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A B S T R A C T   

Optimization problems arise in diverse fields such as engineering, economics, and industry. Metaheuristic al-
gorithms, including the Simulated Kalman Filter (SKF), have been developed to solve these problems. SKF, 
inspired by the Kalman Filter (KF) in control engineering, requires three parameters (initial error covariance 
P(0), measurement noise Q, and process noise R). However, studies have yet to focus on tuning these parameters. 
Furthermore, no significant improvement is shown by the parameter-less SKF (with randomized P(0), Q, and R). 
Randomly choosing values between 0 and 1 may lead to too small values. As an estimator, KF raises concerns 
with excessively small Q and R values, which can introduce numerical stability issues and result in unreliable 
outcomes. Tuning parameters for SKF is a challenging and time-consuming task. The Multi-Agent Cubature 
Kalman Filter (MACKO), inspired by the Cubature Kalman filter (CKF), was introduced in this work. The nature 
of the Cubature Kalman filter (CKF) allows the use of small values for parameters P(0), Q, and R. In the MACKO 
algorithm, Cubature Transformation Techniques (CTT) are employed. CTT can use small values for parameters 
P(0), Q, and R, so CKF was developed to overcome KF and other estimation algorithms. Moreover, in CTT, the 
term local neighborhoods is used to propagate the cubature point in local search, where the radius, δ, of local 
search is updated in every iteration to balance between the exploration and exploitation processes. MACKO is 
evaluated on the CEC 2014 benchmark suite with 30 optimization problems, and its performance is compared 
with nine existing metaheuristic algorithms. Simulation results demonstrate that MACKO is superior, out-
performing the benchmark algorithms, as indicated by Friedman’s test with a 5 % significance level.   

1. Introduction 

Optimization methodologies play an afflictive role in tackling com-
plex real-world design challenges, encountering heightened intricacies 
attributable to factors such as discontinuities, inadequate data, 
dynamicity, and uncertainty. Conventional optimization techniques 
grounded in mathematical principles often grapple with escalating 
complexity, resulting in exponential time complexities and struggles to 
identify optimal solutions. In response to these constraints, the effec-
tiveness of metaheuristic optimization algorithms has attracted consid-
erable attention. These algorithms present derivative-free 
methodologies characterized by straightforward structures proficient in 
navigating and circumventing local optima. Metaheuristic classifica-
tions encompass distinctions such as local search versus global search, 
single objective versus multi-objective, and population-based versus 

trajectory-based, rooted in their sources of inspiration. 
A relatively recent addition to the metaheuristic algorithm landscape 

involves those inspired by estimation algorithms. In this paradigm, 
agents or optimizers are problem solvers tasked with discovering 
optimal or near-optimal solutions. One noteworthy algorithm, the 
Simulated Kalman Filter (SKF), emerged in 2016 as a population-based 
metaheuristic inspired by the Kalman Filter’s capabilities. While the 
original SKF employs constant values for its three parameters, the 
parameter-less version randomizes P(0), Q, and R. However, this 
approach yielded little improvement, with both versions exhibiting 
comparable performances on the CEC 2014 benchmark test suite. The 
random selection of values between 0 and 1, an essential aspect of 
parameter-less SKF, is discouraged due to potential issues with numer-
ical stability, impeding the algorithm’s capacity to identify optimal 
solutions. 
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To address these challenges, the study explores the potential of using 
the Cubature Kalman Filter (CKF) as a guiding strategy for metaheuristic 
algorithms. CKF demonstrates proficiency in handling small (0), Q, and 
R values, making it a suitable source of inspiration for new optimizers. In 
this context, a novel metaheuristic optimization algorithm inspired by 
CKF, named the Multi-Agent Cubature Kalman Optimizer (MACKO), is 
introduced. MACKO incorporates a single parameter, the adaptive co-
efficient value β, governing the rate at which the local search radius, δ, 
diminishes. Experimental results indicate that MACKO significantly 
surpasses SAFIRO, TLBO, ASKF, ssSKF, PSO, BH, GWO, and GA. 

The paper is organized into seven sections: Section II provides an 
overview of metaheuristic algorithms; Section III explores the motiva-
tion behind the proposed algorithm; Section IV elucidates the MACKO 
algorithm; Sections V and VI present a practical evaluation and com-
parison with other algorithms; and Section VII concludes, summarizing 
the results. 

2. Related works 

In the domain of metaheuristics, Fig 1 presents a classification into 
five categories based on their sources of inspiration. The first category 
encompasses Evolution algorithms, featuring well-established ap-
proaches such as the Genetic Algorithm (GA) (Holland, 1984), Bayesian 
evolutionary algorithm (BEA) (Nakib et al., 2015), Synergistic fibroblast 
optimization (Dhivyaprabha et al., 2018), Physarum-inspired compu-
tational modal (Chen et al., 2019), and Barnacles mating Optimizer 
(BMO) (Sulaiman et al., 2020). GA, a prominent algorithm in this 
category, utilizes selection, crossover, and mutation to replace the 
weakest solution in each generation, evolving solutions based on the 
best solutions from particles and the overall swarm. 

The second category involves Swarm intelligence algorithms, 
including Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 
1995), Salp Swarm Algorithm (SSA) (Mirjalili et al., 2017), Harris Hawk 
optimization (HHO) (Heidari et al., 2019), Rat Swarm Optimizer (Dhi-
man et al., 2021), and Chameleon Swarm Algorithm (Braik, 2021). 

Physics-inspired algorithms constitute the third category, encom-
passing Black Hole (BH) (Hatamlou, 2013), Multi-Verse Optimizer 
(Mirjalili et al., 2016), Sine Cosine Algorithm (SCA) (Mirjalili, 2016), 
Henry Gas Solubility Optimization (Hashim et al., 2019), and Atomic 
Orbital Search (Azizi et al., 2021). BH within this category emulates the 

gravitational power of black holes and their ability to attract nearby 
objects. 

The fourth category involves algorithms inspired by human and 
animal lifestyles, featuring Teaching Learning Based Optimization 
(TLBO) (Rao et al., 2012), Mine Blast Algorithm (MBA) (Sadollah et al., 
2013), Colliding Bodies Optimization (CBO) (Kaveh & Mahdavi, 2014), 
Interior Search Algorithm (ISA) (Gandomi, 2014), and Gaining-Sharing 
Knowledge Based Algorithm (Mohamed et al., 2020). Hybrid forms, 
such as hybrid GA and Optimization Hidden Neurons (Yan, 2020), 
hybrid GA and Reinforcement Learning (Koksal et al., 2021), hybrid 
BMO and Artificial Neural Network (Mustaffa & Sulaiman, 2023), 
hybrid PSO and Reinforcement Learning (Koksal et al., 2021), and 
hybrid SSA and Pulse Couple Neural Networks (Kavita et al., 2022), 
combine several algorithms. 

