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Ocean warming and acidification 
adjust inter‑ and intra‑specific 
variability in the functional trait 
expression of polar invertebrates
Thomas J. Williams 1*, Adam J. Reed 1, Lloyd S. Peck 2, Jasmin A. Godbold 1 & 
Martin Solan 1

Climate change is known to affect the distribution and composition of species, but concomitant 
alterations to functionally important aspects of behaviour and species‑environment relations are 
poorly constrained. Here, we examine the ecosystem ramifications of changes in sediment‑dwelling 
invertebrate bioturbation behaviour—a key process mediating nutrient cycling—associated with near‑
future environmental conditions (+ 1.5 °C, 550 ppm  [pCO2]) for species from polar regions experiencing 
rapid rates of climate change. We find that responses to warming and acidification vary between 
species and lead to a reduction in intra‑specific variability in behavioural trait expression that adjusts 
the magnitude and direction of nutrient concentrations. Our analyses also indicate that species 
behaviour is not predetermined, but can be dependent on local variations in environmental history 
that set population capacities for phenotypic plasticity. We provide evidence that certain, but subtle, 
aspects of inter‑ and intra‑specific variation in behavioural trait expression, rather than the presence 
or proportional representation of species per se, is an important and under‑appreciated determinant 
of benthic biogeochemical responses to climate change. Such changes in species behaviour may act as 
an early warning for impending ecological transitions associated with progressive climate forcing.
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Narratives of the ecological consequences of climate change often centre on biodiversity, food-web structure and 
 productivity1–3, rather than the ecological consequences of alternative outcomes that typically form the prelude 
to compositional restructuring and/or altered levels of  biodiversity4,5. Species responses to a changing climate 
can include avoidance through  dispersal6, acclimation through phenotypic  plasticity7,8, including adjustments to 
physiological  regulation9, and adaptation through genetic  modification10. However, these alternative strategies 
are not always viable or, when available, are not necessarily equally weighted as an effective means of  response11. 
Indeed, in areas of greater risk from environmental change, such as those at higher latitudes, opportunities for 
dispersal (including instances of > 40  days12) and adaptation are often limited due to local evolutionary history 
and  ecology13, meaning that phenotypic plasticity becomes the de facto mechanism of  response14. For organisms 
with very long generation times, as is common in polar  regions15,16, behavioural acclimatisation can maximise 
an individual’s chance of  survival17,18 in advance of genetic  adaptation19, unless fecundity is sufficient to increase 
the likelihood that gene adaptations arise in the  population20. Previous work mainly focuses on invertebrate 
physiological plasticity in relation to ocean  warming21,22 and  acidification23–25, with less emphasis on behavioural 
 plasticity26, even though changes in behaviour often form the first practical response to altered environmental 
 context27,28 and can have consequences for other ecosystem  attributes29. Consequently, the specifics of how 
and when climate related change affects the way in which species behaviour modifies ecosystem functioning is 
under-appreciated30,31.

The activities of sediment-dwelling invertebrates redistribute pore water fluids and sediment particles, ulti-
mately affecting carbon and nutrient  cycles32,33. It follows, therefore, that any directional change in species behav-
iour or trait expression will have important consequences for ecosystem process and  function34. Such changes, 
although species and context  dependent35–37, reflect individual responses to changing circumstances that may 
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 maintain38,  reduce35 or  enhance39–41 functioning, making it difficult to generalise species contributions to altera-
tions in ecosystem properties. Disentangling these effects is frustrated by the fact that changes in behaviour are 
also accompanied by compensatory  responses42,43 that affect dominance  patterns44,45, and other factors, which 
can partially, or wholly, offset functional responses to  forcing46. Nevertheless, field observations show that a 
shift in the type and amount of faunal activity can lead to environmental  transitions3 that exert a disproportion-
ate influence on ecosystem properties and functioning over and above the effects caused by changes in species 
 diversity47,48 and  composition45,49. It is important to note, however, that although flexible behavioural strategies 
can improve short-term  fitness50,51, any associated functional  consequences52,53 may not materialise until much 
later and can be hard to distinguish from other temporal changes in the  system54.

