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Abstract

Aim: Hypertension and diabetes mellitus (DM) are major causes of morbidity and

mortality, with growing burdens in low-income countries where they are underdiag-

nosed and undertreated. Advances in machine learning may provide opportunities to

enhance diagnostics in settings with limited medical infrastructure.
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Materials and Methods: A non-interventional study was conducted to develop and

validate a machine learning algorithm to estimate cardiovascular clinical and labora-

tory parameters. At two sites in Kenya, digital retinal fundus photographs were col-

lected alongside blood pressure (BP), laboratory measures and medical history. The

performance of machine learning models, originally trained using data from the UK

Biobank, were evaluated for their ability to estimate BP, glycated haemoglobin, esti-

mated glomerular filtration rate and diagnoses from fundus images.

Results: In total, 301 participants were enrolled. Compared with the UK Biobank

population used for algorithm development, participants from Kenya were younger

and would probably report Black/African ethnicity, with a higher body mass index

and prevalence of DM and hypertension. The mean absolute error was comparable or

slightly greater for systolic BP, diastolic BP, glycated haemoglobin and estimated glo-

merular filtration rate. The model trained to identify DM had an area under the

receiver operating curve of 0.762 (0.818 in the UK Biobank) and the hypertension

model had an area under the receiver operating curve of 0.765 (0.738 in the UK

Biobank).

Conclusions: In a Kenyan population, machine learning models estimated cardiovas-

cular parameters with comparable or slightly lower accuracy than in the population

where they were trained, suggesting model recalibration may be appropriate. This

study represents an incremental step toward leveraging machine learning to make

early cardiovascular screening more accessible, particularly in resource-limited

settings.

K E YWORD S

cardiovascular screening, diabetes mellitus, hypertension, machine learning, predictive
modelling, retinal fundus photographs, UK Biobank

1 | INTRODUCTION

Hypertension and diabetes mellitus (DM) are major causes of morbid-

ity and mortality; both are within the top 10 causes of death world-

wide.1,2 In low-resource settings, societal shifts and urbanization have

driven a surge in morbidity and mortality from cardiovascular dis-

ease.2,3 Since 2000, DM has increased by 70% globally and the preva-

lence of hypertension has shifted from wealthy countries to low- and

middle-income countries.1 While numerous lifestyle and pharmaceuti-

cal interventions are available to treat hypertension and DM, diagno-

sis often requires repeated, office-based measurements.4 High-touch

medical requirements present a challenge in low-income countries; up

to two-thirds of adults are undiagnosed or untreated for DM and

hypertension.5 This problem is compounded by a lack of health care

providers in these parts of the world.6

Advances in machine learning and decreasing imaging costs may

provide opportunities to improve access to cost-effective diagnostics

in settings with limited health care infrastructure through artificial

intelligence-based screening.7,8 Machine learning algorithms have

been trained to diagnose diabetic retinopathy from digital retinal

images,9–12 to estimate blood pressure (BP)13–16 and glycated

haemoglobin (HbA1c),13,14,17 and to diagnose DM15,18,19 and hyper-

tension.16,20 Further machine learning-based technology development

could deliver rapid, non-invasive diagnosis that is deployable in a wide

variety of settings. Improved diagnosis could facilitate earlier interven-

tion, leading to tangible health improvements in resource-limited set-

tings. Such an intervention could be particularly beneficial in African

populations, where undiagnosed hypertension and DM are particu-

larly severe.21–23

Studies have shown the feasibility of training machine learning

algorithms to estimate a variety of cardiovascular and laboratory mea-

sures based on retinal images.13,24 The model performance varies

between studies and much of the research is done retrospectively,

with little emphasis on evaluating algorithms in the low-resource set-

tings that might benefit most from these types of diagnostic

tools.13,24

The goal of this study was to show feasibility in a Kenyan popula-

tion and exploratory objectives were to train a deep learning algo-

rithm to estimate clinical and laboratory parameters, including

hypertension and DM from retinal fundus photographs and to show

the feasibility of validating the algorithm performance in an African

population.

2 WHITE ET AL.
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2 | MATERIALS AND METHODS

2.1 | Study design overview

Retrospective data from the UK Biobank were used to train a series

of machine learning algorithms to estimate clinical and laboratory

parameters, which were prospectively validated in a non-

interventional study in Kenya.

