WOODHEAD PUBLISHING REVIEWS: MECHANICAL ENGINEERING SERIES

MACHINE INTELLIGENCE IN MECHANICAL ENGINEERING

Edited by K. PALANIKUMAR ELANGO NATARAJAN S. RAMESH J. PAULO DAVIM

Machine Intelligence in Mechanical Engineering

Woodhead Publishing Reviews: Mechanical Engineering Series

Machine Intelligence in Mechanical Engineering

Edited by

K. PALANIKUMAR

Department of Mechanical Engineering, Sri Sairam Institute of Technology, Chennai, Tamil Nadu, India

ELANGO NATARAJAN

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

S. RAMESH

Department of Mechanical Engineering, Jerusalem College of Engineering, Chennai, Tamil Nadu, India

J. PAULO DAVIM

Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal

Woodhead Publishing is an imprint of Elsevier 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States 125 London Wall, London EC2Y 5AS, United Kingdom

Copyright \bigcirc 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

MATLAB[®] is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB[®] software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB[®] software.

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-443-18644-8 (print) ISBN: 978-0-443-18645-5 (online)

For information on all Woodhead Publishing publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Sophie Harrison Editorial Project Manager: Tom Mearns Production Project Manager: Prem Kumar Kaliamoorthi Cover Designer: Miles Hitchen

Typeset by MPS Limited, Chennai, India

Contents

List	of contributors	XIII
Prefe	face	xix
1.	Machine intelligence in mechanical engineering: an introduct	ion 1
	Elango Natarajan, K. Palanikumar, S. Ramesh, J. Paulo Davim and Kevin	Kumar
	1.1 Introduction	1
	1.2 Machine intelligence in mechanical engineering	3
	1.3 Conclusion	8
	Funding	9
	References	9
2.	A smart production line management system using face	
	recognition and augmented reality	13
	Lye Kai Lun and Javid Iqbal	
	2.1 Introduction	13
	2.2 Literature review	15
	2.3 Review of similar work	16
	2.4 Methodology	17
	2.5 Result	19
	Acknowledgment	25
	References	25
	Further reading	26
3.	Maintenance planning optimization through equipment	
	performance prediction using machine learning based on	
	inline instrument datasets—a surface condenser case study	29
	F. Basheer, M.S. Nazmudeen, F. Mohiddin and Elango Natarajan	
	3.1 Introduction	29
	3.2 Background	31
	3.3 Research methodology	38
	3.4 Results and discussion	44
	3.5 Conclusion and future works	48
	References	52

4.	Min the clus	imizing intercellular movement of parts and maximizing utilization of machines using the correlation index-based tering algorithm	55
	N. Si Elan	inivasa Gupta, N. Sowmiya, B. Valarmathi, Manickam Ramasamy, go Natarajan, Chun Kit Ang and Kanesan Muthusamy	
	4.1	Introduction	55
	4.2	Correlation index-based clustering algorithm for the GT problem	56
	4.3	Illustration of correlation index-based clustering algorithm heuristic for	
		machine-part cell formation	57
	4.4	Conclusion	61
	Refe	rences	61
5.	Арр	lication of augmented reality and virtual reality	
	tech	nologies for maintenance and repair of automobile and	
	med	hanical equipment	63
	Som	a Prathibha, K. Palanikumar, A. Ponshanmugakumar and akach Kumar	
	г 1		(2)
	5.1	Introduction	63
	5.2	Literature survey	64
	5.3	Working of reality technologies	65
	5.4	Case study I	/4
	5.5	Case study II	78
	5.6	Conclusion	85
	Refe	rences	86
6.	App indu	lication of machine vision technology in manufacturing Istries—a study	91
	K. Pa	lanikumar, Elango Natarajan and A. Ponshanmugakumar	
	6.1	Introduction	91
	6.2	What does the term "machine vision" truly entail?	92
	6.3	Applications within the industrial and commercial sectors	94
	6.4	Future developments	97
	6.5	Contribution of machine vision towards Industry 4.0	99
	6.6	The Collaborative Functions of Machine Vision in Manufacturing	4.0.0
	<i>c</i> -	industry	100
	6.7	Implementation of intelligent technologies for machine vision	102
	6.8	Utilizing machine vision to increase production	104
	6.9	Integrating machine vision in Industry 4.0	104
	6.10	Important things to consider for both the design and the applications	113