We anticipated that changes in species behaviour will be more pronounced in regions of fast paced climate 
 change3,55, as genetic and other coping mechanisms are less likely to be enacted in time. We speculated, given the 
closure of dispersal and adaptation as viable options, that adjustments to individual behaviour would dominate 
species responses to  change56 at higher latitudes. Here, using sediment-dwelling invertebrate species obtained 
from the Arctic Barents Sea (the bivalve Astarte crenata, sea star Ctenodiscus crispatus and polychaete Cistenides 
hyperborea) and Antarctic Peninsula (the protobranch Aequiyoldia eightsi and bivalve Laternula elliptica), two 
areas currently experiencing amplified climate  change57,58, we explore the combined effects of near-term ocean 
warming (+ 1.5 °C) and elevated levels of atmospheric carbon dioxide (550 ppm  [CO2]) on aspects of species 
behaviour known to influence biogeochemical cycling. As we anticipate that the direction and magnitude of 
change in behaviour will diverge between  species4,59,60, we also include individuals of Astarte crenata and Cteno-
discus crispatus from two locations within the Barents Sea that contrast in temperature and sea ice dynamics; here, 
our expectation is that individual species responses will be in line with previous  observations3, but will be more 
pronounced when species are from locations experiencing narrower environmental variation. We use these data 
to demonstrate the importance of behavioural change and compensatory mechanisms, including numeric and/
or biomass increases and performance  enhancement42,43, in moderating how benthic environments respond to 
external forcing. We show, for five species of polar benthic invertebrates, that the ability to modify behaviour in 
the face of climatic forcing does not guarantee that species contributions will remain unchanged. Our findings 
emphasise the importance of context-dependency and have implications for the functional contributions of 
populations facing climate change, their capacity to adapt in the face of further environmental transitions, and 
suggest that the onset of phenotypic expression may serve as an early warning for impending ecological change.

Results
We find evidence that individual movement and burial behaviour, sediment particle reworking activity, burrow 
ventilation activity, and associated nutrient concentrations at the sediment–water interface, can be dependent on 
environmental condition (ambient climate treatment vs future climate treatment of + 1.5 °C and 550 ppm  [CO2]), 
location, and species identity (Supplementary Models S1 to S29). However, observed effects seldom form full 
factorial interactions between the three dependent variables (8 of 29 models). Despite observing mortalities in 
the bivalve Astarte crenata (2 individuals, 1 from each climate), the sea star Ctenodiscus crispatus (4 individuals, 
3 ambient and 1 future climate), and the polychaete Cistenides hyperborea (1 ambient climate), it was possible to 
relate our response variables in ecosystem process (sediment particle reworking: surface boundary roughness, 
median mixed depth and maximum mixed depth; burrow ventilation activity) and functioning (nutrient con-
centrations: ammonium, nitrite, nitrate and phosphate) to species behaviour (individual movement: response 
time; burial behaviour: burial time) in all aquaria. We find no evidence that differences in mortality (assessed 
using total biomass as a random effect) affects our response variables.

