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Abstract 
 

For identification of suitable therapeutic targets (enzymes/transporters) in 

intermediary metabolism of pathological and parasitic cells, the capacity of the 

target to govern the metabolic pathway flux should be considered.  Metabolic 

Control Analysis (MCA) is a biochemical framework that enables to quantitate 

the degree of control that the activity of a target i (ai) exerts on the pathway flux 

(J), defined as flux control coefficient (CJai).  Different experimental strategies 

are being used to determine the CJai of individual pathway steps, and 

consequently, the distribution of control in the metabolic pathway.  By applying 

MCA, the components with the highest control on flux can be identified, which 

are the targets with the highest therapeutic potential.  In this chapter we will 

review the MCA theoretical principles and experimental approaches to 

determine the CJai in a range of metabolic pathways such as central carbon and 

antioxidant metabolism, with potential application to other pathways of diverse 

human diseases. 

 

Key words: Drug target, Metabolic Control Analysis, flux control coefficient, 

intermediary metabolism, pathway modeling. 
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1. Introduction 
 

Targeting of metabolic pathways has emerged as an alternative approach 

with potential for drug discovery in order to find novel therapeutic strategies 

against a diversity of human diseases such as parasitic ones (Mukherjee et al 

2016; Muller and Hemphill, 2016; de Rycker et al 2018; Raj et al 2020; Tyagi et 

al 2019), immune disorders (Castegna et al 2020), and cancer (Galluzzi et al 

2013; Moreno-Sánchez et al 2010; 2014; Kaambre et al 2013). Identification of 

suitable metabolic targets among the multitude of enzymes and transporters 

that constitute the cell metabolic networks, although an apparently simple task, 

it is a very challenging endeavor.  

In general, the most divergent enzymes of intermediary metabolism between 

normal versus parasitic or pathological cells have been proposed as drug 

targets.  For instance, pathway enzymes that are only present in parasites or 

that significantly diverge from those in the human cells. Specific examples are 

some enzymes of glycolysis (Muller et al 2012; Saavedra et al 2019; Michels et 

al 2021), the antioxidant defense in trypanosomatids (Saavedra et al 2019; 

Talevi et al 2019) or nucleotide synthesis (Valente et al 2019).  For human 

diseases with the highest death tolls such as cancer, identification of drug 

targets becomes even more difficult due to the similarity of the enzymes in the 

normal versus pathological cells.  Thus, differences in enzyme expression 

levels, isoform expression, and pathway regulation have been used to propose 

novel metabolic candidates for drug targeting (Marin-Hernandez et al 2009; 

2014; Sukjoi et al 2021).   

Experimental strategies involving gene knockout or knockdown and more 

recently gene editing through CRISPR-CAS and RNAi libraries have been used 

to identify drug targets (reviewed in Wyatt et al 2011; Soares-Medeiros et al 

2017; de Rycker et al 2018; Kurata et al 2018; Schuster et al 2019).  In general, 

these strategies drastically lower the level of a protein, leading to the conclusion 

that the intervened gene is essential for cell survival or for a specific 

physiological function and therefore the gene product becomes validated as a 

suitable drug target.  However, such large decreases in the content and activity 
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of the targeted protein can be far from being achieved by pharmacological 

methods.   

For these reasons, it seems required to include additional criteria to narrow 

the drug target options and identify the most convenient targets before 

embarking on a process of drug design or to screen a library of compounds.  It 

is in this context that Metabolic Control Analysis (MCA), a biochemical 

framework to analyze the control of metabolism quantitatively, can be a 

valuable tool to refine drug target selection with the aim to improve existing 

therapeutic strategies. 

 

2. Basic principles of Metabolic Control Analysis 
 

A criterion for drug target selection in the intermediary metabolism networks 

can be based on the capacity that the target (enzyme or transporter) has to 

influence the flux of the metabolic pathway of interest. A quantitative form to 

assess it is through the MCA fundamentals (Fell 1997; Nelson and Cox 2017; 

Moreno-Sánchez et al 2008b; Saavedra et al 2019).  MCA was developed 

independently by two groups, Kacser and Burns in Edinburgh, Scotland (Kacser 

and Burns, 1973), and Heinrich and Rapoport in Berlin, Germany (Heinrich and 

Rapoport, 1974).  MCA is a theoretical framework that considers metabolic 

processes as a continuous flow in steady state of matter and energy, in which 

each component of the metabolic pathway exerts some control over the 

pathway flux (Fell, 1997; Nelson and Cox 2017). 

Here it is necessary to distinguish the concepts of control and regulation, 

frequently found in biochemistry textbooks and the scientific literature as 

interchangeable, but that in MCA, like in engineering, have very different 

meanings.  Regulation refers to the molecular mechanisms by which a cell 

maintains its homeostasis, (i.e. to maintain a physiological variable at constant 

level), to be able to change to a new metabolic status when it is exposed to a 

different environmental condition.  Within these mechanisms are those of 

protein covalent modification, compartmentalization, protein synthesis and 

degradation and allosterism that can modify the activity of a preexisting 
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enzyme; or transcriptional regulation to up or down regulate the expression of 

specific enzymes (Newsholme and Start, 1973).   

In contrast, Control is the capacity of an enzyme, transporter or physiological 

process to affect the pathway flux under a defined metabolic steady state (Fell, 

1997; Nelson and Cox, 2017; Moreno-Sánchez et al 2008b, Saavedra et al 

2019).  To illustrate this, ATP phosphofructokinase (PFK I) and pyruvate kinase 

(PyK) are highly regulated glycolytic enzymes able to drastically change the 

metabolic fluxes in different metabolic states to avoid futile cycles, e.g. during 

feed and starvation, which concur with changes of high and low blood glucose 

concentrations and thus with glycolysis and gluconeogenesis activation, 

respectively.  Once a new stable metabolic steady state is reached, these 

enzymes do not necessarily exert significant control on the pathway flux any 

longer.  As discussed below, glucose transport has significant control on stable 

steady state glycolysis fluxes of several cell models, whereas PFK-1 and PyK 

have low or negligible control (reviewed in Moreno-Sánchez et al 2008b; 

Saavedra et al 2019). 