The fifth category, estimation-based, includes Heuristic Kalman Al-
gorithm (HKA) (Toscano & Lyonnet, 2009), Simulated Kalman Filter 
(SKF) (Ibrahim et al., 2016), Single Solution Simulated Kalman Filter 
(ssSKF) (Abdul Aziz et al., 2018), Asynchronous Simulated Kalman Filter 
(ASKF) (Nor et al., 2018), and Single Agent Finite Impulse Response 
Optimizer (SAFIRO) (Ab Rahman et al., 2018).. The ssSKF and ASKF are 
variants of SKF, incorporating trajectory-based and asynchronous iter-
ation strategies. 

HKA, a population-based algorithm inspired by the Kalman Filter 
(KF), is distinguished by its Gaussian distribution, which is pivotal for 
exploration behavior. Exploration is executed by adjusting distribution 
parameters to converge toward a near-optimal solution with minimal 
variance. The operational aspects of HKA encompass the probability 
density function (pdf), the measurement process, and the Kalman esti-
mator. Furthermore, HKA involves tuning three parameters: the number 
of points used, the number of best candidates, and the slowdown coef-
ficient, making it user-friendly for non-experts (Toscano & Lyonnet, 
2012). 

In contrast to HKA, SKF employs a distributed-free setting where 
solutions are randomly initialized within the search space in a uniform 
distribution. Despite this difference, both HKA and SKF are population- 
based metaheuristics inspired by the Kalman Filter’s (KF) capabilities. 
While HKA adopts two steps of KF, which consist of the measurement 
and estimation steps, SKF closely aligns with the KF algorithm, going 
through the prediction, measurement, and estimation steps in each 
iteration. 

Fig. 1. Categorization of meta-heuristic algorithms.  
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Deviating from the KF estimator framework, the Finite Impulse 
Response (FIR) filter framework inspires the development of a single- 
solution metaheuristic optimization algorithm called the Single-Agent 
Finite Impulse Response Optimizer (SAFIRO). SAFIRO adopts the two 
steps of the UFIR framework, encompassing the measurement and 
estimation steps. In the measurement step, SAFIRO integrates a random 
mutation of the best-so-far solution and a shrinking local neighborhood 
method to seek a solution. As a single solution-based approach, SAFIRO 
operates with a single agent to find an optimal or near-optimal solution. 
Exploration in SAFIRO is driven by a random mutation of the best-so-far 
solution, while exploitation is encouraged by a shrinking local 
neighborhood. 

HKA, SKF, and SAFIRO generally employ distinct search strategies 
based on their inspiration source frameworks and the number of pa-
rameters, as outlined in Table 1. Regarding the number of parameters 
used, HKA and SKF utilize three. HKA’s three parameters include the 
number of points used, the number of best candidates, and the slowdown 
coefficient. In comparison, SKF’s three parameters consist of the initial 
error covariance P(0), measurement noise Q, and process noise R. 
Conversely, SAFIRO employs only two parameters in its implementa-
tion: horizontal length and coefficient value. These three algorithms 
demonstrate highly competitive results with a vital exploitation phase 
compared to other well-known metaheuristic algorithms. However, 
parameter tuning for HKA, SKF, and SAFIRO remains challenging and 
time-consuming. 

Consequently, numerous studies have been conducted on these 
estimation-based metaheuristic algorithms, including combinations or 
modifications. Some examples include modified HKA for multi-objective 
optimization problems (Robert et al., 2018), modified SKF for binary 
optimization problems (Z.M. Yusof et al., 2016), modified SKF for 
combinatorial optimization problems (Z.M. Yusof et al., 2016), hybrid 
HKA and particle filter (Duong & Raghavan, 2018), hybrid SKF and PSO 
(Muhammad et al., 2016), and hybrid SKF and GSA (Muhammad et al., 
2017). These estimation-based algorithms and their hybrid versions 
have also been applied to real-world problems such as job shop sched-
uling environments (Zhang et al., 2021), life prediction of lithium-ion 
batteries (Duong & Raghavan, 2018), adaptive beamforming in wire-
less cellular communication (Rahman et al., 2018), airport gate alloca-
tion problems (Abdul Aziz et al., 2018), and PCB drill path optimization 
(Aziz et al., 2017). 

3. The Cubature Kalman Filter (CKF) algorithm 

In control systems, the Cubature Kalman Filter (CKF) stands as an 
estimation system utilized for determining the actual state value by 
reducing the uncertainty of the observation signal. Fig 2 visually depicts 
the real system (upper region) alongside the CKF estimation (lower re-
gion). In the actual system, a sensor captures the measured state value. 
However, this measurement, denoted as z(t), does not precisely reflect 
the actual state value, x act (t), as it encompasses both process noise, 
Q(t), and measurement noise, R(t). Here, t signifies time in this real 

system. To address this, the CKF estimates the actual value by mini-
mizing the measurement error, employing a three-step process: state 
prediction, measurement prediction, and state update. 

Firstly, the state prediction step predicts the state position, xk|k− 1, 
and predicts the system’s error covariance, Pk|k− 1. In this step, two 
cubature points, Xjk− 1|k− 1 , are generated closest to the previous state po-
sition, xk− 1|k− 1. Subsequently, the cubature points are propagated, 
X∗

j k|k − 1, utilizing the state prediction function f and determining the 
mean of the propagated cubature points as the state-predicted position. 

Secondly, the measurement prediction step anticipates the mea-
surement position, zk|k− 1, measurement error, Pzzk|k− 1, and cross-error, 
Pxzk|k− 1 of the system. In this step, two cubature points, Xjk|k− 1 , gener-
ated again closest to the state-predicted position, xk|k− 1. The cubature 
points are then propagated, Zjk|k− 1 , using the measurement prediction 
function h, and the mean of the propagated cubature points determines 
the measurement-predicted position, zk|k− 1. 

Finally, in the state update step, the state position, xk|k, and the 
corresponding error, Pk|k, are updated based on the predicted state po-
sition, xk|k− 1, predicted measurement position, zk|k− 1, and observation 
position, z(t). At each iteration k, the system noise, Qk and measurement 
noise, Rk, play a role in the state and measurement prediction steps. 

It is important to note that the processes encompassing the genera-
tion, propagation, and computation of mean cubature points collectively 
constitute the Cubature Transformation Technique (CTT). Incorporating 
CTT into algorithms enhances both stability and accuracy, precisely 
capturing the mean and error aspects (Liang et al., 2014). In the realm of 
Cubature Kalman Filter (CKF) estimation, the variable k signifies the 
iteration process, where each iteration involves ‘k − 1|k − 1′ as the 
preceding estimation stage, ‘k|k − 1′ as the prediction stage, and ‘k|k’ as 
the update estimation stage. 

The detailed process of the CKF estimator unfolds as follows: 

3.1. State prediction 

In this step, the predicted state variable, xk|k− 1, is acquired through 
the following equations: 

Xjk− 1|k− 1 = xk− 1|k− 1 +
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Pk− 1|k− 1
√

−
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Pk− 1|k− 1

√ ]
(1)  

X∗
jk|k− 1

= f
(

Xjk− 1|k− 1 , u(k − 1)
)

(2)  

xk|k− 1 =
1
2
∑2

j=1

(
X∗

j k|k − 1
)

(3)  

where the Xjk− 1|k− 1 in (1) generated two cubature points and the X∗
j k|k − 1 

in (2) propagated two cubature points. Two cubature points indicate by 
j = 1 (first cubature point) and j = 2 (second cubature point). In (1), 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Pk− 1|k− 1

√
is the positive weight, and −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Pk− 1|k− 1

√
is the negative weight. 

