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Abstract

Barnacles Mating Optimizer (BMO) is a new metaheuristic algorithm that suffers from slow convergence and poor efficiency due to its
limited capability in exploiting the search space and exploring new promising regions. Addressing these shortcomings, this paper introduces
Elitist Barnacles Mating Optimizer (eBMO). Unlike BMO, eBMO exploits the elite exponential probability (Peli te) to decide whether to
ntensify search process via swap operator or to diversify search by randomly exploring new regions. Furthermore, eBMO uses Chebyshev

ap instead of random numbers to generate quality S-boxes. Experimental results of eBMO on the generation of 8 × 8 substitution-box are
ompetitive against other existing works.
2022 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open

ccess article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Barnacles Mating Optimizer; Substitution-box; Cryptography
1. Introduction

Cryptography relates to the process of converting secret
information into dummy data so that it could reach the desired
destination without leakage. As part of computer science, cryp-
tography develops efficient schemes for protecting data over
computer networks and communication links from any unau-
thentic modification and revelation [1]. Broadly, cryptography
can be grouped into two categories asymmetric cipher and
symmetric cipher. The former applies different keys on a block
of data for encryption and decryption. Public key encrypts the
plain information into cipher text while private key reverts the
whole process. Unlike the former, the latter uses same key for
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tions and Information Sciences (KICS).
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405-9595/© 2022 The Author(s). Published by Elsevier B.V. on behalf of The
pen access article under the CC BY license (http://creativecommons.org/licenses
encryption and decryption. Here, the substitution box (S-box)
plays very significant role in the current practices involving
the Data Encryption Standard (DES), the International Data
Encryption Algorithm (IDEA) and the Advanced Encryption
Standard (AES). It has been proved that poor S-box design
allowed attackers to decode DES [2]. This suggests that failure
of cryptosystems increases with weak S-boxes. Therefore,
robust S-boxes are essential to develop secure and efficient
cryptosystems [3]. Typically, the cryptographic strength of any
S-box depends on high value of nonlinearity.

To-date, many metaheuristic algorithms combined with
chaotic maps are widely used to create cryptographically
strong S-box. Each metaheuristic algorithms and its chaotic
map integration has interesting characteristics concerning ro-
bustness and noise, and as a result, no single algorithm and
chaotic map combination can perform better than all others.
Korean Institute of Communications and Information Sciences. This is an
/by/4.0/).
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or this reason, the application of metaheuristic and its in-
egration with chaotic map for S-box optimization is still an
pen problem.

Barnacles Mating Optimizer (BMO) is a recently developed
etaheuristic algorithm that mimics the mating behaviour

arnacles [4]. Although showing promising performance in
olving general optimization problems, the original BMO al-
orithm suffers from slow convergence and poor efficiency
ue to its limited capability in exploiting the search space and
xploring new promising regions. Furthermore, in the absence
f any prior knowledge about the global optimal solution,
MO uses a stochastic method to update the population of

ndividuals. In this case, useful information from the search
pace is not guaranteed to be extracted effectively. As a result,
his may affect the overall solution diversity to some extent due
o the potential uneven distribution of the individual population
ithin the search space. Tackling these shortcomings, this
aper discusses a new variant of BMO, termed Elitist BMO
eBMO). Our contributions can be summarized as follows:

• Unlike its predecessor BMO, eBMO exploits the elite
exponential probability (Peli te) in order to decide whether
to intensify its search process via swap operator from
its best (elite) candidate or to diversify its search via
exploring a new random search neighbourhood.

• Additionally, eBMO also integrates the Chebyshev map
as the replacement of its random number generator to en-
hance the ergodicity and unpredictability of the updated
solution.

• eBMO is the first known Barnacles Mating Optimizer
based S-box generator. Performance evaluation of eBMO
is promising against other competing algorithms for
8 × 8 S-box generation.

The structure of the remaining paper is as follows. Sec-
ion 2 is about problem description and evaluation criteria as
ell as related works along with the general description of
MO. Section 3 presents the detailed design of the proposed
BMO algorithm. Section 4 evaluates the S-box generated by
BMO against S-boxes based on existing algorithms. Finally,
ection 5 reflects on the hypothesis of this work along with
onclusion and the scope for future work.

