we specify the ‘load capacity’ of an elevator or bridge. More generally, we want to 

know if things will behave in predictable ways under various types of conditions that have 

practical significance for us, governing how we interact with them. The attribution of 

dispositional properties is a short-hand way of marking such practically indispensable 

information.  

The second reason is causal-explanatory. While the attribution of dispositional properties 

is practically invaluable from the perspective of managing our interactions with the things in 

question, deeper theoretical concerns direct us to exploring their underlying nature. Assuming a 
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naturalistic perspective, we want to know how various things are physically constituted so as to 

support their macro-level dispositional proclivities. The expectation is that such dispositional 

proclivities are grounded in actual structural features of the things in question, features that are 

causally responsible for the modally elaborated patterns of behaviour associated with the 

relevant dispositions -- for instance, molecular structure in the case of the ‘fragile’ vase. Hence, 

for many theorists, attributing dispositional properties is simply a way of marking the presence 

of underlying features on which such properties presumptively supervene, as well as referencing 

a suitable causal-explanatory theory in which such features are embedded.1  

Of course, the attribution of dispositional properties may also indicate where more 

empirical work needs to be done regarding the nature of these grounding features. This is 

particularly true with regard to the higher-order dispositions of animate creatures: for instance, 

the dog’s disposition to sit on command. While this dispositional proclivity is presumptively 

grounded in some standing feature of the dog’s psychology, itself realized in some complex 

neural features of the dog’s brain, the details of a satisfying causal-explanatory theory are far 

from complete. And ditto for even more sophisticated higher-order dispositional properties – 

for instance, our human capacity (or disposition) to respond to various kinds of reasons (e.g., 

moral or prudential reasons) in the choices we make, whether in theoretical or practical 

domains.  

 

3. Kinds of dispositional properties 

3.1 object-centered dispositions vs. agent-centered abilities 

The promise of this framework is compelling for many committed naturalists in the 

philosophy of mind.  In their view, it suggests that there is nothing more to ‘being intelligent’ 

in the human sense than possessing a rich array of sophisticated dispositional properties that 

are somehow realized in the complex architecture of the human brain (call this the ‘basic 

dispositionalist assumption’). Furthermore, it is often assumed, at least by many, that such 

 
1 There are complex issues here that we simply put aside.  For instance (and this is by no means an 
exhaustive list): (1) whether the grounding features of macro-level dispositional properties are 
themselves dispositions – and perhaps, ultimately, that it’s disposition ‘all the way down’ (for discussion 
and references, see: Choi and Fara 2021); and (2) whether causal-explanatory theories of macro-level 
behaviour make essential reference to macro-level dispositional properties -- i.e., these properties are 
explanatorily irreducible in the context of such theories even though they are naturalistically vindicated 
in virtue of being ontologically grounded in more fundamental features of the things in question (a view 
that we favour; see, for example: Jackson and Pettit 1990b, 1990a). 
 



 
 

6 

sophisticated dispositional properties are really no different in kind from the more basic 

dispositional properties of other physical objects (call this the ‘deflationary dispositionalist 

assumption’). As Kadri Vihvelin representatively summarizes:  

“We have the ability to choose on the basis of reasons by having a bundle of capacities 

which differ in complexity but not in kind from the capacities of things like thermostats, cars, 

and computers. These capacities are either dispositions, or bundles of dispositions, differing 

in complexity but not in kind from dispositions like fragility and solubility” (Vihvelin, 2004, 

p. 429)  

Gilbert Ryle (1949) was an early advocate of the basic dispositionalist approach to 

human intelligence. Like Vihvelin, he argued that the sophisticated qualities of human 

mentality could be understood in straightforwardly dispositional terms – specifically, as 

consisting in a multifaceted range of capacities responsible for the distinctively complex 

patterns of ‘overt and covert’ behaviour human beings manifest in their day to day lives.2 But 

unlike Vihvelin, Ryle staunchly resisted the deflationary dispositionalist assumption, 

maintaining that an adequate view of human intelligence depended on recognizing the 

distinctive nature of the dispositions that constitute it. Thus, a key part of his project was to 

chart the manifest differences amongst kinds of dispositional properties; most obviously, 

between the dispositional properties of inanimate things (hereafter, ‘object-centered 

dispositions’) and the acquired (learned) dispositional properties of animate creatures 

(hereafter, ‘agent-centered abilities’).  

We agree with Ryle that understanding such differences sheds light on the naturalistic 

underpinnings of human intelligence; but more importantly for our purposes here, we think it 

also sheds light on the kind of systems (whether artificial or not) that could instantiate the 

properties in question. We turn now to a consideration of these critical differences, originally 

highlighted by Ryle, but as explored and elaborated in McGeer (2018).  

Begin by considering some prototypical examples of ‘object-centered dispositions’ 

versus (acquired) ‘agent-centered abilities’. Examples of the former include: fragility, 

solubility, conductivity. Examples of the latter include: sitting-on-command, tying shoelaces, 

 
2 Importantly, Ryle’s use of the term ‘behaviour’ is very broad, covering internal mental processes 
(‘covert’ behaviour), as well as external bodily activities (‘overt’ behaviour). Some of his examples of 
covert behaviour: doing arithmetical sums ‘in one’s head’ or imagining (with trepidation) falling through 
an ice-covered lake). This feature of Ryle’s view is often overlooked. Indeed, he is frequently caricatured 
as a simple-minded analytic ‘behaviourist’, who believed that the attribution of mental states is nothing 
more than the attribution of dispositions to purely external (or ‘overt’) forms of behaviour. This 
interpretation is easily refuted by reference to numerous passages in The Concept of Mind.  
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multiplying numbers, playing chess, mountaineering, moral reasoning. Commonsense 

recognizes an obvious difference between these two classes of dispositional properties. Agent-

centered abilities characterize what agents can do in suitable conditions; they are agency-

involving ‘active powers’, essentially linked to the beliefs, desires and intentions of those who 

possess them. By contrast, object-centered dispositions are ‘passive’ powers; they simply 

characterize what various things will undergo in suitable conditions (Moore, 1911; Reid, 

1788). Important as this distinction is, it is not one that cuts any ice with naturalistically 

inclined philosophers of mind. For the dispositional characterization of the psychology of 

agents that possess the relevant agent-centered abilities is such as to include their proclivity 

for forming suitable epistemic and motivational states under the conditions in which they 

manifest their abilities; forming such states is part and parcel of the requisite abilities, not 

something in addition to them. In short, this commonsense distinction can be accommodated 

without suggesting that there is any deep difference of kind between these types of 

dispositional properties; certainly, there is no difference of kind that requires the positing of 

special agent causal powers to initiate the ability in question (‘acts of will’, for instance).  