Effects on individual behaviour
All individuals of C. crispatus  (nT = 18) initiated movement within 60 min, with 16 individuals completing 
reburial, but we found no evidence that response time was affected by environmental condition, location or 
their interaction (intercept only model: L-ratio = 1.420, d.f. = 1, p = 0.234; Fig. 1a). However, response times were 
less variable between individuals from station B13 (coefficient of variation, CV = 34.5%) relative to individu-
als from station B16 (CV = 62.9%). Regardless of location, mean burial time of C. crispatus was influenced by 
environmental condition  (F[1,12] = 5.285, p < 0.05), with reburial time halving under future conditions (Fig. 1b). 
For C. hyperborea, 9 individuals  (nT = 11) responded within 60 min, with comparable response rates across both 
environmental conditions  (F[1,7] < 0.001, p = 0.992; Fig. 1a). However, no individuals reburied under ambient 
conditions and an insufficient number of individuals (n = 3) reburied within 60 min under future conditions 
for reliable statistical analysis. For A. eightsi, response time was not dependent on environmental condition 
(intercept only model, L-ratio = 2.277, d.f. = 1, p = 0.131; Fig. 1c), despite a substantial reduction in intra-specific 
variability under future conditions (CV: ambient, 95.7%; future, 51.5%). Burial time for A. eightsi was weakly 
dependent on environmental condition (L-ratio = 3.5943, d.f. = 1, p = 0.0580), despite a reduction in intra-specific 
variability (CV: ambient = 42.3%, future = 28.4%) and burial time (Fig. 1d). We found no effect of biomass as a 
random factor in any of these models.

Effects on ecosystem process
Surface boundary roughness (SBR) in the presence of A. crenata and C. crispatus (Fig. 2a–b) was dependent 
on the independent effects of species (L-ratio = 10.056, d.f. = 1, p < 0.01) and location (L-ratio = 4.010, d.f. = 1, 
p < 0.05), but not environmental condition (L-ratio = 3.238, d.f. = 1, p = 0.072). For C. hyperborea, we also found no 
evidence that SBR was affected by changes in environmental condition (L-ratio = 0.025, d.f. = 1, p = 0.8740) despite 
an increase in intra-specific variability under future conditions (CV: ambient, 2.5%; future, 31.4%; Fig. 2c). For 
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A. eightsi and L. elliptica, we found no effect of environmental condition, species identity, or their interactions, 
on SBR  (F[1,8] = 3.005, p = 0.121; Fig. 2d).

The median mixed depth of particle reworking (f-SPILmed) for A. crenata and C. crispatus was dependent on the 
independent effect of environmental condition  (F[1,18] = 5.2018, p < 0.05; Fig. 2e). However, there was no effect of 
environmental condition on f-SPILmed for C. hyperborea (L-ratio = 0.338, d.f. = 1, p = 0.126; Fig. 2f) or for A. eightsi 
and L. elliptica  (F[1,8] = 2.955, p = 0.124; Fig. 2g). In contrast, maximum mixed depth (f-SPILmax) was dependent 
on a species identity × location interaction for A. crenata and C. crispatus  (F[1,20] = 7.8123, p < 0.05), with spe-
cies identity (ω2 = 0.537) more influential than location (ω2 = 0.316). Specifically, f-SPILmax was deeper in aquaria 
containing C. crispatus from station B16 than it was in aquaria containing A. crenata from station B16 and, to a 
lesser extent, station B13 (Fig. 2h). For C. hyperborea, f-SPILmax was not dependent on environmental condition 
(intercept only model: f-SPILmax, L-ratio = 0.695, d.f. = 1, p = 0.405), but there was some evidence for a reduction in 
intra-specific variability between treatments (CV: ambient, 22.8%; future, 11.5%; Fig. 2i). In contrast, we found 
that f-SPILmax for A. eightsi and L. elliptica was dependent on an environmental condition × species identity inter-
action  (F[1,8] = 7.962, p < 0.05), with species identity (ω2 = 1.103) more influential than environmental condition 
(ω2 = 0.907). Specifically, f-SPILmax was deeper for A. eightsi relative to L. elliptica, with a larger difference observed 
under future conditions (Fig. 2j).