The UK Biobank is a large, population-based prospective study.25

Between 2006 and 2010, it enrolled 500 000 volunteers aged

40-69 years old. Participants provided biological samples and detailed

health information and consented to having their health outcomes

prospectively followed up. Figure 1 displays a study design schematic.

After finalization of the machine learning algorithms, a non-

interventional cohort study was conducted at two sites in Kenya with

the objective of establishing the feasibility of data collection and pro-

spectively evaluate the algorithms in an African population. The

prospective validation part of the study was registered at clinicaltrials.

gov (NCT04814680) and was approved by both sites’ local Indepen-
dent Ethics Committees.

2.2 | Study population

For model development, all UK Biobank participants ≥40 years of age

with retinal image data and sufficient clinical data were included in

the training of each model, and retinal fundus image quality was algo-

rithmically determined. No additional eligibility criteria were imposed.

In the prospective validation component of the study, adults aged

>35 years and over and at least 50% needed an HbA1c ≥6.5% or a

diagnosis of DM. Inclusion and exclusion criteria are listed in Data S1

(page 8). Participants who had an eye condition known to preclude

clear retinal imaging were excluded. During a routine clinical visit, par-

ticipants who met eligibility criteria and provided written informed

consent were enrolled. Referral health care facilities were utilized to

recruit participants; in addition, participants were recruited with the

help of local diabetic support groups. The study was conducted

according to the principles of the Declaration of Helsinki and the

International Council for Harmonization Guidance for Good Clinical

Practice.

2.3 | Data collection

In the UK Biobank, fundus photographs had a 45� primary field of

view and were taken with a TOPCON 3D OCT 1000 Mk2 device.

Images were graded for quality based on mean pixel intensity, which

resulted in the inclusion of 135 359/175 831 images from 70 984 UK

Biobank participants. Implausible outliers were removed for numerical

data, including lab values.

For the prospective Kenyan validation cohort, study eligibility was

determined at a baseline visit and retinal fundus images, clinical measure-

ments, demographics, medical history and samples for laboratory testing

were collected. During visits, BP was measured three times per participant

(at 60 ± 15 min before, 15 ± 5 min before/after, and 60 ± 15 min after

retinal imaging). All BP measurements occurred before blood sampling.

For HbA1c, both point-of-care and laboratory testing were conducted;

laboratory testing results are reported in this manuscript. A Canon CR-

2AF fundus camera equipped with a Canon EOS camera back (Canon RX

Capture software) was used for retinal image acquisition. Retinal images

from the prospective validation cohort were manually reviewed and

assigned quality ratings by retinal imaging experts (Merit©).

2.4 | Model training

Deep learning algorithms were developed exclusively from UK Biobank

data. The data were partitioned into three subsets on a per-participant-

per-time point basis: a training set (86.7%), a validation set (8.5%) and a

held-out test set (4.6%). The unconventional bias in the data split is

because of the imbalance of healthy to unhealthy patients in the UK

Biobank dataset, resulting in fewer unhealthy patients. The training and

validation sets were used to iteratively update and tune the model. The

held-out test set was reserved for evaluating the final model and was

otherwise unused during model training and tuning. No data from the

prospective validation cohort were used to train the models.

F IGURE 1 Illustration of study design.
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Separate machine learning models were trained to estimate cur-

rent systolic BP (SBP), diastolic BP (DBP), HbA1c, creatinine,

cystatin C, DM and hypertension diagnoses based on retinal images.

Model-produced creatinine and cystatin C estimations were used to

calculate the estimated glomerular filtration rate (eGFR).26

The model training procedures closely followed those described by

Poplin et al.14 The main objective of the prediction task for the model

is to give an input retinal fundus image of sufficient quality and resize it

to 224 � 224 pixels to predict the disease status or interested bio-

marker. For each prediction task, we used a deep learning architecture,

Inception v3.27 The base model was the previously published Inception

V3 model architecture, pretrained on ImageNet-1K from torchvision.28

The final fully connected and auxiliary logit layers were replaced with a

linear layer of outputs equal to the number of targets predicted by the

model. Binary cross entropy loss and mean squared error was used for

optimizing the models for predicting disease status and for biomarker

prediction respectively. We tuned the model parameters with various

optimizers and learning rates using the validation set. The Adam opti-

mizer with a learning rate of 3e-4 performed the best on the validation

dataset and were used to train the final models for each task. The train-

ing data set was presented to the model during training with a batch

size of 16 for 50 epochs. The model checkpoint with a stable validation

loss across 10 epochs was used as early stopping criteria, and the

checkpoint was used for internal and external evaluation. All the experi-

ments were run on a cloud computed with 1 GPU core with a memory

16GB. All trained models took a single retinal image as input and gener-

ated predictions on a per-image basis.