Nevertheless, there is another sense in which agent-centered abilities are ‘agency-

involving’ – and this does mark a critical difference in kind between abilities and mere object-

centered dispositions. Abilities are actively acquired; they take a distinctive kind of agential 

work – i.e., practice – to develop, where practice involves agents intentionally manifesting 

some approximation of the ability in question and then reshaping how they behave in light of 

feedback (positive or negative) they receive from the environment. Hence, abilities may be 

conceptualized as dispositional properties that are constituted by certain intrinsic features of 

the things that possess them. In this, they are akin to object-centered dispositions – and thus, 

perhaps, seem merely different in degree of complexity rather than kind. But the crucial 

difference in kind remains: that agents must actively work to shape the intrinsic features that 

constitute their abilities (presumptively, these are complex cortical networks); whereas 

objects do not intentionally work at developing the intrinsic features that constitute their 

fragility, conductivity, solubility, and so on. They get this for free, simply by virtue of 

possessing relatively stable intrinsic properties.3  

How significant is this difference in kind? We said above that the attribution of 

 
3 This is not to say that the intrinsic properties of objects do not change over time, sometimes by virtue of 
agents’ deliberately acting upon them (e.g., as when glass is ‘tempered’ via thermal or chemical 
treatment). Naturally, as the intrinsic properties of such objects change, so will the macro-level 
dispositional profile such properties realize. 
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dispositional properties seemingly has nothing to do with how frequently, if at all, the 

characteristic pattern of behaviour associated with those properties is manifested. They are, as 

we noted, modal properties – properties that things may possess regardless of the conditions 

they encounter or undergo in the actual world. This observation makes perfect sense with 

regard to object-centered dispositions. But it is deeply misleading with regard to agent-

centered abilities, miscuing us as to something fundamentally distinctive about their 

underlying nature. After all, it is only thanks to a continuous and systematic regimen of 

feedback-driven behavioural approximations of the target ability that it ever comes to be in 

the first place; and that implies that the relevant manifestations conditions must frequently and 

consistently occur in the actual world for these properties to exist at all. Thus, it seems, not all 

modal properties are created equal.  

But, again, how significant is this fact? Though it may be empirically salient that agent 

centered abilities take practice to acquire, qua dispositional properties, they could in principle 

come to exist in some other way: e.g., by way of clever neural tinkering (or, in the artificial 

case, programming). After all, if we could create a physical doppelganger of any creature 

possessed of various agent-centered abilities, then, by the tenets of naturalism, the 

doppelganger would possess those self-same abilities.[6] But, again, this observation seriously 

misleads us with regard to the underlying nature of the abilities in question, at least so far as 

these are instantiated in biological creatures. For the simple fact is that abilities get rusty with 

disuse, even those that consist in fairly well-entrenched cognitive/behavioural routines. A dog 

may reliably sit on command; but if its master becomes lax or disappears altogether, and the 

dog is never again subjected to anything like a consistent reinforcement schedule, the ability 

to sit on command fades away. Ditto for our much prized and more sophisticated human 

abilities: speaking a (second) language, riding a bicycle, playing a musical instrument. All of 

these are subject to practice-deprived decay – a fact that is often obscured to us by the fact that 

we continually practice many of our most prized abilities on a regular basis (speaking a 

language, reasoning through problems, riding a bicycle, driving a car). In short, the kind of 

intrinsic features that realize these sophisticated abilities are critically practice (or 

manifestation)-dependent, where practice involves an on-going process of deliberately 

manifesting the relevant behaviour under suitable conditions and receiving appropriate 

feedback in turn. This makes the modal properties that constitute (biologically based) abilities 

essentially fragile or ‘labile’. And why is this? Presumptively, because the intrinsic features 

that realize such properties are dynamically maintained cortical networks: they are networks 

that require regular activation to maintain integrity.  
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3.2 Kinds of agent-centered abilities – habits vs. skills (a.k.a. ‘Intelligent’ capacities) 

So far we have charted a critical difference between kinds of dispositional properties 

– viz. whether they are essentially dynamic, manifestation-dependent modal properties: 

‘object centered dispositions’ are clearly not, whereas agent-centered abilities clearly are (at 

least as realized in natural biological creatures). But, interestingly, Ryle himself was more 

concerned with highlighting another distinction – this time, more likely one of degree than of 

kind – within the class of agent-centered abilities: a distinction that is nonetheless substantial 

between what he called ‘intelligent capacities’ or ‘skills’ on the one hand, and mere ‘habits’ 

on the other. Examples of the former include: target-shooting, mountaineering, driving a car, 

constructing arguments, speaking a language, and moral reasoning. Examples of the latter 

include, sitting-on command, tying shoelaces, multiplying numbers, reciting the alphabet.  