. Preliminaries

.1. Problem description and evaluation criteria

Mathematically, an m × n S-box is a one-to-one nonlinear
mapping S : G F (2)m

→ G F (2)n where the S-box S takes
m bits as input and generates n bits as output. It is also
represented as a multi-input/multi-output Boolean function
expressed as: S (x) = [ fn (x) fn−1 (x) . . . f1 (x) f0 (x)], where
these n Boolean functions each in m-variable are defined as:
fi (x) : G F(2)m

→ G F (2)n .
The evaluation criteria comprising bijectivity, nonlinearity,

strict avalanche criterion (SAC), bit independence criterion
(BIC), differential approximation probability (DP) and lin-
ear approximation probability (LP) determine the strength of

S-boxes against security attacks [5].
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An 8 × 8 S-box qualifies the bijectivity criterion if each
of its Boolean function is to be 0/1 balanced, and all 256
entries of S-box are within the 0–255 range and distinct [6].
The nonlinearity of S-box in block ciphers is essential for
mitigating linear cryptanalysis. To compute the nonlinearity
for an n-bit Boolean function f , the Walsh spectrum (see
Eq. (1)) is used.

nl( f ) = 2n−1
−

1
2

(
max

z∈G F(2)n

⏐⏐S f (z)
⏐⏐) (1)

where the Walsh spectrum S f (z) of Boolean function f is
defined as:

S f (z) =

∑
x∈G F(2)n

(−1) f (x)
⨁

x•z

where z is from G F(2)n and x • z is the x and z bitwise
dot product. The purpose is to maximize N f as it is used
as an objective function. In case of an 8 × 8 S-box, the
optimal nonlinearity value is 112. The AES S-box is shown
in Fig. 1 which has nonlinearity value of 112. The way this S-
box works with 8 bits input and 8 bits output is as follows. For
an input value (A9)16 in hexadecimal which is (10101001)2
in binary, the high four bits denote the row i.e., row number
(1010)2 = (10)10 and the low four bits denote the column
(1001)2 = (9)10. This results in (D3)16 = (11010011)2.

A function is said to satisfy SAC if a single input bit
alteration leads to 50% change of all output bits. To compute
SAC for an S-box, the use of dependence matrix is suggested
in literature [7]. According to this method, an S-box satisfies
SAC if the dependence matrix for it results a mean value of
0.5.

Bit independence is also an important criterion in the design
of strong S-boxes. For an 8 × 8 S-box to quality BIC, each
evaluation f j

⨁
fk ( j ̸= k, 1 ≤ j, k ≤ 8) from its 8 Boolean

functions fi (1 ≤ i ≤ 8) should be highly nonlinear as well
as satisfy the avalanche criterion. For BIC verification, it is
necessary to calculate the nonlinearity as well as SAC of the
Boolean expression f j

⨁
fk .

For an S-box, differential cryptanalysis can be established
via an imbalanced XOR distribution table. To have an ideal S-
box, differential uniformity is essential. Here, all input bits are
analysed with ascertaining their uniform mapping to measure
the probability. The differential probability measurement in a
map f is performed as follows:

D P ( f ) =

(
#{x ∈ X |S (x)

⨁
S
(
x
⨁

∆x
)

= ∆y}

2m

)
(2)

here X denotes 2m input combinations.
Linear approximation probability (LP) is largest imbal-

ance value of an event where parities of input bit and out-
put bit selected by masks Γx and Γy respectively are same.
Mathematically, Eq. (3) represents LP as [8]:

L P = max
Γx,Γy̸=0

⏐⏐⏐⏐#{x ∈ X |x • Γx = S(x) • Γ y}ti
2m

−
1
2

⏐⏐⏐⏐ (3)

where Γx masks input, Γy masks output and X denotes all
2m possible inputs. An S-box with lower LP value effectively
resists linear cryptanalysis.
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Fig. 1. AES S-box.
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.2. Related works

