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Abstract. Yusof-Goode (Y-G) splicing system proposed by Yusof illustrates the deoxyribonucleic acid (DNA) splicing 

process in a luminous way, where the rule is written in a double triple notation. In the process of generating splicing 

languages, DNA molecules are cut and pasted, based on the reaction of the molecules with restriction enzyme and ligase. 

The resulting molecules, either in original or new molecules can be classified mathematically in the form of limit, adult or 

transient languages. Conducting a wet lab experiment to produce splicing languages is a huge investment, thus 

mathematical approach is one of the best options in predicting the outcome on splicing languages when n-cutting site exist 

in a splicing process. Besides the generation of splicing languages through splicing system, a meaningful representation of 

the languages can be portrayed in a graph. In this paper, the n-cutting site splicing languages generated from Y-G splicing 

system containing single string with 2-cutting site, with palindromic rule and palindromic crossing site is investigated. The 

features of left and right contexts of the rule are considered in the two cases discussed in this paper. Besides, two new 

definitions namely connectors and sub-connectors are given and are adopted in the generation of de Bruijn graph. With the 

constructed de Bruijn graph for the resulting splicing languages from both cases, a theorem is proposed.  

INTRODUCTION 
 

Deoxyribonucleic acid (DNA) is genetic material that carries information necessary for an organism to develop 

and function. Its’ double helix form consists of nucleotides with the ladder of the curving sides representing the sugar 

phosphate that ties the two DNA strands. The nitrogenous bases are classified into two classes namely purines and 

pyrimidines. The strands contain purines namely adenine (A) and guanine (G), and pyrimidines namely cytosine (C) 

and thymine (T). These purines and pyrimidines are paired together, following specific rules which are [A/T] or [T/A] 

and [C/G] or [G/C] [1]. The hydrogen bonds that tie these nitrogenous bases can be broken due to the reaction of 

restriction enzymes in certain DNA molecules. A specific sequence in restriction enzyme called recognition site will 

cleave DNA strands when the sequence is detected in the strand. A cut by restriction enzyme at the specific places 

will produce either sticky ends or blunt ends to the original DNA strand. For example, enzyme EcoRI which is in the 

sequence of (𝑔; 𝑎𝑎𝑡𝑡, 𝑐) will cleave as follows, producing 5′ overhang string: 

𝐺 𝐴𝐴𝑇𝑇𝐶
𝐶𝑇𝑇𝐴𝐴 𝐺
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The cutting and pasting with the existence of restriction enzymes and ligase will then produce new DNA molecules 

and the initial strand itself. Other than investigating this process biologically, the splicing process can be depicted in 

a splicing system. This began in the pioneer work by Head [2] called Head splicing system and recently by Yusof [3], 

namely Yusof-Goode (Y-G) splicing system. The Y-G splicing system is motivated by the Head splicing system. It 

was developed with a modification in rule notation. Thereafter, motivated by the Y-G splicing system, many 

researchers had adopted this splicing system in presenting the language generated by adopting various mathematical 

methods, for example, Lim [4] used limit adjacency matrix and Mudaber [5] used de Bruijn graph in presenting the 

splicing languages. The purpose of presenting the language in graph is based on the finding that the double stranded 

DNA (dsDNA) which are in three-dimensional structure [6] is found to be better presented in graphical form [7]. This 

is conspicuously seen from several research that applied various mathematical approach in presenting the splicing 

languages. Yusof [8,9] adopted limit graph, to show the existence of limit languages and new type of splicing 

languages namely active persistent languages. In the same limit graph, the existence of transient languages was clearly 

shown. Additionally, Razak in 2021 applied cycle graph and its complement, to study the behavior of cuts at various 

edges and DNA recombination [10].  

 

Hence, this paper aims to show the produced languages in a graphical representation by using de Bruijn graph. 

Mudaber [11] in 2016 applied the de Bruijn graph to show two stages splicing languages with persistent and permanent 

characteristics that resulted in the languages. Furthermore, de Bruijn graph is also applied in metagenomic data 

classification [12], genome assembly [13] and indexing data structures [14]. Whereas in this research, the exploration 

of de Bruijn graph in representing the splicing languages is meant to illustrate the infinitely long molecules produced 

as the effect of n-cutting in a string. The features of left and right contexts of the rule, where Case I will consider a 

different left and right context of rule, while in Case II, a same left and right context of rule is considered. These two 

cases are considered to investigate the outcome of the features of the rule on the splicing languages.  