One obvious difference between habits and skills is that habits manifest in a relatively 

simple, stereotyped pattern of task-appropriate behaviour under a relatively constrained set 

of behaviour-eliciting conditions. By contrast, skills manifest in a much richer pattern of task 

appropriate behaviour, under a relatively expanded and unconstrained set of behaviour 

eliciting conditions. As Ryle says, skills are dispositional properties “… the exercises of 

which are indefinitely heterogenous” (1949, p. 44). Hence, even if habits and skills both 

require a kind of agential work – viz. practice – to develop and maintain, the dispositional 

outcome seems to be rather different in kind. What could explain this difference? There are 

in fact three dimensions of difference to which Ryle draws attention, and we discuss each of 

these in turn.  

The first concerns the kind of work it takes to develop and – in particular— ‘maintain’ 

the ability in question. Habits require practice, that goes without saying. They take time to 

develop and suitably hone. But once established, they consist in entrenched cognitive and 

behavioural routines that agents are able to reproduce without much conscious attention or 

effortful monitoring. As Ryle observes, “when we describe someone as doing something by 

pure or blind habit, we mean that he does it automatically and without having a mind to what 

he is doing” (1949, p. 42). By contrast, skills are often exercised in a conscious, attentive way. 

Skilled agents must often ‘think what they are doing’ as they engage in the relevant activity, 

shaping their behaviour with ‘care, vigilance and criticism’, mindful of problematic 

circumstances they encounter on the ground. And even when they are operating in a relatively 

unreflective mode, they must be ready to tune into such problematic circumstances were they 
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to appear. In short, they must be attentive (whether in virtual or active mode) to how things 

might go wrong in exercising their skill – hence, with on-going receptivity to potentially 

corrective feedback received from the environment (ibid., p. 42).  

But why should all this be necessary? Surely once a degree of proficiency is reached, 

the activities of skilled agents must likewise depend on their having entrenched an appropriate 

range of cognitive and behavioural routines. So why not ‘go on auto-pilot’? The answer is 

straight-forward. The task-appropriate behaviour that constitutes the exercise of a skill is 

generally more demanding than the task-appropriate behaviour constituting a habit. It is more 

demanding because the essence of skilled behaviour is that it is flexible and adaptive; it can 

be ‘reproduced’ under new and challenging circumstances – so, in a sense, is not reproduced 

at all, but rather modified anew as circumstances require. And this means skilled agents 

cannot simply rely on entrenched cognitive and behavioural routines; they must be ready to 

adapt such routines to cope with unexpected difficulties and/or novel situations, whether ‘on 

the fly’ or over time, in response to suitable feedback from the environment. As Ryle says, 

 “it is of the essence of merely habitual practices that one performance is the replica 

of its predecessors. It is of the essence of intelligent practices that one performance is modified 

by its predecessors. The agent is still learning” (Ibid., p. 42).  

The second dimension of difference between habits and skills concerns the kind of 

feedback agents require to develop and maintain these different kinds of abilities. Ryle speaks 

here of ‘drilling’ vs. ‘training’. These terms are not perhaps ideal, but what Ryle has in mind 

is that certain kinds of feedback aim to inhibit creative responsiveness, whereas other kinds of 

feedback aim to promote such responsiveness. He characterizes the difference between them 

as follows:  

“Drill (or conditioning) consists in the imposition of repetitions…. Training, on the 

other hand, though it embodies plenty of sheer drill, does not consist of drill. It involves the 

stimulation by criticism and example of the pupil’s own judgement. He learns how to do things 

thinking what he is doing, so that every operation itself is a new lesson to him on how to 

perform better… Drill dispenses with intelligence, training develops it” (Ibid., pp. 42-42). 

 It is difficult to operationalize how different kinds of feedback might accomplish such 

different cognitive/behavioural outcomes. But one thing is clear: in developing the creative, 

intelligent responsiveness that characterizes a skilled agent’s profile of task-appropriate 

adaptive behaviour, the agent must call upon internal resources for judicial review and 

assessment of feedback from the environment, not to mention a readiness to ‘try new tricks’, 
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themselves judiciously weighed in term of probable success and downside risks. In this sense 

an agent becomes ‘responsible for’ their performance in a distinctive kind of way – distinctive 

because we are now in the domain of ‘judgment-sensitive’ attitudes and behaviour: attitudes 

and behaviour that are reason-governed, and not simply reason-conforming; hence, open to 

the agent’s reflective review and control (for representative discussion, see: Pettit and Smith 

1996; Scanlon 1998; Smith 2008).  

The third dimension of difference between habits and skills concerns their underlying 

nature. As we have noted thus far, they both take agential work to develop; and they both 

take agential work to maintain – i.e., habits and skills both get rusty with disuse. By our lights, 

they are thus both dynamically maintained, manifestation-dependent modal properties. Yet 

there is nonetheless an important difference between them (perhaps a difference merely of 

substantial degree). To bring this out, consider that feature of modal properties we earlier 

called ‘robustness’. To recapitulate: robustness concerns the range of conditions under which 

the thing in question would manifest the disposition-relevant behaviour: the wider the range 

of such conditions, the more robust the dispositional property. Habits and skills clearly differ 

in this regard: not only do habits involve constrained, stereotyped forms of task-appropriate 

behaviour, they are exercised under a relatively restricted range of conditions. But not so with 

skills: the range of conditions under which they are exercised is far more extensive and 

variable, as is the form of (adaptive) behaviour appropriately elicited under those wide ranging 

conditions. To repeat Ryle’s observation, they are dispositional properties “… the exercises 

of which are indefinitely heterogeneous”.  

But now we face something of a puzzle. As dispositional properties, both habits and 

skills are presumptively realized in dynamically maintained cortical networks. These are the 

intrinsic features of agents on which such properties supervene. But it defies credibility to 

imagine that skilled agents could be, here and now, intrinsically so structured that they are, as 

it were, primed to manifest the ‘indefinitely heterogenous’ forms of task-appropriate behaviour 

under the equally heteroneous range of conditions in which a skill is generally exercised. In 

short, from a naturalistic design perspective, skills seem to be nothing short of miraculous.  