S-box design problem being a NP-hard problem is success-
ully addressed via metaheuristic algorithms in recent litera-
ure. Many proposals based on metaheuristic algorithms have
een investigated for strong S-box design. Some recent such
roposals for 8 × 8 S-boxes optimization are reviewed as fol-
ows. Ahmad et al. [9] proposed an S-box generation scheme
ased on Ant Colony Optimization (ACO) and two chaotic
aps namely, logistic map and tent map. In the scheme, these
aps generate initial S-boxes followed by their optimization

ia ACO. The scheme successfully generates S-box with high
esistance to linear attacks as compared to other competing
-boxes. Tian and Lu [10] studied the scheme that generates

nitial solutions as population of S-boxes using a 6-D hyper
haos. Next, Artificial Bee Colony (ABC) is employed with
yperchaotic map to obtain an optimal 8 × 8 S-box. Using
imilar methodology in their next study, Tian and Lu [11]
nvestigated Bacterial Foraging Optimization (BFO) algorithm
or optimization of S-box with intertwining logistic map. Farah
t al. [4] proposed an efficient scheme for S-box design using
eaching Learning-based Optimization (TLBO) algorithm and
chaotic map. In another novel scheme by Farah et al. [12],

aya algorithm with Logistic map, Tent map and Sine Map
re combined for S-box generation having reputable evaluation
riteria. Alhadawi et al. [13] applied Firefly Algorithm (FA)
or an optimal S-box generation from a population of S-
oxes obtained initially using a chaotic map with discrete
pace. The scheme proposed by Zhang et al. [14] gener-
tes an optimal S-box via the I-Ching operators inspired by
hinese I-Ching concept. A scheme by Alzaidi et al. [15]
pplies β-hill climbing algorithm to generate optimized S-
ox of order 8 × 8. Here, a newly designed discrete-chaotic
ap obtains an initial S-box as a single candidate solution
hich undergoes the improved β-hill climbing algorithm for
ptimization. Recently, Alhadawi et al. [16,17] proposed two
chemes based on globalized FA and Cuckoo Search (CS)
lgorithm and successfully obtained S-boxes with ability to
ontrol cryptographic vulnerabilities. A 1-D discrete logistic
haotic map in both the schemes provides an initial popu-
ation of S-boxes to the optimization algorithms. Moreover,
¸ avuşoğlu and Kökçam [18] proposed a scheme based on
621
enetic Algorithm (GA) for generating S-boxes with desired
ryptological properties.

Review of some generic optimization-based schemes for
reating S-boxes of order n × n where (4 ≤ n ≤ 8) is as fol-
ows. Millan [19] proposed a scheme based on Hill Climbing
HC) that successfully generated S-box with high nonlinearity.
askari et al. [20] proposed hybrid scheme based on Differen-

ial Evolution (DE) and Particle Swarm Optimization (PSO)
pplicable to n × n best S-boxes generation. The scheme by
esař [21] employed GA with a special cost function and tree
earching for optimization of S-boxes. Picek et al. [22] pro-
osed a new cost function as fitness function for standard GA,
A with total tree search (GaT) and Local Search Algorithm

LSA) to generate efficient S-boxes of different dimensions. In
study, Solami et al. [23] investigated a Heuristic Search (HS)

echnique with hyperchaotic system for generating bijective
-boxes having high quality cryptological features. Recently,
lzaidi et al. [24] studied Sine Cosine Algorithm (SCA) with

n improvised 1-D chaotic map to optimize S-boxes of order
× n where (4 ≤ n ≤ 8). The work by Alhadawi et al. [25]

roposed a hybrid technique based on modified PSO, meeting
oom approach and Tent chaotic map to generate high quality
× 8 S-box. In a study by Hematpour and Ahadpour [26], S-

ox is optimized by new ergodic maps with an enhanced PSO
lgorithm. Zamli [27] proposed Adaptive Agent Heroes and
owards (AAHC) algorithm with Tent map to optimize S-box.
amli et al. [28] also proposed Selective Chaotic Maps with
iki-Taka Algorithm (SCMTTA) that selects best performing
haotic map from a pool of five chaotic maps to generate
ptimal S-box. Soto et al. [29] designed optimal S-box by
ntegrating Human Behavior Based Optimization (HBBO) al-
orithm with Self-organizing Map (SOM). HBBO optimizes
-box whereas SOM solves the premature convergence prob-

em of HBBO. Most recently, Zahid et al. [30] proposed a
ynamic S-box design approach based on various modular
perations and a heuristic evolution strategy.