The predicted state variable, xk|k− 1 is acquired by calculating the mean 

Table 1 
Metaheuristic algorithm inspired by estimation system.  

Optimization Algorithm Inspiration Source Number of solution: 
Individual / Population 

Initialization Search 
Strategy 

Para. 
Num. 

Year 

Heuristic Kalman Algorithm (HKA) Kalman filter (KF) Population Based Gaussian 
distribution 

(1) Prediction 
(2) 
Measurement 
(3) Estimation 

3 2009 

Simulated Kalman Filter (SKF) algorithm Kalman filter (KF) Population Based Random 
distribution 

(1) Prediction 
(2) 
Measurement 
(3) Estimation 

3 2016 

Single-agent Finite Impulse Response 
Optimizer (SAFIRO) algorithm 

Unbiased finite impulse 
response (UFIR) filter 

Individual Based Random 
distribution 

(1) 
Measurement 
(2) Estimation 

2 2018  
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of two propagated cubature points. The predicted state error, Pk|k− 1 is 
generated by implementing (4) as follows: 

Pk|k− 1 =
((

X∗
1k|k − 1 − xk|k− 1

)
×
(

X∗
2k|k − 1 − xk|k− 1

))
+ Qk (4)  

where the (X∗
1k|k − 1 − xk|k− 1) is used to collect the square root of state 

error, √P for the first cubature point ( at j = 1), while 
(X∗

2k|k − 1 − xk|k− 1) is used to collect the square root of state error, √P 
for the second cubature point (at j = 2). Then the predicted state error, 
Pk|k− 1, is then computed by multiplying between two square root state 
errors (P= √P×√P) along with system noise, Qk. 

3.2. Measurement prediction 

In the measurement prediction step, the predicted measurement 
variable, zk|k− 1 is acquired through the following equations: 

Xjk|k− 1 = xk|k− 1 +
[ ̅̅̅̅̅̅̅̅̅̅̅

Pk|k− 1
√

−
̅̅̅̅̅̅̅̅̅̅̅
Pk|k− 1

√ ]
(5)  

Zjk|k− 1 = h
(

Xjk|k− 1 , uk− 1

)
(6)  

zk|k− 1 =
1
2
∑2

j=1

(
Zjk|k− 1

)
(7)  

where the Xjk|k− 1 in (5) is generated cubature points and Zjk|k− 1 in (6) is the 
propagated cubature point. The 

̅̅̅̅̅̅̅̅̅̅̅̅
Pk|k− 1

√
is the positive cubature point 

weight and −
̅̅̅̅̅̅̅̅̅̅̅̅
Pk|k− 1

√
is the negative cubature point weight. The pre-

dicted measurement variable, zk|k− 1 is acquired by calculating the mean 
of two propagated cubature points. The measurement error, Pzzk|k− 1 and 
cross-error, Pxzk|k− 1 are generated by using the following equation: 

Pzzk|k− 1 =
( (

Z1k|k− 1 − zk|k− 1
)
×
(
Z2k|k− 1 − zk|k− 1

))
+ Rk (8)  

Pxzk|k− 1 =
((

X∗
1k|k− 1 − xk|k− 1

)
×
(
Z2k |k− 1 − zk|k− 1

))
(9)  

where (Z1k|k− 1 − zk|k− 1) is used to collect the square root of measurement 
error, √Pzz for the first cubature point (at j = 1), while (Z2k|k− 1 − zk|k− 1)

is used to collect the square root of measurement error, √Pzz, for the 
second cubature point (at j = 2). Then the measurement error, Pzzk|k− 1 

is computed by multiplying between two square root measurement er-
rors (Pzz= √Pzz×√Pzz) along with measurement noise, Rk. Mean-
while, the cross error, Pxzk|k− 1 is calculated by multiplying the square 
root of state error for the first cubature point and the square root mea-

surement error for the second cubature point. After that, the gain, Wk is 
computed using (10): 

Wk = Pxzk|k− 1
/

Pzzk|k− 1 (10)  

3.3. State estimation 

Lastly, (11) and (12) are used to update the estimated value for the 
state variable, xk|k and their corresponding error, Pk|k: 

xk|k = xk|k− 1 + Wk
(
z(t) − zk|k− 1

)
(11)  

Pk|k = Pk|k− 1 − Wk Pzzk|k− 1 (12)  

4. The Multi-Agent Cubature Kalman Optimizer (MACKO) 
algorithm 

Optimization involves determining an objective function’s minimum 
or maximum value within specified constraints. Mathematically, a 
minimization optimization problem can be represented as (13), where 
f(x) is the objective function, gj(x) is an inequality constraint function, 
and hk(x) is an equality constraint function. In this context, the vector X 
represents design variables adjusted to achieve the optimal solution. The 
design space’s extent is defined by upper limit xiU and lower limit xiL of 
design variables. The objective and constraint functions can be linear or 
non-linear, explicit or implicit. 

Minimize : f (x)Subject to : gj(x) ≤ 0j = 1, 2…, J (13)  

hk(x) = 0k = 1, 2,…,K  

xiL ≤ xi ≤ xiU i = 1, 2,…, I 

The Multi-Agent Cubature Kalman Optimizer (MACKO) is a meta-
heuristic algorithm utilizing a population of agents to estimate the 
global minimum or maximum. Each agent, denoted as xd

i (t) in (14), 
holds a solution position in the search space for the ith agent, dth 

dimension, at the tth iteration. The MACKO algorithm encompasses six 
primary phases: (1) Initialization, (2) Fitness evaluation and 
X best so far update, (3) Solution prediction, (4) Simulated measure-
ment, (5) Measurement prediction, and (6) Solution update, as illus-
trated in Fig 3(a). 

x(t) =
{

xd
1(t), x

d
2(t),…, xd

i (t),…, xD
N(t)

}
(14) 

The first two phases involve common practices in most metaheuristic 
algorithms. The algorithm initializes solutions, xd

i (0), and their errors, 

Fig. 2. The ‘real system’ and ‘CKF estimation’.  
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Pd
i (0), with random values. The fitness of an agent is calculated, and 

X bestd(t) is updated based on the problem type. The X best so fard is 
updated only if it results in a better solution. If it’s a minimization 
problem, X best so fard is updated if X bestd(t) has lower fitness. For 
maximization problems, X best so fard is updated if X bestd(t) has 
higher fitness. 