Model training was completed using Python v3.7 and

Pytorch v1.3.

2.5 | Model evaluation

For model evaluation, predictions were aggregated on a per-partici-

pant/per-time point basis. Retinal fundus photographs deemed inade-

quate (algorithmically for the UK Biobank; manual review for the

prospective validation cohort) were excluded from training and evalu-

ation. If multiple images were available for a participant at a given

time point, participant-level predictions were derived by taking the

mean of the per-image predictions. The model evaluation was per-

formed on the held-out test and a prospective validation cohort with

a balanced disease distribution for robust performance evaluation.

For continuous predictions, root mean squared error, mean abso-

lute error (MAE) and mean bias error (MBE) were calculated. MAE

summarizes the magnitude of the average model error compared with

the measured values, while MBE quantifies the magnitude and direc-

tion of the bias in errors by subtracting predicted values from the

observed values. The accuracies of SBP, DBP and HbA1c were

assessed by evaluating whether the algorithm output was within clini-

cally relevant windows of error. These windows were defined a priori,

based on expert clinician input.

For binary prediction tasks (i.e. diagnoses of hypertension and

DM), the area under the receiving operating curve (AUROC),

sensitivity, specificity, positive predictive value (PPV) and negative

predictive value were calculated. The model-predicted presence of

the condition corresponded to a predicted probability exceeding a

specified threshold. Otherwise, the model was considered to have

predicted the absence of the condition. Thresholds for binary predic-

tions were selected based on results in the UK Biobank training and

validation data before prospective data collection.

The evaluation results are presented for both the UK Biobank test

set data and the prospective validation cohort. The sample size deter-

mination was empirical, and no formal statistical comparisons were

made, nor were any hypothesis tests conducted. All evaluations

were conducted using Python v3.7.

3 | RESULTS

3.1 | Participants

3.1.1 | UK Biobank

In the UK Biobank data, 70 984 unique participants with 135 522 ret-

inal fundus photographs contributed to analyses. The mean age of

participants was 58 years old, and more women (53%) than men were

included. The mean body mass index was 27.3 kg/m2, and >90% of

participants self-identified as British, Irish, or of other White back-

ground. In the test set, 3.2% of participants had a documented DM

diagnosis, and 11.8% had a hypertensive disease diagnosis at baseline.

Baseline characteristics of the UK Biobank training and test sets are

presented in Table 1.

3.1.2 | Kenyan cohort

In the prospective Kenyan validation cohort, the first participant was

enrolled on 8 November 2021 and follow-up was completed by

10 February 2022. Of the 317 screened, 301 participants from two

clinical trial sites in Kenya were found eligible and consented. Nine par-

ticipants discontinued or withdrew from the study because of partici-

pant choice (n = 2), SAE (n = 1) or other reasons (n = 6). Participants

had a mean age of 51 years, and more men (54.5%) than women

enrolled (Table 1). The mean body mass index was 28.12 kg/m2.

Approximately 99% of the study population reported their race as Black

or African, and <1% as Asian. Nearly half (n = 147) of participants had

either a baseline HbA1c measurement of ≥6.5% or a known diagnosis

of DM, and 44% of participants had a hypertension diagnosis.

3.2 | Outcome measures

3.2.1 | Data completeness

The primary objective of the study was to assess the successful use of

methodology for retinal image acquisition, BP, HbA1c and eGFR

4 WHITE ET AL.
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measurement and to show the feasibility of validating the algorithm's

performance in an African population. Table S2 reports the feasibility

results for the prospective Kenyan validation cohort. All 301 partici-

pants completed the baseline visit, and 292 completed the follow-up

visit (97%). All study procedures had a high level of completeness, with

all protocol-mandated measurements occurring in >97% of participants

at each visit. For >98% of participants, complete and interpretable

images of both eyes of sufficient quality were available for each visit.

TABLE 1 Descriptive and baseline medical characteristics of participants from the UK Biobank and prospective Kenyan validation cohorts.

