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Abstract 

 

1 | Introduction 

Decision-making is a cognitive process in selecting the preferred alternatives by gathering information 

and making an assessment based on the obtained information. The nature of decision-making always 

deals with the uncertain and partially reliable judgement due to incomplete and vague information [1]. 

Vague information is not well-defined [1], and this fact may lead to uncertainty of judgements due to 

the incompetency of decision-makers, psychological biases of opinions and the complexity of 

alternatives [2]. In fact, decision-making under uncertainty is a tough task faced by many decision-

makers [3]. 
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In fuzzy decision-making, incomplete information always leads to uncertain and partially reliable judgements. The emergence of fuzzy 

set theory helps decision-makers in handling uncertainty and vagueness when making judgements. Intuitionistic Fuzzy Numbers (IFN) 

measure the degree of uncertainty better than classical fuzzy numbers, while Z-numbers help to highlight the reliability of the 

judgements. Combining these two fuzzy numbers produces Intuitionistic Z-Numbers (IZN). Both restriction and reliability 

components are characterized by the membership and non-membership functions, exhibiting a degree of uncertainties that arise due 

to the lack of information when decision-makers are making preferences. Decision information in the form of IZN needs to be 

defuzzified during the decision-making process before the final preferences can be determined. This paper proposes an Intuitive 

Multiple Centroid (IMC) defuzzification of IZN. A novel Multi-Criteria Decision-Making (MCDM) model based on IZN is developed. 

The proposed MCDM model is implemented in a supplier selection problem for an automobile manufacturing company. An arithmetic 

averaging operator is used to aggregate the preferences of all decision-makers, and a ranking function based on centroid is used to 

rank the alternatives. The IZN play the role of representing the uncertainty of decision-makers, which finally determine the ranking 

of alternatives. 
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The classical decision-making methods used crisp numbers 0 or 1 to describe whether a statement is either 

false or true, respectively. For instance, the importance of a matter is determined by the linguistic terms 

"important" and "not important", in which the level of importance between these two linguistic terms 

could not be exactly measured. The emergence of the fuzzy set theory by Zadeh [4] improved the decision-

making methods, in which the truth of a statement is justified by a membership function taking any number 

in the interval [0,1]. From the previous example, the level of importance of a matter can now be measured 

by many linguistic terms such as "extremely not important", "not important", "moderately important", 

"important", and "extremely important". Using the knowledge of the fuzzy set, each of these linguistic 

terms can be represented by a membership value which takes any number in the interval [0,1]. Hence, the 

vagueness of the opinion on the importance of such a thing can be catered. Moreover, Bellman and Zadeh 

[5] implemented the fuzzy set theory in a decision-making application. 

Additionally, Zadeh [6] and [7] further extended the concept of the fuzzy set to define a fuzzy subset of 

the real number line whose maximum membership values are clustered around a mean value. The 

arithmetic properties of fuzzy numbers were further studied by Dubois and Prade [8]. Some commonly 

used shapes of fuzzy numbers are triangular and trapezoidal. Fuzzy numbers have a better capability of 

handling vagueness than the classical fuzzy set. Making use of the concept of fuzzy numbers, Chen and 

Hwang [9] developed fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 

based on trapezoidal fuzzy numbers. Apart from that, Chang [10] replaced crisp values with fuzzy triangular 

numbers to construct pairwise comparison matrices in fuzzy Analytical Hierarchy Process (AHP). Many 

other Multi-Criteria Decision-Making (MCDM) methods were developed based on fuzzy numbers. 

However, the classical fuzzy set has its limitation since it does not consider the non-membership function 

and the hesitation degree [11]. 

Instead of considering the membership function alone, Atanassov [12] generalized the fuzzy set into an 

Intuitionistic Fuzzy Set (IFS) by defining the non-membership function. The membership and non-

membership values represent the degrees of belongingness and non-belongingness to the fuzzy set, 

respectively. The IFS has better flexibility in handling uncertainty as compared to the classical fuzzy set 

[13]. In fact, the IFS is very powerful when human evaluations are needed to solve problems with 

incomplete information [14]. The IFS has also become an important tool for researchers [15], and it has 

been implemented in many real-world applications such as pattern recognition, time series forecasting and 

MCDM. Among the applications of IFSs in MCDM are intuitionistic fuzzy TOPSIS [16], intuitionistic 

fuzzy preference relations [17] and triangular intuitionistic fuzzy AHP [18]. 

