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Introduction
▼
Modulation of stretch-shortening cycle (SSC) 
effectiveness in response to loading history 
implies it has a role in athletic performance, 
injury prevention and rehabilitation [10]. For 
example, SSC effectiveness improves with train-
ing [26], and deteriorates in the presence of over-
use injuries. Whilst SSC dysfunction has been 
demonstrated in several overuse conditions 
[20, 35, 38], due to its intimate relationship with 
the SSC, the condition that has received the most 
attention is Achilles tendinopathy (AT) [14, 33,  
41]. An important physiological phenomenon 
that links SSC effectiveness and injury is fatigue. 
Further understanding the relationship between 
fatigue and SSC effectiveness may assist in the 
rehabilitation and prevention of overuse injuries 
such as AT.
The SSC is a phenomenon associated with human 
locomotion, describing the muscle function in 
which a pre-activated musculotendinous unit 
lengthens (eccentric phase) then immediately 
shortens (concentric phase) [42]. It simplifies 

and optimises the neural efficiency of terrestrial 
locomotion and is dependent upon co-ordinated 
storage/return of elastic energy and muscle acti-
vation under the control of neural strategies. The 
most meaningful measure of SSC effectiveness is 
stiffness of the lower limb [8]. Stiffness increases 
or decreases, regulated in accordance with task 
and environmental changes by the modulation of 
muscle activity via feedforward and feedback 
neural activity [16, 32]. Furthermore, stiffness is 
modified in response to acute and chronic load-
ing histories [39, 40], as well as in accordance 
with pathologic conditions such as AT [14], 
where as a rule, increased stiffness is positive, 
and decreased stiffness is negative to the indi-
vidual’s performance.
The pathogenesis of lower limb overuse injuries 
such as AT are complex and multifactorial [30]. 
However, one important feature appears to be 
SSC dysfunction [14, 33, 41] where impairments 
in the spring mass system [7] result in abnormal 
loading of musculoskeletal tissues [10]. Whilst 
SSC dysfunction is likely mediated by multiple 
factors, fatigue appears to be a significant com-
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Abstract
▼
The role of fatigue in injury development is an 
important consideration for clinicians. In par-
ticular, the role of eccentric fatigue in stretch-
shortening cycle (SSC) activities may be linked to 
lower limb overuse conditions. The purpose of 
this study was to explore the influence of ankle 
plantarflexor eccentric fatigue on SSC effective-
ness during a hopping task in healthy volunteers. 
11 healthy volunteers (23.2 ± 6.7 years) per-
formed a sub-maximal hopping task on a cus-
tom-built sledge system. 3D motion capture and 
surface EMG were utilised to measure lower limb 
stiffness, temporal kinematic measures and mus-
cle timing measures at baseline and immediately 

following an eccentric fatigue protocol. A linear 
mixed model was used to test whether measures 
differed between conditions. Compared to base-
line, eccentric fatigue induced increased stiffness 
during the hopping task (+ 15.3 %; P < 0.001). Fur-
thermore, ankle stretch amplitude decreased 
(– 9.1 %; P < 0.001), whilst all other ankle kine-
matic measures remained unchanged. These 
changes were accompanied by a temporal shift in 
onset of activity in soleus and tibialis anterior 
muscles (– 4.6 to – 8.5 %; p < 0.001). These find-
ings indicate that eccentric fatigue alters SSC 
effectiveness in healthy volunteers. These find-
ings may be applied to inform pathogenetic mod-
els of overuse injury development.
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ponent of this process [11, 19]. For instance, exhaustive running 
decreases lower limb stiffness [15], mediated by alterations in 
the neural control of the SCC. It has been suggested that this 
fatigue leads to increased passive tissue loading and an increased 
risk of injury [37].
Whilst optimal SSC efficiency requires all components to act in 
unison, the eccentric phase is the primary determinant of effec-
tive SSC effectiveness [12], with approximately two-thirds of 
extensor muscle activity occurring during the braking phase 
[37]. As such, a close exploration of fatigue, with a focus on the 
eccentric phase is warranted, which to our knowledge has yet to 
be done. In line with the importance of the eccentric phase of 
the SSC, preliminary data exists suggesting that impairments in 
eccentric muscle performance are an important feature of over-
use injuries [1, 11, 34]. However, research to date has only 
explored the effect of fatigue on SSC modulation using SSC 
fatigue models. However, SSC fatigue models such as exhaustive 
running induce significant systemic fatigue [19], which makes 
divorcing the role of systemic fatigue from the neural response 
to fatigue not possible. Given the potential importance of eccen-
tric fatigue in the modulation of SSC effectiveness and its poten-
tial to contribute to a number of lower limb overuse pathologies, 
this paper explores the modulatory effect of eccentric fatigue on 
temporal measures of SSC effectiveness.
SSC effectiveness can be measured in several ways: at a tissue 
level, at a kinematic/muscle activation level and at a systems 
level [9]. In our exploration, we measured the temporal changes 
in lower limb stiffness, and corresponding changes in associated 
ankle kinematic and agonist/antagonist muscle activity during a 
sub-maximal single-limb hopping task on a sledge-jump sys-
tem. Comparisons between baseline (BAS) values and those 
taken immediately after an ankle plantarflexor eccentric-only 
fatiguing protocol (FAT) were performed.