The remaining phases (3 until 6) are adapted from the Cubature 
Kalman Filter (CKF). Like CKF, the MACKO algorithm employs the CTT 
in the solution and measurement prediction stages. The solution pre-
diction phase generates the predicted solution, xpd

i (t), using CTT, 
involving the creation of two cubature points, propagating these points 
in the local neighbourhoods search area, and then determining the 
predicted solution by taking the mean value of cubature points. The 
predicted error, Ppd

i (t), is also calculated in this phase. Then, the simu-
lated measurement phase introduces simulated measurements z(t) into 
CKF. The measurement prediction phase generates the predicted mea-
surement value, zpd

i (t), using CTT, similar to the solution prediction 
phase. The innovation, Pzzd

i (t), cross-error, Pxzd
i (t), and gain, Wd

i (t), are 
also calculated. The Wd

i (t) is determined based on the ratio between 
Pzzd

i (t) and Pxzd
i (t). The last step, the solution update phase, involves 

updating the solution xd
i (t+1) and its error Pd

i (t+1) by combining the 
predicted solution with discrepancies between simulated and predicted 
measurements. These five phases (2 until 6) are iteratively repeated 
until a stopping condition is met. MACKO returns X best so far as the 
final result. 

Notably, in CKF, process noise, Q(t), and measurement noise, R(t), 
may have values that are too small or too large. In MACKO, both values 
are randomly set between 0 and 1, making MACKO a parameter-less 
algorithm. Using CTT in phases (3) and (5) helps prevent divergence 
and dimensional issues associated with excessively small values. In CKF, 
cubature point propagation is carried out using the state prediction 
functions, f , and measurement prediction functions, h. In contrast, 
MACKO propagates cubature points using the local neighborhood term 
in the local search area. The local search radius, δ, is dynamically 
adjusted in each iteration, starting large and gradually decreasing. An 
adjustable parameter controls the reduction speed, β. 

The detailed process of MACKO is outlined as follows: 

4.1. Initialization 

The MACKO begins with the random initialization of values to its 
agent, xd

i (0), within the search space as (15), where xd is the lower limit, 
xd is the upper limit of the search space in the dth dimension, and ith is 
the number of the agent. Additionally, the initial value of the solution 
error, Pd

i (0) ∈ [0,1], is generated using a random value as (16). 

xd
i (0) = randnd

i +

[

∪

(

xd, xd

)]

(15)  

Pd
i (0) = randnd

i (16)  

Fig. 3. The MACKO algorithm process flow, (a) flowchart and (b) pseudocode.  
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4.2. Fitness evaluation, update 

The iteration starts with determining the fitness of each solution, 
xd

i (t). Then, the X bestd(t) is updated according to the type of problem. 
The fitness of the best solution, X bestd(t) is compared to the fitness of 
X best so fard(t) whereby X best so fard(t) will be updated if the better 
solution (X bestd(t)<X best so fard(t) for minimization problems, or 
X bestd(t)>X best so fard(t) for maximization problem) is found. 

4.3. Solution prediction 

At first, the δ in (17) is determined, where t is the current iteration, 
and tMax is the maximum number of iterations. 

δ = e− β× t
tMax ×

xd − xd

2
(17) 

The following equations determine the predicted solution candidate, 
xpd

i (t), where T1d
i,j(t) in (18) is the generated cubature point, U1d

i,j(t) in 
(19) is the propagation of both cubature points randomly in the search 
space by using a random element, randnd

i ∈ [0,1]. 

T1d
i,j(t) = xd

i (t) +
[ ̅̅̅̅̅̅̅̅̅̅̅

Pd
i (t)

√

−

̅̅̅̅̅̅̅̅̅̅̅

Pd
i (t)

√ ]
(18)  

U1d
i,j(t) = T1d

i,j(t) + randnd
i (U [− δ, δ]) (19)  

xpd
i (t) =

1
2
∑2

j=1
U1d

i,j(t) (20) 

Two cubature point involved in these step is indicated by j = 1 (first 
point) and j = 2 (second point). Once the predicted solution candidate is 
calculated, the solution error, Ppd

i (t), must be predicted using (21), 
where randnd

i ∈ [0, 1] is used to present the system error. 

Ppd
i (t) =

((
U1d

i,1(t) − xpd(t)
)
×
(

U1d
i,2(t) − xpd(t)

))
+ randnd

i (21)  

4.4. Simulated measurement 

The measurement step performs the role of feedback of estimation 
process. The measurement of each solution is simulated based on the 
following (22): 

zd
i (t) =

(
xpd

i (t) + sin
(
randnd

i × 2π
)
×
⃒
⃒xpd

i (t) − X best so fard(t)
⃒
⃒
)

(22)  

where the simulated measurement value for the agent, zd
i (t) may take 

any random position in a locus |xpd
i (t) − X best so fard(t)|. A random 

element, randnd
i ∈ [0, 1] in sin(randnd

i ×2π) is responsible for the sto-
chastic aspect of the MACKO algorithm. 

4.5. Measurement prediction 

The predicted measurement vector, zpd
1(t) for predicted solution, 

xpd
1(t) is determined by the following equations: 

T2d
i,j(t) = xpd

i (t) +
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅

Ppd
i (t)

√

−

̅̅̅̅̅̅̅̅̅̅̅̅̅

Ppd
i (t)

√ ]
(23)  

U2d
i,j(t) = T2d

i,j(t) + randnd
i (U [− δ, δ]) (24)  

zpd
i (t) =

1
2
∑2

j=1
U2d

i,j(t) (25)  

where T2d
i,j(t) in (23) are the generated cubature point and U2d

i,j(t) in 
(24) is the propagation of both cubature point randomly in the search 
space by using a random element, randnd

i ∈ [0, 1]. Once the predicted 

measurement, zpd
i (t) is calculated, the measurement error, Pzzd

i (t) and 
the cross-error, Pxzd

i (t) need to be estimated for gain calculation. These 
two types of error can be obtained by using (26) and (27), respectively: 

Pzzd
i (t) =

((
U2d

i,1(t) − zpd
i (t)

)
×
(

U2d
i,2(t) − zpd

i (t)
))

+ randnd
i (26)  

Pxzd
i (t) =

((
U1d

i,1(t) − xpd
i (t)

)
×
(

U2d
i,2(t) − zpd

i (t)
))

(27)  

where randnd
i ∈ [0, 1] is measurement noise. Then, the gain, Wd

i (t) can 
be calculated using (28): 

Wd
i (t) = Pxzd

i (t)
/

Pzzd
i (t) (28) 

Finally, the solution, xd
i (t+1) and solution error, Pd

i (t+1) are upda-
ted by the following equations: 

xd
i (t+ 1) = xpd

i (t) + Wd
i (t)

(
zd

i (t) − zpd
i (t)

)
(29)  

Pd
i (t+ 1) = Ppd

i (t) − Wd
i (t)Pzzd

i (t) (30) 

This process is iteratively updated until the stopping condition is 
fulfilled. 

Towards the end of this section, the pseudo-code for MACKO is 
presented in Fig 3(b), consisting of 31 lines. Lines (1), (2), and (3) 
represent initialization, while lines (5) to (11) handle fitness evaluation 
and update X best so far. Lines (12) to (18) focus on solution prediction, 
line (19) involves simulated measurement, lines (20) to (27) cover 
measurement prediction, and lines (28) to (29) address solution pre-
diction. The iterative process, repeating until the stopping condition is 
met, is indicated by lines (4) and (30). Finally, line (31) returns 
X best so far as the final result. 