Barnacle Mating Optimizer (BMO), proposed by Sulaiman
t al. [31], is a new population-based metaheuristic algorithm
nspired by how acorn barnacles reproduce in nature. Since
ts inception, BMO has addressed many real-world problems.
or instance, Jia and Sun [32] proposed a novel classifica-

ion model based on the improved BMO and support vector
achine (SVM). Houssein et al. [33] proposed BMO-SVM



K.Z. Zamli, F. Din, H.S. Alhadawi et al. ICT Express 9 (2023) 619–627

f
a
B
v
f
B

a
T
i
t
s
i

w
r

r
a
p

M
b
w
e
o
a
B
w
i
s

b

w
p

i
p
p
t
p
a
g
g

w
t

a

w

p
s
T
o
l
d
i
T
b
(
fl

4

F
c
c
e
t

or gene selection of microarrays cancer classification. Bahasa
nd Reddy [34] developed a multi-objective opposition-based
MO for optimal configuration of electricity stability. Moti-
ated by these studies and the new features of BMO such as
ew parameters and low computational cost, this study adapted
MO for S-box optimization.

The genotype sequences of parent barnacles called Dad
nd Mum are processed to have a genotype for offspring.
he three phases of BMO for optimizing a given problem

nclude initialization, selection process and reproduction. In
he initialization phase, an array X comprising n solutions
imulated as barnacles is created. Mathematically, this array
s defined as.

X =

⎡⎢⎣ X1
1 · · · X N

1
...

. . .
...

X1
n · · · X N

n

⎤⎥⎦ (4)

here N denotes the number of decision variables and n
epresents the population size. Each cell i.e., decision variable

X j for (1 ≤ j ≤ N ) of a barnacle X i for (1 ≤ i ≤ n) is
estricted to upper bound and lower bound expressed as ub
nd lb, respectively. Finally, the sorting process is applied to
lace the best barnacle at the top of X .

The second phase of BMO selects parents named Dad and
um for offspring generation. The main selection criterion for

oth parents is the size of their penises denoted as pl. Parents
ith longer pl are selected for matting in this phase. BMO

nforces exploitation process via pl-based random selection
f an individual barnacle as parent and allows fertilization of
barnacle by only one other barnacle at a time. Exploration in
MO is enforced through sperm cast process which happens
hen a barnacle selects another barnacle for matting with

ndex greater than its pl. Eq. (5) and Eq. (6) express this
election mathematically.

barnacleD = randperm (n) (5)

arnacleM = randperm(n) (6)

here barnacleD and barnacleM are parents that are sup-
osed to mate in population X of size n.

Finally, the Dad and the Mum barnacles produce offspring
n the reproduction phase. The genotype frequencies of these
arent barnacles are considered based on Hardy–Weinberg
rinciple in generation of offspring. Here, the expected geno-
ype frequencies of two alleles D and M from parents ex-
ressed as f (DD) = p2, f (M M) = q2 (homozygotes)
nd f (DM) = 2pq (heterozygotes) are used to compute
enotypes for new offspring. Eq. (7) formally expresses the
eneration of new barnacle X i (t + 1).

X t+1
i = p × X t

barnacleD
+ q × X t

barnacleM
(7)

here p is randomly selected from interval [0, 1], q is equal
o 1− p. These two values can be considered as the percentage

characteristics that the new offspring X t+1
i inherits from vari-

ble barnacleD of Dad and variable barnacleM of Mum. If
p = 0.4, then the new offspring gets 40% characteristics from
Dad while 60% from Mom.
622
BMO switches to exploration process termed as sperm cast
process if indices of both matting barnacles exceed than the set
pl value. Mathematically, Eq. (8) defines this casting process.

X t+1
i = rand() × X t

barnacleM
(8)

here rand() returns a random number from interval [0, 1].