Zadeh [19] introduced a new type of fuzzy number called a Z-number. The Z-number consists of two 

components, namely the restriction and reliability components. The first component denotes the degree 

of values that a variable can take, while the second component measures the reliability of the first 

component. For simplicity, both components can be considered as trapezoidal fuzzy numbers [19]. For 

example, the statement "the book is very thick, very surely" is a form of Z-statement in which the first 

statement determines the thickness of the book. In contrast, the second component indicates the degree 

of sureness and certainty, which measures the level of reliability of the first component. The application of 

Z-number in many fields has highlighted its strength in describing the preferences of decision-makers or 

experts. 

Many MCDM methods have been developed by implementing Z-numbers to describe the decision 

information. Among the early years of this development, Kang et al. [20] proposed a defuzzification 

method of Z-numbers based on the fuzzy expectation theory. The proposed method was implemented in 

a vehicle selection problem [21]. Also, Ku Khalif et al. [22] improved the defuzzification method using an 

Intuitive Multiple Centroid (IMC) approach. Using this method, the trapezoidal fuzzy numbers are 

partitioned into three areas, and the sub-centroid of each area is calculated. Then, a conversion method of 

Z-numbers into regular fuzzy numbers was proposed. The proposed defuzzification method was applied 

in a staff recruitment problem. 
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Recently, Sari and Kahraman [23] proposed a combination of the Intuitionistic Fuzzy Number (IFN) 

and Z-number, namely Intuitionistic fuzzy Z-Number (IZN). In the IZN, both restriction and reliability 

components are characterized by the membership and non-membership functions. Hence the 

uncertainty and reliability of the preferences are handled. A defuzzification of IZN was given in [23], 

mimicking the concept of the accuracy function of IFN. Considering the applicability of IMC in [22], 

this paper aims to propose a defuzzification method for IZN via the IMC approach. The conversion 

method of IZN into regular IFN is proposed once the IMC index of the membership and non-

membership functions of IZN is obtained. An MCDM problem on supplier selection is adopted to 

illustrate the proposed defuzzification method. The proposed IMC approach has the advantage of 

representing the fuzzy number together with the height of the membership function. Therefore, 

converting IZN into IFN results in easy implementation for the application of the MCDM. In fact, the 

IMC approach considers both the membership and non-membership functions of IFN. Hence the 

uncertainty in the decision-making process is handled. 

This paper is organized as follows: Section 1 presents the introduction. Section 2 reviews some 

preliminaries related to IFN, Z-numbers and IZN. The methodology in developing the MCDM method 

is proposed in Section 3. Section 4 illustrates an MCDM problem, and Section 5 concludes the paper. 

2 | Preliminaries 

This section reviews some preliminaries related to IFS, Z-numbers and IZN. The IFS is a generalization 

of the classical fuzzy set, defined as follows [12]: 

Definition 1. An IFS is a subset of the universe of discourse, U, written in the form of: 

 

Where →
I

μ : x [0 , 1]  and →
I

ν : x [0 , 1]  are the membership and non-membership functions of the 

element x , respectively. 

Fig. 1. A trapezoidal IFN. 

An extension of the IFS is an IFN. A trapezoidal IFN (TrIFN), ( )=
I 2 3 4 5 1 3 4 6

A a ,a ,a ,a ; a ,a ,a ,a  as 

illustrated in Fig. 1, is defined below. 

Definition 2. A TrIFN ( )=
I 2 3 4 5 1 3 4 6

A a ,a ,a ,a ; a ,a ,a ,a  is characterized by the following membership 

function. 

 I I
I x,μ (x), ν (x) | x U .=   (1) 
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And non-membership function is expressed by 

Next, the definition of the Z-number is reviewed. 

Definition 3. A Z-number, ( )=Z A, R , consists of two components A  and R . A  is the fuzzy constraint 

on the values that a variable can take while R  it is a measure of the reliability of A . For simplicity, both 

components of the Z-number can be represented by trapezoidal fuzzy numbers [19], as shown in Fig. 2. 

Fig. 2. Representation of a Z-number for trapezoidal fuzzy numbers. 