MCA is based on the following basic considerations: 

1) The metabolic pathway must be at a stable steady state or quasi steady 

state.  In order to achieve that condition, the system must be open and the 

initial substrates and final products have to be kept at constant levels.  

2) At steady state, the rate (v) of each pathway component (enzyme, 

transporter) in a linear metabolic pathway is the same, and it is similar to the 

rate or production of the pathway’s end product.  Usually the rate of the 

pathway enzymes under metabolic steady state is lower than their maximal 

activities (Vmax); hence, commonly there is a generalized excess of enzyme 

activity capacity in comparison to the pathway flux values. 

3) Proper stoichiometric relationships of the pathway´s substrates and end 

products have to be considered for the analysis of flux control distribution.  

This is, for example, relevant in branched pathways where unequal input and 

output of metabolic intermediates may occur. 

4) Parameters are quantities that can be changed independently, and they 

typically remain constant during the evolution of the system toward its steady 

state, for example, kinetic constants, enzyme activity (Vmax). 
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5) Variables are quantities determined by the system, and they are time-

dependent before reaching a given steady state.  Variables are, for example, 

metabolic flux, metabolite concentration, enzyme or transport rates (v) or 

rates of any other physiological process (pathway branches). 

 

To determine the degree of influence that a perturbation in a parameter (e.g. 

enzyme activity) has over a pathway variable at steady-state (e.g. pathway 

flux), the MCA theory relies on three types of coefficients (control, elasticity and 

response) and two theorems that relate them (summation and connectivity). 

These constitute the fundamentals of MCA. 

 
2.1. Control coefficients 
 

The control coefficient quantifies the impact that a perturbation in the 

activity of an enzyme has on the pathway steady-state response, either on its 

flux (flux control coefficient) or on the concentration of a pathway intermediate 

metabolite (concentration control coefficient).  

The flux control coefficient quantifies how much the pathway flux 

changes when the activity of an enzyme is changed; this coefficient is 

mathematically represented as: 

 

𝐶!!
" =

𝛿𝐽
𝛿𝑎#

	'
𝑎#$
𝐽$
(……(𝐸𝑞	1) 

 

where J is the pathway flux at steady state and ai is the activity a of enzyme i. 

By multiplying by the scalar factor aio/Jo which corresponds to the ratio of the 

enzyme activity and pathway flux in the unperturbed (control) state, the CJai 

becomes dimensionless and independent of the units used.  

 

On the other hand, the concentration control coefficient quantifies how 

much the concentration of a pathway intermediate metabolite changes when the 

activity of an enzyme is changed, and this coefficient is mathematically defined 

by:  
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𝐶!!
% =

𝛿𝑋
𝛿𝑎#

	'
𝑎#$
𝑋$
(……(𝐸𝑞	2) 

 

where X and Xo are any pathway intermediate metabolite in the perturbed and 

unperturbed states, respectively.  

From here, the chapter will be focus on the experimental assessment 

and analysis of the flux control coefficients because it concerns to drug target 

validation.  For further information on concentration control coefficients and their 

theorems, which are relevant for biotechnological purposes, the reader is 

referred to the book by Fell (1997).  

 

2.2. Summation theorem 
 

Kacser and Burns (1979) demonstrated that, regardless of the complexity 

of the kinetic mechanisms governing each enzymatic (and transport) 

component from a metabolic pathway, the sum of their control coefficients 

equals to unity. This relationship is named as the summation theorem and is 

expressed in equation 3 for pathway flux:  

1 𝐶!!
"

&

#'(
= 1……(𝐸𝑞	3) 

 

This summation theorem reveals some important properties of CJai listed below: 

- If one enzyme activity is changed by a substantial amount, its CJai is changed 

to a new value and the CJai of all other enzymes must have changed, so that 

the new sum, again, equals 1.  

- Some of the individual CJai will be “negligibly small”, however the sum of 

these “small” CJai may not be negligible. 

- The larger the number of enzymes included in the pathway, the smaller the 

average CJai for all enzymes. 

- Typical values of CJai are between 0 and 1 (0< CJai <1).  However, the CJai 

are negative for enzymes that branch off from the main pathway and 
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withdraw metabolites, whereas the CJai will be positive for branches that 

supply intermediates to the main pathway.   

 

2.3 Flux control coefficient estimation 
 

In theory, CJai can be determined by measuring the infinitesimal changes 

of the flux at steady state induced by an infinitesimal change in the activity of an 

enzyme.  Thus, the CJai can be estimated from the slope of the tangent line to 

the activity of the enzyme in the unperturbed steady state of interest (the basal 

value of activity or 100% activity).  By analyzing the enzyme behavior shown in 

Figure 1, it is clear that inhibition of the activity of an enzyme with a CJai = 0.5 

(panel A) induces larger decreases in flux than inhibition of an other one with 

CJai = 0.1 (panel B).  Furthermore, 50% inhibition of the activity of enzyme of 

panel A will lead almost to total control on the pathway flux (CJai from 0.5 to 0.7), 

whereas the same inhibition of the enzyme in panel B will gain control, but still 

not meaningful (CJai from 0.1 to 0.2).  Hence, it becomes evident that the best 

therapeutic targets are enzymes or transporters that have a high CJai (> 0.5) 

under physiological conditions. 