 

This paper includes four sections, starts with the introduction. In the second section, some important definitions 

are stated, followed by the results and discussion which are disclosed in the third section, with the proposition of 

theorem and its proving by considering two cases namely Case I and Case II. In addition, this section also includes de 

Bruijn graph representation of the generated languages. The final section of the report summarizes the findings. 

 

PRELIMINARIES 

 

A few definitions that are used throughout this paper are included in this section. In this paper, the splicing process 

on a string with palindromic rule and palindromic crossing site are considered. In addition, the effect of left and right 

contexts towards the generated languages is studied. The splicing languages are then represented in the de Bruijn 

graph. In this paper, the splicing process is conducted based on Y-G splicing system; thus, its definition is first given 

as follows: 

 

Definition 1 [3]: Yusof-Goode (Y-G) Splicing System 

Let 𝑆 = (𝐴, 𝐼, 𝑅) be a Y-G splicing system, containing a set of alphabets 𝐴, a set of initial strings 𝐼 ∈ 𝐴∗ and a set of 

rules, 𝑟 ∈ 𝑅 that is applied on DNA strings and can be either in left pattern, 𝑟 = (𝑎; 𝑥, 𝑏: 𝑐; 𝑥, 𝑑), in right pattern, 𝑟 =
(𝑎, 𝑥; 𝑏: 𝑐, 𝑥; 𝑑) or in both patterns, 𝑟 = (𝑎, 𝑥, 𝑏: 𝑐, 𝑥, 𝑑). For  𝑠1 = 𝛼𝑎𝑥𝑏𝛽 and 𝑠2 = 𝛾𝑐𝑥𝑑𝛿, were 𝑠1 and 𝑠2 are 

elements in 𝐼, then the languages generated will be in the form of 𝛼𝑎𝑥𝑑𝛿 and 𝛾𝑐𝑥𝑏𝛽, together with its initial string 𝐼, 

where 𝛼, 𝛽, 𝛾, 𝛿, 𝑎, 𝑏, 𝑐, 𝑑 and 𝑥 ∈ 𝐴∗ are the free monoids generated by 𝐴 with the concatenation operation and 1 as 

the identity element. Then 𝐿 is a splicing language if there exists a splicing system S for which 𝐿 = 𝐿(𝑆). 

 

 Then, definition of single stage splicing language is stated. 

         

Definition 2 [15]: Single Stage Splicing Language  

If 𝑆 = (𝐴, 𝐼, 𝑅) is a Y-G splicing system, then the set of all molecule types that will appear when all restriction 

enzymes, double stranded deoxyribonucleic acid (dsDNA) strings and ligases act simultaneously in a single buffer are 

known as the set of single stage splicing language, 𝐿1 = 𝐿1(𝑆). 
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 Next, the definition of palindromic is provided. 

 

Definition 3 [8]: Palindromic  

Any initial string 𝐼 of dsDNA is in a palindromic sequence if the reading of the upper string from left to right is equal 

to the reading of the sequence of the lower string from right to left.  

 

 The palindromic characteristics can also be found in the sequence of restriction enzyme and crossing site of 

restriction enzyme. For example, enzyme Acc65I is a palindromic enzyme with palindromic crossing site, (𝑔; 𝑔𝑡𝑎𝑐, 𝑐) 

while enzyme AciI is a non-palindromic enzyme with palindromic crossing site, (𝑐; 𝑐𝑔, 𝑐). 

 

 In addition, the definition of k-mers, de Bruijn graph, prefix and suffix that will be adopted in the corresponding 

graphs in this paper are given. 

 

Definition 4 [16]: k-mers 

A string of length 𝑘 over the alphabet 𝐴 = {𝑎, 𝑐, 𝑔, 𝑡} is called a k-mers where 𝑘 ∈ Ν. 

 

Definition 5 [16]: de Bruijn Graph 

The de Bruijn graph is a directed graph, such that, for a set of k-mers, the nodes are exactly k-mers and the edges are 

given by a direct relation.  