Making use of Z-numbers in solving a MCDM problem, Ku Khalif et al. [22] proposed an IMC 

defuzzification approach. In their method, the trapezoidal plane is divided into three parts, where the sub-

centroid of each area is found. Then, the sub-centroids are connected to form a triangular plane, and the 

IMC index is calculated. The IMC index of a trapezoidal fuzzy number ( )=
1 2 3 4

A a ,a ,a ,a ; h  is given as 

follows: 

Using the obtained IMC, the Z-number ( )=Z A, R  is converted into a regular fuzzy number using the 

following three steps: 

I

2
2 3

3 2

3 4

A
5

4 5

5 4

x a
   ,   x a ,a

a a

      1        ,   x a ,a
μ .a x

   ,   x a ,a
a a

     0        ,   otherwise

 −
   −


   

=  −
   −





 (2) 

I

3

1 3

3 1

3 4

A
4

4 6

5 4

a x
   ,   x a ,a

a a

      0        ,   x a ,a
ν .x a

   ,   x a ,a
a a

     1        ,   otherwise.

 −
   −


   

=  −
   −





 (3) 

( )
( ) ( )1 4 2 3

2 a a 7 a a 7h
IMC x,y , .

18 18

 + + +
 =
 
 

 (4) 
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Step 1. Convert R  into a crisp number σ . 

 

 

Step 2. Add σ  into A . 

 

Step 3. Convert σZ  into a regular fuzzy number. 

 

Combining the IFN and Z-number, Sari and Kahraman [23] defined the IZN ( )=
I I I

Z A ,R , in which 

the components 
I

A  and 
I

R  are represented by trapezoidal and triangular fuzzy numbers, respectively, 

as shown in Fig. 3 

Fig. 3. An Intuitionistic Z-Number (IZN) [14]. 

In this paper, both components of IZN are represented by trapezoidal fuzzy numbers, following Zadeh's 

suggestion in [19]. Let ( )=
I I I

Z A ,R , where ( )=
I 2 3 4 5 1 1 3 4 6 1

A a ,a ,a ,a ,δ ; a ,a ,a ,a ,η  and 

( )=
I 2 3 4 5 2 1 3 4 6 2

R r , r , r , r ,δ ; r , r , r , r ,η . Then, 
I

A  and 
I

R  are characterized by the membership and non-

membership functions defined in Eq. (8) and Eq. (9), respectively. 

 

 

 

 

 

 

 

 

 

 

( ) ( )1 4 2 3
2 r r 7 r r

σ .
18

+ + +
=  (5) 

 σ σ

σ

RR R
Z x,μ (x) |μ (x) σμ (x),x [0, 1] .= =   (6) 

( ) Z Z A
Z x,μ (x) |μ (x) μ σx ,x [0, 1] .

 
 = =   (7) 

I I

3 1 12 1
1 2 3 1 3

3 2 3 1 3 1

1 3 4

A A
5

1 4 5

5 4

a η ax a η 1
δ    ,   x a ,a x+    ,   x a ,a

a a a a a a

      δ            ,   x a ,a             
μ ,    νa x

δ    ,   x a ,a
a a

     0           ,   otherwise

 −− −
        − − −


   

= = −
   −





1 3 4

1 6 41
4 6

6 4 6 4

    η                   ,   x a ,a
.η a a1 η

x+    ,   x a ,a
a a a a

               1                    ,   otherwise





   
 −−

   − −




 (8) 

I I

3 2 12 2
2 2 3 1 3

3 2 3 1 3 1

2 3 4

R R
5

2 4 5

5 4

r η rx r η 1
δ      ,   x r , r x+    ,   x r , r

r r r r r r

      δ            ,   x r , r     
μ ,    νr x

δ       ,   x r , r
r r

      0             ,   otherwise

 −− −
        − − −


   

= = −
   −





2 3 4

2 6 42
4 6

6 4 6 4

         η                  ,   x r , r
.η r r1 η

x+     ,   x r , r
r r r r

               1                    ,   otherwise.





   
 −−

   − −




 (9) 
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3 | Proposed Methodology 

This section proposes a methodology used in developing the MCDM model. The methodology consists 

of three phases, as shown in Fig. 4. 

Fig. 4. Proposed methodology. 