Figure 1 also shows that at enzyme activity inhibitions > 90% (orange 

lines) there is no difference on the pathway flux reduction amongst high and low 

flux controlling enzymes, both reaching similar CJai of 0.9.  It should be realized 

that it is in that range of decreased expression and activity that drug targets are 

validated as essential by genetic methods. 
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Figure 1. Direct experimental determination of the flux control coefficient 
(CJai)  

A) The plot represents an enzyme that has a CJai=0.5 at physiological 
conditions (100% of enzyme activity and 100% of flux). As the activity of the 
enzyme is slightly inhibited, it gains significant control on the pathway flux. B) 
The plot represents an enzyme with a CJai=0.1 at physiological conditions. The 
same inhibition percentages as used in panel A were used for this model and 
the respective CJai is presented for each condition. For this low controlling 
enzyme to gain a control of 0.5 over the pathway flux, its inhibition must be 
greater than 90% (pink dot line). The plot was obtained by simulations using 
equation 9 considering n=1, Ji=0 and a CJai= 0.5 or 0.1, and the software 
Microcal Origin v. 8.0. The straight dotted lines are the derivatives at the point 
indicated by the arrows. 
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In practice, experimental approaches using genetic engineering 

commonly induce large changes in both enzyme activity and pathway flux (Fell 

1997) to visualize “phenotype changes”.  To circumvent this problem, a 

theoretical framework was created that allows accurate estimation of the control 

coefficients from the experimental data (Small and Kacser 1993a, b).  In 

accordance with this theoretical framework, the CJai in a system with large 

changes of enzyme activity in a linear metabolic pathway is defined as follows: 

 

𝐶!!"
"" =

∆ 𝐽 𝐽)⁄
∆𝑎# 𝑎#)⁄ 	……(𝐸𝑞	4) 

 

where DJ is the change of the flux from the original steady state (J0) to the 

resulting one after the enzyme activity has changed by a factor r (Jr).  Hence 

DJ= Jr - J0, and Dai is the change of the enzyme activity from the original state 

(ai0) to the new enzyme activity (air=r*ai0), hence (Dai = air - ai0) (Fell 1997; Small 

and Kacser 1993a).  Rearranging equation 4, we have the following: 

 

𝐶!!"
"" =

(𝐽) − 𝐽$) 𝐽)⁄
(𝑟𝑎#$ − 𝑎#$) 𝑟𝑎#$⁄ =

1 − (𝐽$ 𝐽)⁄ )
(𝑟 − 1) 𝑟⁄ 	…… (𝐸𝑞	5) 

 

defining the amplification factor (f) as the ratio of the new flux (Jr) to the original 

one (J0) (f = Jr /J0) and rearranging equation 5, we obtain: 

 

𝑓 =
1

1 − 𝑟 − 1𝑟 	𝐶!!
"
……(𝐸𝑞	6) 

 

This last function shows that by increasing the activity of a single 

enzyme, the effect on the pathway flux will be low when its CJai is below 0.5 

(Fig. 2) (Fell 1997).  For example, if a 10-times increase (r=10) of enzyme 

activity is attained, and the enzyme has a CJai = 0.2, then the flux only increases 

25%.  On the other hand, decrease of enzyme activity (e.g., by a drug) always 

leads to a drop in the pathway flux which depends on the enzyme’s CJai.  For 
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example, a 10-times inhibition (r=0.1) of an enzyme with CJai = 0.2, induces a 

65% decrease of the pathway flux, but lower inhibition levels do not relevantly 

affect the flux.  The most interesting drug targets are enzymes with CJai higher 

than 0.5, that require less inhibition degrees (r=0.5) to observe flux inhibition. 

 
 

Figure 2. Relative change of flux (f) for large changes in enzyme activity in 
a linear pathway  

The plot was obtained by simulations with equation 6 using the software 
Microcal Origin v. 8.0. The degree of amplification, r, meaning overexpression 
or genetic down-regulation is shown at each curve. 
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2.3.1 Relationship between flux and enzyme activity  
 

There is no way to predict the behavior of the flux of a metabolic pathway as a 

function of a unique enzyme activity and therefore it is not possible to propose a 

general equation that describes this behavior.  However, it has been empirically 

observed that the pathway flux shows a hyperbolic behavior as a function of the 

activity of the pathway enzymes, especially when the pathway is in vitro 

reconstituted (Gellerich et al 1990; Fell 1997; González-Chávez et al 2015 and 

2019).  Therefore, the following equation has been proposed (Gellerich et al 

1990): 

 

𝐽 =
∝ 	𝑎#
𝛽 +	𝑎#

…… (𝐸𝑞	7) 

 

where a and β are empiric constants.  In a more general way, equation 7 can 

be rewritten as follows: 

 

𝐽 =
∝ 	𝑎#&

𝛽 +	𝑎#&
+ 𝐽# ……(𝐸𝑞	8) 

 

where Ji represents an initial flux that persists even when the activity of the 

enzyme (ai) is zero and “n” is an empirical constant which gives a sigmoidal 

behavior (Gellerich et al 1990).  A more useful form of equation 8 is obtained 

when the constants a and β are expressed in terms of the control coefficient at 

the basal condition of 100% of flux and 100% of enzyme activity (Eq. 9) 

(Gellerich et al 1990; Rodríguez-Enríquez et al 2000): 

 

𝐽 =
𝑛	(100 − 𝐽#)*	𝑎#&

100&+(	𝐶!!"
"" + B𝑛(100 − 𝐽#) − 100	𝐶!!"

"" C𝑎#&
……(𝐸𝑞	9) 
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The relationship between the flux and the enzyme activity expressed in 

Eq. 9 is graphically represented in Fig. 3.  Again, almost linear decreases in flux 

are attained by inhibition of enzymes with CJai greater than 0.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Theoretical relationship between enzyme activity and flux.  

A) The plot represents a case when the relationship between enzyme activity 
and flux is sigmoidal (n>1 in Eq. 9) and a residual flux is obtained despite a null 
activity (Ji). For illustrative purpose, we use a model with n=2 and Ji=10.  B) 
The plot represents the most used fitting model where the relationship between 
activity and flux is hyperbolic (n=1, Ji=0). Both plots were obtained from 
simulations using equation 9 and the software Microcal Origin v. 8.0.  The 
values of control coefficients (CJai) are those of the slope of the tangent line at 
the basal condition of 100% of pathway flux and 100% of enzyme activity 
(marked with the dotted line).  
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2.4 Experimental determination of the control coefficient 
 

In order to experimentally determine the CJai it is necessary to modify the 

activity of a single enzyme at a time (without affecting the rest of the pathway 

enzymes), while determining the metabolic pathway flux.  To achieve such 

condition, several experimental strategies have been successfully carried out: 

enzyme titrations with specific inhibitors, in vitro reconstitution of the pathway or 

pathway segments and genetic manipulation of enzyme expression in cells.  