 

Definition 6 [17]: Prefix and Suffix 

A substring of w refers to any string of continuous symbols in some word w. Given 𝑤 = 𝑣𝑢, then the substrings v and 

u are said to be a prefix and a suffix of 𝑤, respectively. For example, if 𝑤 = 𝑥𝑦𝑦𝑥𝑦, then {𝜆, 𝑥, 𝑥𝑦, 𝑥𝑦𝑦, 𝑥𝑦𝑦𝑥, 𝑥𝑦𝑦𝑥𝑦} 

is the set of all prefixes of 𝑤, while {𝑦, 𝑥𝑦, 𝑦𝑥𝑦, 𝑦𝑦𝑥𝑦} are some of its suffixes. 

 

The new graph that contains all vertices and edges of two or more graphs that are combined is called a union of 

graphs [18]. In this paper, the de Bruijn graph developed for each case will then be represented in the form of union 

graphs. 

 

Finally, the definition of initial and terminal vertices that will be used in the development of graph in this paper is 

given as follows: 

 

Definition 7 [18]: Initial and Terminal Vertices 

In a directed graph or digraph 𝐺, there is a set of vertices V, together with a set of edges E or can be written as 𝐺 =
(𝑉, 𝐸). For the edge (𝑢, 𝑣), the vertex 𝑢 is called the initial vertex while the vertex 𝑣 is called the terminal vertex of 

this edge. 

 

RESULTS AND DISCUSSION 

 

 This section will illustrate the generated splicing languages in the form of de Bruijn graph. This paper aims to 

show the effect of 2-cutting site in a string on the generated languages, with distinct characteristics set on the rule, 

concerning its left and right contexts. Prior to the discussion on the cases, two new definitions are given.  

 

Definition 8: Connectors 

Connectors are vertices that link by edge containing the sequence of restriction enzyme that connect the initial and 

terminal vertices. 

 

Definition 9: Sub-connectors 

Sub-connectors is a set of vertices that link the connectors, where the number of sub-connectors will increase 

corresponds to the increases in the length of the restriction enzyme and will be resulted in the composition of the string 

(k-mers), its prefix and suffix. 
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 Next, to develop the de Bruijn graph that corresponds to the cases in this paper, Definition 7, 8, and 9 are visualized 

in Figure 1. 

 
FIGURE 1. de Bruijn graph containing initial, terminal, connectors and sub-connectors 

 

Based on Fig. 1, the number of initial and terminal vertices, connectors and sub-connectors are based on the 

recombinant DNA string. The composition of the string (k-mers) is reflected in the formation of prefixes and suffixes 

of the string. As stated in Definition 8, the connectors can be identified by the edge that contains the sequence of the 

rule while the number of sub-connectors will depend on the length of the respective rule that eventually will be resulted 

in the number of prefixes and suffixes. The difference between the length of rule applied in the splicing system will 

be shown in the two cases discussed in this section namely Case I and Case II. In these two cases, its recombinant 

DNA strands are presented in de Bruijn graph. Hence, for each case, de Bruijn graphs will be constructed based on 

the generated splicing languages, showing repetition of middle segment of the languages for 𝑘 = 1, 2 and 3. 

Additionally, the graph will show the existence of infinitely long molecules, as 𝑘 increases. Beforehand, a theorem 

that is related to the cases discussed in this paper is stated below.  

 
Theorem 1. [19] Let 𝑆 = (𝐴, 𝐼, 𝑅) be a Y-G splicing system. If 𝐼 = {𝑠} is a set of non-palindromic initial string and 

the element of set 𝑅 = {𝑟} is a palindromic rule which contains palindromic crossing site of more than one cutting 

site, then 𝑛(𝐿1(𝑆)) > 3, in the sequence of 𝛼 − 𝛽, 𝛼 − 𝛼′, 𝛽′ − 𝛽 with infinitely long molecules. 

 

To make it clear, more than one cutting site in Theorem 1 [19] refers to the number of cutting sites that existed in 

a string. In this paper, the generated splicing languages obtained from Theorem 1 [19] are then presented via de Bruijn 

graph. Before complete proof is given, some cases need to be discussed first. Suppose 𝑆 = (𝐴, 𝐼, 𝑅) is a Y-G splicing 

system, then a splicing process for a single string 𝐼 ∈ 𝐴∗ containing 2-cutting sites, a palindromic rule, 𝑟 ∈ 𝑅 with 

palindromic crossing sites is considered. Hence, two cases are discussed, intending to present the splicing languages 

in the form of de Bruijn graph. For Case I, a different left and right context of rule is regarded. While in Case II, the 

features of same left and right context of rule are observed. These cases are intended to see if the features of the rule 

will affect the generated languages, in terms of the sequences and its type. 