5. Experiment setup 

The MACKO algorithm underwent comprehensive testing and com-
parison against various algorithms, including SAFIRO, ssSKF, SKF, 
ASKF, PSO, GA, GWO, BH, and TLBO. The evaluation utilized the CEC 
2014 benchmark suite (Liang et al., 2014), comprising 30 
single-objective test functions that emulate real-world optimization 
problems. These functions are categorized into unimodal, simple 
multimodal, hybrid, and composition groups, designed to assess explo-
ration capability, exploitation capability, complex problem-solving 
capability, and the balance between exploration and exploitation, 
respectively. 

Initially, the test results were assessed across 50 trials, involving 1 
million function evaluations, with complexity set to 50 dimensions. 
Parameters for all tested algorithms, including the sole parameter for 
MACKO (β = 12), were configured as per Table 2. The MATLAB code 
for the CEC 2014 benchmark suite is accessible at http://www.ntu.edu. 
sg/home/EPNSugan/index_files/CEC2014. The evaluation employed 
the Friedman test to rank algorithms based on performance differences 
at a 5 % significance level. The Holm post hoc procedure determined 
significant differences between algorithms. Friedman and Holm’s ana-
lyses were executed using the KEEL software (Alcalá-Fdez et al., 2009). 
In the second experiment, a single trial evaluated MACKO with 500 
function evaluations and two dimensions, aiming to investigate the 
behavior of its agents. The exploration and exploitation capability of 
each MACKO agent were scrutinized through the trajectory, search 
history, and fitness trend analysis. 

6. Result and discussion 

This section provides a practical evaluation and comparison with 
other algorithms. 
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6.1. Statistical analysis 

Table 3 presents all algorithms’ mean and standard deviation (std.) 
across unimodal, simple multimodal, hybrid, and composition bench-
mark functions. The optimal mean value for each objective function is 
denoted in bold among the tested algorithms. The performance ranking, 
determined through the Friedman test, is outlined in Table 4, while 
Table 5 provides the significance levels via the Holm post hoc test. 

6.1.1. Exploitation verification (Fn1 to Fn3) 
Unimodal test functions serve as a means to scrutinize the exploita-

tion capability of an optimization algorithm (Mirjalili et al., 2014). In 
this investigation, aimed at assessing MACKO’s proficiency in exploiting 
promising regions, three unimodal benchmark functions (Fn1, Fn2, and 
Fn3) were addressed, and the outcomes were juxtaposed with those of 
nine chosen optimization methods, as detailed in Table 3. The findings 
reveal that SAFIRO surpasses all other algorithms by yielding the 
optimal solution in Fn1, Fn2, and Fn3. Despite MACKO securing the 
second position after SAFIRO in Fn3 and the third position behind 
SAFIRO and TLBO in Fn1 and Fn2, it consistently generates solutions 
closely aligned with the optimal solution (near-optimal solution), 
particularly for Fn2 and Fn3. Notably, the results for Fn1 underscore 
MACKO’s exceptional performance in exploiting optimal solutions, akin 
to the proficiency demonstrated by ssSKF, SKF, ASKF, and BH algo-
rithms. Fn1, recognized for its quadratic ill-conditioned property (Liang 

et al., 2014), presents a challenging problem; nevertheless, MACKO 
exhibits a comparative level to SAFIRO and TLBO. 

6.1.2. Exploration verification (Fn4 to Fn16) 
Simple multimodal functions evaluate the MACKO exploration 

capability (Mirjalili et al., 2014) by minimising 13 multimodal functions 
(Fn4 to Fn16). The results in Table 3 (simple multimodal functions: Fn4 
to Fn16) show that MACKO exhibits superior performance in handling 
most of these functions. In the Fn5, Fn6, Fn7, and Fn15 cases, SAFIRO 
showed excellent performance, and for Fn4, TLBO outperformed, 
delivering the optimal solution. Despite MACKO securing the second 
position behind SAFIRO and TLBO in these scenarios, its solutions 
closely approached the optimal outcomes. This commendable explor-
ative capability of MACKO is attributed to its effective updating strategy. 

6.1.3. Solving complex problem verification (Fn17 to Fn22) 
In hybrid functions, variables are randomly partitioned into various 

subcomponents, and different basic functions are applied to each sub-
component (Liang et al., 2014). The six hybrid functions (Fn17 to Fn22) 
involve the fusion of several multimodal functions (Fn19, Fn21, and 
Fn22) or the fusion of unimodal and simple multimodal functions (Fn17, 
Fn18, and Fn20). This fusion increases the complexity of the functions, 
testing an algorithm’s capability to solve intricate optimization prob-
lems. Table 3 (hybrid functions: Fn17 to Fn22) shows that, with a lead in 
three of the six functions, SAFIRO has the highest ranking among hybrid 
functions. In the meantime, the leading algorithms in Fn18 and Fn22 are 
ssSKF and BH, respectively. Despite only taking the lead in Fn20, 
MACKO regularly yields results that are extremely near to the optimal 
solution generated by the top-ranking algorithm, particularly for Fn18, 
Fn19, and Fn22. The result achieved by MACKO demonstrates how well 
it can handle challenging optimization challenges. 

6.1.4. Balance exploration and exploitation verification (Fn23 to Fn30) 
In the composition function, the global optimum is the local opti-

mum with the smallest bias value, combining the characteristics of the 
sub-functions and preserving both global and local optima. This function 
is more intricate to solve than others, serving as a test for an algorithm’s 
ability to balance exploration and exploitation due to multiple local 
optima simultaneously. Table 3 (composition function: Fn23 to Fn30) 
shows that TLBO is the industry leader in this area, scoring well in three 
of the eight functions (Fn23, Fn25, and Fn30). In contrast, GWO, PSO, 
SAFIRO, ssSKF, and SKF each score well in one function (Fn24, Fn26, 
Fn27, Fn28, and Fn29, respectively). Although others may have out-
performed MACKO, it constantly generates solutions that are extremely 
near the best solution given by the top-ranking algorithm. The result 
achieved by MACKO demonstrates its ability to strike a balance between 
exploration and exploitation when searching for the global optimum of 
composition functions. 

6.1.5. Friedman and post HOC test 
The Friedman test compared MACKO’s performance to the other 

eight algorithms, obtaining a chi-square value of 87.561818 with 9 
degrees of freedom. The algorithms were rated based on their average 
fitness value, calculated from 50 runs across all 30 benchmark functions. 
The average rank was calculated for each method, with a lower rank 
indicating higher performance. As shown in Table 4, MACKO took first 
place, followed by SAFIRO, TLBO, ASKF, ssSKF, SKF, PSO, BH, GWO, 
and GA. 

The Friedman test results revealed considerable differences in the 
performance of the algorithms. As a result, the null hypothesis was 
rejected, necessitating the execution of a post hoc test to determine 
which algorithm, MACKO or the others, performed better. The Holm 
post hoc test (Derrac et al., 2011), as shown in Table 5, demonstrates 
that the MACKO algorithm outperforms the other eight algorithms 
significantly, with a p-value less than the significance level of = 0.05. 

Table 2 
Parameter setting of the selected algorithms.  