The burrow ventilation activity ([∆Br−]) of A. crenata and C. crispatus was dependent on an environmental 
condition × location × species identity interaction  (F[1,16] = 7.910, p < 0.05), with species identity the most influen-
tial independent variable (ω2 = 0.678), followed by location (ω2 = 0.481) and environmental condition (ω2 = 0.376). 
In individuals from station B13, irrespective of species identity, [∆Br−] was unchanged by environmental condi-
tion (Fig. 2k). However, whilst [∆Br−] for A. crenata from station B16 was negligible ([∆Br−] values were posi-
tive) in both ambient and future environmental conditions, [∆Br−] for C. crispatus increased sevenfold (values 
more negative) under the future environmental condition (Fig. 2l). [∆Br−] of C. hyperborea was also affected by 
environmental condition (L-ratio = 5.879, d.f. = 1, p < 0.05) with an increase in burrow ventilation activity under 
future environmental conditions (Fig. 2m). In contrast, there was no effect of environmental condition or species 
identity on [∆Br−] for A. eightsi and L. elliptica (intercept only; L-ratio = 0.764, d.f. = 1, p = 0.382; Fig. 2n), but 
we did observe a reduction in intra-specific variability between treatments (CV: ambient, 713%; future, 293%).

Effects on ecosystem functioning
Our analyses reveal that, for A. crenata and C. crispatus, ammonium  ([NH4-N]) was influenced by the independ-
ent effect of species identity  (F[1,22] = 14.951, p < 0.0001), with positive log response ratios (lnRRs) in aquaria 
containing C. crispatus and negative lnRRs in aquaria containing A. crenata (Fig. 3a). We find that the effect 
size for  [NH4-N] is not dependent on environmental condition in the presence of C. hyperborea (intercept only 
models:  [NH4-N],  F[1.4] = 1.047, p = 0.364; Fig. 3b), A. eightsi or L. elliptica (intercept only model, L-ratio = 0.009, 
d.f. = 1, p = 0.925; Fig. 3c). For nitrite  ([NO2-N]), whilst there is evidence of a weak dependence on environmental 
condition in the presence of L. elliptica and A. eightsi (L-ratio = 3.532, d.f. = 1, p = 0.060; Fig. 3g), the effect size 
of  [NO2-N] in the presence of A. crenata and C. crispatus was dependent on an environmental condition × loca-
tion × species identity interaction (L-ratio = 4.629, d.f. = 1, p < 0.05). For the latter, model coefficients revealed 
that location was most influential (L-ratio = 7.714, d.f. = 4, p = 0.103), followed by species identity (L-ratio = 6.955, 
d.f. = 4, p = 0.138) and environmental condition (L-ratio = 5.952, d.f. = 4, p = 0.203). In aquaria containing infauna 

Figure 1.  The effects of species identity, location and environmental condition (ambient, open symbols; future, 
closed symbols) on (a,c) mean (± s.e.) response time and (b,d) mean (± s.e.) burial time for Ctenodiscus crispatus 
(□) and Cistenides hyperborea (△) obtained from station B13 (red) and B16 (blue) in the Barents Sea and 
Aequiyoldia eightsi (◇) obtained from Rothera Point (black). Individuals of C. hyperborea did not rebury under 
ambient conditions.
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from station B13 (A. crenata and C. crispatus), irrespective of species identity, and for A. crenata in station B16, 
the effect size of  [NO2-N] was not affected by environmental condition (Fig. 3d–e). For station B16, however, 
the effect size of  [NO2-N] in aquaria containing C. crispatus decreased under future environmental conditions. 
Similarly, the effect size for nitrate  ([NO3-N]) in the presence of A. crenata or C. crispatus was dependent on an 
environmental condition × location × species identity interaction  (F[1,16] = 3.057, p = 0.09), with species identity 
the most influential independent variable (ω2 = 0.281), followed by location (ω2 = 0.207) and environmental 
condition (ω2 = 0.136). Notably, environmental condition had no effect on the activities of A. crenata and C. 
crispatus at station B13 but did influence the behaviour of C. crispatus at station B16 (Fig. 3h–i). In contrast, 
for aquaria with C. hyperborea, we find no influence of environmental condition on the effect size of  [NO2-N] 
 ([F[1.4] = 1.324, p = 0.314; Fig. 3f), but the effect size of  [NO3-N] increased under future conditions  (F1.4 = 60.821, 
p < 0.01; Fig. 3j). For L. elliptica and A. eightsi, the effect size of  [NO3-N] was dependent on the independent 