	611	Discussion	113
	6.12	The path that machine vision will take in future	116
	6.13	Conclusion	117
	Refe		118
	nere		110
7.	Esti	mation of wing stall delay characteristics with outward	
	dim	ples using numerical analysis	123
	P. <i>N</i>	anikandan, R. Sudharsan, K. Divakar, S. Nadaraja Pillai and P.S. Prem Kuma	r
	7.1	Introduction	123
	7.2	Review of literature	123
	7.3	Methodology	124
	7.4	Computer-aided design models	125
	7.5	Grid independence study	127
	7.6	Results and discussion	129
	7.7	Conclusion	133
	Refe	rences	134
8.	An	Internet of Things-based integrative safety framework of	
	aut	onomous vehicles for special needs society	137
	Shai Abd Isma	k Shabana Anjum, Javid Iqbal, Kay Hooi Keoy, Pradeep Kumar, ul Samad Shibghatullah, Elango Natarajan, Rafidah Md Noor and ail Ahmedy	
	8.1	Introduction	137
	8.2	Background study	140
	8.3	An integrated framework for safer navigation and independent mobility	
	0.0	of autonomous vehicle for special needs society	142
	8.4	Conclusion and future directives	146
	Refe	rences	146
9.	Mo	tion planning and control for autonomous vehicle collision	
	avo	idance systems using potential field-based parameter	
	sch	eduling	149
	Nurl and	paiti Wahid, Hairi Zamzuri, Noor Hafizah Amer, Abdurahman Dwijotomo Sarah 'Atifah Saruchi	D
	9.1	Introduction	149
	9.2	Development of adaptive motion planning and control strategy for vehic	le
		collision avoidance systems	152
	9.3	Results and discussion	162
	9.4	Hardware in loop implementation: experimental verification	168

9.5 Conclusion	174
Acknowledgment	174
References	174

10. Long-term predictive maintenance system with application and commercialization to industrial conveyors

Chan Jin Yuan, Jonathan Yong Chung Ee, Chaw Kam Heng, Kevin Kumar and Wan Siu Hong

179

10.1	Introduction	179
10.2	Literature review	181
10.3	Methodology	183
10.4	Results	185
10.5	Conclusion	187
Ackno	pwledgments	189
Refere	ences	189

11. Predicting the mechanical behavior of carbon fiber-reinforced polymer using machine learning methods: a systematic review 193

Francisco Maciel Monticeli, Fillip Cortat Alves, Luis Felipe de Paula Santos, Michelle Leali Costa and Edson Cocchiere Botelho

11.1	Introduction	193
11.2	Systematic review methodology	195
11.3	Systematic search results and literature review	197
11.4	Conclusion	215
Acknowledgments		216
Appendix A		216
Refer	References	

12.	App glas:	lication of computationally intelligent modeling to s fiber reinforced polymer drilling	235
	Pawa	n Kumar and Andjela Lazarevic	
	12.1	Introduction	235
	12.2	Experimental research	237
	12.3	Taguchi methodology application	239
	12.4	Modeling using adaptive neuro-fuzzy inference systems	242
	12.5	Conclusions	245
	Refer	ences	247
	Furth	er reading	248

13.	 Applied advanced analytics in marketing of mechanical p 	oroducts 249
	Premkumar Chandra Shegaran	
	13.1 Introduction	249
	13.2 Negative sentiment analysis	250
	13.3 Other applications: product taxonomy	278
	13.4 Deployment and operationalizing machine learning model	s 281
	13.5 Final words	284
	References	285
14.	 Information and communication technologies: enable successful implementation of supply chain 4.0 	rs for the 287
	Jothi Basu Ramanathan and Nachiappan Subramanian	
	14.1 Introduction	287
	14.2 Recent literature	289
	14.3 Identification of enablers	290
	14.4 Framework for implementation	293
	14.5 Conclusion and future scope	295
	References	296
15.	 A pilot study and development of prediction model for compound quality 	or tire 299
	Elango Natarajan, Tina Radvar, Mahmud Iwan Solihin, Chun Ki Kevin Kumar	t Ang and
	15.1 Introduction	299
	15.2 Material and method of model development	301
	15.3 Conclusion	309
	Acknowledgment	309
	References	309
16.	. Machine intelligence based learning for ecological transp	ortation 313
	Javid Iqbal, Raenu Kolandaisamy and Indraah Kolandaisamy	
	16.1 Introduction	313
	16.2 Objectives	314
	16.3 Problem statement	315
	16.4 Literature review	315
	16.5 Methodology	316
	16.6 Results	321
	16.7 Discussions	323