Characteristic

UK Biobank
Kenyan prospective
validation cohort (N = 301)Training set (N = 56 705) Held-out test set (N = 4076)

Age, years

Mean (SD) 57.7 (8.2) 57.6 (8.3) 51.1 (9.5)

Median (Q1, Q3) 59.0 (51.0, 64.0) 59.0 (51.0, 64.0) 51.0 (43.0, 58.0)

Minimum, maximum 40.0, 79.0 40.0, 75.0 35.0, 85.0

Sex, n (%)

Male 26 745 (47.0) 1889 (46.3) 164 (54.5)

Female 29 960 (53.0) 2187 (53.7) 137 (45.5)

BMI, kg/m2

Mean (SD) 27.26 (4.69) 27.28 (4.69) 28.12 (5.92)

Median (Q1, Q3) 26.61 (24.02, 29.70) 26.63 (24.09, 29.72) 27.20 (23.8, 31.3)

Minimum, maximum 12.65, 65.01 15.11, 59.38 16.0, 52.2

Race and ethnicity, n (%)

Whitea 52 475 (92.5) 3767 (92.4) 0 (0)

Asianb 1538 (2.7) 116 (2.8) 2 (07)

Black or Africanc 1312 (2.3) 93 (2.3) 299 (99.3)

Other 1380 (2.4) 91 (2.2) 0 (0.0)

SBP at baseline,d mmHg

Mean (SD) 137.5 (18.4) 137.1 (18.4) 131.6 (18.4)

Median (Q1, Q3) 136.0 (124.5, 149.0) 135.5 (124.0, 148.5) 130.0 (118.0, 140.0)

Minimum, maximum 76.5, 239.0 77.5, 245.0 100.0, 220.0

DBP at baseline,d mmHg

Mean (SD) 81.5 (9.9) 81.1 (9.9) 82.5 (11.4)

Median (Q1, Q3) 81.0 (74.5, 88.0) 81.0 (74.0, 87.5) 82.3 (74.0, 89.0)

Minimum, maximum 46.5, 134.0 49.5, 122.5 57.0, 139.0

HbA1c at baseline, %

Mean (SD) 5.5 (0.6) 5.4 (0.6) 7.6 (2.7)

Median (Q1, Q3) 5.5 (5.1, 5.6) 5.4 (5.1, 5.6) 6.2 (5.6, 9.2)

Minimum, maximum 3.6, 9.2 3.7, 13.4 4.0, 17.6

eGFR, creatinine at baseline; ml/min/1.73 m2

Mean (SD) 89.3 (13.5) 87.8 (16.0) 96.3 (16.8)

Median (Q1, Q3) 91.0 (81.2, 98.6) 88.4 (76.9, 100.2) 100.5 (85.8, 108.5)

Minimum, maximum 17.5, 132.3 14.7, 137.1 28.1, 128.3

DM at baseline, n (%) 1745 (3.1%) 129 (3.2%) 138 (45.8%)

Hypertension at baseline, n (%) 6332 (11.2%) 465 (11.4%) 132 (43.9%)

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; DM, diabetes mellitus, eGFR, estimated glomerular filtration rate; HbA1c, glycated

haemoglobin; Q1, 25th percentile; Q3, 75th percentile; SBP, systolic blood pressure; SD, standard deviation.
aFor the UK Biobank, this is the sum of participants who indicated ‘British’, ‘Irish’, or ‘other White background’.
bFor the UK Biobank, this is the sum of participants who indicated ‘Indian’, ‘Chinese’, ‘Pakistani’, ‘Bangladeshi’, or ‘any other Asian background’.
cFor the UK Biobank, this is the sum of the participants who indicated ‘African’, ‘Caribbean’, ‘Black or Black British’, or ‘Any other Black’ background’.
dFor Kenyan prospective validation cohort participants, reported blood pressures are the average of taken 60 ± 15 min before retinal imaging, 15 ± 5 min

before or after retinal imaging, and 60 ± 15 min after retinal imaging.