Materials and Methods
▼
Participants
This was an observational study, employing a within-subjects, 
repeated measures design. We recruited healthy university stu-
dents in Perth, Western Australia (see  ●▶	 Table 1 for participant 
characteristics). Participants were excluded if they had a history 
of AT, lower limb surgery in the preceding 12 months, co-exist-
ing lower quadrant musculoskeletal disorder, or a significant 
visual or motor impairment. Participants received a full expla-
nation of the procedures before providing written consent. Our 
study meets the ethical standards of this journal as described by 
Harriss and Atkinson [21].

Measurements
Sub-maximal hopping task
SSC effectiveness was investigated using a submaximal single-
limb hopping model on a custom-built sledge-jump system 
( ●▶	 Fig. 1a, c). Such systems are employed to optimise reliability 

by reducing the degrees of freedom in the task and eliminate 
task fatigue as a confounding factor [18]. Furthermore, given our 
interest in focusing the task to the ankle, this model unloads 
participants, enabling this process. Following familiarisation, 
participants were instructed to hop on the sledge using their 
dominant limb, at a submaximal effort level, consciously main-
taining a neutral hip and knee. Pilot testing demonstrated that 
this was achieved; mean joint excursion angles for the ankle, 
knee and hip were 28.6 ° ( ± 10.2), 9.8 ° ( ± 4.8) and 6.3 ° ( ± 2.3) 
respectively, with high reliability (e. g., ICC of 0.87 of ankle 
stretch amplitude 0.77 for within, between and across trial 
measures). Participants hopped continuously for 15 s, repeated 5 
times, with 45 s rest between trials. This task was performed 
before and immediately after (within 5 min) the fatigue inter-
vention.

Kinematic measures
Sagittal plane ankle kinematics were recorded using a 14-cam-
era Vicon MX motion analysis system (Vicon, Oxford Metrics, 
Oxford, UK) operating at 250 Hz. Retro-reflective markers were 
fixed to participants’ skin according to a customised marker set 
and model for the lower quadrant, according to an established 
cluster-based method [6]. This established set-up enabled deter-
mination of anatomically-relevant ankle, knee and hip joint axes 
of rotation and joint centres [6].

Electromyographic measures
Soleus and tibialis anterior muscle activity were recorded, using 
an AMT-8 (Bortec Biomedical Ltd) surface electromyography 
(sEMG) system. Bipolar differential surface electrodes (Ag/AgCL) 
were placed on the belly of each muscle with the reference elec-
trode on the medial malleolus. Skin impedance (< 15 kOhms) 
was achieved by skin preparation and signals were pre-ampli-
fied, analogue-filtered (10–500 Hz band pass) and digitised 
using an 18-bit A-D card utilising a sampling rate of 1 000 Hz. All 
data was temporally synchronised and recorded on dedicated 
hardware running a customised Labview program (National 
Instruments, Austin, Texas, 2011).

Interventions
Fatiguing protocol
Positioned in a commercial seated calf-raise machine ( ●▶	 Fig. 1c) 
and using only their dominant limb, participants completed a 
warm-up of 3 sets of 10 repetitions using a 10-kg weight before 
a ‘6 Repetition Maximum Test’ (6 RM; the maximum weight a 
participant can lift 6 times) was conducted. Participants per-
formed 6 isotonic repetitions, beginning at 12.5 kg; on successful 
completion, weight was increased by 2.5 kg. All sets were sepa-
rated by 60 s rest and continued until the participant could not 
successfully complete the task. Successful completion of the task 
was judged by whether or not the participant could complete 
the 6 repetitions through full range without employing compen-
satory strategies such as hip flexion or trunk movements that 
might facilitate hip flexor contribution. The final successful 
weight, which for each participant was achieved within 3 trials, 
was considered their 6RM (group mean 27.4 kg ± 6.6). Partici-
pants performed 5 sets of 10 eccentric contractions at their 6RM 
[5]. An assistant raised the weight so that the participant only 
had to perform the eccentric component. The aim of the proto-
col was to induce standardised eccentric fatigue in the plantar-
flexors. If a participant fatigued early or late, sets were added or 
removed at the discretion of the chief investigator. All partici-