 

2.4.1 Enzyme titration with inhibitors  
 

Titration of enzyme activity by using inhibitors to estimate control coefficients is 

restricted by the degree of specificity that inhibitors have.  The availability of 

specific, potent and permeable mitochondrial inhibitors has made it possible to 

use this approach to determine the CJai of several complexes and enzymes of 

oxidative phosphorylation (OxPhos) in diverse organs.  When the flux of ATP 

synthesis is titrated by adding increasing concentrations of each specific 

inhibitor, plots are generated in which the enzyme activity is progressively 

diminished at increasing inhibitor concentration (Moreno-Sánchez 2008b) and 

the CJai can be estimated from the initial slope (graphical determination).   

However, the titration curves are in general sigmoidal, complicating the 

calculus of the initial slope by graphical determination, which can lead to 

overestimation of CJai values (Gellerich et al 1990).  For this reason, equations 

for non-linear curve fitting have been developed depending on the type of 

inhibitor used (Moreno-Sánchez 2008b).  The values of CJai estimated for 

OxPhos depend on experimental conditions (e.g., whole cells, isolated 

mitochondria), the tissue and the equation used for each inhibitor.  These 

considerations have been appropriately reviewed previously (Moreno-Sánchez 

2008b).   

Two examples that use a variation of equation 9 are discussed below. 
Antimycin A (inhibitor of cytochrome bc1 in complex III) and 

carboxyatractyloside (inhibitor of the adenine nucleotide translocator) are 

tightly-bound inhibitors that were used to estimate CJai over total mitochondrial 
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respiration in isolated rat liver mitochondria (Gellerich et al 1990).  The non-

linear curve fitting of titrations with these inhibitors allowed to determine the 

inhibitor affinity constants, Kd = 7.8 pM and Kd = 0.86 nM for antimycin A and 

carboxyatractyloside, respectively.  The estimated CJai was 0.2 for complex III 

and 0.34 for the adenine nucleotide translocator.   

The same experimental approach and equation were used to determine 

the CJai of mitochondrial components in OxPhos of hepatoma cells (Rodríguez-

Enríquez et al 2000).  Specific mitochondrial inhibitors were used to estimate 

the CJai of NADH dehydrogenase inhibited by rotenone (CJai=0.3), bc1 

cytochrome complex inhibited by antimycin A (CJai=0.23), cytochrome c oxidase 

inhibited by cyanide (CJai=0.04), ATP synthase inhibited by oligomycin 

(CJai=0.02), ATP/ADP translocase inhibited by carboxyatractyloside (CJai=0.3) 

and pyruvate carrier inhibited by 3-hydroxycinnamate (CJai=0.026).  Thus, 

control of OxPhos relied mainly on three reactions.  Applying the summation 

theorem (Eq. 3) to this example, the processes studied control about 0.92 of 

OxPhos, so all other reactions involved in OxPhos are responsible for the 

remaining 0.08; hence the transport of substrates (pyruvate or phosphate 

carriers), dehydrogenases (succinate dehydrogenase) and ATP synthase, exert 

negligible control over the OxPhos flux. 

 

2.4.2 In vitro pathway reconstitution 
 

This approach is based on the in vitro reconstitution of segments of the 

metabolic pathway using purified enzymes.  The in vitro pathway reconstitution 

must simulate as much and close as possible the in vivo conditions of the 

pathway.  This should be carried out regarding (1) the ratio of enzyme activities 

present in the model under study, for which their actual Vmax values within the 

cell have to be determined at the physiological intracellular high K+ medium, pH 

and growth temperature of the biological model used; and (2) the physiological 

concentrations of substrates and coenzymes.  

The titration curve of enzyme activity versus pathway flux (Fig. 1) has to 

be constructed by varying the activity of one enzyme at a time while keeping the 

rest of the system (partner enzymes, substrates, and cofactors) unaltered and in 
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parallel determining changes in the pathway flux.  A limitation of these ex vivo 

experiments is that only a quasi-steady state is attained because there is net 

substrate consumption and product accumulation.  However, by using short 

times of the reaction system and adding saturating substrate concentrations 

these problems can be circumvented.   

This strategy was first applied for segments of glycolysis using 

mammalian enzymes due to the availability of commercial proteins or methods 

for their purification. Torres et al (1986; 1989) used pure enzymes added to cell 

extracts or in a cell free system, respectively, to determine the CJai for the first 

glycolytic segment, finding that hexokinase (HK) and PFK-1 have the highest 

CJai.  In these studies the summation theorem was demonstrated.  On the other 

hand, Giersch (1995) reconstituted the final pathway segment of glycolysis with 

commercial pure enzymes, where PyK was the controlling enzyme.   

More recently, pathway reconstitution was performed for the 

pyrophosphate-dependent glycolysis of the intestinal parasitic protist 

Entamoeba histolytica, which does not have the typical ATP dependent PFK-1 

but an inorganic pyrophosphate-dependent enzyme (PPi-PFK) and, instead of 

PyK, a PPi-dependent pyruvate phosphate dikinase (PPDK).  Both PPi-

dependent enzymes catalyze reversible reactions which lead to a different type 

of metabolic regulation of this pathway (Pineda et al 2015a; Saavedra et al 

2019).  Pathway reconstitution was carried out using recombinant purified E. 

histolytica enzymes of the segments of HK to triosephosphate isomerase and 

from phosphoglycerate mutase (PGAM) to PPDK.  It was found that HK and 

PGAM have the highest control of flux, with low control exerted by the PPi-

dependent enzymes, indicating that despite their large structural divergence to 

the human enzymes, they are no suitable drug targets from the metabolic point 

of view (Moreno-Sánchez et al 2008a).  In addition, the dataset of the amoebal 

pathway reconstitutions were also used for kinetic pathway modeling, which 

helped to unveil previously unknown inhibition of pathway intermediates on the 

glycolytic enzymes (Moreno-Sánchez et al 2008a) and also to improve other 

forms of pathway modeling by artificial neural networks (Lo-Thong et al 2020).  