 

Case I: Modelling of de Bruijn graph for a Single String with a Palindromic Rule and 

Palindromic Crossing Site with Different Left and Right Contexts 
 

In this case, single stage splicing languages produced by Y-G splicing system consisting of an initial string and a 

palindromic rule with palindromic crossing site is presented via de Bruijn graph. This case assumes different left and 

right contexts in a rule. 

 

Let 𝑠 = 𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽 with 𝑟 = (𝑎, 𝑥𝑦, 𝑏: 𝑎, 𝑥𝑦, 𝑏). With a different left and right contexts of the rule and 𝑥 is 

complement with 𝑦 and 𝑎 is complement with 𝑏, ∀𝛼, 𝛽, 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝐴∗, generated splicing languages of this splicing 

process is in the form of: 
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𝐿1(𝑆) = {𝛼𝑎𝑥𝑦𝑏𝛽, 𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽, 𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽, 𝛼𝑎𝑥𝑦𝑏𝛼′, 𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛼′, 𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛼′,  
𝛽′𝑎𝑥𝑦𝑏𝛽, 𝛽′𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽, 𝛽′𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽, … } 

 

Thus, the generated splicing languages with 𝑘 ≥ 0 and 𝑘 ∈ 𝑍+ can be generalized as follows: 

 

𝐿1(𝑆) = {𝛼𝑎(𝑥𝑦𝑏𝑎)𝑘𝑥𝑦𝑏𝛽, 𝛼𝑎(𝑥𝑦𝑏𝑎)𝑘𝑥𝑦𝑏𝛼′, 𝛽′𝑎(𝑥𝑦𝑏𝑎)𝑘𝑥𝑦𝑏𝛽}. 

 

Next, for the purpose of representing graph, splicing languages in the sequence of 𝛼 − 𝛽, 𝛼 − 𝛼′ and 𝛽′ − 𝛽 with 

𝑘 = 1, 2, 3 will be considered, that is: 

 

𝐿1(𝑆) = {𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽, 𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽, 𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽, 𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛼′, 𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛼′,  
𝛼𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛼′, 𝛽′𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽, 𝛽′𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽, 𝛽′𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝑎𝑥𝑦𝑏𝛽} 

 

Following that, to model the splicing languages on de Bruijn graph, the length of restriction enzyme is considered. 

For rule 𝑟 = (𝑎, 𝑥𝑦, 𝑏: 𝑎, 𝑥𝑦, 𝑏), the corresponding composition DNA splicing languages is 4-mers. Based on 4-mers 

compositions that reflect the edges of de Bruijn graph, the vertices of the de Bruijn graph can be obtained by separating 

the compositions to its prefix and suffix. For graph representation, the graphs are constructed for 𝑘 = 1, 𝑘 = 2 and 

𝑘 = 3 only and the union of the graphs is developed for 𝑘 = 1, 2 and 3. Based on Definitions 7–9, the above splicing 

languages can be represented in the de Bruijn graph as follows: 

 
𝑘 = 1  

 
(a) 

𝑘 = 2  

 
(b) 

𝑘 = 3  

 
(c) 

𝑘 = 1, 2, 3  

 
(d) 

FIGURE 2. de Bruijn graphs for (a) 𝑘 = 1, (b) 𝑘 = 2, (c) 𝑘 = 3 and (d) the union of de Bruijn graphs, 𝑘 = 1, 2, 3 
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Next, in Case II, the single stage splicing languages that are generated after reaction between a single string 

containing 2-cutting site, with a palindromic rule and palindromic crossing site is then presented in de Bruijn graph. 

Features of same left and right context of the rule will be observed. 

 

Case II: Modelling of de Bruijn Graph for a Single String with a Palindromic Rule and 

Palindromic Crossing Site with Same Left and Right Contexts 

 

In this case, single stage splicing languages produced by Y-G splicing system consisting of one initial string and 

one palindromic rule with palindromic crossing site is presented via de Bruijn graph. This case considers the same left 

and right contexts in a rule. 