This puzzle is easily solved, however, if we remind ourselves that skills are the kind 

of dispositional properties that are continuously undergoing development; hence, the 

‘robustness’ that characterizes them is, in effect, spread out over time. Agents are able to 

produce relevant instances of task-appropriate behaviour under such wide-ranging conditions 

because they are continuously adjusting the dynamic cortical networks that presumptively 

underlie the successful performance of their skilled behaviour. In sum, to possess a skill agents 
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must be psychologically so structured that, at any given time, they are primed to engage with 

the world, creatively, flexibly and judiciously, in ways that drive their own development. 

So finally the differences amongst dispositional properties comes down to this. At the 

abstract level, they are certainly all modal properties. But modal properties differ in significant 

ways; and this is relevant to the question of the kind of systems in which they might be 

instantiated. In the first place, there are modal properties that exist only by virtue of being 

dynamically instantiated through deliberate agential activity – these are ‘manifestation-

dependent’ modal properties (habits and skills). But in the second place, there are two types 

of such properties - varying substantially in degree, if not in kind: those that are dynamically 

sustained through practice (habits) and those that are dynamically-revised through practice 

(skills). Or to put this difference another way: habits are modal properties that maintain their 

stability by way of an agent’s (feedback-sustained) repetitive practice; skills are modal 

properties that maintain their open-textured integrity by way of an agent’s (feedback-

soliciting) intelligent practice, where such practice is judiciously guided by the agent’s on-

going sensitivity to the adaptive requirements of novel or changing circumstances.  

 

4. Artificial systems and their dispositional properties  

In this section, we look into the nature of dispositional properties in the context of 

artificial systems. In particular, we ask to what extent could the dispositional properties 

explored in Section 3 be instantiated in artificial systems. We focus on two paradigmatic 

kinds of artificial systems: rule-based classical AI and reinforcement learning AI. We 

argue that these artificial systems are not equal in the kinds of dispositional properties they 

instantiate. In particular, rule-based classical artificial systems instantiate merely object-

centered dispositions, whereas reinforcement learning systems allow for the instantiation 

of something like agent-based abilities.  

 

4.1. Classical Rule-based artificial systems  

Classical rule-based AI — or “Good old-fashioned artificial intelligence” (GOFAI) — 

is a term of art dubbed by John Haughland (1985). GOFAI was the dominant paradigm of AI 

research from the 1950s to the 1990s. GOFAI systems take intelligence to be encompassed in 

the logical manipulation of symbols. A symbol is an item of a formal language which can be 

merely regarded as a purely syntactic structure or interpreted as representing explicit and 
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discrete objects or events in the world.  

A GOFAI system is an interconnected network of such discrete symbols with logical 

inference rules applied to them. This system employs specific logical rules (programmed into 

the system) on formal symbolic representations, constructs and transforms the symbolic data 

structures according to different rules for searching and planning the symbols. A successful 

GOFAI system follows its programmed logical rules and draws logical inferences when 

performing particular tasks.  

An early example of a GOFAI artificial system, ELIZA, was developed by Joseph 

Weizenbaum (1966). ELIZA was a natural language processing program initially designed 

to simulate a human psychotherapist. It ‘engaged in conversation’ with a human user by 

way of manipulating the symbolic representation of human responses according to a set of 

pre-programmed logical rules. However, ELIZA's capacity to mimic a human conversation 

was highly constrained. Its responses were rigidly determined by the specific input it 

received and the local rules for manipulating or transforming that input to an output. 

Consequently, ELIZA lacked the flexibility to adapt its responses beyond the strict pre-

determined rules and inputs, a significant limitation that restricts the scope of its 

conversational capabilities. 

By definition, GOFAI systems produce their seemingly intelligent behavior by 

drawing classical logical inferences through the manipulation of symbols. Their capacities are 

dependent on the inferential nature of the rules of classical logic. As long as these rules are 

instantiated in the system, they can follow them and draw inferences from them. But now we 

ask, what kinds of dispositional properties do GOFAI systems instantiate according to the 

taxonomy defended in Section 3?  

At first glance, the dispositions of GOFAI systems may seem rather unlike the object-

centered dispositions of physical objects earlier described, such as fragility or conductivity. 

We tend to conceive of GOFAI systems as computer programs or software that can be 

implemented on a diverse range of materials, ranging from silicon to bio-inspired materials. 

Nevertheless, even though these systems primarily function in the form of logic-driven code 

rather than physical, embodied entities, they possess properties that mirror those of object-

centered dispositions. In much the same way as a glass object's fragility is a stable feature, 

the inferential properties of GOFAI systems are enduring attributes, as they are integral 

components of the entities that contain them. These logical rules are deeply embedded in the 

fabric of the GOFAI systems, and under characteristic conditions, do not adjust to pressure 
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of feedback from the environment. 

For example, consider a GOFAI system designed to play chess. It is pre-programmed 

with specific logical rules, ensuring the system will exploit certain strategies geared to 

specific board configurations. This is the system's object-centered disposition. Just as the 

molecular structure of a glass object makes it fragile, the pre-set rules and strategies give the 

chess-playing system its ability to play chess. This object-centered feature is an intrinsic, 

stable feature of the system under characteristic conditions. 

While GOFAI systems instantiate object-centered dispositions, they do not have the 

right sort of structure to instantiate agent-centered dispositions as we have described them. 

These systems are not involved in any form of active learning; nor do they maintain their 

dispositional properties by way of active engagement with the environment. While GOFAI 

systems do require programming in order to ‘acquire’ their dispositional properties, the 

programming itself is not self-initiated. If the GOFAI chess system is repeatedly defeated by 

a particular strategy from an opponent, it will not adapt or develop new counter-strategies. 

Hence, once in place, the programmed structure and dynamics of a GOFAI system are stable 

intrinsic features of that system, analogous to the molecule structure of a fragile glass. In sum, 

while GOFAI systems may display an impressive range of complex behaviour thanks to the 

dispositional properties they instantiate, they are nonetheless not ‘intelligent’ in our 

proprietary use of this term; they are not actively engaged in developing and/or maintaining 

their own dispositional proclivities.  