Pathway reconstitution was also applied to the trypanothione-dependent 

peroxide detoxification system of Trypanosoma cruzi, the parasitic protist that is 

responsible for Chagas disease in Latin America and for which no adequate 
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drugs are yet available.  Trypanothione replaces glutathione as the main 

antioxidant system in the parasite and its entire peroxide detoxification 

machinery uses this metabolite as reductant (Fig. 4A).  For several decades, 

this pathway has attracted attention for therapeutic intervention against the 

parasitic disease (Olin-Sandoval et al 2010; Leroux and Krauth-Siegel 2016; 

Manta et al 2018; Saavedra et al 2019; Talevi et al 2019; Pineyro et al 2021).  

For pathway reconstitution, the recombinant enzymes trypanothione reductase 

(TryR), tryparedoxin (TXN) and tryparedoxin peroxidase (TXNPx) were used 

(González-Chávez et al 2015; González-Chávez et al 2020) (Fig. 4A).  In these 

studies a low control by TryR (a popular target for therapeutic intervention 

against trypanosomatids) was determined, while TXN and TXNPx have both a 

CJai of 1, therefore together producing a value of 2, in apparent conflict with the 

summation theorem.  However, this difference is caused by the involvement of 

TXN and TXNPx in two processes, reduction and oxidation (González-Chávez 

et al 2015), which contrasts with the situation for glycolytic enzymes in which 

each enzyme is involved in only one C-metabolite transformation.  

 

2.4.3 Manipulation of enzyme expression in cells 
 

Manipulation of enzyme expression in cells by genetic engineering is a 

very useful tool for direct estimation of control coefficients (González-Chávez et 

al 2020), since in principle, just one enzyme is modified at the time.  However, it 

is important to determine the actual level of enzyme activity (not just protein 

level resulting from altered gene expression).  Furthermore, it is mandatory to 

determine the activity of the other enzymes that participate in the pathway to 

ascertain that they are not changed by undesirable or pleiotropic effects by the 

genetic modification of the single, targeted enzyme. Pleiotropic effects are the 

main limitations of the strategy since cells are open systems and can have 

responses to the genetic modification beyond the control of the experimenter; 

thus, a detailed biochemical characterization of each clone of cells expressing 

different levels of each pathway enzyme has to be performed for proper MCA 

application.      
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One of the first studies where this strategy was applied using traditional 

genetics was done for the arginine pathway in the fungus Neurospora crassa 

(Flint et al 1981), where argininosuccinate synthetase was found to be the main 

controlling enzyme. For additional examples about other metabolic routes in 

different cell systems refer to Moreno-Sánchez et al (2008b).  Downregulation 

by RNAi of the activities of HK, PFK, PyK, PGAM and enolase was performed in 

the glycolytic pathway of Trypanosoma brucei, the parasite responsible for 

sleeping sickness in sub-Saharan Africa.  The study revealed that the first three 

enzymes have low flux control due to their overcapacity, as was also predicted 

by kinetic modeling (Albert et al 2005).  In fact, the glucose transporter 

accounted for 40% of the flux control.  

Modulation of protein expression was recently applied in the 

trypanothione synthesis and trypanothione-dependent antioxidant system of T. 

cruzi (González-Chávez et al 2019), where the expression of TryR and TXN of 

the peroxide detoxification system was modulated as well as that of two 

enzymes of the trypanothione synthesis pathway: g-glutamylcysteine synthetase 

(gECS) and trypanothione synthetase (TryS) (Fig. 4A).  It was demonstrated 

that gECS has a CJai of 0.69 in the trypanothione synthesis flux (Fig. 4B), while 

TryS has at most a CJai of 0.3.  Furthermore, for the peroxide detoxification flux, 

TryR showed again a low CJai of 0.15 (Fig. 4C), whereas TXN showed the 

highest CJai of 0.73 (Fig. 4D). The latter two CJai values were in agreement to 

those found by pathway reconstitution (see above, section 2.4.2) and by kinetic 

modeling as described later (section 4).  
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Figure 4. Estimation of the control coefficient by enzyme overexpression  
A) Trypanosoma cruzi antioxidant pathway, the overexpressed proteins were g-
glutamylcysteine synthetase (gECS), trypanothione reductase (TryR) and 
tryparedoxin (TXN).  For experimental determination of CJai, overexpressing 
clones with different levels of activity (low, medium, and high) were used and 
their effect on pathway fluxes was evaluated for B) gECS activity and its effect 
on T(SH)2 synthesis; C) TryR and D) TXN activities and their effect on the 
hydroperoxide reduction flux. Dotted lines are the tangent to the 100% values 
(WT condition).  Data from panels B, C and D were taken from González-
Chávez et al (2019) and fitted to equation 9 (n=1). The estimated CJai with the 
non-linear curve fit (using Microcal Origin v. 8.0) were consistent with values 
previously reported (Olin-Sandoval et al. 2012; González-Chávez et al 2019). 
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3. Elasticity coefficients 
 

The flux in a metabolic pathway is the result of the concerted reaction rates 

of all components that constitute the metabolic pathway.  Since the partial rate 

(v) of each individual pathway component is the same in a linear metabolic 

pathway under steady-state conditions, it can be assumed that the rates of all 

the individual components are similar to the rate of production of the pathway´s 

end product (pathway flux).  

On the other hand, every enzyme within the pathway is connected to its 

upstream and downstream “neighbor” enzymes through its substrates and 

products.  Further, it can be connected with “distant” enzymes or cellular 

processes through metabolic effectors such as inhibitors and activators 

produced by enzymes within the same pathway or from different pathways.  