The IMCs defuzzification of IZN is proposed, considering both the membership and non-membership 

functions. The IMC defuzzification for the membership function of IZN is given by Eq. (4). Hence, the 

main contribution of this paper is the development of the IMC defuzzification for the non-membership 

function of IZN. 

3.1 | IMC Index of Non-Membership Function of IZN 

Before the conversion method of IZN into a regular fuzzy number could be proposed, the IMC index of 

the non-membership function should be determined. For this purpose, consider a trapezoidal plane, then 

the IMC index can be developed using the following steps: 

Step 1. Divide the trapezoidal plane into three areas. Hence, the sub-centroid for each area can be 

calculated using Eq. (10) to (12). 

Step 2. Connect the sub-centroids α , β  and γ . Hence, a triangular plane is formed, as shown in Fig. 5. 

Fig. 5. The triangular plane is formed by connecting the sub-centroids of 

three areas of non-membership function. 

( ) ( ) ( )1 3 1 2 2

2 2
α x,y r r r , η 1 η .

3 3

 
= + − + − 
 

 (10) 

( ) ( )3 4

2 2

r r 1
β x,y , η 1 η .

2 2

 +
= + −  
 

 (11) 

( ) ( ) ( )4 6 4 2 2

1 2
γ x,y r r r , η 1 η .

3 3

 
= + − + − 
 

 (12) 
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Step 3. The centroid of the triangular plane is calculated by averaging the x- and y-ordinates of the sub-

centroids α , β  and γ . The IMC index is obtained as follows: 

 

 

3.2 | Conversion of IZN into Regular IFNs 

Using the IMC indices for the membership and non-membership functions as obtained in Eq. (4) and 

Eq. (13), respectively, the reliability components are converted into a crisp number for the purpose of 

converting the IZN into regular IFN. The conversion of the IZN, ( )=
I I I

Z A ,R  follows three steps 

below: 

Step 1. Consider Eq. (4) and Eq. (13), convert 
I

R  into a crisp number σ . 

 

Step 2. Add the weight σ  to 
I

A . 

 

Theorem 1. =σ
II

AA
E ( x) σE ( x) , x X  subject to =σ

II
AA

μ ( x) σμ ( x)  and =σ
II

AA
ν ( x) σν ( x) , x X . 

Proof. 

 

 

 

 

 

Fig. 6. Membership and non-membership functions of the weighted IZN. 

Step 3. Convert σ

I
Z  into a regular IFN. 

( )
( ) ( )1 6 3 4 2

2 r r 7 r r η 11α(x) β(x) γ(x) α(y) β(y) γ(y)
IMC x,y , , .

3 3 18 18

 + + +  ++ + + +
 = = 
    

 (13) 

( ) ( ) ( ) ( )2 5 3 4 1 6 3 42 2
2 r r 7 r r 2 r r 7 r r7δ η 11

σ .
18 18 18 18

+ + + + + + +
=  +   (14) 

 σ σ σ σ
I I

σ

I R RR R R R
Z x,μ (x), ν (x) |μ (x) σμ (x), ν (x) σν (x),x [0, 1] .= = =   (15) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

σ
I

I

2 5 3 4 1 6 3 42 2

2 3 4 5A

2 5 3 4 1 6 3 42 2
1 3 4 6

2 3 4 5 1 3 4 6

A

2 r r 7 r r 2 r r 7 r r7δ η 11
E (x) a ,a ,a ,a ; ;

18 18 18 18

2 r r 7 r r 2 r r 7 r r7δ η 11
a ,a ,a ,a ;

18 18 18 18
a ,a ,a ,a ;σ;a ,a ,a ,a ;σ

σE (x).

 + + + + + + +
=  + 



+ + + + + + +
 + 



=

=
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Theorem 2. 


=

IZ A
E ( x) σE ( x) , x σX  subject to ( )

=
IZ A

μ ( x ) μ σx  and ( )
=

IZ A
ν ( x) ν σx , 

x σX . 

Proof. 

Fig. 7. The IFN converted from IZN. 

Theorem 3. ( )
=

IZ A
E ( x) E x . 

Proof. From Theorem 1 and Theorem 2, =σ
II

AA
E ( x) σE ( x)  and 


=

IZ A
E ( x) σE ( x) . Therefore, 

( )
=

IZ A
E ( x) E x . 