 

4.2. Reinforcement-Learning artificial systems  

The second kind of artificial systems we discuss is the reinforcement learning (RL) 

system. RL is a broad class of artificial systems that focuses on training agents to maximize 

their rewards within a given environment (Sutton and Barto, 2018). The primary 

characteristics of this paradigm of artificial systems are the agent and the environment. The 

overall goal of an RL agent is to maximize its total reward (or minimize its total punishment) 

while interacting with the environment. At each step of interaction with the environment, the 

agent makes an observation of the state of the world, which is often partial due to the inherent 

limitations in its ability to fully perceive the environment, and accordingly decides on an 

action to take. The agent learns its path towards the maximization of its total reward by using 

feedback from the environment (rewards or penalties) contingent upon every action it 

performs. 
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Rewards and penalties are signals from the environment that tell the agent how good 

or bad the current state of the world is. An RL agent is not directly endowed with any logical 

rules from a human programmer that guide  it to the maximization of the total reward. Instead, 

an RL agent learns in interaction with an uncertain environment by starting from random trials 

and finishing with sophisticated tactics for resolving the problem it is set to achieve by 

leveraging the power of trial and error.  

The RL approach has been successfully applied to a wide range of tasks, from playing 

games to controlling robots and self-driving cars. RL systems possess various degrees of 

capabilities. For example, some of them have learnt how to play complex strategy games 

such as the game of Go (Silver et al., 2016). Go has been traditionally considered one of the 

most challenging games for computer programs to master due to its large search space and 

the need for strategic thinking. In 2016, AlphaGo – an RL system developed by Google 

DeepMind – defeated Lee Sedol, one of the world's top Go players, in a five-game match.  

What kinds of dispositional properties do RL systems instantiate? Unlike GOFAI, 

reinforcement learning AI systems are designed in such a way that they need to receive 

feedback through a dynamic connection to the environment in order to acquire their task-

specific abilities. For example, AlphaGo uses a combination of deep learning and Monte Carlo 

tree search to make its decisions. The deep learning component, called the "value network," 

estimates the probability that a given move will lead to a win. The Monte Carlo tree search 

component, called the "policy network," uses this information to search the tree of possible 

moves and select the best one. One of the key features of AlphaGo is its use of supervised 

learning to train the value network. This network was trained on a dataset of over 30 million 

expert Go moves, which allowed it to learn the patterns and strategies of top players.  

To emphasize the diversity of RL systems, let us look into their incorporation in a 

complicated technology: their use in self-driving cars (e.g., Waymo). By definition, self-

driving cars should be capable of sensing their environment and navigating it without constant 

acquisition of human input. For their navigation, they use a variety of technologies, such as 

radar, lasers, and cameras, to sense their surroundings and make appropriate decisions. One 

of the challenges in developing self-driving cars is the need to train the AI agents that control 

the vehicle to make decisions based on their environment. This is where reinforcement 

learning comes in. In the case of a self-driving car, the AI agent may be trained to avoid 

obstacles, such as other vehicles or pedestrians. If the AI agent successfully avoids an 

obstacle, it will receive a reward. If it fails to avoid the obstacle, it will receive a punishment. 

Over time, the AI agent learns to make decisions that maximize its rewards and minimize its 
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punishments. This means that the AI agent can adapt to changing environments and make 

more accurate decisions.  

Despite some architectural differences and nuances, an RL agent needs to work 

towards acquiring its dispositional properties; hence, it manifests what we call ‘agent-

centered’ abilities. This is a point that we will elaborate on in the next section. 

 

5. The blended agent-centered abilities of reinforcement learning systems  

So far, we have argued that, unlike GOFAI, reinforcement learning artificial systems 

acquire agent-centered abilities. In this section, we argue that RL systems can be instantiated in 

various ways, embodying different degrees and types of learning and adaptability to their 

environments. In Section 3, we suggested that, in the human case, there is an important difference 

between habits (routinized, relatively inflexible patterns of behaviour) and ‘intelligent capacities’ 

or skills (patterns of behaviour that require adaptive sensitivity to complex and potentially 

changing conditions on the ground). Although this difference is undoubtedly one of degree more 

than of kind, it is an important one to mark; and in this section we consider how this distinction 

might apply in the case of RL systems.      

One possibility is that the distinction maps cleanly into the domain of reinforcement 

learning systems. Specifically, given the simplicity of tasks less advanced RL systems are trained 

to perform, the abilities they instantiate share much in common with habits. Examples include 

navigating simple mazes (Mnih et al., 2015) or optimizing basic control tasks like balancing a 

pole (Schulman et al., 2015). More advanced RL systems, on the other hand, operate in more 

complex environments; hence, the abilities they require share more in common with skills in so 

far as they must produce a more flexible pattern of behaviour in order to perform adequately given 

the task demands. Examples include playing complex games like Go (Silver et al., 2016) or chess 

(Silver et al., 2017), generating human-like text (Radford et al., 2019), or making 

recommendations based on user preferences (Zheng et al., 2018).  

We agree that something like this distinction applies in the case of RL systems. But the 

picture is complicated by an underlying fact that we have yet to address – viz., the significant 

ways in which the agent-centered abilities of these artificial systems differ more systematically 

from human abilities, producing an overall difference in quality that crosscuts the habits-skills 

distinction as applied in the human case. These differences span four dimensions: acquisition 

requirements, maintenance requirements, reliability in manifestation, and finally adaptability to 

new circumstances (earlier identified as the hallmark of human skills). We discuss each of these 
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dimensions, before turning in the next and final section to consider what significance this may 

have for the larger topic of artificial responsible agency.  