Figure 2.  The effects of species identity, location and environmental condition (ambient, open symbols; future, 
closed symbols) on (mean ± s.e.) (a–d) SBR (mm), (e–g) f-SPILmedian (mm), (h–j) f-SPILmax (mm) and (k,l–n) 
[∆Br−] (mg  L−1) in mesocosms containing (a,b,d,h,k,l) Astarte crenata (○) or Ctenodiscus crispatus (□) from 
station B13 (red), B16 (blue) or both locations combined (gold), (c,f,i,m) mesocosms containing Cistenides 
hyperborea (△) obtained from station B13 and (d,g,j,n) mesocosms containing Aequiyoldia eightsi (◇) or 
Laternula elliptica (▽) obtained from Rothera Point. For ∆[Br−], negative values indicate increased bioirrigation. 
Sediment profile images and associated luminophore distribution profiles are presented in Supplementary 
Figs. S8–S11.
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effect of environmental condition (L-ratio = 9.720, d.f. = 1, p < 0.01; Fig. 3k), with an increased effect size under 
future conditions for both species.

The effect size for phosphate  ([PO4-P]) was not dependent on any of our explanatory variables (intercept 
only model; Fig. 3l) for A. crenata and C. crispatus. However, we found independent effects of environmental 
condition on  [PO4-P] for C. hyperborea (L-ratio = 3.123, d.f. = 1, p = 0.078; Fig. 3m) and independent effects of 
environmental condition (L-ratio = 7.865, d.f. = 1, p < 0.01) and species identity (L-ratio = 4.662, d.f. = 1, p < 0.05) 
on  [PO4-P] for A. eightsi and L. elliptica (Fig. 3n). Intra-specific variability (CV) in the effect size for  [PO4-P] 
decreased under future conditions for A. eightsi (ambient, 69.7%; future, 50.6%) and C. hyperborea (ambient, 
68.6%; future, 49.7%), but increased for L. elliptica (ambient, 11.7%; future, 47.6%).

Figure 3.  The effects of species identity, location and environmental condition (ambient, open symbols; future, 
closed symbols) on (mean ± s.e.) effect size of nutrient concentrations (lnRR) over the experimental period 
as indicated by (a–c)  [NH4-N], (d–g)  [NO2-N], (h–k)  [NO3-N] and (l–n)  [PO4-P] in mesocosms containing 
(a,d,e,h,i,l) Astarte crenata (○) or Ctenodiscus crispatus (□) from station B13 (red), B16 (blue) or both (gold), 
(b,f,j,m) mesocosms containing Cistenides hyperborea (△) obtained from station B13 and (c,g,k,n) mesocosms 
containing Aequiyoldia eightsi (◇) or Laternula elliptica (▽) obtained from Rothera Point. A positive effect 
size indicates an increase in nutrient release from the sediment into the water column over the experimental 
period, while a negative effect size signifies an increase in the uptake of nutrients from the water column into the 
sediment.
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Discussion
Our findings demonstrate that conditions representative of anticipated near-future climate change can lead to 
fundamental shifts in functionally important aspects of sediment-dwelling invertebrate behaviour. These effects 
can be substantive; here we observed a doubling of burial rate, deepening of particle mixing and a change in 
the magnitude and direction of biogeochemical dynamics that are sufficient to change the functional role of a 
species (A. eightsi36). This observation is important, because alterations in individual functional capacity that 
are distinct from functional shifts caused by changes in community composition and/or novel environmental 
conditions are  common3,61, and likely result from changes in the strength and nature of a portfolio of sublethal 
responses, including species  interactions62,63, compensatory  mechanisms41,42 and/or other subtle phenotypic 
 responses54,64. Changes in macronutrient cycling under climate forcing is not trivial to  detect65, however, and 
may be masked by the pH buffering effects of  [CO2] driven alkalinity  changes66 on microbial mediated pathways 
of nutrient recycling.