WHITE ET AL. 5
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3.2.2 | Machine learning predictions

Machine learning predictions of continuous measures, threshold

values and binary endpoints were exploratory outcomes. Metrics of

model performance for estimating continuous clinical and laboratory

parameters are presented in Table 2, while Figure 2 summarizes the

proportion of machine learning algorithms' predictions of continuous

measurements that fell within pre-specified tolerance ranges of mea-

sured values. The evaluation of models predicting binary endpoints is

presented in Table 3. In the prospective validation cohort, analyses

were also performed to assess whether the model-predicted values of

HbA1c above a given threshold could be used to indirectly identify

DM and whether model-predicted values of DBP or SBP could be

used to indirectly identify hypertension.

Blood pressure and hypertension diagnosis

In the UK Biobank training dataset, the measured mean SBP was

137.5 mmHg (SD 18.4) and DBP was 81.5 mmHg (SD 9.9), and in the

Kenyan, the cohort mean SBP was 131.6 mmHg (SD 18.4) and DBP

was 82.5 mmHg (SD 11.4) at baseline. To evaluate if the temporal

relationship between retinal image acquisition and BP measurement

enhanced the accuracy of predictions, BPs were performed three

times within a 60-min window before and after the retinal image.

Using the mean of the three measurements, the MAE for estimation

of SBP was similar between the prospective validation cohort at base-

line (12.32 mmHg) and the UK Biobank (11.41 mmHg), although the

MAE for DBP was marginally higher in the prospective validation

cohort (7.98 vs. 6.54). In the validation cohort, minimal bias was

observed in SBP (MBE, baseline: 0.83 mmHg), and a small positive

bias was observed for DBP (MBE, baseline: 3.06 mmHg). At the base-

line visit, for both SBP and DBP, the root mean squared error and

TABLE 2 Model performance results
for estimating continuous clinical and
laboratory parameters from retinal
fundus photographs in the UK Biobank
and prospective Kenyan validation
cohorts.

Parameter MBE (95% CI) MAE RMSE

HbA1c, %

UK Biobank test set 0.00 (�1.09, 1.09) 0.34 0.56

Kenyan validation cohort, baseline visit �1.69 (�6.79, 3.40) 1.96 3.10

Kenyan validation cohort, follow-up visit �1.78 (�6.99, 3.43) 1.94 3.19

SBP, mmHg

UK Biobank test set �0.63 (�29.35, 28.10) 11.41 14.67

Kenyan validation cohort, baseline visit 0.83 (�30.86, 32.51) 12.32 16.16

Kenyan validation cohort, follow-up visit 3.01 (�27.70, 33.82) 12.38 15.95

DBP, mmHg

UK Biobank test set �0.33 (�16.58, 15.91) 6.54 8.30

Kenyan validation cohort, baseline visit 3.06 (�16.00, 22.12) 7.98 10.18

Kenyan validation cohort, follow-up visit 6.10 (�14.84, 27.04) 9.99 12.29

eGFR, creatinine; ml/min/1.73 m2

UK Biobank test set �2.09 (�33.41, 29.22) 12.72 16.11

Kenyan validation cohort, baseline visit 2.05 (�34.47, 38.57) 14.33 18.72

Kenyan validation cohort, follow-up visit 4.36 (�29.54, 38.25) 13.73 17.80

eGFR, cystatin C; ml/min/1.73 m2

UK Biobank test set 0.21 (�33.04, 33.45) 13.42 16.96

Kenyan validation cohort, baseline visit 19.34 (�17.35, 56.03) 22.36 26.89

Kenyan validation cohort, follow-up visit 21.46 (�18.92, 61.84) 24.98 29.72

Abbreviations: CI, confidence interval; DBP, diastolic blood pressure; eGFR, estimated glomerular

filtration rate; HbA1c, glycated haemoglobin; MAE, mean absolute error; MBE, mean bias error; mmHg,

millimetres mercury; RMSE, root mean square error; SBP, systolic blood pressure.

68.0%

86.9%

47.5%

69.0%

41.1%

55.6%

58.6%

35.0%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

DBP +/– 10 mmHg

DBP +/– 15 mmHg

SBP +/– 10 mmHg

SBP +/– 15 mmHg

HbA1c +/– 0.5%

HbA1c +/– 1.0%

Crea�nine-based eGFR +/– 13
mL/min/1.73m

Cysta�n C-based eGFR +/– 13
mL/min/1.73m

F IGURE 2 Proportion of machine learning predictions of
continuous measurements that fell within pre-specified tolerance
ranges in the prospective Kenyan validation cohort. DBP, diastolic
blood pressure; eGFR, estimated glomerular filtration rate; HbA1c,
glycated haemoglobin; mmHg, millimetres mercury; SBP, systolic
blood pressure.