	16.8 Conclusion	323
	Acknowledgment	324
	References	324
17.	A review on the social impacts of automation on human	
	capital in Malaysia	327
	Mansour Amini and Latha Ravindran	
	17.1 Introduction	327
	17.2 Conclusion	338
	References	339
18.	Autonomous systems with intelligent agents	343
	Ruby Mishra, Manoranjan Mohapatra and Shubham Kamlesh Shah	
	18.1 Introduction	343
	18.2 Theoretical design	345
	18.3 Link length optimization	346
	18.4 Simulations	353
	18.5 Conclusion	355
	References	356
19.	Human-like driver model for emergency collision avoidance	- 350
	using neural network autoregressive with exogenous inputs	5 339
	Nurhaffizah Hassan, Mohd Hatta Mohammad Ariff, Hairi Zamzuri, Sarah 'Atifah Saruchi and Nurbaiti Wahid	
	19.1 Introduction	359
	19.2 Methodology	361
	19.3 Modeling by neural network autoregressive with exogenous inpu	t 365
	19.4 Result and discussion	369
	19.5 Conclusion	375
	References	375
20.	Secure cloud web application in an industrial environment:	
	a study	379
	B. Latha, Bhagath Gopinath and K. Palanikumar	
	20.1 Introduction	379
	20.2 Architecture	380
	20.3 Literature survey	383
	20.4 Implementation	384

20.5	Results and discussions	384
20.6	Conclusion	390
References		390
Further reading		391

21. Deep learning applied solid waste recognition system targeting sustainable development goal

Kok Jin Lee, Meng-Choung Chiong, Cik Suhana Hassan, Elango Natarajan, Mahmud Iwan Solihin and Wei Hong Lim

Introduction	393
Methods	397
Results and discussions	407
Conclusion	419
References	
	ntroduction Methods Results and discussions Conclusion nces

Index

423

393

List of contributors

Ismail Ahmedy

Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia

Fillip Cortat Alves

Department of Materials and Technology, São Paulo State University (UNESP), Guaratinguetá, São Paulo, Brazil

Noor Hafizah Amer

Department of Mechanical Engineering, Faculty of Engineering, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia

Mansour Amini

School of Languages, Literacies and Translation, Universiti Sains Malaysia, Pulau Penang, Penang, Malaysia

Chun Kit Ang

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

Shaik Shabana Anjum

Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur, Malaysia

Mohd Hatta Mohammad Ariff

Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Malaysia

F. Basheer

UTB School of Business, University Technology Brunei, Bandar Seri Begawan, Brunei

Edson Cocchiere Botelho

Department of Materials and Technology, São Paulo State University (UNESP), Guaratinguetá, São Paulo, Brazil

Meng-Choung Chiong

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

Jonathan Yong Chung Ee

Faculty of Mechanical Engineering, UCSI University, Kuala Lumpur, Malaysia

Michelle Leali Costa

Department of Materials and Technology, São Paulo State University (UNESP), Guaratinguetá, São Paulo, Brazil; Lightweight Structures Laboratory (LEL), Institute for Technological Research of the State of São Paulo (IPT), São José dos Campos, Brazil

J. Paulo Davim

Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal

K. Divakar

Department of Aeronautical Engineering, Kumaraguru College of Technology, Coimbatore, India

Abdurahman Dwijotomo Department of Electronic Engineering, Politeknik Negeri Batam, Batam, Indonesia

Bhagath Gopinath

IT Analyst, Tata Consultancy Services, Chennai, Tamil Nadu, India

N. Srinivasa Gupta

Department of Mechanical Engineering, School of Mechanical Engineering, VIT University, Vellore, India

Cik Suhana Hassan

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

Nurhaffizah Hassan

Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Malaysia; Universiti Teknologi MARA Cawangan Terengganu, Malaysia

Chaw Kam Heng MODU System, Klang, Malaysia

Wan Siu Hong Faculty of Mechanical Engineering, UCSI University, Kuala Lumpur, Malaysia

Javid Iqbal

Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur, Selangor, Malaysia

Kay Hooi Keoy

Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur, Malaysia

Indraah Kolandaisamy

School of Business Management, College of Business, Universiti Utara Malaysia, Kuala Lumpur, Malaysia

Raenu Kolandaisamy

Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur, Selangor, Malaysia

Kevin Kumar

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia; Faculty of Mechanical Engineering, UCSI University, Kuala Lumpur, Malaysia

Pawan Kumar

National Institute of Technology Kurukshetra, Thanesar, India

Pradeep Kumar

School of Computing Science and Engineering, VIT University, Vellore, India

B. Latha

Department of Computer Science and Engineering, Sri Sairam Engineering College, Chennai, Tamil Nadu, India

Andjela Lazarevic

Faculty of Mechanical Engineering, University of Nis, Nis, Serbia

Kok Jin Lee

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

Wei Hong Lim

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

Lye Kai Lun

Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur, Selangor, Malaysia

P. Manikandan

Department of Aeronautical Engineering, Kumaraguru College of Technology, Coimbatore, India

Ruby Mishra KIIT University, Bhubaneswar, Odisha, India

Manoranjan Mohapatra

KIIT University, Bhubaneswar, Odisha, India

F. Mohiddin

UTB School of Business, University Technology Brunei, Bandar Seri Begawan, Brunei