First dimension of difference, acquisition requirements. Less advanced RL systems learn 

exclusively through training data sets, in stark contrast to the more organic, in situ practice that 

humans engage in. These systems are typically fed large amounts of high-dimensional data, which 

they then use to discern patterns and make predictions. A major concern, however, is the problem 

of feature selection within these data sets. It can be challenging to ascertain exactly what features 

an RL system is picking up on, leading to proficiency within the training set that may not 

necessarily translate well to real-world prediction scenarios.  

More advanced RL systems, on the other hand, exploit more dynamic and adaptable 

learning methods that mirror some of the complexity found in human learning. These systems can 

leverage techniques such as transfer learning (Torrey and Jude, 2010) or meta-learning 

(Vanschoren, 2019) to generalize from one task to another, or to quickly adapt to new tasks, 

respectively. This reduces the dependency on specific training sets and improves the system's 

ability to handle novel, real-world scenarios. However, these advanced systems still have their 

limitations and cannot fully replicate the fluidity and adaptability of human learning. 

For humans, learning occurs both implicitly and explicitly within complex environments 

that include simulated scenarios, training data, and real-world situations. The diversity and 

complexity of these learning environments often surpass what current RL systems can handle. 

Furthermore, human pedagogic practices are crafted to deal with expectable errors in apprentice 

learning, producing structured learning environments that are specifically geared to human 

(embodied) cognitive propensities (Sterelny, 2012). This is a level of foresight not yet fully 

realized even in current advanced RL systems. 

However, both less advanced and more advanced RL systems do share a distinct advantage 

over humans: the ability to transfer learned skills quickly and all-in-one-package to other systems, 

e.g., by duplicating the RL systems. This eliminates the need for each RL system to undergo the 

same training regimen. However, to continue advancing and adapting, these RL systems must 

maintain active learning capabilities. 

Second dimension of difference, maintenance requirements. Maintaining proficiency in 

specific abilities differs notably between humans and RL systems, sometimes seemingly giving 

the upper hand to RL systems. Human abilities necessitate ongoing practice to avoid degradation, 

as our biological systems are inherently adaptive and require constant reinforcement. Consider 

musicians, who must regularly practice their instrument to maintain their performance level, or 
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athletes, who need consistent training to uphold their physical prowess and technique. 

In contrast, RL systems, which function through algorithmic frameworks such as deep 

neural networks, do not require the same level of continuous maintenance once they have mastered 

the necessary abilities according to their designers. Learned information is primarily hard-wired 

within their algorithmic structure, making them less vulnerable to proficiency loss over time. 

Hence, the performance of an RL agent remains relatively stable even in the absence of regular 

practice. 

Interestingly, the very aspect that requires humans to consistently practice to maintain their 

abilities might also confer a significant advantage. Our cortical networks, on which these abilities 

supervene, are continually fine-tuned to accommodate both minor and major changes in our 

circumstances. This adaptability may explain the resilience of human abilities across a wider range 

of real-world conditions than is typically found in RL systems – a point we will come back to 

below. 

Third dimension of difference, reliability in manifestation. As noted in Section 1, 

dispositional properties, including human abilities, differ in how reliably they manifest under 

characteristic conditions, ranging all the way (at least in principle), from ‘sure-fire’ dispositional 

properties (they always manifest under characteristic conditions) to those that are only weakly 

reliably (episodically manifesting under characteristic conditions).4 We called this feature the 

‘strength’ of a dispositional property. But the reliability of a dispositional property can also be 

affected by its ‘robustness’ – i.e., the range of characteristic conditions (narrower or broader) 

under which it can be expected to manifest. On this measure, the broader the range of such 

conditions, the more reliable will be the dispositional property in its manifestation.  

Turning now to human abilities, their reliability is highly dependent on training and 

practice.  In general, the more ingrained the habit, or the more developed the skill, the more 

reliable their manifestation under suitable conditions. Nevertheless, whatever their stage of 

development, all human abilities are subject to a number of contingently occurring internal factors 

that can derail their characteristic manifestation – e.g., fatigue, distraction, cognitive overload. A 

tired driver might not react as swiftly as when they are well-rested, a distracted pianist might hit 

wrong notes during a concert, and a stressed or anxious tennis pro may repeatedly botch their 

serve in an important tennis tournament.  

By contrast, RL systems might seem potentially more reliable in manifesting their abilities 

 
4 By ‘characteristic conditions’, we simply mean those conditions under which the dispositional property 
would typically manifest. 
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under suitable conditions in so far as they avoid the weaknesses that plague human agents. But 

they suffer from their own constraints in this respect, depending on the type of RL system in 

question.  

Less advanced RL systems may exhibit high reliability in environments that closely mimic 

their training conditions – this is akin to having a very strong, perhaps even sure-fire dispositional 

property. However, such systems may fall apart in conditions that deviate only mildly from these 

training conditions; moreover, such failures are not easily predicted, since the conditions under 

which they may falter are generally not those that would derail the performance of a human agent. 

In short, despite the strength with which they are likely to manifest, the abilities of less advanced 

RL systems are unpredictably narrow in robustness thanks to constraints in their learning 

algorithms that prohibit generalization to new or altered conditions. And this may create serious 

reliability issues when it comes to anticipating the real-world environmental conditions under 

which their abilities will be manifested.  

More advanced RL systems, meanwhile, are designed to overcome this limitation by 

exhibiting a higher degree of adaptability, leveraging sophisticated algorithms that allow them to 

learn from novel situations and adjust their behaviour accordingly. However, these systems are 

not without their own constraints. For instance, they may require significantly more computational 

resources to operate effectively, analogous to a human needing more mental or physical energy to 

perform a task. And when those resources are limited, they may perform sub-optimally – 

becoming unreliable in the manner or a fatigued, distracted or stressed human being. Additionally, 

such systems may struggle when faced with situations that drastically deviate from their training 

environments, just as human beings may struggle when faced with completely unfamiliar 

scenarios. Hence, despite such algorithmic advances, these systems still face challenges in 

consistently manifesting their skills in a reliable manner, especially in dynamic or unexpected 

environments. 