Theoretically, a perturbation in the activity of any given enzyme in the 

pathway could affect the rate of reaction of the other pathway enzymes.  The 

transmission and amplification of this change will depend on the intrinsic 

properties of each enzyme (e.g., kinetic parameters) and on the concentration 

of the molecules participating in the enzyme-catalyzed reaction.  The elasticity 

coefficient quantifies this transmission response (Kacser 1983). 

The elasticity coefficients are properties of the individual enzymes or 

transporters and quantify how much their rate is modulated by a variable (e.g., 

substrates, products, internal inhibitors/activators, pH, temperature) (Fell 1997; 

Brand 1998; Moreno-Sánchez et al 2008b; Saavedra et al 2019).  The 

mathematical expression of the elasticity coefficient is: 
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where v is the rate of a reaction (or transport) and X a variable that modifies the 

rate.  Multiplication by Xio/vi0, which is the ligand concentration and rate in the 

unperturbed state, makes the coefficient dimensionless and thus independent of 

the units used.   
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The difference of the plots of enzyme rate versus substrate (or other 

ligand) concentration, typical of enzyme kinetic analyses using isolated 

enzymes, is that in the elasticity analysis the concentrations of ligands (pathway 

intermediates) are determined by the functioning of the entire metabolic 

pathway.  Moreover, in the in vitro kinetic analysis of enzymes usually (1) only 

one ligand at a time is varied whereas the other co-substrates are kept 

constant; and (2) experiments are performed in the absence of products or 

inhibitors (“initial rate conditions”).   

There are as many elasticity coefficients for each enzyme as there are 

substrates, products and effectors interacting with it.  For example, the rate of 

enzyme 1 (v1) in scheme 1, depends on three variables, the concentration of S1, 

S2 and S3.   

 

 
Scheme 1 

 

Hence, the elasticity coefficients of scheme 1 for E1 are: 
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There are two ways to estimate the elasticity coefficient of a component 

from a metabolic pathway.  (1) If the rate equation that describes the enzyme or 

transporter is known and it contains the variable to which the elasticity has to be 

calculated, the theoretical elasticity can be calculated from such equation; and 

(2) If the rate equation is not known, then the elasticity has to be experimentally 

estimated.  These methods are described in the next section.  

 

3.1 Estimation of the elasticity coefficient from the rate equation 
 

The elasticities are intrinsically linked to the enzyme or transporter 

kinetics and can be calculated by solving the differential equation of the kinetic 
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rate expression with respect to the variable or parameter of interest and 

subsequently interpolating the value of the steady-state concentration of the 

variable of interest (Groen et al 1986; Fell, 1997; Moreno-Sánchez et al 2008b).  

For example, if the enzyme of interest follows reversible Michaelis-Menten 

kinetics, the expression of elasticity is: 
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where the term G (gamma upper case) is the mass-action ratio which is defined 

as the ratio between the concentration of products and the concentration of 

substrates at steady state (G = [P]ss/[S]ss).  Keq is the equilibrium constant of the 

reaction (Keq = [P]eq/[S]eq).  When analyzing equation 11, it is evident that as 

the value of G gets closer to the equilibrium conditions (Keq), then the elasticity 

value increases, and as the enzyme becomes more saturated with substrate 

([S]/Ks increases), the value of elasticity decreases. This behavior is illustrated 

in Figure 5. 
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Figure 5. Variation of elasticity with respect to the disequilibrium ratio 
(G/Keq)  
The plot shows that the elasticity coefficient (evs) of an enzyme increases as the 
value of the mass-action ratio (G) approximates to the value of the equilibrium 
constant (Keq).  In this plot it is also observed that when the saturation of the 
enzyme ([S]/Ks) increases, the elasticity value decreases. The graph was 
obtained by simulations using equation 11 and the software Microcal Origin v. 
8.0 ([P]/Kp = 0.1 for all curves).    
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3.2 Estimation of the elasticity coefficient from the substrate saturation 
curves 
 

Direct in vitro measurement of elasticities is in theory difficult to accomplish 

since only one modulator has to be varied and the other molecules that affect 

the enzyme activity have to be kept constant and under steady-state conditions.  

If these conditions are met, then the elasticity coefficient can be estimated from 

the slope of the tangent line to the concentration of the variable at the steady 

state of interest, which is at the steady-state concentration of ligands in the cell 

(Fig. 6).  The elasticity coefficients are positive (evX >0) for those variables that 

increase the enzyme or transporter rate (substrate or activator), and they are 

negative (evX <0) for the variables or parameters that decrease the enzyme or 

transporter rates (product or inhibitor). 
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Figure 6. Estimation of elasticity coefficients from the saturation curve  
The plot represents an enzyme with substrate inhibition (v= (Vmax [S]) / 
(Ks(1+[S]/Kis) +[S](1+[S]/aKis)). The elasticity coefficient of an enzyme towards 
a substrate (or any other ligand) is determined from the slope of the tangent line 
(or derivative) at the concentration of substrate at the control steady state.  
When the steady-state substrate concentration ([S]ss) is below the Ks (or Km) 
value, the evs ≈1, which means that the enzyme is highly responsive to substrate 
variation.  In contrast, if [S]ss is near to saturation, evs ≈0, which means that the 
enzyme is saturated and cannot vary its rate.  Finally, if [S]ss is in the zone of 
inhibition ([S]≥aKis), the elasticity will have negative values (evs<0). 
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3.3 Experimental determination of the elasticity coefficient within cells 
 

Elasticity analysis can be experimentally determined using live intact 

cells (Fig. 7).  Elasticity coefficients of an enzyme or groups of enzymes around 

a metabolite are determined by monitoring the changes in pathway flux in 

response to changes in the concentration of an intermediate metabolite.  The 

changes in the metabolite concentration are performed by manipulating the 

rates of the group of enzymes that supply it by feeding the pathway with the 

pathway’s initial substrate (Fig. 7A).  For example, this can be done by 

providing increasing concentrations of glucose for glycolysis to the cells.  In 

another set of experiments, the intermediary metabolite concentration is 

manipulated by inhibition of a reaction downstream of the metabolite of interest, 

for example inhibiting lactate dehydrogenase for glycolysis or E2 in Fig. 7A.  