3. Proposed elitist barnacle mating optimizer

The main additions to the original BMO are highlighted in
the dotted line square boxes in Fig. 2. Referring to Fig. 2,
the eBMO starts with defining the algorithm’s parameters
(i.e., Tmax i teration , n, and Max fit eval) and random initialization
of the overall population as seen in line 2 till 3. The main
iteration starts in line 4. In line 5, eBMO selects the pl
value. Meanwhile, in line 6, the Chebyshev map array is
generated for Cn (i = 1, 2, . . . , n) which will be used for the
iteration of population. Here, the Chebyshev map will ensure
the chaotic values are used for the parameters of p and q.
Line 7 until 23 is the start of the iteration of each candidate
population. The position update selection is represented in line
8 till 15 based on the current value of pl. In some cases, the
position update may cause the current solution’s position to
be out-of-boundary or duplicated. In the context of S-box, the
bijectivity criteria dictates that each item must be uniquely
defined within the 0 to 255 range (i.e., with no repetition).
Thus, upon each update, the position of each agent (i.e., item is
S-box) is checked accordingly. If any item is out-of-boundary
or duplicated, the random value from a list of uncovered items
will be generated as the replacement. Next, lines 15 till 22
represent the new elitist mechanism introduced in eBMO. This
elitist mechanism is controlled by an adaptive and exponential
probability called Peli te and is given by Eq. (9) as follows:

Peli te = e
t−Tmax i teration

Tmax i teration (9)

In the early part of the population iteration, the Peli te

robability is small resulting into eBMO to explore the search
pace randomly and replacing the current worst population.
owards the end of population iteration, eBMO tends to focus
n exploiting the known best candidate solution (i.e., Peli te is
arge) via swapping their respective position in some selected
imensions. Upon successfully undertaking the position update
teration, new bestagent is established as depicted in line 24.
he iteration continues (see line 25) until Max fit eval has
een reached (i.e., in line 26). In the end, the global best agent
bestagent ) will be returned (refer to line 28). Fig. 3 depicts the
owchart of the proposed S-box design scheme.

. Evaluation of the eBMO S-box

Performance evaluation of eBMO has three related goals.
irstly, the performance of eBMO is compared to its prede-
essor BMO in terms of convergence and statistical signifi-
ance. Secondly, the cryptographic properties of the proposed
BMO’s S-box are assessed in terms of nonlinearity, bijec-
ivity, strict avalanche criteria (SAC), linear approximation
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Fig. 2. Pseudocode of Elitist Barnacles Mating Optimizer.
Fig. 3. Flowchart of eBMO for S-box design.

probability (LP), bits independence criteria (BIC) and differ-
ential approximation probability (DP). Finally, we benchmark
the performance of eBMO against other competing S-box
623
implementations. For implementing eBMO, an experimental
setup consisting of a laptop having Windows 10 installed
with 16 GB 1867 MHz DDR3 RAM, 2.9 GHz Intel Core i5
CPU and 512 GB flash storage is used. Moreover, eBMO is
implemented in Java programming language. The parameters
of eBMO are set as: Tmax i teration = ∞, Max pop = 50, and
Max f i t eval = 5000.

Based on the average nonlinearity score for BMO and
eBMO for 20 runs in Table 1, Table 2 highlights the Mann–
Whitney statistical analysis for BMO versus eBMO. Statistical
result shows that H0 is rejected with α < critical value. Thus,
a significant difference exists between the average nonlinearity
performance of eBMO and BMO. Furthermore, eBMO has
better convergence than BMO as depicted in Fig. 4. Clearly,
eBMO achieves a higher average nonlinearity score than BMO
and with faster convergence.

Cryptographic properties of the S-box based on eBMO are
highlighted as follows. From Table 3, the eBMO generated S-
box fulfils the bijectivity criterion as each entry has unique
values from 0 until 255. The nonlinearity score of the eBMO
S-box which determines that the S-box fulfils the nonlinearity
criterion with a high average score of 109.25. The individual
score for each of the 8 Boolean functions within the eBMO S-
box are L1 = 110, L2 = 108, L3 = 110, L4 = 112, L5 = 110,

L6 = 110, L7 = 108, and L8 = 108. Referring to Table 4,
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Fig. 4. Flowchart of eBMO for S-box Design.
Table 1
Average nonlinearity score for BMO and eBMO in 20 runs.

Run # Average nonlinearity score Run # Average nonlinearity score

BMO eBMO BMO eBMO

1 107.75 108.00 11 107.00 108.50
2 108.00 108.50 12 106.75 108.00
3 107.00 109.00 13 106.75 108.75
4 108.00 109.00 14 108.00 108.50
5 106.50 109.25 15 107.00 109.50
6 107.25 108.00 16 107.50 109.00
7 106.50 109.50 17 108.00 109.50
8 108.00 108.00 18 107.50 108.50
9 106.75 109.25 19 108.00 108.00
10 107.50 108.25 20 108.00 109.50
Table 2
Mann–Whitney U test statistics.