The behavioural changes with warming and acidification observed here may be even more important eco-
logically in polar regions than they would be at lower latitudes. Seasonality results in many species entering low 
energy and activity states similar to aestivation in winter that can last several  months67,68; in this study, as in L. 
elliptica69, although juvenile A. eightsi growth is known to be similar across summer and  winter70. Therefore, in 
the presence of species that respond to seasonal cues, greater levels of species activity, leading to greater microbial 
and nutrient remobilisation from  sediments32,33, may occur for longer in polar regions as the summer season 
extends under climate  change71. If widespread, it follows that there will be positive ramifications for phytoplank-
ton productivity over the long  term1,3. Although this is not the only mechanism underpinning nutrient provision 
for productivity, we speculate that outcomes associated with benthic responses to climate change could include 
changes in the phenology of the initiation of productivity and early intensity of phytoplankton  growth72, with 
downstream impacts for primary and secondary consumers.

Whilst the effects of a near-future climate in our experiments were comparatively weaker than the effects 
of species identity and location, consistent with theoretical  expectations73,74, we did note a reduction in intra-
specific variation that reflected changes in environmental context and  location37. This can be very important for 
maintaining  populations75, enabling adaptation to changing environmental  conditions76 and stability in eco-
system  functioning77. However, whilst sublethal responses may enable species to persist in, or for longer, under 
novel circumstances, other phenotypic costs may constrain or inhibit an individual’s ability to adjust  further78,79. 
Hence, reductions in intra-specific variation may serve as an early warning for impending ecological transitions 
associated with progressive forcing and potentially inform more timely management actions, reinforcing the need 
for continual monitoring of faunal activity and the ecological constraints that modify functionally important 
aspects of species  behaviour80.

The variation in intra-specific behaviour observed here under enhanced warming and  [CO2] is consistent 
with other behavioural  studies81, physiological responses in polar benthic  species21 and incorporates regional 
 contextualisation13. Whilst our study was not explicitly designed to examine species range shifts or gradients of 
environmental change, an important feature of our sampling design was that our locations were positioned to 
the north and south of the oceanographic polar front, contrasting in benthic  biogeography82, bioturbation activ-
ity and  functioning3. Hence, we were able to show that individuals predisposed to a wider inter-annual thermal 
range exhibit a more reserved behavioural response to change than those inhabiting a narrower thermal  range83. 
Thus, plasticity in response mirrors the level of local environmental  fluctuation84. Whilst spatial associations 
between environmental temperature range and physiological thermal tolerances are not atypical in ectothermic 
 species13,85,86, this does mean that high latitude populations may be at greater risk of local extinction over the 
long term. As thermal tolerance narrows with decreasing seasonality in temperature towards the  poles16,87, and 
will likely be further constrained with ocean  warming88, populations already at or approaching the edge of their 
thermal limits will most likely have less scope to compensate and adapt to  change89. Indeed, changes in species 
composition and abundance are well documented across areas of environmental  transition3 and show similar 
patterns of functional change, as observed here. Temperature-driven responses are, however, typically compli-
cated by interactions with other abiotic  drivers74 and are likely to lead to both amplified and dampened effects in 
spatially stochastic  ecosystems90. Yet, previous investigations have predominantly focused on spatial distributions 
of species  turnover64, functional  diversity91,92 and  redundancy93, rather than characterising intraspecific variabil-
ity of species-environment interactions. The latter can be a more important driver of the short-term functional 
response of communities than changes in species composition, dominance, or  richness94,95. For example, the 
shallower burrowing activity of invertebrates held under more acidified  conditions96 allows species to evade the 
physiological effects of decreasing pH, but simultaneous burrowing and  ventilatory40 responses to warming to 
maintain environmental continuity may negate the need for such avoidance  behaviour97. We observed similar 
changes across multiple aspects of functionally important behaviour that may have led to non-additive effects 
on net functioning that were not possible to distinguish. Nevertheless, the cumulative effect of such short-term 
behavioural responses is likely to be decisive for the  composition28, population  dynamics98,  connectivity99 and 
 functioning100 of benthic communities that will be moderated by seasonal  timing54 and local  circumstance13,36, 
including interannual  variability3.