 

Assume 𝑠 = 𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽 with 𝑟 = (𝑎𝑏, 𝑥𝑦, 𝑎𝑏: 𝑎𝑏, 𝑥𝑦, 𝑎𝑏) where the same left and right context of the rule 

is considered. Given 𝑎 is complement with 𝑎′, 𝑏 with 𝑏′, 𝑥 with 𝑥′ and 𝑦 with 𝑦′, ∀𝛼, 𝛽, 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝐴∗. The generated 

splicing languages of this splicing process is in the form of: 

 
𝐿1(𝑆) = {𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝛽, 𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽, 𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽, 𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝛼′,  

𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛼′, 𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛼′,  
𝛽′𝑎𝑏𝑥𝑦𝑎𝑏𝛽, 𝛽′𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽, 𝛽′𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽, … } 

 
Thus, the generated splicing languages with 𝑘 ≥ 0 and 𝑘 ∈ 𝑍+ can be generalized as follows: 

 

𝐿1(𝑆) = {𝛼𝑎𝑏(𝑥𝑦𝑎𝑏𝑎𝑏)𝑘𝑥𝑦𝑎𝑏𝛽, 𝛼𝑎𝑏(𝑥𝑦𝑎𝑏𝑎𝑏)𝑘𝑥𝑦𝑎𝑏𝛼′, 𝛽′𝑎𝑏(𝑥𝑦𝑎𝑏𝑎𝑏)𝑘𝑥𝑦𝑎𝑏𝛽}. 

 

However, for graph representation, splicing languages in the sequence of 𝛼 − 𝛽, 𝛼 − 𝛼′ and 𝛽′ − 𝛽 with 𝑘 =
1, 2, 3 will be considered that is: 

 

𝐿1(𝑆) = {𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽, 𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽, 𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽,  
                      𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛼′, 𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛼′, 𝛼𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛼′,  
                     𝛽′𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽, 𝛽′𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽, 𝛽′𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝑎𝑏𝑥𝑦𝑎𝑏𝛽} 

 

To model these splicing languages on de Bruijn graph, the composition of DNA splicing languages is 6-mers 

which reflects the length of rule 𝑟 = (𝑎𝑏, 𝑥𝑦, 𝑎𝑏: 𝑎𝑏, 𝑥𝑦, 𝑎𝑏). Based on 6-mers compositions, the vertices of de Bruijn 

graph can be obtained by separating the compositions to its prefix and suffix. For graph representation, the graphs are 

constructed for 𝑘 = 1, 𝑘 = 2 and 𝑘 = 3 and its respective union of de Bruijn graph. Based on Definitions 7–9, the 

above three splicing languages can be represented in de Bruijn graph as given in Figure 3. 
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𝑘 = 1  

 
(a) 

𝑘 = 2  

 
(b) 

𝑘 = 3  

 
(c) 

𝑘 = 1, 2, 3  

 
(d) 

FIGURE 3. de Bruijn graphs for (a) 𝑘 = 1, (b) 𝑘 = 2, (c) 𝑘 = 3 and (d) the union of de Bruijn graphs, 𝑘 = 1, 2, 3 

 

Both cases lead to the desired result, hence the model is shown. 

 
Based on Fig. 2, the generated splicing languages with 4-mers compositions can be presented in de Bruijn graph, 

containing initial and terminal vertices, with 2 connectors and 2 sub-connectors. As given in Definitions 8 and 9, the 

middle segment of the de Bruijn graph consists of connectors and sub-connectors. It is observed that the repetition of 

each edge will increase as 𝑘 increases. This can be seen by observing the set of edges for 𝛼 − 𝛽, 𝛼 − 𝛼′ and  𝛽′ − 𝛽 

sequences. For example, for 𝑘 = 1, the edge between the connectors containing the sequence of rules, 𝑎𝑥𝑦𝑏 repeat 

two times. Next, for 𝑘 = 2, the repetition becomes three times, which increases the frequency of edge of the 

connectors. Also, for 𝑘 = 3, the frequency of edge of the connectors increase to four. Similarly, based on Fig. 3, the 

splicing languages with composition of 6-mers then resulted in initial and terminal vertices, with 2 connectors and 4 

sub-connectors. The repetition in the middle segment of de Bruijn graph follows the same trend as in Fig. 2, which it 

repeats two, three and four times for 𝑘 = 1, 2, 3 respectively.  

 

Next, by using the union of graphs [18], the de Bruijn graph for iteration 𝑘 = 1, 𝑘 = 2 and 𝑘 = 3, can be 

performed. It is observed that the frequency of all edges increases accordingly. This shows that when 𝑘 increases, the 

repetition of the middle segment will get longer, producing infinitely long molecules. Goode and Pixton [20] suggested 

that, a converging to infinitely long molecules will result in disappeared molecules or known as transient languages.  