3.3 | IZN-Based Decision-Making Model 

The advantages of IZN in handling uncertainty and vagueness, as discussed in the Introduction section, 

can be further highlighted in the implementation for solving an MCDM problem. In the previous sub-

section, a method of converting the IZN into regular IFN was proposed. Hence, using the proposed 

defuzzification method, a novel MCDM model can be developed. In this paper, the arithmetic averaging 

operator is used to aggregate the decision-maker's preferences in the form of IZN. Furthermore, a ranking 

function based on centroid is used to rank the alternatives. Finally, the MCDM method based on IZN is 

given as follows: 

Step 1. The decision-makers preferences in linguistic variables are converted into trapezoidal IZN. For 

this model, the linguistic terms of the restriction and reliability components are given in Table 1 and Table 

2, respectively. 

( ) ( ) 
I I

Z Z Z A Z A
Z x,μ (x), ν (x) |μ (x) μ σx , ν (x) ν σx ,x [0, 1] .

   
 = = =   (16) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

I

2 5 3 4 1 6 3 42 2

Z 2 3 4 5

2 5 3 4 1 6 3 42 2
1 3 4 6

2 3 4 5 1 3 4 6

A

2 r r 7 r r 2 r r 7 r r7δ η 11
E (x) a ,a ,a ,a ; ;

18 18 18 18

2 r r 7 r r 2 r r 7 r r7δ η 110
a ,a ,a ,a ;

18 18 18 18

a ,a ,a ,a ; σ;a ,a ,a ,a ; σ

σE (x).



 + + + + + + +=  + 



+ + + + + + +  + 



=

=
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Table 1. IZN corresponds to linguistic terms for the restriction component. 

 

 

 

 

 Table 2. IZN corresponds to linguistic terms for the reliability component. 

 

 

  

Step 2. Decision-makers' preferences in form of trapezoidal IZN are converted into the trapezoidal 

IFN using the defuzzification method proposed in Section 3.2. 

Step 3. If there is more than one decision-maker involved, then all the decision-makers preferences are 

aggregated using the arithmetic averaging operator. Let n  be the number of decision-makers, and then 

the arithmetic averaging operator is given in Eq. (17). 

 

 

 

 

Step 4. All criteria are aggregated using the arithmetic averaging operator for each alternative (in each 

row). If there are p  criteria, then the aggregated trapezoidal IFN is given by, 

 

 

 

 

Step 5. The ranking of each alternative is calculated. For this purpose, the ranking function for 

trapezoidal IFN based on centroid [24] is used. Let ( )=
2 3 4 5 1 3 4 6

I a ,a ,a ,a ; a ,a ,a ,a  be a trapezoidal IFN, 

and then its ranking is given by, 

 

 

Linguistic Terms Trapezoidal IZN 

Very Low (VL) (0.0,0.0,0.0,0.0;1),(0.0,0.0,0.0,0.0;0) 

Low (L) (0.0,0.1,0.2,0.3;1),(0.0,0.1,0.2,0.3;0) 

Medium Low (ML) (0.1,0.2,0.3,0.4;1),(0.0,0.2,0.3,0.5;0) 

Medium (M) (0.3,0.4,0.5,0.6;1),(0.2,0.4,0.5,0.7;0) 

Medium High (MH) (0.5,0.6,0.7,0.8;1),(0.4,0.6,0.7,0.9;0) 

High (H) (0.7,0.8,0.9,1.0;1),(0.7,0.8,0.9,1.0;0) 

Very High (VH) (1.0,1.0,1.0,1.0;1),(1.0,1.0,1.0,1.0;0) 

Linguistic Terms Trapezoidal IZN 

Not Sure (NS) (0.0,0.0,0.0,0.1;1),(0.0,0.0,0.0,0.1;0) 

Not Very Sure (NVS) (0.1,0.2,0.4,0.5;1),(0.1,0.2,0.4,0.5;0) 

Sure (S) (0.5,0.6,0.8,0.9;1),(0.5,0.6,0.8,0.9;0) 

Very Sure (VS) (0.9,1.0,1.0,1.0;1),(0.9,1.0,1.0,1.0;0) 

( )
n

k2 k3 k4 k5 k1 k2 k3 k6
k 1

n n n n n n n n

k2 k3 k4 k5 k1 k2 k3 k6
k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1

1
a ,a ,a ,a ;a ,a ,a ,a

n

a a a a a a a a

, , , ; , , , .
n n n n n n n n

=

= = = = = = = =

 
 