Quantitative information on the functional role of individual species is rare for both polar  regions101, yet 
understanding, and accounting for, species responses to climate change is fundamental to improving the like-
lihood of determining the most realistic ecosystem  future102. We contend that this task will be frustrated by 
context-dependent variation in both intra- and inter-specific responses to forcing that are not readily captured 
using fixed trait  modalities35,103. Where the overall outcome of species responses remains largely unresolved, 
reductions in the variation of conspecific  responses95,104 may form a viable alternative for some predictive 
models. Furthermore, our findings lend support to the view that location-dependent variation in behavioural 
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responses can be attributed to localised thermal plasticity driven by exposure to divergent temperature seasonal-
ity  trends8,84,105. Inter- and intra-specific variations in vulnerability, effect-and-response  traits79 and interactions 
between  species106,107 can facilitate functional redundancy and/or post-change  compensations42,43. A mecha-
nistic approach that explicitly tests suspected abiotic and biotic signals is necessary for establishing patterns 
of  response108 across multiple levels of biological  organisation109,110, enabling the generation of more robust 
projections of the most likely functional consequences of change.

Material and methods
Fauna and sediment collection
We obtained individuals of the bivalve Astarte crenata, sea star Ctenodiscus crispatus and polychaete Cistenides 
hyperborea from replicate SMBA (Scottish Marine Biological Association, 50 × 50 cm) box cores, and 15 min 
Agassiz trawls in the Barents Sea (stations B13, 74.3° N, 30.0° E; B16, 80.3° N, 30.0° E, 263–375 m depth; 
JCR18006, RSS James Clark Ross, Supplementary Fig. S1a, Table S1) in July 2019. Individuals of the protobranch 
Aequiyoldia eightsi and bivalve Laternula elliptica were collected by SCUBA divers at Rothera Point, Adelaide 
Island, West Antarctic Peninsula (67.3° S, 68.1° W, 10–20 m depth, Supplementary Fig. S1b) in March–April 
2019. We obtained surficial sediment (< 5 cm depth) from SMBA box cores at the Barents Sea stations B13, 
B14 and B16 (Supplementary Table S1) for the Arctic species, and from the intertidal mud flats of the Hamble, 
UK (50.9° N, 1.3° W) for the Antarctic species. Each sediment was sieved (500 µm) within a seawater bath to 
retain the fine fraction and to remove macrofauna and debris. Sediment particle size (Supplementary Fig. S2) 
was determined using a Malvern Mastersizer 2000 He–Ne LASER diffraction sizer. Mean particle size, sorting, 
skewness and kurtosis were quantified using GRADISTAT 111. Loss on ignition was used to determine sediment 
organic matter content (%).