BMO vs eBMO

Confidence level = 95%, critical value =0.05
Mean Rank BMO = 11.38
Mean Rank eBMO =29.62
α = 0.00001

the average SAC value =0.4980 is closed to the required
score of 0.5 and with good offset of 0.03271. The given
score gives a good indication that our eBMO S-box fulfils the
SAC criteria. As far as average BIC SAC and average BIC
nonlinearity scores shown in Table 4 are concerned, our eBMO
S-box obtains commendable scores of 104.21 and 0.5051,
respectively. The high average BIC nonlinearity (i.e., greater
than 100) and the near middle average of BIC nonlinearity
(i.e., close to 0.5) give a clear indication of the fulfilment of
the BIC-SAC and BIC-nonlinearity criteria.

Concerning the I/O XOR distribution, the value 10 is the
largest among all obtained values. This results the DP score =

10/256 = 0.0390. Please note that the occurrence of maximum
entry value is only 7 times highlighting the fulfilment for
imbalance of XOR distribution. Finally, for mitigating linear
attack, the linear approximation probability (LP) score of the
S-box should be as minimum as possible. Typically, S-box
with minimum LP better resists linear attack. The linear LP
score for the eBMO S-box is 0.1171 as shown in Table 4. The
score is considered sufficient to fulfil the linear approximation
probability criterion.

Finally, Table 4 also summarizes all the competing S-boxes
produced by the proposed scheme and existing metaheuris-
tics. Based on the comparison, several observations can be
624
highlighted here. Firstly, referring to nonlinearity column in
Table 4, the generated S-box based on eBMO has the highest
average nonlinearity score than all other S-boxes in compari-
son with the exception of the work of Sine Cosine Algorithm
(SCA) [24] with enhanced dynamic chaotic map. On the
other note, eBMO S-box does outperform SCA in terms of
the maximum nonlinearity score of 112 (i.e., matching the-
oretical best) although sharing the same minimal score of
108. Secondly, in term of SAC column presented in Table 4,
all the S-boxes in the comparison held a comparable SAC
value (i.e., which is mostly close to ideal value of 0.50) and
relatively small offset swing from the ideal value. Thirdly,
regarding the BIC-nonlinearity column in Table 4, the work
of [16] on Globalized Firefly Algorithm (GFA) with discrete
chaotic map outperforms all other works in comparison with
the minimum score of 102. Our S-box based on eBMO comes
in as the overall runner up (i.e., minimum score of 100)
with Artificial Bee Colony (ABC) [10], Simulated Annealing
(SA) [35] and Cuckoo Search (CS) [17]. The rest of the works
have the minimum BIC-NL score of less than 100. In terms
of the average BIC nonlinearity score, our proposed work is
jointly ranked fifth with the score of 104.21 tying up with the
work of [9] on Ant Colony Optimization (ACO) but trailing
behind the work of [13] on Firefly Algorithm (FA) with the
score of 104.35, the work of [4] on Teaching Learning based
Optimization (TLBO) with the score of 104.57 and [16] on
Globalized Firefly Algorithm (GFA) with the score of 104.65.
Fourthly, concerning the BIC-SAC column, our proposed S-
box hold a close and comparable average value of 0.5051
against the rest of other S-boxes in Table 4.