6 WHITE ET AL.

 14631326, 0, D
ow

nloaded from
 https://dom

-pubs.pericles-prod.literatum
online.com

/doi/10.1111/dom
.15587 by IN

A
SP K

E
N

Y
A

 - A
ga K

han U
niversity, W

iley O
nline L

ibrary on [16/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MAE were lower for the mean of three measures across time points

compared with predictions of individual time points.

For DBP at baseline, 87% of model-produced estimates fell within

15 mmHg of the mean measured value, and 61% fell within 10 mmHg.

For SBP, 69% of model predictions fell within the 15 mmHg tolerance

limit and 49% fell within the 10 mmHg tolerance limit.

The model trained to identify patients with hypertension diagno-

ses had better discriminative abilities in the prospective validation

cohort, with an AUROC of 0.77 versus 0.69. In the UK Biobank, using

a threshold of ≥0.047 for hypertension resulted in a sensitivity of

0.69, a specificity of 0.58 and a PPV of 0.19. In the prospective valida-

tion cohort, the model had a sensitivity of 0.65, a specificity of 0.77

and a PPV of 0.69 at the same threshold. Using the DBP model with a

threshold of 80 mmHg led to a hypertension diagnosis classifier with

high sensitivity (0.80) but lower specificity (0.35). Using the SBP

model with a threshold of 140 mmHg resulted in a lower sensitivity

(0.48) and a higher specificity (0.84).

Glycated haemoglobin and diabetes diagnosis

The measured mean HbA1c was 5.5% (SD 0.6, range 3.6%-9.2%) in

the UK Biobank and 7.6% (SD 2.7, range 4.0%-17.6%) in the Kenyan

cohort at baseline. In the UK Biobank, models estimated HbA1c with

an MAE of 0.34% and no estimation bias (MBE: 0.001%). In the pro-

spective validation cohort, MAE for HbA1c was 1.96% at the baseline

visit, and there was a substantial underestimation of HbA1c in model-

produced estimates (MBE, baseline: �1.69%). Approximately 56% of

model-produced estimations of HbA1c fell within 1 percentage point

of the baseline visit measurement, and 41.1% fell within 0.5 of a per-

centage point.

The model trained to identify patients with DM diagnoses had an

AUROC of 0.73 in the UK Biobank and 0.76 in the prospective valida-

tion cohort. Using a threshold of a model-predicted probability of

≥0.142, the model-produced classification of DM had a sensitivity of

0.67 and a specificity of 0.66 in the UK Biobank and a sensitivity

of 0.80 and a specificity of 0.53 in the prospective validation cohort.

In the UK Biobank, 7% of the cases classified as having DM by the

model had a recorded diagnosis; in the prospective validation cohort,

this value was 60%.

Using the HbA1c prediction model with thresholds of either 6.5%

or 70% resulted in models with low sensitivity (0.25 and 0.11, respec-

tively) but high specificity (0.94 and 1.00, respectively) for identifying

patients with a DM diagnosis or suboptimally controlled diabetes.

Estimated glomerular filtration rate

Using CKD-EPI (2021), creatinine-based equations measured the

mean eGFR in the UK Biobank training set at 89.3 ml/min/1.73 m2

(SD 13.5) and 96.3 ml/min/1.73 m2 (SD 16.8) in the Kenyan cohort at

baseline. In the UK Biobank, there was a small difference between the

MAE for model-produced estimates of creatinine-based eGFR

(12.72 ml/min/1.73 m2) versus cystatin C-based eGFR (13.42 ml/

min/1.73 m2). However, in the prospective validation cohort, eGFR

estimates based on creatinine were markedly lower (baseline:

14.33 ml/min/1. 73m2) than those based on cystatin C

(baseline: 22.36 ml/min/1.73 m2). While creatinine-based eGFR

TABLE 3 Model performance results for estimating binary clinical parameters from retinal fundus photographs in the UK Biobank and
prospective Kenyan validation cohorts.