 =
 
  
 



       

 

(17) 

( )
p

k2 k3 k4 k5 k1 k2 k3 k6
k 1

p p p p p p p p

k2 k3 k4 k5 k1 k2 k3 k6
k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1

1
a ,a ,a ,a ;a ,a ,a ,a

p

a a a a a a a a

, , , ; , , , .
p p p p p p p p

=

= = = = = = = =

 
 
 =
 
  
 



       

 

(18) 

( )
2 2

μ μ ν ν

1 1
R I x (I) y (I) x (I) y (I) .

2 2
   = − + −  

 (19) 
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Where 

 + − − − +
=  

 + − − 

2 2 2 2

4 5 2 3 2 3 4 5
μ

4 5 2 3

a a a a a a a a1
x ( I )

3 a a a a
, 

 − + + + −
=  

 + − − 

2 2 2 2

6 1 3 4 1 3 4 6
ν

4 6 1 3

2a 2a 2a 2a a a a a1
x ( I )

3 a a a a
, 

 + − −
=  

 + − − 

2 3 4 5
μ

2 3 4 5

a 2a 2a a1
y ( I )

3 a a a a
 and 

 + − −
=  

 + − − 

1 3 4 6
ν

1 3 4 6

2a a a 2a1
y ( I )

3 a a a a
. 

4 | Supplier Selection Problem 

A supplier selection problem is adopted from [25] to illustrate the implementation and advantages of IZNs 

in MCDM. The considered problem aims to select the best supplier in an automobile manufacturing 

company with five criteria: quality (C1), cost (C2), technological capability (C3), partnership (C4), and on-

time delivery (C5). Six suppliers are considered as alternatives. 

Step 1. Three decision-makers (experts) were requested to give preferences on all the criteria for each 

alternative. First, their preferences are presented in Tables 3 to 5. Then, the linguistic preferences are 

converted into trapezoidal IZN according to Tables 1 to 2. 

Table 3. Linguistic preferences of Expert 1 [16]. 

 

 

 

Table 4. Linguistic preferences of Expert 2 [16]. 

 

 

 

 

Table 5. Linguistic preferences of Expert 3 [16]. 

 

 

 

 

Step 2. Using the proposed IMC defuzzification of IZN as presented in Section 3.2, trapezoidal IZN is 

converted into trapezoidal IFN. Table 6 shows the trapezoidal IFN obtained by defuzzifying Expert 1's 

preferences in the form of IZN. Then, the rest of the experts' preferences are defuzzified analogously. 

 

 

 

Suppliers C1 C2 C3 C4 C5 

A1 (VL, NVS) (ML, VS) (MH, S) (H, NVS) (MH, NS) 
A2 (L, S) (MH, NVS) (M, NS) (H, VS) (M, NVS) 
A3 (MH, NVS) (ML, S) (H, VS) (M, NVS) (VL, NVS) 
A4 (H, S) (H, NS) (MH, VS) (ML, NS) (VH, S) 
A5 (M, NVS) (M, VS) (MH, NS) (H, NS) (VH, S) 
A6 (ML, NS) (ML, NS) (H, S) (H, NVS) (L, S) 

Suppliers C1 C2 C3 C4 C5 

A1 (M, NVS) (ML, NS) (MH, S) (MH, NVS) (H, VS) 
A2 (MH, S) (M, S) (MH, NVS) (H, NS) (M, VS) 
A3 (MH, NS) (M, VS) (H, NVS) (M, NVS) (MH, NVS) 
A4 (MH, NVS) (L, NVS) (VH, NS) (M, NS) (ML, NS) 
A5 (MH, VS) (VH, NS) (M, VS) (H, NS) (VH, NS) 
A6 (H, NS) (H, NVS) (ML, NVS) (H, S) (MH, VS) 

Suppliers C1 C2 C3 C4 C5 

A1 (MH, S) (M, S) (H, NVS) (M, NVS) (M, S) 
A2 (H, NVS) (MH, NVS) (H, NS) (M, NS) (ML, NVS) 
A3 (M, VS) (ML, NS) (H, S) (MH, S) (MH, NS) 
A4 (MH, VS) (VL, NS) (VH, S) (MH, S) (M, NS) 
A5 (H, NVS) (VH, NVS) (ML, NS) (H, VS) (VH, NVS) 
A6 (MH, S) (H, NS) (ML, NS) (VH, NVS) (H, NS) 
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 Table 6. Converted IFN of preferences for Expert 1. 