 

Additionally, from Fig. 2 and 3, it is observed that the n-cutting site exists in a string will affect the generated 

splicing languages especially at the middle segment of the languages. If the value of k is increased in the iteration 

process, then the middle segment of splicing languages will duplicate more and consequently the edges in de Bruijn 

graph will repeat more, forming infinitely long molecules. Then, from Fig. 2 and 3, it is perceived that the value of k-

mers also affects the number of vertices in the middle segment, if the string only contains the rules’ alphabet for the 

middle segment. The number of sub-connectors is found to be dependent on the value of k-mers. For example, in Fig. 

2 that uses 4-mers, contains 2 sub-connectors, while in Fig. 3, for 6-mers, contains 4 sub-connectors. Also, with rise 
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in the iteration of k, this leads to formation of longer molecules. This shows that when 𝑘 increases, the repetition of 

the middle segment will get longer, producing infinitely long molecules which will disappear and known as transient 

languages [20]. By using the same approach, the following results are obtained: 

  
TABLE 1. Relation between k-mers with connectors and sub-connectors 

Length of rule k-mers Connectors Sub-connectors 

4 4-mers 2 2 

6 6-mers 2 4 

8 8-mers 2 6 

10 10-mers 2 8 

 

From Table 1, it is clearly shown that, if given 𝑛 is the length of the rule and 𝑎𝑛 is the number of sub-connectors, then 

by using recurrence relation: 

 

𝑛 = 4, 𝑎𝑛 = 4 − 2 

𝑛 = 6, 𝑎𝑛 = 6 − 2 

𝑛 = 8, 𝑎𝑛 = 8 − 2 

⋮ 
𝑛 = 𝑘, 𝑎𝑘 = 𝑘 − 2 

for 𝑘 ∈ Ν, 𝑛 ∈ Ν and 𝑛 ≥ 4. 

 

Hence, the following theorem is obtained: 

 

Theorem 2. Assume 𝑛 is the length of rule for 𝑛 ≥ 4. When a recombinant DNA string is represented in de 

Bruijn graph, there will exist 𝑛-mers and (𝑛 − 2) sub-connectors. 

 

Proof Let 𝑛 is the length of rule for 𝑛 ≥ 4. Without loss of generality, let 𝑛 = 2𝑘 where 𝑘 = 2, 3, 4, … since our 

consideration is only for n even. By induction, let the first case which 𝑛 = 4 or equivalently when 𝑘 = 2, then it is 

clear that there exists 𝑛 − 2 = 2𝑘 − 2 = 4 − 2 = 2 sub-connectors exist as given in Table 1. Now, assume that for 

some n length of rule, then there exist 𝑛 − 2 sub-connectors are true or similarly for some 𝑘, there exist 2𝑘 − 2 sub-

connectors is true. Now for 2(𝑘 + 1) length or rule, there exist 2(𝑘 + 1) − 2 = 2𝑘 + 2 − 2 = 2𝑘 number of sub-

connectors which proves that for a string with length n represented in de Bruijn graph, then there exist (𝑛 − 2) sub-

connectors. ■  
 

From the presented de Bruijn graphs in Case I and II, it is observed that there exist k-mers of the sequence of 

respective restriction enzymes. This implies that the splicing languages are in the type of transient languages, which 

corresponds to the edges that link the connectors. It is also observed that, in the case of palindromic rule and 

palindromic crossing site, the features of either using same or different left and right contexts, does not affect the 

generated languages. The DNA recombinant process is dependent on the crossing site and not the left or right context. 

CONCLUSION 

 

 In this paper, one theorem is given concerning the relation between the length of restriction enzyme and the number 

of sub-connectors generated in the de Bruijn graph. In the formation of de Bruijn graph in Case I and Case II, two new 

definitions namely connectors and sub-connectors are adopted in the representation of splicing languages. The pattern 

of the de Bruijn graph in Fig. 2 and 3, supports the suggestion by Goode and Pixton [20] that the generation of infinitely 

long molecules will disappear and will result in infinite set of transient languages. The outcome hence supports the 

objective of this paper which is to demonstrate the effect of 2-cutting site in a string that produce n-cutting site splicing 

languages and later can be translated in the form of de Bruijn graph. For future research, other features of restriction 

enzymes can be observed to see their effects on the generated splicing languages and their respective de Bruijn graph. 