Concerning the DP column, we have observed that almost
all S-boxes obtain the best max DP score of 10 including our
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Table 3
Generated eBMO S-Box.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 77 24 106 31 111 40 212 201 116 9 113 75 176 100 23 148
1 47 200 3 42 38 56 158 143 8 11 245 156 236 61 124 70
2 127 203 150 13 93 130 99 6 45 217 112 84 141 128 21 177
3 30 20 117 189 28 137 83 135 71 36 34 163 243 49 151 231
4 68 144 22 12 44 140 197 226 97 210 66 170 54 58 89 33
5 195 103 133 109 19 65 136 218 250 162 85 4 188 17 96 252
6 64 120 171 62 166 125 94 186 134 123 29 1 114 233 0 216
7 147 242 131 207 225 104 52 157 108 121 230 209 215 145 69 182
8 129 63 98 90 41 37 185 51 228 18 199 88 238 76 220 155
9 154 194 161 222 174 25 74 213 239 175 234 43 205 214 82 119
A 60 191 153 35 190 87 211 181 73 159 255 32 241 15 183 247
B 237 118 187 206 7 254 180 196 59 27 10 219 14 79 253 169
C 53 81 86 223 2 251 91 221 139 107 92 249 229 244 48 164
D 39 115 110 26 138 168 5 78 101 173 246 179 142 149 16 178
E 102 105 167 67 235 72 165 46 55 122 57 146 198 172 204 132
F 95 160 248 80 202 193 152 227 126 184 192 224 50 208 232 240
Table 4
Comparison with existing work.

S-box with chaotic maps Nonlinearity SAC BIC-NL BIC-SAC DP LP

Min Max Ave Ave Offset Min Ave Ave Max DP

Elitist Barnacle Mating
Optimizer (eBMO)

108 112 109.50 0.4980 0.03271 100 104.21 0.5051 10 0.1171

TLBO [4] 104 110 106.50 0.4995 0.03247 98 104.57 0.4983 10 0.1171
SCA [24] 108 110 109.50 0.4985 0.03467 98 104.07 0.5012 10 0.1328
GFA [16] 106 108 107.00 0.4963 0.02855 102 104.64 0.4974 10 0.1250
FA [13] 106 108 107.50 0.4944 0.03686 98 104.35 0.4982 10 0.1250
GA [36] 108 108 108.00 0.5068 0.03221 96 103.35 0.5017 10 0.1250
ACO [9] 106 108 107.00 0.5015 0.02831 98 104.21 0.5016 10 0.1171
ABC [10] 106 110 108.00 0.5073 0.02831 100 104.00 0.5029 10 0.1328
BFO [11] 106 110 107.50 0.5093 0.03173 94 103.07 0.5029 10 0.1015
SA [35] 102 106 104.00 0.4961 0.02196 100 103.28 0.4969 10 0.1406
CS [17] 106 110 108.50 0.4995 0.03271 100 103.85 0.5011 10 0.1093
eBMO S-box. Finally, regarding the LP column, the proposed
eBMO S-box is joint third with the score of 0.1171 along with
TLBO [4], and ACO [9] trailing behind ABC [11] with the
best LP score of 0.1015 and the second best is CS [17] with
the LP score of 0.1093. The rest of the S-boxes have the score
higher than 0.1171.

5. Conclusion and future work

Several points based on the proposed work are elaborated
further here. Firstly, we observe that eBMO generated S-
box qualifies all the criteria to be a robust S-box. In fact,
in terms of nonlinearity, our S-box is ranked the first along
with SCA. Considering other criteria, the results of eBMO S-
box are also comparable. For this reason, it can be concluded
that our enhancement of BMO with elitism mechanism along
with the replacement of its random number generator with the
Chebyshev map is useful to allow generation of a cryptograph-
ically strong S-boxes that are able to resist linear as well as
differential attacks.

Secondly, a more subtle observation can also be highlighted
here. Generally, referring to the overall performance in Table
625
8, metaheuristic-based solution (with chaotic maps) performs
better than general computational-based solution (with chaotic
maps in terms of nonlinearity criterion and max DP scores.

Thirdly, it should be noted that having a large nonlinear
score is not the sole criteria for a cryptographically strong S-
box (i.e., for 8 × 8 S-box, the best theoretical value is 112).
In our case, eBMO is able to generate the nonlinearity score
close to 112, however, with poor S-box properties particularly
in terms of strict avalanche criteria (SAC) offsets, bits inde-
pendence criteria (BIC) and linear approximation probability
(LP). We foresee that to effectively deal with more than one
criterion; a multi-objective-based solution could be explored
further as part of eBMO for S-box optimization.

Finally, though the present work has undertaken S-box
optimization and generation as the benchmark for eBMO, the
proposed algorithm can be equally adopted for other optimiza-
tion problems too. As the scope for future work, we hope
to adopt our eBMO for other NP-hard optimization prob-
lems (including the time tabling problems, travelling salesman
problems and search-based software engineering problems) to

further demonstrate its performance.
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