From plots like those shown in Fig. 7B, the elasticity coefficients of the group of 

reactions that supply and demand a metabolite are determined.  If similar 

experiments are carried out by monitoring different pathway intermediate 

metabolites, the elasticity coefficients of individual reactions can be determined 

and from these, the flux control coefficients calculated by the connectivity 

theorem as described next. 
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Figure 7. Determination of the elasticity coefficient of one enzyme or 
group of enzymes of a metabolic pathway  

A) Scheme that represents manipulation of the pathway intermediate S2 to 
evaluate the elasticities of E1 (supply reactions) and E2 (demand reactions).  
Let us recall that, at steady state, the rate of reactions by these enzymes will be 
equal to the final flux in a linear metabolic pathway.  In this example S2 is 
substrate of E2, thus increases in S2 concentration attained by supplying E1 will 
increase the rate of E2.  On the other side, S2 is a product of E1, thus increases 
in S2 concentration by E2 inhibition will promote rate inhibition of E1.  B) Plot of 
a theoretical behavior of the manipulation of a pathway intermediate S2 by 
increasing the concentration of a supply metabolite (S1) or by the inhibition of 
an enzyme in the pathway after S2. The elasticity coefficient of E2 (or S2 
demand) is calculated from the slope of the tangent line closest to 100% 
resulting from the increase in [S1] concentration (blue dots). The elasticity 
coefficient of E1 (or S2 supply) is estimated from the slope of the tangent line to 
the curve closest to 100% resulting from the increase in [Inh] concentration (red 
dots).  
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3.3 Relationship between elasticity coefficient and flux control coefficient  
 

Intuitively, it can be deduced that the rate of an enzyme or group of 

enzymes or reactions with elasticity coefficients approaching to zero, cannot be 

increased despite large variations in S (or P) concentration; in consequence, 

such enzyme(s) exert(s) a high flux control.  In turn, an enzyme or group of 

enzymes with a high elasticity can adjust its/their rate in response to the 

variation in S or P concentrations, and thus it does not constrain the metabolic 

flux, implying that it/they exert(s) a low flux control.  The relationship between 

elasticity coefficient and the control of the pathway flux is related through the 

Connectivity theorem (Fell 1997; Moreno-Sánchez et al 2008b, Saavedra et al 

2019).  

 

3.4 Connectivity theorem 
 

The change in a pathway flux is the result of a concerted response of 

each of the steps that constitute the pathway.  In other words, the system 

response (the flux) arises from the local responses (elasticities) of the functional 

units (Kacser 1983).  This relationship is reflected in the connectivity theorem, 

which relates the coefficients of elasticity and control as follows: 
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In practice, two blocks of enzymes (supply and demand) connected by a 

common metabolite are used for the expression of the connectivity theorem.  In 

scheme 2, a branched pathway is presented along with the expression for its 

connectivity theorem with respect to metabolite S2. 
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Scheme 2  
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For unbranched pathways, the summation and connectivity theorems 

allow the direct calculation of the CJai from the elasticities by solving a system of 

linear algebraic equations.  For systems involving branches and cycles, 

additional relationships must be used to provide sufficient equations to solve the 

CJai from the elasticity coefficients (Groen et al 1986; Westerhoff and Kell 1987; 

Brand 1998).  

One of the emblematic studies of elasticity analysis to determine the 

distribution of flux control was done for gluconeogenesis in rat liver cells where 

the connectivity and summation theorems were successfully used in order to 

propose a system of linear algebraic equations for the estimation of the control 

coefficients for the enzymes of this process (Groen et al 1986).  In that study it 

was demonstrated that pyruvate carboxylase positively and PyK negatively 

controlled the gluconeogenesis flux in the presence and absence of glucagon, 

respectively.  

Elasticity analysis of the mitochondrial OxPhos indicated that the control 

is shared between the proton leak and the respiratory chain, being higher for 

the former (Wanders et al 1984; Hafner et al 1990; Brown et al 1990; Moreno-

Sánchez et al 1999).  Also, experimental estimation of elasticity coefficients has 

been done for glycolysis in hepatoma cells where it was determined that the 

glucose transporter and HK are the most controlling steps (Marín-Hernández et 
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al 2006).  In parasites, elasticity coefficients were used for the determination of 

the distribution of control of the PPi-dependent glycolysis in E. histolytica where 

the group of reactions of glucose transport/HK/glycogen degradation had a CJai 

of 0.72-0.86 followed by the bifunctional aldehyde-alcohol dehydrogenase (CJai 

0.18) (Pineda et al 2015b).  Furthermore, it was determined that near 90% 

inhibition of the low controlling enzyme pyruvate:ferredoxin oxidoreductase (CJai 

0.13), that is absent in humans, did not significantly decrease the pathway flux.  

Inhibition of the activity of the steps with the highest control with 2-deoxyglucose 

and disulfiram decreased the ATP content and cell viability by 60 and 50%, 

respectively, validating them as drug targets.  Again, low control was attained 

for PPi-PFK (CJai £ 0.2). 

 

4. Kinetic modeling for CJai determination 
 

Bioinformatics platforms for kinetic modeling of metabolic pathways, such 

as COPASI (Hoops et al 2006; Bergmann et al 2017) and SCAMP (Sauro 

1993), have been successfully applied to determine the flux control distribution 

of metabolic pathways of parasite and host cells, healthy and pathological cells, 

and for biotechnologically interesting organisms.  

Kinetic modeling requires at least four sets of information (Fig. 8): 

1) Kinetic parameters: Kinetic models require thorough kinetic characterization 

of each enzyme and transporter from the pathway of interest in order to have 

the parameters (ligand affinity constants, Vmax) that define the rate equation 

where each effector (inhibitor or activator) must be included and considering the 

type of reaction mechanism specific for each pathway component (Segel 1975).  