Fourth dimension of difference, adaptability. We come at last to what we have called the 

hallmark of possessing a human-like skill or ‘intelligent capacity’ – the agent’s ability to adapt 

their behaviour to meet new or challenging conditions by way of leveraging their reservoir of 

previous experiences and their advanced cognitive faculties. For instance, consider a person who 

is relatively skilled in driving a car. This individual can typically adapt their behaviour, with 

minimal practice and corrective feedback, to a spectrum of vehicles, variable road circumstances, 

and even disparate traffic regulations (such as driving on the right or left). This inherent versatility 

paves the way for swift and efficient adaptation, distinguishing humans from numerous other 

species. 
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By contrast and as we have already noted, less advanced RL agents frequently struggle 

with the task of generalizing their acquired abilities to different environments or circumstances, 

even when those abilities involve a relatively complex suite of responses often associated with 

human skills. Hence, they can achieve remarkable proficiency within a specific scope, but their 

expertise is commonly confined to their training goals. In this, their abilities are more like habits 

than skills.  

However, more advanced RL systems are starting to bridge this gap. These sophisticated 

models, often equipped with transfer learning capabilities, show promise in their ability to apply 

knowledge and skills from one domain to another. Of course, this process often requires additional 

training or fine-tuning in the new context; and they are still far from matching the natural 

flexibility and adaptability of human cognition. 

In sum, while less advanced RL agents have clear limitations in this dimension, more 

advanced systems are making strides towards greater adaptability. Nevertheless, the natural 

adaptability inherent in humans remains a challenging benchmark for artificial intelligence 

systems to meet. The quest for truly versatile and adaptable artificial intelligence continues to be 

a fundamental challenge in the field. 

 

6. From artificial dispositions to ‘responsible agents’?  

With the advent of more advanced AI systems, potentially operating with greater and 

greater autonomy in high-stakes (potentially harm-causing) settings, theorists have become 

increasingly concerned with the question of whether such systems might be or become genuinely 

responsible for what they do – i.e., responsible in the manner of ordinary human agents. This is a 

complex question, largely driven by a concern with so-called ‘responsibility gaps’ (Matthias 2004; 

Purves et al, 2015; Himmelreich 2019; Gunkel, 2020; Santoni and Giulio Mecacci, 2021; Tigard 

2021).  

A responsibility gap is purported to occur when: (a) a system is operating as a self-standing 

intentional agent, making choices for which a typical human agent would be held responsible, but 

is seemingly not a fitting target of our responsibility practices; and (b) no human agent is suitably 

connected to the system’s choices to be responsible for them either.5 ‘Responsibility gaps’ are bad 

news, on most theorists’ views, because they undermine the very terms in which many of our 

 
5 At best, human agents would be responsible for designing and/or delegating control to the system in 
question, but that is not the same as having direct agential responsibility for the choices made.  
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social arrangements are structured – viz. the fact that we are able to hold one another to account 

(whether legally or morally) for harm-causing acts and omissions. Of course, existing social 

arrangements do incorporate agents that are not responsible for what they do (e.g. young children, 

the deeply cognitively disabled). But these arrangements ensure that such agents are excluded 

from so-called ‘positions of responsibility’ – paradigmatically, high-stakes (potentially harm-

causing) settings in which they are allowed to operate autonomously.  

How do theorists respond to the threat of responsibility gap caused by AI systems? For 

those who are pessimistic about the prospects of artificial responsible agency, there are essentially 

two choices canvassed in the literature: (a) simply resist the allure of deploying autonomous AI 

systems in these settings (Sharkey 2020; Johnson and Miller 2008); or (b) deploy such systems, 

but acknowledge that significant changes will be required in our accountability practices to cope 

with the resultant responsibility gaps when things go wrong (for instance, extend the depth and 

reach of strict liability law, penalizing those who develop and deploy AI systems for actions and 

omissions that are not directly sourced in their own agency) (Matthias 2004).  

Others are more optimistic about the prospect of designing systems that are functionally 

equivalent to responsible human agents (e.g., List 2021): this means, not only in their operation 

(the range of considerations to which they are sensitive), but also in being an appropriate or fitting 

target of our accountability practices. If so, then responsibility gaps could be avoided more 

directly. But serious questions remain as to what such functional equivalence would really entail.   

Our own contribution to this debate has been comparatively modest and indirect. Instead 

of confronting the problem of artificial responsible agency head-on (where this generally implies 

having an appropriate sensitivity to moral concerns), we have focused on a more basic 

phenomenon that we hope may shed some light on what such agency might entail. This more basic 

phenomenon concerns the instantiation of agent-centered abilities, and specifically those that 

share much in common with human-like skills.  

As we have argued, skills constitute ‘intelligent’ capacities in so far as they are relatively 

flexible and adaptive as compared with mere habits.  For human agents, this implies that they only 

operate in a skilled way insofar as they are generally prepared to adjust how they behave to suit 

the situations they encounter, whether that be ex ante (by way of anticipating specific problems) 

or ex post (by way of responding to corrective feedback). But what does this have to do with 

‘responsible agency’? Ryle suggests, and we follow him in this, that skilled human agents are 

responsible for what they do in one straightforward sense of that term. They are able to take 

responsibility for shaping and regulating their own behaviour in skill-relevant ways. As Ryle says,  
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“To be intelligent is not merely to satisfy criteria, but to apply them; to regulate one's 

actions and not merely to be well-regulated. A person's performance is described as 

careful or skilful, if in his operations he is ready to detect and correct lapses, to repeat 

and improve upon successes, to profit from the examples of others and so forth. He applies 

criteria in performing critically, that is, in trying to get things right” – CoM, pp. 28-29 

  

In Ryle’s conception, skilled agents are not simply sensitive to features of situations that 

bear on how well or badly they are performing in skill relevant ways, they have some 

understanding – indeed, as they become more skilled, a better understanding –of what those 

features are. In short, they are becoming sensitized to those features as reasons for governing their 

behaviour one way or the other. And this in turn explains the impressively open-ended adaptability 

of skilled behaviour in the human sense. For in becoming reasons-responsive, such agents are able 

to tune into features of novel circumstances as potentially reason-giving; they are able to profit 

from the reason-giving examples and feedback of others; and they are even able to explain what 

they are doing, whether successful or not, in reason-giving ways, thereby becoming explicitly 

answerable for what they do.   