Reference Algorithm Parameter Parameter 
Value 

This work Multi-Agent Cubature 
Kalman Optimizer 

Number of agents 
coefficient, β 

4 
12 

(Ab Rahman 
et al., 2018) 

Single agent Finite 
Impulse Response 
Optimizer 

Number of agents 
parameters (N) 
coefficient, β 

1 
4 
5 

(Abdul Aziz 
et al., 2018) 

Single solution Simulate 
Kalman Filter 

Number of agents 
coefficient, β 

1 
5 

(Ibrahim et al., 
2016) 

Simulate Kalman Filter Number of agents 
Error Covariance, 
P 
Process error, Q 
Measurement 
error, R 

100 
1000 
0.5 
0.5 

(Nor et al., 
2018) 

Asynchronous Simulate 
Kalman Filter 

Number of agents 
Error Covariance, 
P 
Process error, Q 
Measurement 
error, R 

100 
1000 
0.5 
0.5 

(Eberhart & 
Shi, 2000) 

Particle Swarm Optimizer Number of agents 
Initial inertia 
weight, w1 

Final inertia 
weight, w2 

Cognitive 
acceleration, c1 

Social 
acceleration, c2 

100 
0.9 
0.5 
2 
2 

(Ahn, 2006) Genetic Algorithm Population Size 
Crossover 
probability, Pc 
Mutation 
probability, Pm 

100 
0.5 
0.2 

(Mirjalili et al., 
2014) 

Grey Wolf Optimizer Number of agents 
Adaptive 
parameter, a 
Coefficient 
vector, C 

100 
decreases 
[2–0] 
rand [0,2] 

(Hatamlou, 
2013) 

Black Hole Number of stars 100 

(Rao et al., 
2012) 

Teaching Learning Based 
Optimization 

Number of agents 50  
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6.2. Convergence behavior 

Statistically, MACKO effectively solves the CEC2014 Benchmark test 
Suite, taking first place in 11 out of 30 functions. The following exper-
iment uses a convergence curve and boxplot to visualize MACKO and 

other benchmark algorithm performance from each type of benchmark 
test suite (Fn2, Fn10, Fn20, and Fn26). 

6.2.1. Convergence capability and boxplot (Fn2, Fn10, Fn20 and Fn26) 
Instead of settling for a local optimum too quickly, a skilled 

Table 3 
Comparison of different methods in solving CEC2014 test functions.  

Fn  MACKO SAFIRO ssSKF SKF ASKF PSO GA GWO BH TLBO 

1 mean 2.180E+06 4.493Eþ05 4.915E+06 4.747E+06 3.760E+06 4.346E+07 3.405E+08 6.055E+07 4.362E+06 6.5475e+05 
Std. 6.605E+05 1.558E+05 1.257E+06 1.665E+06 1.440E+06 3.447E+07 8.251E+07 3.205E+07 9.394E+05 4.0339e+05 

2 mean 6.893E+03 5.876Eþ03 1.296E+07 3.317E+07 1.714E+07 1.140E+07 2.304E+10 5.752E+09 1.138E+05 5.9083+03 
Std. 6230 6156.4 1.45E+06 1.30E+08 4.69E+07 6.72E+07 3.80E+09 2.95E+09 1.19E+05 7629.6 

3 mean 3.027E+02 3.000Eþ02 3.663E+02 1.721E+04 1.591E+04 9.934E+03 6.113E+04 5.081E+04 1.142E+04 3.4558+02 
Std. 5.5977 9.57E-05 11.959 9185.2 6403 9628.3 12227 11252 2150.1 58.236 

4 mean 5.036E+02 4.941E+02 5.028E+02 5.228E+02 5.285E+02 1.062E+03 3.114E+03 9.587E+02 5.731E+02 4.9285þ02 
Std. 41.896 17.862 22.194 41.813 38.409 277.16 705.25 338.28 46.244 37.887 

5 mean 520.00081 520.00007 521.13000 520.00580 520.00500 521.06000 520.99700 521.11000 520.01622 521.1100 
Std. 0.000127 9.93E-06 0.02683 0.010161 0.00934 0.059419 0.057366 0.035471 0.030956 0.03773 

6 mean 6.182E+02 6.158Eþ02 6.187E+02 6.328E+02 6.310E+02 6.315E+02 6.556E+02 6.276E+02 6.567E+02 6.3787+02 
Std. 3.9018 4.5968 4.0806 3.8908 4.981 5.2396 2.5233 3.831 4.7812 4.0499 

7 mean 700.0114 700.0085 701.1300 700.1500 700.1000 700.0200 933.3570 740.0900 700.1400 700.1200 
Std. 0.011804 0.007879 0.013132 0.19049 0.13329 0.03346 37.768 22.884 0.074243 0.25406 

8 mean 8.027Eþ02 9.737E+02 9.775E+02 8.069E+02 8.073E+02 8.587E+02 1.070E+03 9.726E+02 9.219E+02 9.8169+02 
Std. 1.7197 39.117 41.158 2.6967 3.1555 12.203 19.965 29.905 14.224 23.881 

9 mean 1.043Eþ03 1.088E+03 1.091E+03 1.063E+03 1.064E+03 1.052E+03 1.399E+03 1.087E+03 1.217E+03 1.091+03 
Std. 24.517 48.567 41.377 37.868 35.547 29.129 32.909 29.112 46.976 27.573 

10 mean 1.209Eþ03 5.881E+03 5.839E+03 1.346E+03 1.350E+03 1.644E+03 6.286E+03 6.204E+03 3.025E+03 5.2322+03 
Std. 154.91 780.86 707.67 202.35 168.24 227.67 494.54 836.22 434.97 782.48 

11 mean 5.635Eþ03 6.185E+03 6.392E+03 6.183E+03 6.146E+03 1.230E+04 1.283E+04 6.235E+03 8.108E+03 1.0753+04 
Std. 748.89 799.4 1023 686.18 783.8 2163.6 428.18 843.1 987.62 2939.4 

12 mean 1200.017 1200.400 1200.900 1200.300 1200.200 1202.600 1202.200 1202.000 1200.700 1203.2 
Std. 0.047762 0.044021 0.37471 0.094916 0.088933 0.40237 0.34351 1.5175 0.23441 0.25254 

13 mean 1300.498 1300.923 1300.566 1300.563 1300.549 1300.605 1302.876 1300.550 1300.551 1300.6 
Std. 0.12659 0.14115 0.10022 0.09047 0.069533 0.10881 0.38416 0.08391 0.037326 0.092926 

14 mean 1400.11 1400.7822 1400.40 1400.32 1400.31 1400.34 1462.7360 1407.90 1400.27 1400.3 
Std. 0.19785 0.36392 0.29441 0.10574 0.065683 0.098502 9.7036 10.178 0.014087 0.10132 

15 mean 1510.80 1510.50 1531.80 1556.7 1547.00 1528.70 3816.7440 2000.50 1775.00 1575.7 
Std. 3.1799 2.7525 3.1778 20.536 17.527 7.9526 26070 653.12 49.778 47.094 

16 mean 1619.00 1620.60 1620.70 1619.10 1618.90 1621.60 1.622E+03 1619.40 1621.50 1620.3 
Std. 0.93463 0.80952 0.56302 0.81281 0.71454 0.68879 0.4513 0.97739 0.60571 0.59231 