Francisco Maciel Monticeli

Department of Aeronautical Engineering, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil

Kanesan Muthusamy

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

S. Nadaraja Pillai

School of Mechanical Engineering, SASTRA Deemed University, Thanjavur, India

Elango Natarajan

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

M.S. Nazmudeen

UTB School of Business, University Technology Brunei, Bandar Seri Begawan, Brunei

Rafidah Md Noor

Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia

K. Palanikumar

Department of Mechanical Engineering, Sri Sairam Institute of Technology, Chennai, Tamil Nadu, India

A. Ponshanmugakumar

Department of Mechanical Engineering, Sri Sairam Institute of Technology, Chennai, Tamil Nadu, India

Soma Prathibha

Department of Information Technology, Sri Sairam Engineering College, Chennai, Tamil Nadu, India

P.S. Prem Kumar

Department of Aeronautical Engineering, Kumaraguru College of Technology, Coimbatore, India

Tina Radvar

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

M. Rakesh Kumar

Department of Information Technology, Sri Sairam Engineering College, Chennai, Tamil Nadu, India

Jothi Basu Ramanathan

Department of Mechanical Engineering, Presidency University, Bengaluru, Karnataka, India

Manickam Ramasamy

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

S. Ramesh

Department of Mechanical Engineering, Jerusalem College of Engineering, Chennai, Tamil Nadu, India

Latha Ravindran

Faculty of Languages, Education, Psychology and Music, SEGi University, Petaling Jaya, Selangor, Malaysia

Luis Felipe de Paula Santos

Department of Materials and Technology, São Paulo State University (UNESP), Guaratinguetá, São Paulo, Brazil; Lightweight Structures Laboratory (LEL), Institute for Technological Research of the State of São Paulo (IPT), São José dos Campos, Brazil

Sarah 'Atifah Saruchi

Faculty of Manufacturing and Mechatronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia

Shubham Kamlesh Shah

KIIT University, Bhubaneswar, Odisha, India

Premkumar Chandra Shegaran

Data Science, Oxygen Resources, Kuala Lumpur, Malaysia

Abdul Samad Shibghatullah

Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur, Malaysia

Mahmud Iwan Solihin

Department of Mechanical Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia

N. Sowmiya

Department of Computer Science and Design, SNS College of Engineering, Coimbatore, India

Nachiappan Subramanian

University of Sussex Business School, University of Sussesx, Brighton, East Sussex, United Kingdom

R. Sudharsan

Department of Aeronautical Engineering, Kumaraguru College of Technology, Coimbatore, India

B. Valarmathi

Department of Software and Systems Engineering, School of Information Technology and Engineering, VIT University, Vellore, India

Nurbaiti Wahid

eMoovit Technology Sdn Bhd, Cyberjaya, Selangor, Malaysia; School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Dungun, Terengganu, Malaysia

Chan Jin Yuan

Faculty of Mechanical Engineering, UCSI University, Kuala Lumpur, Malaysia

Hairi Zamzuri

eMoovit Technology Sdn Bhd, Cyberjaya, Selangor, Malaysia

Preface

Artificial intelligence, machine learning (ML), and deep learning are utilized in almost all entities of the current world. These technologies are applied in every part of business, human life, services, and engineering production. Indeed, ML can transform any engineering landscape, providing data-driven insights to recognize complex phenomena in the field of research and derive more accurate results and analysis in a short time. Machine intelligence is a key and essential element in industrial automation toward Industry 4.0. It prepares the machine to be more sophisticated in solving complex engineering tasks in a smart production line. It can assist the industries in implementing the design of evolution in shorter time and increasing the productivity. It can avoid machine downtime by using a smart preventive maintenance or smart monitoring system. It can monitor and control the workflow easily with less human intervention.

Integration of machine intelligence flips the current simple automation into smart production that results in more profit. However, the following question arises: why is the application of machine intelligence limited to production itself and why can it not be applied in other areas of mechanical engineering? The implementation of ML requires preprocessing of datasets, feature extraction, knowledge of statistics, implementation of algorithms, verification, and validation of ML models. As the datasets in all engineering fields are not with the same features, implementation of ML algorithms in each field of expertise is different and varying. Hence, there must be some guidance to the engineering practitioners, novice researchers, and students to understand the issues in implementation of ML.

This book aims to foster the application of machine intelligence in different divisions of mechanical engineering and provide the insight of data-driven decision-making in different applications in mechanical engineering. This book presents different case studies authored by researchers from different countries. Machine intelligence is a smart investment for the future; hence, this book aims to attract the mechanical engineers toward Industry 4.0.

> K. Palanikumar Elango Natarajan S. Ramesh J. Paulo Davim