 

 

 

 

Step 3. Once the decision-maker's preferences have been converted into trapezoidal IFN, aggregation 

can be done to combine the preferences of all involved experts (3 experts). The aggregated trapezoidal 

IFN representing all the three experts are presented in Table 7. 

 Table 7. Aggregated IFN of preferences for all experts. 

 

 

 

 

Step 4. Based on the aggregated IFN of preferences in Table 7, all the criteria preferences are aggregated 

for each alternative (in each row). Hence, the final aggregation result is shown in Table 8 below. 

 

 

 C1 C2  

A1 (0.000,0.000,0.000,0.000;0.000,0.000,0.000,0.000) (0.099,0.199,0.298,0.398;0.000,0.199,0.298,0.497) … 
A2 (0.000,0.084,0.167,0.251;0.000,0.084,0.167,0.251) (0.274,0.329,0.383,0.438;0.219,0.329,0.383,0.493) … 
A3 (0.274,0.329,0.383,0.438;0.219,0.329,0.383,0.493) (0.084,0.167,0.251,0.335;0.000,0.167,0.251,0.418) … 
A4 (0.586,0.669,0.753,0.837;0.586,0.669,0.753,0.837) (0.000,0.000,0.000,0.000;0.000,0.000,0.000,0.000) … 
A5 (0.164,0.219,0.274,0.329;0.110,0.219,0.274,0.383) (0.298,0.398,0.497,0.597;0.199,0.398,0.497,0.696) … 
A6 (0.000,0.000,0.000,0.000;0.000,0.000,0.000,0.000) (0.000,0.000,0.000,0.000;0.000,0.000,0.000,0.000) … 

 C3 C4  

… (0.418,0.502,0.586,0.669;0.335,0.502,0.586,0.753) (0.383,0.438,0.493,0.548;0.383,0.438,0.493,0.548) … 
… (0.000,0.000,0.000,0.000;0.000,0.000,0.000,0.000) (0.696,0.796,0.895,0.994;0.696,0.796,0.895,0.994) … 
… (0.696,0.796,0.895,0.994;0.696,0.796,0.895,0.994) (0.164,0.219,0.274,0.329;0.110,0.219,0.274,0.383) … 
… (0.497,0.597,0.696,0.796;0.398,0.597,0.696,0.895) (0.000,0.000,0.000,0.000;0.000,0.000,0.000,0.000) … 
… (0.000,0.000,0.000,0.000;0.000,0.000,0.000,0.000) (0.000,0.000,0.000,0.000;0.000,0.000,0.000,0.000) … 
… (0.586,0.669,0.753,0.837;0.586,0.669,0.753,0.837) (0.383,0.438,0.493,0.548;0.383,0.438,0.493,0.548) … 

 C5 

… (0.000,0.000,0.000,0.000;0.000,0.000,0.000,0.000) 
… (0.274,0.329,0.383,0.438;0.219,0.329,0.383,0.493) 
… (0.000,0.000,0.000,0.000;0.000,0.000,0.000,0.000) 
… (0.837,0.837,0.837,0.837;0.837,0.837,0.837,0.837) 
… (0.837,0.837,0.837,0.837;0.837,0.837,0.837,0.837) 
… (0.000,0.084,0.167,0.251;0.000,0.084,0.167,0.251) 

 C1 C2  

A1 (0.194,0.240,0.287,0.333;0.148,0.240,0.287,0.379) (0.117,0.178,0.239,0.300;0.056,0.178,0.239,0.361) … 
A2 (0.267,0.341,0.415,0.489;0.239,0.341,0.415,0.517) (0.266,0.331,0.395,0.459;0.202,0.331,0.395,0.459) … 
A3 (0.191,0.242,0.294,0.345;0.139,0.242,0.294,0.396) (0.127,0.188,0.249,0.310;0.066,0.188,0.249,0.371) … 
A4 (0.452,0.532,0.611,0.690;0.401,0.532,0.611,0.742) (0.000,0.018,0.037,0.055;0.000,0.018,0.037,0.055) … 
A5 (0.348,0.418,0.488,0.557;0.297,0.418,0.488,0.609) (0.282,0.315,0.348,0.381;0.249,0.315,0.348,0.415) … 
A6 (0.139,0.167,0.195,0.223;0.112,0.167,0.195,0.251) (0.128,0.146,0.164,0.183;0.128,0.146,0.164,0.183) … 