17 mean 1.870E+05 2.650Eþ04 3.261E+05 8.430E+05 8.352E+05 2.474E+06 1.605E+07 3.393E+06 5.529E+05 1.7323e+05 
Std. 1.06E+05 11610 1.48E+05 4.58E+05 4.81E+05 2.59E+06 7.60E+06 3.00E+06 1.94E+05 3.1364e+05 

18 mean 3.440E+03 4.313E+03 3.744E+05 4.708E+06 8.853E+06 1.208E+04 5.163E+06 2.585E+07 2.397Eþ03 3.5865+03 
Std. 864.82 1471 64934 1.57E+07 3.75E+07 39429 2.63E+06 6.12E+07 250.46 1446.5 

19 mean 1.937E+03 1.920Eþ03 1.923E+03 1.954E+03 1.947E+03 1.958E+03 2.005E+03 1.973E+03 1.954E+03 1.922+03 
Std. 18.457 8.9355 9.9872 29.843 29.804 32.777 14.764 27.303 31.868 6.9578 

20 mean 2.244Eþ03 2.441E+03 2.468E+03 3.256E+04 3.005E+04 6.837E+03 3.197E+04 1.525E+04 7.661E+03 2.321+03 
Std. 65.612 81.363 104.36 13113 11072 2981.9 13541 6565 2144.4 108.87 

21 mean 1.532E+05 3.764Eþ04 2.251E+05 1.160E+06 8.744E+05 6.020E+05 5.062E+06 1.604E+06 4.369E+05 9.8795+04 
Std. 76510 18089 1.24E+05 6.04E+05 3.42E+05 6.47E+05 2.57E+06 1.42E+06 1.22E+05 66050 

22 mean 3.036E+03 2.830E+03 2.811Eþ03 3.405E+03 3.444E+03 3.420E+03 3.556E+03 2.889E+03 3.728E+03 3.0072+03 
Std. 318.52 277.37 282.2 336.82 313.88 435.87 278.65 282.98 333.65 264.46 

23 mean 2644.0404 2644.4013 2647.6080 2645.5876 2645.0928 2662.4991 2722.5740 2710.8020 2649.5255 2644.0045 
Std. 0.015833 0.1023 1.0797 2.1333 1.5916 5.6322 21.107 28.104 0.46051 7.8391e-10 

24 mean 2659.4468 2676.8444 2676.8340 2664.3281 2664.4939 2670.4950 2776.1120 2600.0000 2666.5915 2600.0019 
Std. 5.1581 5.1387 4.7791 5.3597 5.2331 8.2314 9.645 0 8.1356 0.00027962 

25 mean 2.714E+03 2.712E+03 2.711E+03 2.730E+03 2.731E+03 2.730E+03 2.759E+03 2.724E+03 2.748E+03 2.700þ03 
Std. 2.5428 2.6363 1.9487 4.1366 4.431 4.2891 9.6616 7.4823 9.7738 3.7499e-13 

26 mean 2700.5317 2782.9000 2704.5000 2787.8000 2782.3000 2700.5020 2702.5000 2780.1000 2792.2000 2759.0345 
Std. 0.1146 37.58 19.84 45.326 38.754 0.090378 0.57343 40.184 19.721 49.461 

27 mean 3.528E+03 3.443Eþ03 3.509E+03 3.866E+03 3.890E+03 3.883E+03 4.494E+03 3.707E+03 4.640E+03 4.1172+03 
Std. 88.84 160.03 92.329 123.2 112.44 161.89 78.061 107.55 265.11 98.643 

28 mean 4.684E+03 4.858E+03 4.590Eþ03 7.000E+03 7.056E+03 9.699E+03 6.350E+03 4.712E+03 1.119E+04 5.2792+03 
Std. 283.99 665.87 289.32 1102.4 990.41 1732.4 477.94 419.26 1148.3 657.42 

29 mean 8.570E+03 3.028E+04 8.129E+04 6.761Eþ03 9.639E+03 2.079E+04 6.853E+06 2.180E+06 1.030E+04 4.6376e+07 
Std. 1791.4 10180 21333 6195.2 33237 85171 3.86E+06 5.02E+06 1178.1 2.8356e+07 

30 mean 1.807E+04 3.613E+04 4.671E+04 1.970E+04 1.811E+04 1.678E+05 1.824E+05 1.021E+05 5.684E+04 1.6079þ04 
Std. 2975.2 7411.1 10,560 3646.1 2709.9 80774 76669 54161 3977.1 2742.2  

Table 4 
Average ranking of the algorithm.  

Algorithm MACKO SAFIRO TLBO ASKF ssSKF SKF PSO BH GWO GA 
Ranking 2.1833 3.8833 4.7167 5.1667 5.3833 5.4333 6.2333 6.7 6.8833 8.4167  
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optimization algorithm must converge towards a global optimum. 
Convergence curve in Fig 4 (left column) indicate that the average 
fitness value (represented by the black dashed line) of the MACKO al-
gorithm varies gradually at first, stabilizes after a given number of it-
erations, and stays constant until the method is completed. The 
graphical representation of the test function demonstrates MACKO’s 
effectiveness in searching the search space with balanced between 
exploration and exploitation phase. Primarily, when addressing Fn10 
and Fn26, MACKO competes effectively against other algorithms with 
more exploration periods. Meanwhile, tackling Fn2 MACKO with more 
exploration period shows comparable to SAFIRO and TLBO, although 
MACKO is below their ranking. Similarly, in the context of Fn26, 
MACKO with more exploration period shows comparable to PSO, 
although MACKO is below their ranking. Meanwhile, the boxplot 
pattern shown in Fig 4 (right column) displays the consistent perfor-
mance of MACKO, as indicated by its low minimum value and small 
deviation from the median value when solving the same benchmark 
problem over 50 runs. In general, MACKO remains a strong competitor 
compared to SAFIRO, ssSKF, SKF, ASKF, PSO, GA, GWO, BH, and TLBO. 

6.2.2. The trajectory of MACKO agent 
The trajectory of the MACKO algorithm’s agent, plotted for a single 

dimension over the iterations, is presented to validate its exploration 
and exploitation capabilities. As depicted in Fig 5, two graphs (one- 
dimensional and two-dimensional) are generated for the unimodal 
function (Fn2), simple multimodal function (Fn10), and composition 
function (Fn26) to illustrate how the search agent’s solution compares to 
the best-so-far solution (X best so far) throughout the process. The blue 
dot-line traces the path of the search agent, while the red solid-line 
represents the best solution found thus far. 

In the initial phase of the iterations, the search agent trajectory ex-
hibits extensive exploration in both dimensions, encompassing practi-
cally the whole region. As the iterations progress, the search agent’s 
trajectory modifications slow, indicating a move toward exploitation. 
The plateau at the conclusion of the iterations indicates that the MACKO 
algorithm’s agent found a solution close to optimal before hitting the 
maximum iteration limit. Throughout this process, the best solution is 
updated anytime a better one is found. 