Parameter AUROC Sensitivitya Specificitya PPVa NPVa

Agreement with diagnosis of DM in medical history

Model-predicted DM

UK Biobank test set 0.728 0.671 0.663 0.067 0.982

Kenyan validation cohort, baseline visit 0.762 0.801 0.534 0.592 0.761

Model-predicted HbA1c ≥6.5%

Kenyan validation cohort, baseline visit - 0.250 0.944 0.791 0.598

Model-predicted HbA1c ≥7. 0%

Kenyan validation cohort, baseline visit - 0.110 1.000 1.000 0.571

Agreement with diagnosis of hypertension in medical history

Model-predicted hypertension

UK Biobank test set 0.687 0.686 0.580 0.187 0.929

Kenyan validation cohort, baseline visit 0.765 0.654 0.766 0.685 0.740

Model-predicted SBP ≥140 mmHg

Kenyan validation cohort, baseline visit - 0.477 0.838 0.697 0.673

Model-predicted DBP ≥80 mmHg

Kenyan validation cohort, baseline visit - 0.800 0.359 0.493 0.698

Abbreviations: AUROC, area under the receiver operating curve; DBP, diastolic blood pressure; DM, diabetes mellitus; eGFR, estimated glomerular

filtration rate; HbA1c, glycated haemoglobin; NPV, negative predictive value; PPV, positive predictive value; SBP, systolic blood pressure.
aValues at or above the threshold were considered positive predictions for calculation of binary agreement metrics. For DM models, the threshold was a

predicted probability ≥.142. For hypertension models, the threshold was a predicted probability ≥.047.
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models had minimal bias (MBE, baseline: 2.05 ml/min/1.73 m2), cysta-

tin C-based eGFR models substantially overestimated lab-based

values (baseline: 19.34 ml/min/1.73 m2). The model-produced esti-

mates of eGFR fell within the 13 ml/min/1.73 m2 tolerance limit for

58.6% of predictions based on creatinine and 35.3% of predictions

based on cystatin C. Follow-up visit tolerance results were slightly

lower than those observed during baseline.

Additional exploratory results

Machine learning models were additionally trained to estimate values

for haematocrit, haemoglobin and red blood cells from UK Biobank

data. Predictions in the validation cohort were comparable with those

obtained on UK Biobank data; full results are presented in Table S1.

To investigate the model's explainability, occlusion and integrated

gradient methods were applied. In brief, this post hoc analysis identi-

fied that anatomical features of importance for SBP prediction were

predominantly blood vessels in hypertensive and normotensive partic-

ipants. More detailed results of this analysis are presented in

Figures S1 and S2.

Safety

This was a non-interventional study; two participants (0.7%) experi-

enced a serious adverse event, and neither were deemed related to

study procedures.

4 | DISCUSSION

Deep learning models trained on UK Biobank data to estimate clinical

and laboratory parameters from retinal fundus images showed perfor-

mance that was similar or marginally reduced in Kenyan study partici-

pants, despite substantial differences in race/ethnicity and a higher

prevalence of DM and hypertension. The extreme values observed in

the Kenyan cohort for some clinical parameters, particularly HbA1c,

show unmet diagnosis and treatment needs in this population. With

the routine collection of retinal images to screen for diabetic retinopa-

thy, advances in this technology may hold potential to simultaneously

ascertain related measures for patient care. This study also shows the

feasibility of rapidly collecting high-quality laboratory, clinical and reti-

nal image data needed to train and evaluate machine learning algo-

rithms in resource-limited settings. All study procedures had a high

(≥97%) level of completeness, and over 97% of participants had inter-

pretable retinal images available for both eyes.

Additional studies showed the feasibility and challenges of data

collection in similar settings. A 2-year study in Kenya's Nakuru

County administered ophthalmological examinations to >4000 par-

ticipants.12 For 354 participants (10.2%), images were ‘ungradable’
for diabetic retinopathy.29 Similar studies deploying and evaluating

machine learning algorithms on retinal fundus images in Zambia

and Thailand reported 0.3% and 14.5% ungradable images, respec-

tively.9,30 Taken alongside this study's results, there is evidence of

the feasibility of a more extensive collection of similar data in

future studies.