 C3 C4  

… (0.407,0.481,0.555,0.629;0.351,0.481,0.555,0.685) (0.274,0.329,0.383,0.438;0.237,0.329,0.383,0.475) … 
… (0.091,0.110,0.128,0.146;0.073,0.110,0.128,0.164) (0.232,0.265,0.298,0.331;0.232,0.265,0.298,0.331) … 
… (0.555,0.634,0.714,0.793;0.555,0.634,0.714,0.793) (0.249,0.313,0.378,0.442;0.185,0.313,0.378,0.507) … 
… (0.445,0.478,0.511,0.544;0.411,0.478,0.511,0.577) (0.139,0.167,0.195,0.223;0.112,0.167,0.195,0.251) … 
… (0.099,0.133,0.166,0.199;0.066,0.133,0.166,0.232) (0.232,0.265,0.298,0.331;0.232,0.265,0.298,0.331) … 
… (0.213,0.260,0.306,0.351;0.195,0.260,0.306,0.370) (0.506,0.552,0.598,0.644;0.506,0.552,0.598,0.644) … 

 C5 

… (0.316,0.377,0.438,0.499;0.288,0.377,0.438,0.527) 
… (0.209,0.279,0.348,0.418;0.139,0.279,0.348,0.488) 
… (0.091,0.110,0.128,0.146;0.073,0.110,0.128,0.164) 
… (0.279,0.279,0.279,0.279;0.279,0.279,0.279,0.279) 
… (0.461,0.461,0.461,0.461;0.461,0.461,0.461,0.461) 
… (0.166,0.227,0.288,0.349;0.133,0.227,0.288,0.382) 
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Table 8. Final aggregation of experts' preferences for each alternative. 

 

 

  

 

Step 5. Based on the final aggregation result in Table 8, the ranking function is evaluated using Eq. (19). 

The ranking function value for each alternative is listed in Table 9 below. 

Table 9. Final aggregation of experts’ preferences for each alternative. 

 

 

 

From the ranking function evaluated in the final step of the MCDM model, the Supplier 
5

A  is ranked first 

while the supplier 
2

A  is ranked last. The obtained ranking is 
2 3 1 6 4 5

A A A A A A , which 

i j
A A  denotes that the ranking of alternative 

i
A  is lower than 

j
A . Comparing this ranking order to the 

one obtained in [25] 
2 1 3 6 5 4

A A A A A A , there is a slight change in their order. This paper 

used IZN to describe the decision information while Z-numbers were used in [25]. IZN is believed to be 

able to better handle the uncertainty of the judgement as compared to the regular Z-numbers. Hence, this 

fact has become one of the factors which determine the final ranking order of alternatives. 

5 | Conclusion 

A defuzzification method of IZN via the IMC method was proposed. The IZN has a better capability of 

handling uncertainty and vagueness as compared to the classical Z-numbers. This is because the restriction 

and reliability components of Z-numbers are characterized by both the membership and non-membership 

functions to highlight the uncertainties which arise due to the lack of information when preferences are 

made by decision-makers. The IMC method was used to defuzzify IZN into regular IFN due to its 

applicability and practicality in converting Z-numbers into regular fuzzy numbers, as discussed in the 

previous literature. A supplier selection problem was implemented to illustrate the proposed 

defuzzification approach. The limitation of this research is that the defuzzification of IZN may lead to a 

great loss of information since the preferences of decision-makers, which are initially in the form of IZN, 

are converted into regular IFN. Hence, a method of solving the MCDM problem without converting the 

IZN into any other form of fuzzy numbers should be developed in the future. The original decision 

information should be kept as IZN throughout the decision-making process, and a magnitude-based 

ranking method is suggested to be used for ranking the alternatives. This will avoid the loss of information. 

Hence, the advantages of IZN in handling uncertainty can be better highlighted. 
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A3 0.104851 5 
A4 0.278681 2 
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