Several ways to deal with the complexities to define or simplify the rate 

equations for kinetic modeling have been proposed (Tummler et al 2014; Saa 

and Nielsen 2017).  Many kinetic models are built after mining data of kinetic 

parameters reported in the literature (Hakenberg et al 2004).  Preferably, the 

kinetic data should all be experimentally determined in the same cell type and 

under experimental conditions similar to the physiological ones instead of at the 

optimal pH and temperature of each enzyme (Adamczyk et al 2011; van Eunen 

et al 2012).  For irreversible reactions under physiological conditions, it is useful 

to use the Keq of the reaction in the rate equation. 
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2) Vmax in the cell: The actual activity of each enzyme (rate determined under 

Vmax conditions) in the cells or tissue is one of the most important parameters 

in kinetic models.  A close relationship has been found between the Vmax value 

in the cell and the degree of control.  Enzymes with low Vmax very frequently 

have high CJai, although an enzyme with high activity in the cell but potent 

feedback inhibition may also have high control on the flux; however, this cannot 

be a priori inferred from pathway inspection.  

3) Concentration of pathway intermediate metabolites.  These variables of the 

system should be best determined in the same cell type and under a specific 

steady state.  

4) Pathway fluxes. The main flux and also the fluxes of the pathway’s branches 

should be determined under the same conditions.  

 

Items one and two are the parameters that serve to build the models in 

the pathway simulator of choice, whereas items 3 and 4 are the system 

variables of reference to validate the accuracy of the simulations obtained by 

the kinetic model built.  Usually several iterative rounds of modeling and 

experimentation are required to obtain a kinetic model that simulates to close 

proximity the fluxes and pathway intermediates.  
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Figure 8. Requirements for kinetic modeling 
 
Kinetic modeling requires at least four sets of information, 1) kinetic parameters 
in rate equations (yellow boxes); 2) the content of active enzyme/transporter 
(Vmax); 3) concentration of pathway intermediate metabolites (green boxes); 4) 
pathway fluxes.  The kinetic parameters and the rate equations are the main 
constituents for the construction of the kinetic model of the metabolic pathway 
using a software for metabolic modeling.  The most important kinetic parameter 
for modeling is Vmax, which must be determined in cell extracts or 
permeabilized cells under the steady-state conditions of interest (initial 
concentration of substrates, temperature, pH).  The other kinetic parameters 
such as Km and Ki, as well as the rate equations can be determined in cell 
extracts (yellow boxes) and / or purified recombinant enzymes (purple boxes).  
Validation of the model predictions is carried out by comparison with the 
intracellular concentration of metabolites (green boxes) and the total flux of the 
pathway (blue boxes).  It is important to note that there is constant feedback 
between in vitro experimentation and model simulations (circular red arrows), 
since inconsistencies in the model predictions could mean undescribed 
interactions that must be investigated to refine the kinetic model. 
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Kinetic modeling of glycolysis has been used to search for therapeutic 

targets in T. brucei (Bakker et al 1997 and 2000), E. histolytica (Saavedra et al 

2007; Moreno-Sánchez et al 2008a; Lo-Thong et al 2020), and cancer cells 

(Marín-Hernández et al 2011 and 2020), for the latter also involving an analysis 

under hypoxia conditions (Marín-Hernández et al 2014).  These studies have 

shown that, in general, the first part of the pathway constituted by glucose 

transporter, HK, hexose-6-phosphate isomerase, and glycogen metabolism 

exerts the greater control (≈50%).  Furthermore, inhibition of low controlling 

steps that produce metabolites that inhibit high controlling steps was shown to 

be a way to arrest glycolysis in cancer cells (Marin-Hernández et al 2016).  

The pathways involved in handling oxidative stress have also been 

studied using kinetic modeling in T. cruzi and tumor cells.  In the case of T. 

cruzi, two models have been developed, one for the synthesis of trypanothione 

(Olin-Sandoval et al 2012; González-Chávez et al. 2019) and one for the 

peroxide detoxification (González-Chávez et al. 2019).  The main potential 

therapeutic targets found in these studies were gECS and TryS for 

trypanothione synthesis, and TXN1 for the peroxide detoxification.  In the study 

by González-Chávez et al. (2019) the CJai obtained by kinetic modeling and 

genetic manipulation of the enzyme activity (see section 2.4.3) were remarkably 

similar, mutually validating both methodologies for CJai determination.  

In the case of tumor cells, the NADPH supply for oxidative stress 

handling has been modeled and revealed that peroxide detoxification was 

mainly controlled by glutathione peroxidase-1 and the cytosolic NADPH supply 

was mainly controlled by glucose-6-phosphate dehydrogenase (Moreno-

Sánchez et al 2017).  

Kinetic modeling is useful not only to find potential drug targets, but also 

to reveal some biochemical aspects that remain unknown or that are 

unexpected, but which emerge when the interaction among all pathway 

components is analyzed.  For example, the intracellular steady-state 

concentration of reactive oxygen species (ROS) and even more the ROS 

concentration in different cellular compartments is very difficult to assess with 

the currently available techniques.  However, it is possible to have a solid 

approximation by using kinetic models as was illustrated in the studies of 
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oxidative stress handling in cancer cells (Moreno-Sánchez et al 2017; 2018).  

Kinetic modeling of OxPhos has also been reported where rather similar CJai 

values amongst complexes I, III, IV and ATP synthase were found (Heiske et al 

2017).  

 

5. Conclusion 
 

Metabolic control analysis is a very powerful tool that provides insight into how 

metabolic pathways work.  Understanding the control of metabolic pathways 

can be used for various purposes, for example basic science, improvement of 

biotechnological processes, and for drug target selection.  From the several 

examples reviewed in this chapter one can recognize the usefulness and 

rationality of the approach to identify the best candidates for therapeutic 

intervention in the metabolism of parasitic and pathological cells.  Then, MCA 

provides an additional strategy in the discovery of new drugs or for repurposing 

existing drugs by making target selection more efficient.  Thus, MCA contributes 

to reaching the goal of developing therapeutics against diseases afflicting 

human beings, accelerating the translation of basic science knowledge towards 

its immediate use and application in humans (translational medicine and 

science). 
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