This well-handled continuum of exploration and exploitation corre-
sponds to the sufficient or ideal exploration period for the algorithm, as 
was previously mentioned. MACKO excels in unimodal, simple multi-
modal, and composition functions because of its skilful navigation of the 
solution space, early identification of interesting regions, and subse-
quent strategic exploitation of these regions. The discovery-exploitation 
shift seen in the convergence patterns highlights how adaptable MACKO 
is when taking on a range of engineering optimization problems and 
maintaining a competitive edge. 

6.2.3. Search history of MACKO agent 
Subsequently, the proficiency of the MACKO algorithm in exploring 

and exploiting the search space to identify optimal solutions is assessed 
by examining its agent’s search history. The agent’s mobility is visual-
ized on contour maps for selected two-dimensional functions, 

encompassing unimodal (Fn2), simple multimodal (Fn10), and compo-
sition problems (Fn26), presented in Fig 6. 

The agent’s traversed locations are denoted by black stars (*), while 
a red circle (o) represents the ultimate best solution. An analysis of the 
search history for Fn2, illustrated in Fig 6(a), unveils the MACKO al-
gorithm’s excellence in exploitation. In this context, MACKO manoeu-
vres the search space, adeptly exploring promising regions and 
exploiting them to attain optimal solutions. This same trend is evident in 
the search history for Fn10, as depicted in Fig 6(b), highlighting 
MACKO’s robust exploration capabilities. Once again, the algorithm 
effectively explores promising areas and exploits them to achieve 
optimal solutions. Transitioning to the search history for Fn26, as pre-
sented in Fig 6(c), it becomes apparent that the MACKO algorithm 
strikes a harmonious balance between exploration and exploitation. 

MACKO efficiently explores promising areas within the search space 
in this scenario while exploiting them to reach optimal solutions. This 
consistent performance across diverse test functions underscores the 
adaptability of the MACKO algorithm in addressing engineering opti-
mization challenges. MACKO demonstrates a resilient exploration 
phase, skillfully avoiding local optima, as particularly evident in Fig 7 
(b). This success is attributed to the efficacy of the updated strategy 
employed, which involves the strategic shrinking of local neighbour-
hoods, as elucidated in (17). 

6.2.4. Fitness trends of MACKO agent 
Lastly, a comparison of MACKO’s agent’s performance in a single run 

with the best solution discovered thus far (X best so far) can be seen in 
the fitness trend graph. The agents belonging to MACKO, denoted by the 
blue dot line in Fig 7, demonstrate excellent performance. When the 
best-so-far solution improves across unimodal, simple multimodal, and 
composite functions, they begin exploring and progressively move to 
exploitation. The sub-figure in Fig 7 shows how each agent works 
simultaneously to independently calculate the fitness value in the early 
iterations (exploration phase) and then share it with other agents. A 
diminishing local neighbourhood with a synchronized search strategy 
within the CKF framework highlights how well the MACKO algorithm 
conducts a strong exploration phase and is essential for avoiding local 
traps. 

Overall, MACKO proved to have an optimal or enough exploration 
period due to the CKF update strategy associated with the shrinking 
local neighbourhood. The MACKO is a practical algorithm for solving 
simple multimodal functions and demonstrates strong competitiveness 
in solving unimodal, hybrid, and composition functions. MACKO suc-
cessfully led eight out of 13 functions in simple multimodal and one out 
of six functions in hybrid. MACKO obtains second and third ranks for the 
remaining 17 functions in the unimodal and composition functions. 
Despite coming in second and third place, MACKO was nearly equal to 
the first-rank algorithm. MACKO outperforms nine other population- 
based algorithms, including the recent estimation base algorithm, 
even with the same number of function evaluations. Furthermore, 
MACKO uses only one parameter compared to different estimation- 
based algorithms, making tuning easy. 

7. Conclusions 

This study presents the Multi-Agent Cubature Kalman Optimizer 
(MACKO) as a new optimization technique motivated by CKF’s esti-
mation capabilities. The goal of MACKO is to find optimal or nearly 
optimal solutions. This work is limited to solving a single-objective 
optimization problem within the 30 benchmark functions in the CEC 
2014 benchmark suite. The MACKO algorithm comprises six funda-
mental steps: initialization, fitness evaluation, X best so far update, 
solution prediction, simulated measurement, measurement prediction, 
and solution update. The initial three steps share similarities with other 
metaheuristic algorithms, whereas the latter steps draw inspiration from 
the Cubature Kalman Filter (CKF) framework. A distinctive feature of 

Table 5 
Holm post hoc result of β value for α = 0.05.  

i Comparison z P Holm 

9 MACKO vs GA 7.973707 0 0.005556 
8 MACKO vs GWO 6.01226 0 0.00625 
7 MACKO vs BH 5.777739 0 0.007143 
6 MACKO vs PSO 5.180777 0 0.008333 
5 MACKO vs SKF 4.157414 0.000032 0.01 
4 MACKO vs ssSKF 4.093454 0.000042 0.0125 
3 MACKO vs ASKF 3.816293 0.000135 0.016667 
2 MACKO vs TLBO 3.240651 0.001193 0.025 
1 MACKO vs SAFIRO 2.174647 0.029657 0.05  
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Fig. 4. Convergence curve and Boxplot comparison for Fn2, Fn10, Fn20 and Fn26;.  
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MACKO is its reliance on a singular parameter. Meanwhile, the CTT, 
containing the local neighborhood, provides an optimal or sufficient 
exploration period. The performance of MACKO is then analyzed using 
the Friedman test and Post Hoc Holm test through four types of 

experiments within the CEC 2014 Benchmark Test Suite over nine 
benchmark algorithms: SAFIRO, ssSKF, SKF, ASKF, PSO, GA, GWO, BH, 
and TLBO. The result shows that MACKO ranks first and significantly 
outperforms all benchmark algorithms. Subsequently, the behaviors of 

Fig. 5. Trajectory for Fn2, Fn10, and Fn26.  

Fig. 6. Search history of the MACKO’s agent for Fn2, Fn10 and Fn26.  

Fig. 7. Fitness trend of the MACKO’s agent for Fn2, Fn10 and Fn26.  
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MACKO agents are investigated using convergence curves, trajectories, 
search histories, and fitness trends. Based on the obtained results and 
findings, it is evident and can be concluded that MACKO exhibits an 
optimal or sufficient exploration period compared to other benchmark 
algorithms. The significance of the MACKO algorithm lies in its ability to 
provide fresh insights and avenues for further exploration and 
advancement. Researchers can build upon, modify, or integrate it with 
other algorithms to devise more effective optimization solutions. 
Moreover, the MACKO algorithm can find applications in solving opti-
mization problems across diverse fields. MACKO can be enhanced by 
adapting it for multi-objective optimization problems, binary optimi-
zation problems, and combinatorial optimization problems. Fig. 3 

Future works 

For future work, the searching strategies of MACKO algorithm are 
investigate and incorporation to escape from local optima. Furthermore, 
the applicability of MACKO’s algorithm in addressing real engineering 
optimization problems, such as the tuning of parameters in 
proportional-integral-derivative (PID) controllers and the resolution of 
printed circuit board (PCB) routing problems, will be tested. 
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