Lack of representation of certain groups in the data used to train

a machine learning model can lead to poorer performance when the

model is used in those groups, a phenomenon sometimes described as

‘minority bias’.31 When regression models are used to predict the risk

of cardiovascular events, model parameters vary by race for key pre-

dictor variables,32 meaning a model trained using data from primarily

one racial group would lead to poorer risk estimation if deployed in

populations comprised of other racial groups. For this reason, there

have been calls for machine learning models to be adequately tested

and trained on African populations, if that is where they will be

used.9,30,33 A strength of this study was the diversity between the ini-

tial training and subsequent validation datasets and the opportunity

to directly compare results. Differences in the MBE metric showed

continuous laboratory and vital sign measures were systematically

over- or underestimated in the Kenyan prospective validation cohort,

presenting opportunities for improving performance through model

recalibration in the new population.

To ensure the prospective validation sample represented partici-

pants who could potentially benefit from machine learning-based

diagnostic tools, enrolment criteria enriched the study population with

participants with DM. This resulted in a study population that had a

higher prevalence of obesity, hypertension and DM than the popula-

tion in which the model was trained, in addition to substantial differ-

ences in race and ethnicity. Yet, for many endpoints, this study found

a reasonably comparable model performance between the partici-

pants in Kenya and the UK Biobank held-out test, which is consistent

with findings of other studies in which retinal image-based machine

learning algorithms generalized well in new populations. An algorithm

to detect diabetic retinopathy originally trained on a Singaporean pop-

ulation performed well when evaluated in Zambia.9 Similarly, an algo-

rithm trained on data from India and the United States performed well

when prospectively deployed in a Thailand screening programme for

diabetic retinopathy.30 Both of these studies evaluated the perfor-

mance of models for predicting referrable versus non-referrable dia-

betic retinopathy in type 2 DM, but did not explore predictions of

continuous clinical biomarkers or other diagnoses. In contrast, another

algorithm that predicted laboratory parameters from retinal images in

retrospective cohorts had performance that varied across geography,

particularly for creatinine estimation.15

Model performance was strong for parameters related to BP,

including diagnosis of hypertension and prediction of SBP and DBP,

with results approaching a level considered acceptable for a clinical

diagnostic test for some parameters, i.e. AUROC >0.7.34 In the post

hoc analyses of model explainability, pixels near retinal blood vessels

were identified as having importance to model predictions, consistent

with previous findings14 and providing biological plausibility to the

results. Interestingly, prediction accuracy was not enhanced by taking

a reading 15 min before or after an image compared with 60 min. As

BP is labile and varies significantly throughout the day,35 this finding

implies predictions may rely to some extent on more subacute or

chronic retinal features.

For predictions of continuous HbA1c levels, model performance

was less accurate in the validation cohort, probably because of the

8 WHITE ET AL.
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extreme values (up to 17.6%) observed in Kenyan patients, which

were simply not present in the UK Biobank dataset. However, the

prediction of the DM diagnosis was robust in the Kenyan cohort

(AUROC 0.76) and patients with suboptimal glycaemic control (HbA1c

>6.5%) could be detected with a high degree of specificity but low

sensitivity. The model performance was also less accurate for eGFR

estimation, and the variance between the test and the validation data-

sets was greater. This weaker performance is attributable to a less

accurate estimation of creatinine and cystatin C, from which eGFR

estimates were derived using the CKD-EPI equations.25 Further work

is required to distinguish between simple overfitting of the original

models, and an inherent difference in the relationship between the

retina and renal biomarkers in these populations.

This study has several limitations. First, the precision of the evaluation

results from the prospective cohort is limited because of the small sample

size. Second, in the prospective validation component of the study, most

participants (281 of 301) were recruited from a single site, which may limit

generalizability; however, the population was still substantially different

than the one used to train the model. Third, by the time of publication,

there had been substantial improvements in convolutional neural net-

works for image processing tasks beyond the Inception v3 architecture

used in this paper. We expect further performance improvements will be

possible as the deep learning methodology advances.

5 | CONCLUSION

This study represents a step towards leveraging machine learning to

make early cardiovascular screening more accessible and sustainable.

It shows proof-of-concept that retinal images, vital signs and labora-

tory measures can be reliably collected in resource-limited settings to

support the training and evaluation of machine learning algorithms.

The size of this dataset did not allow us to retrain the algorithm to

account for the differences. Furthermore, there have been substantial

improvements in convolutional neural networks for image processing

tasks beyond the Inception v3 architecture used in this paper. We

expect further performance improvements will be possible as the

deep learning methodology advances.

As new models are developed for screening and diagnostic pur-

poses, this study highlights that it will be essential to ensure they are

calibrated to and have their performance validated in the populations

where they will be used.
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