Table 1 Participant characteristics.

n = (male:female) 11 (3:8)
age 23.2 ( ± 6.7) years
height 170.1 ( ± 8.2) cm
mass 70.7 ( ± 13.3) kg
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pants completed 5 or 6 sets. Neither during this protocol, nor on 
re-testing, did participants experience pain or discomfort 
beyond the transient discomfort associated with muscle fatigue.

Data analysis
Kinematic and sEMG data were processed using Vicon Nexus 
motion analysis software (Vicon, Oxford Metrics, Oxford, UK). 
Kinematic data were inspected for broken trajectories that can 
occur as a result of marker occlusion. All breaks < 20 frames in 
length were filled using standard procedures (i. e., cubic spline 
interpolation). Data was filtered using a fourth-order Butter-
worth filter operating at a frequency cut-off of 20 Hz for the 
marker trajectories and 50 Hz for the ground contact data as 
determined by residual analysis [44]. Lower limb anatomical 
and joint coordinates were calculated in accordance with the 
standards outlined by the previously described International 
Standards of Biomechanics [6, 45]. Data was exported from 
Nexus for further analysis using a customised LabVIEW program 
(National Instruments, Austin, Texas, 2011). For each trial, the 
following ankle kinematic measures were calculated; ankle 
angle 80 ms prior to ground contact, ankle angle at ground con-
tact, peak ankle angle and ankle stretch amplitude. Lower limb 
stiffness was calculated using the following validated method 
[13]:
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Kn: Lower limb stiffness (Nm − 1)
M: Mass (kg)
Tf: Flight time (s)
Tc: Contact time (s)
Temporal measures of muscle activity for the soleus and tibialis 
anterior were calculated relative to ground contact: onset, peak 
and offset. The EMG signal was full-wave rectified and onsets 
detected using an integrated protocol [2]. Trial linear envelopes 
(LE) were created using a fourth-order, zero-lag Butterworth 
low-pass filter (10 Hz) and temporally synchronised to (T = 0) 
foot contact.

Statistics
Statistical analysis was conducted using SPSS version 20 (SPSS, 
Chicago, Il, USA). Descriptive statistics were used to establish 
mean values for all variables in each group (BASE vs. FAT). A lin-
ear mixed model was used for all statistical comparisons 
between groups. Age, gender, height and body mass were input 
as covariates and adjusted for within the model. A fixed main 
effects model was fitted, with a type III sum of squares used to 

assess statistical significance. For each dependent variable 
parameter, estimates were utilised and main effects were com-
pared as pairwise comparisons using a Bonferoni correction for 
repeated measures. The residuals were tested for normality as 
required by the linear mixed model with a significance level of 
p < 0.05.

Results
▼
Following eccentric fatigue, lower limb stiffness increased   
+ 15.3 % from 5.9 ( ± 1.3) to 6.8 ( ± 1.7) Nm − 1 (p < 0.001; 95 % CI 0.7 
to 1.1) ( ●▶	 Fig. 2b). Our primary kinematic variable, stretch 
amplitude ( ●▶	 Fig. 2a) decreased  − 9.1 % from 25.2 ( ± 8.9) to 23.4 
( ± 8.5) ° (p < 0.001; 95 % CI –1.1 to –2.4). There was no statisti-
cally significant difference in any other kinematic measure 
between BAS and FAT.
For all temporal sEMG measures ( ●▶	 Fig. 3), relative timings 
occurred between 4.6–8.5 % earlier following the fatigue inter-
vention (soleus onset: 76 ( ± 62) to 61 ( ± 51) ms (p < 0.001; 95 % 
CI 9 to 21); soleus peak: 242 ( ± 69) to 222 ( ± 62) ms (p < 0.001; 
95 % CI 14 to 27); soleus offset: 343 ( ± 67) to 322 ( ± 58) ms 
(p < 0.001; 95 % CI 14 to 27); tibialis anterior onset 44 ( ± 113) to 
32 ( ± 102) ms (p = 0.03; 95 % CI 1 to 23); tibialis anterior peak 207 
( ± 114) to 193 ( ± 111) ms (p = 0.01; 95 % CI 3 to 25); tibialis ante-
rior offset 347 ( ± 74) to 331 ( ± 68) ms (p < 0.001; 95 % CI 8 to 23).