   

080008-8

 08 M
arch 2024 16:11:07



ACKNOWLEDGMENTS 

 

All authors are grateful to Universiti Malaysia Pahang for the financial funding under UMP Fundamental Research 

Grants through RDU220344. 

REFERENCES 

 

1. P. J. Russell, iGenetics A Molecular Approach, 3rd. ed. (Benjamin Cummings, London, 2010), pp. 41–43.  

2. T. Head, Bull. Math. Biol. 49, 737–759 (1987). 

3. Y. Yusof, N. H. Sarmin, M. Mahmud, T. E. Goode and W. H. Fong, “An Extension of DNA Splicing System” 

in 6th International Conference on Bio-Inspired Computing: Theories and Applications, Pulau Pinang, Malaysia, 

2011, pp. 246- 248. 

4. W. L. Lim, “Single stage DNA splicing system via Yusof-Goode approach,” M.Sc. thesis, Universiti Malaysia 

Pahang, 2015. 

5. M. H. Mudaber, “Persistency and permanency of two stages splicing languages based on DNA recombination 

process by using Yusof-Goode (Y-G) approach,” M.Sc. thesis, Universiti Malaysia Pahang, 2015. 

6. R. F. Weaver, Molecular Biology, 5th. ed. (McGraw-Hill, New York, 2012), pp. 41-45.  

7. N. M. Ruslim, M. Elizabeth, Y. Yusof, M. S. Mohamad and N. Adzhar, J. Phys.: Conf. Ser. 1988, 012081 (2021). 

8. Y. Yusof, “DNA splicing system inspired by bio molecular operations,” Ph.D. thesis, Universiti Teknologi 

Malaysia, 2012. 

9. Y. Yusof, W. L. Lim, T. E. Goode, N. H. Sarmin, W. H. Fong and M. F. A. Wahab, in AIP Conference 

Proceedings, Vol. 1660 (AIP Publishing, 2015) 050045.  

10. M. N. S. A. Razak, W. H. Fong, and N. H. Sarmin, J. Phys.: Conf. Ser. 1988, 012067 (2021). 

11. M. H. Mudaber, Y. Yusof, M. S. Mohamad, A. N. M. Ramli, and W. L. Lim, J. Tekn. 78, 73-78 (2016). 

12. M. S. Kamal, S. Parvin, A. S. Ashour, F. Shi, and N. Dey, Int. J. of Tech. 9, 59-75 (2017). 

13. Y. T. Huang and C. F. Liao, Bioinformatics 32, 1301-1307 (2016). 

14. B. Cazaux, T. Lecroq, and E. Rivals, J. Comp. Sys. 104, 165-183 (2019). 

15. W. L. Lim, Y. Yusof, and M. H. Mudaber, in AIP Conference Proceedings, Vol. 1643 (AIP Publishing, 2015) 

695-699. 

16. R. Chikhi, A. Limmaset, S. Jackman, J. T. Simpson, and P. Medvedev, J. Comp. Biol. 22, 336-352 (2015). 

17. P. Linz, An introduction to formal languages and automata, 6th. ed. (Jones and Barlett Publisher, USA, 2016), 

pp. 233-267. 

18. K. H. Rosen, Discrete mathematics and its applications, 8th. ed. (McGraw Hill, New York, 2018), pp. 641-655.  

19. N. M. Ruslim, Y. Yusof, and N. Adzhar, J. Phys.: Conf. Ser. 2157, 012033 (2022). 

20. E. Goode and D. Pixton, “Splicing to the Limit,” in Aspects of Molecular Computing, Lecture Notes Computer 

Science, edited by Janoska, N. et al., (Springer-Verlag, Germany, 2004), pp. 189-201. 

 

 

 

080008-9

 08 M
arch 2024 16:11:07

https://doi.org/10.1016/S0092-8240(87)90018-8
https://doi.org/10.1063/1.4915678
https://doi.org/10.1063/1.4915678
https://doi.org/10.1093/bioinformatics/btw011
https://doi.org/10.1016/j.jcss.2016.06.008
https://doi.org/10.1063/1.4907514
https://doi.org/10.1089/cmb.2014.0160