To our mind, it is an open question whether RL-systems that approach the natural 

adaptivity of human skilled behaviour have what it takes to be reasons-responsive – and thus 

responsible for their behaviour – in this sense. On one hand, with simpler RL systems it’s certainly 

possible that they can demonstrate sensitivity to their environment and actions without truly 

understanding the reasons behind their responses. For instance, an AI trained to play a game might 

improve its performance by learning from its mistakes and adapting its strategy. But does it 

understand the reason why one strategy works better than another, or is it merely optimizing its 

actions based on the rewards it receives? On the other hand, with more complex systems, the 

answer may be less clear. At what point does their increasingly sophisticated sensitivity shade into 

genuine reasons-responsiveness? Is this a difference of degree or a difference of kind? We think 

it is plausible that we are talking here of a difference of degree; or, rather, that increasing 

sensitivity of the requisite complexity will necessitate AI becoming truly reasons-responsive, 

capable of conceptualizing (i.e., explicitly representing) as well as processing the reasons for its 

actions. This would imply a level of understanding and cognition that goes beyond simple reaction 

to stimuli. If we aim for AI systems to be accountable for their predictions or decisions, they must 

exhibit this capacity for reasons-responsiveness. This is crucial for our ability to trust them. The 

field of explainable AI is dedicated to this pursuit, seeking to create AI systems that can provide 

understandable explanations for their predictions and decisions (Gunning et al., 2019; Miller, 
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2019; Günther and Kasirzadeh, 2021).  

In our estimation, if the skilled RL -systems of the future have what it takes to be reasons-

responsive, then ipso facto they count as ‘responsible agents’. For they are responsible in the most 

basic sense of that term: they shape and regulate their behaviour according to their understanding 

of how they ought to behave in order to perform successfully; they are able to provide reasons for 

their behaviour; and they are able to understand corrective feedback (whether from the 

environment or from others) as sensitizing them various reasons for their past failures (i.e., skill-

relevant features of the situation they ought to have taken into account, but didn’t).  

But this is not yet to say that they count as morally responsible agents. Admittedly, when 

theorists talk about ‘responsible agents’, this is often what they have in mind – agents that are 

responsive to specifically moral reasons, considerations that bear on whether acts and judgements 

are morally acceptable or unacceptable, morally better or worse. Still, if skilled RL systems have 

what it takes to be reasons-responsive, we are one step closer to genuine moral agency. For, on 

many compatibilist views, it is (moral) reasons-responsiveness that lies at the core of such agency. 

So this leads to another set of open questions: could the skilled RL-systems of the future 

become reasons-responsive in this more specialized sense (cf. Purves et al, 2015)? What would it 

take to sensitize such systems to moral considerations, where these provide added constraints on 

skilled performance.? Are there grounds for thinking that this cannot be accomplished in precisely 

the same way that AI systems come to have intelligent capacities in the first place – for instance, 

by the provision of appropriate corrective feedback in the face of morally inadequate behaviour? 

Or is there something special about human beings – for instance, perhaps our affective nature – 

that makes us peculiarly sensitizable to moral considerations that cannot be functionally mimicked 

or replaced in AI systems? 

A final range of open questions follows from this. Suppose future RL-systems are 

sensitizable in adequate measure to moral considerations, constraining their behaviour in morally 

acceptable ways. Does this make them fit and proper targets of our accountability practices? 

Would the operation of such systems in high-stakes (potentially harm causing) settings leave us 

with an unacceptable ‘responsibility gap’ when things go wrong? Or is there some meaningful 

way in which we could hold such systems to account? 

In our estimation, such questions cannot be addressed without some consideration of what 

our accountability practices are for; and, of course, this is a much-debated topic. But there is one 

tradition of thought that gibes rather well with their playing a critical role in sensitizing AI systems 

to the relevant moral considerations – viz., providing the kind of corrective feedback that enables 
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AI systems to improve their performance going forward.6  Now many will argue this does not go 

to the heart of our accountability practices: their raison d’etre is not to improve moral performance, 

but rather to punish offenders or at least to instill in them some pained recognition of the harm 

they have caused, prerequisite – or so it is thought – for deepening the offenders’ moral 

understanding, as well as assuaging the victim’s own pain and suffering (Danaher, 2016). 

Again, there is much to address in these concerns; and in so far as they seem compelling, 

there is little prospect of the AI systems we envision in this paper being suitable targets of our 

accountability practices. For these seemingly all depend on the affective dimension of our moral 

lives – in particular, that human beings suffer, or can be made to suffer, as a morally fitting 

consequence of (culpably) harming others. But, again, it seems worth asking why do we care so 

much that wrongdoers suffer in consequence of the wrong they do? Could there be some 

functional rationale to this sentiment – perhaps, for instance, that we see wrongdoers as harbouring 

a motivational deficit in their dealings with others (e.g., a lack of care) that we hope to rectify by 

making their wrongdoing affectively salient to them? If so, then it seems that, in dealing with AI 

systems, we could abandon this dimension of our accountability practices without any functional 

loss. Is that sufficient to assuage the depth of our normative concern with ‘responsibility gaps’ 

that may result from the use of (suitably sophisticated) AI systems in high-stakes settings? 

Undoubtedly not. But it may help bring those concerns into sharper focus. 
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