Discussion
▼
The impact of eccentric fatigue on SSC effectiveness is poten-
tially an important pathogenetic component for lower limb 
overuse conditions such as AT and to our knowledge, this is the 
first study that has explored how eccentric fatigue modulates 
SSC effectiveness. We found that eccentric fatigue results in 
increased lower limb stiffness and a corresponding decrease in 
stretch amplitude, accompanied by a hastening of muscle activ-
ity. Lower limb stiffness increased by 15.3 % (0.9 Nm − 1), stretch 
amplitude decreased by 9.1 % (1.8 °) ( ●▶	 Fig. 2) and all temporal 
measures of muscle activity for the tibialis anterior and soleus 
hastened by 4.6–8.5 % (12–21 ms) ( ●▶	 Fig. 2).
Whilst the findings on stiffness are inconsistent with the exist-
ing literature [4, 22, 28], findings on muscle activity are consist-
ent [28]. A number of possible explanations for these findings 
exist. Whilst the majority of other studies investigating the 
effect of fatigue on lower limb stiffness have observed decreases 
in stiffness [25, 28, 37], systemic fatigue was induced by the 
methodology employed. Our experimental model attempted to 
mitigate the influence of systemic fatigue and isolate changes to 

Fig. 1 Experimental set-up a Participant hopping on sledge-jump system, viewed from above; sEMG and 3D motion-analysis marker set in situ. b Partici-
pant performing a loaded single-leg calf raise. c Participant hopping sledge jump system – hip and knee remain in a neutral position.

a b c
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the neural control of the SSC following fatigue. Fatigue appears 
to generate feed-forward changes in agonist and antagonist 
muscle activity, which drives the increase in stiffness. According 
to Oliver, De Ste Croix, Lloyd, et al. [37], increased stiffness may 
represent a potentiated state within the neuromuscular system, 
where in response to fatigue, neural control is modulated in a 
positive (i. e., protective) manner. The ability to maintain short 
ground contact time appears to be a key determinant to main-
taining SSC performance under fatigue [22] and participants 
may have increased stiffness in order to achieve this.
Fatigue is a pathogenetic feature of lower limb overuse condi-
tions (e. g., AT [36]) and may be perceived at a systems level as a 
threatening stimulus. Using our experimental model, it has been 
suggested that in the presence of an overuse injury, a threat is 
perceived and individuals attempt to limit exposure to that 
threat by increasing stiffness [14]. The findings of the current 
study support this theory, suggesting that fatigue may be per-
ceived at a ‘control-level’ as a threatening stimulus in the same 
way that pain is [24].
We observed a decrease in ankle stretch amplitude, but no other 
changes in ankle kinematic measures. The only other study to 
explore ankle kinematics during an SSC following fatigue was 
performed by Kuitunen, Avela, Kyrolainen, et al. [27]. They 
measured lower limb kinematics during sub-maximal hopping 
on a sledge system following a hopping fatigue protocol. Once 
fatigued, they observed increased ankle stretch amplitude in the 

region of 15 % relative to baseline, compared to increases at the 
knee and hip of 50 and 300 % respectively. These findings indi-
cate that in the presence of fatigue, individuals absorb load at 
the hip and knee as opposed to the ankle, which our findings 
also support. In our model, participants were unable to yield at 
the hip or knee; nevertheless, relative attempts were made to 
limit yielding at the ankle, as appeared to occur in the study by 
Kuitunen, Avela, Kyrolainen, et al. [27] showing in fact a slight 
reduction in stretch amplitude at the ankle. Whilst the fatiguing 
nature of the 2 studies differed, in combination these findings 
support the theory that in the presence of a threatening stimu-
lus, a local stiffening strategy is employed to limit such exposure 
[24].
Limitations of our study require acknowledgement. Our fatigu-
ing protocol isolated the plantarflexors in an eccentric manner, 
meaning that fatigue of other muscles (antagonist, synergists) in 
a manner that would induce SSC and systemic fatigue limit the 
generalisability of our findings. However, this model was spe-
cifically chosen in order to isolate the eccentric role of the plan-
tarflexors in the absence of systemic fatigue. This is important 
given that eccentric plantarflexor activity is the primary modu-
lator of SSC effectiveness [12, 23]. Similarly, this protocol would 
inevitably cause exercise-induced muscle damage, which will 
have contributed to mechanisms responsible for the changes 
observed. This study is unable to distinguish between this and 
other-related phenomena (e. g., motor drive [43]), and future 
studies should attempt to divorce such mechanisms from one 
another. We employed a submaximal single-limb hopping task 
on a sledge jump system, which has been used previously to 
investigate a number of neural and mechanical properties of the 
apparatus of the SSC [18, 29]. Whilst this limits external validity, 
it does facilitate the intimate exploration of the mechanics and 
control of the SSC. Finally, we employed the method described 
by Dalleau, Belli, Viale, et al. [13] to measure lower limb stiffness. 
However, participants were instructed to hop with a static hip 
and knee, which was mostly successful (pilot testing demon-
strated mean hip and knee excursion of 6.3 ° ( ± 2.3) and 9.0 ° 
( ± 4.4). Given mean ankle excursion was around 25 °, we believe 
this method can be considered to provide a surrogate measure of 
ankle stiffness.
Our findings have a number of potential clinical implications, 
surrounding firstly the pathogenesis, and secondly the manage-
ment of lower limb overuse conditions (e. g., AT). These are 
based on the theory that deficits in muscle performance under-
pin the fatigue damage observed in such conditions [36], and 
fatigue resilience is a critical requirement in the rehabilitation of 
such conditions [31]. In the context of endurance sport (e. g., 
running) if reduced muscle performance is considered a risk fac-
tor for the development of ‘AT’, when combined with excessive 
activity (i. e., running), the musculotendinous unit eventually 
loses its resilience to repeated impact. Given that muscles act as 
‘buffers to passive tissues, (joint, tendon and bone) (add buffer 
ref), fatigue of the muscle will result in increased load being 
placed on the passive tissues, leading to tissue breakdown once 
the individual load tolerance of that tissue has been exceeded. In 
the same light, given the association between such pathologic 
conditions and associated motor dysfunction [14], a clinical par-
adigm exists where ‘normalising’ such motor performance defi-
cits is an integral component of rehabilitation [31]. Our study 
provides affirming data, albeit in experimental terms, that a 
muscle’s capacity to tolerate fatigue is a critical component of 
the pathogenesis and rehabilitation of lower limb overuse condi-

Fig. 2 Mean ( ± SD) for a kinematic and b	lower	limb	stiffness	values	at	
baseline	and	fatigue	during	the	hopping	task;		*	denotes	significant	differ-
ence (P < 0.05).
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tions. We observed increased lower limb stiffness and reduced 
stretch amplitude, which is in contrast to many previous studies 
[15, 17, 22]. This most likely reflects a novel phenomenon that in 
the absence of metabolic fatigue, it is observed that motor con-
trol strategies exist where the lower limb responds to fatigue by 
increasing stiffness. Given that fatigue loading reduces tendon 
stiffness [3], motor performance may be the most important 
mediator of ankle mechanics in the presence of fatigue (i. e., 
fatigue resilience). If tendon fatigue was the dominant feature 
we would have expected an increase in stretch amplitude and a 
decrease in lower limb stiffness indicative of tendon yielding. 
During conditioning and rehabilitation, consideration should be 
given to ensuring an adequate motor performance profile of the 
plantarflexors to protect against fatigue damage and the predis-
position to developing an overuse injury.
To our knowledge, fatigue as a perceived threatening stimulus in 
the same light as pain has yet to be considered. Our findings 
allow us to make the suggestion that this may be the case. In the 
presence of experimental and clinical pain, changes at multiple 
levels within the neuromusculoskeletal system produce a redis-
tribution of activity within and between muscles, utilising a 
most commonly observed stiffening strategy, which is believed 
to be an attempt to protect the painful region [24]. Pain is a per-
ceptual experience elicited in response to actual or threat of tis-
sue damage. If fatigue is contextualised as a threatening stimulus, 
which is appropriate given that it elevates the risk of injury [46], 
and it is acknowledged that to experience pain in the presence of 
fatigue would be inappropriate from an evolutionary perspec-
tive, it would make sense for the neuromusculoskeletal system 
to elicit a protective motor response to such a threat, as has been 
demonstrated in this study.
In summary, we have shown that eccentric fatigue of the ankle 
plantarflexors alters SSC effectiveness. Specifically, lower limb 
stiffness increases mediated by an increase in muscle activity, 
whilst ankle stretch amplitude decreases. These changes occur 
in a manner that appears to be independent of systemic 
responses and that recognises that fatigue may pose a potential 
injury threat to the musculoskeletal system.
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