Experimental design and set‑up
Sediment (mean ± s.e., n = 38: particle size = 60.30 ± 3.91 µm, organic matter content = 5.502 ± 0.212%; Supple-
mentary Table S2) and species were distributed across 42 clear acrylic aquaria (internal LWH: 12 × 12 × 33 cm, 3 
replicates  treatment−1: species × location × climate scenario; Supplementary Table   S1), designed to accommodate 
representative field densities (Arctic species, 2 ind.  aquarium−1; Antarctic species, 1 ind.  Aquarium−1; (112; Sup-
plementary Table S4) and the size and burrowing requirements of each species (sediment depth: A. crenata, C. 
crispatus & C. hyperborea, 16 cm; A. eightsi, 12 cm; L. elliptica, 19  cm113,114). Aquaria were randomly placed within 
one of two insulated seawater reservoirs (3, Supplementary Fig. S3) in the Biodiversity and Ecosystem Futures 
Facility, University of Southampton (UK). All aquaria were filled with seawater (salinity 33, 10 µm sand filtered, 
UV sterilized) to ~ 12 cm above the sediment–water interface and maintained in the dark. After a transitionary 
period to aquarium conditions (21 days, 09–29/09/2019), fauna was exposed to ambient (1 ± 0.5 °C, ~ 400 ppm 
atmospheric  [CO2]) or indicative near-future (2.5 ± 0.5 °C, ~ 550 ppm atmospheric  [CO2]) environmental con-
ditions. Water temperature and atmospheric  [CO2] were increased from ambient to treatment levels in 0.5 °C 
and 50 ppm increments every 7 days (21 days, 29/09/2019–20/10/2019) to minimise adverse physiological 
 responses115. During both the transitionary and experimental period (92 days, 21/10/2019–21/01/2020), species 
were fed ad libitum; C. crispatus and C. hyperborea with commercially available fish food (Aquarian Tropical 
Flake; 0.03 g  week−1), and A. crenata, A. eightsi and L. elliptica with precultured phytoplankton (15 ml, 3 ×  week−1, 
33:33:33 mix: Isochrysis sp., Tetraselmis sp., and Phaeodactylum sp.). This period of time was sufficient for the 
establishment of microniche  formation116 and vertical biogeochemical gradients indicated by colour  change117 
to form in the sediment. Partial seawater exchanges (weekly, 50% volume) prevented accumulation of excess 
food and nutrients. Measurements in behaviour, ecosystem process and functioning were taken at the end of 
the experimental period.

Seawater carbonate chemistry, temperature, and salinity
Atmospheric  [CO2] (Supplementary Fig. S4) was controlled using a custom-made  CO2-air mixing system which 
continually maintained and monitored  [CO2] in the air mixture supplied to each individual experimental core 
using infrared analysers (LI-COR LI-840A)54. This approach facilitates natural variability within the carbonate 
 system118.Temperature, pH (NBS scale, Mettler-Toledo InLab Expert Pro temperature-pH combination electrode; 
weekly three-point calibration using technical buffer solutions pH 4.01, 7.00, 9.21, Mettler-Toldedo), and salinity 
(WTW™ TetraCon™ 325 Standard conductivity electrode; weekly calibration using conductivity standard solution 
12.88mS, Mettler-Toldedo) were measured weekly and total alkalinity  (AT, Apollo SciTech Titrator AS-ALK2) was 
measured in weeks 2, 6 and 11 in each experimental core.  AT analysis followed standard HCl titration protocols 
of the Carbonate Facility, University of Southampton. DIC,  [pCO2], [Ωcalcite], [Ωaragonite],  [NCO3] and  [CO3] were 
calculated (CO2calc carbon calculator, v 4.0.9) (119; Supplementary Figs. S5 and S6).

Behavioural response of individuals
Behaviour of C. crispatus, C. hyperborea and A. eightsi were quantified using measurements of movement and 
burial behaviour at the sediment surface. Individuals (morphology, ± 0.01 mm; blotted wet weight, ± 0.001 g, 
Supplementary Table S5) were placed in separate treatment-acclimatised viewing trays containing sediment 
(depth 5 cm) overlain with sea water (depth 3 cm) and viewed (≤ 60 min) with a benchtop video camera (Log-
itech C920 HD Pro, 1080p; Supplementary Fig. S7). The time taken to initiate movement (response time, s) 
and to complete burial (burial time, s) was recorded (3 frame  s−1, SkyStudioPro) and analysed frame-by-frame 
(VLC Media Player). We incorporated biomass as a random factor in the statistical analysis to account for any 
intra-specific variation in size.
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Effects on ecosystem process and functioning
Sediment particle reworking activity of all five species was determined from the redistribution of fluorescent 
particulate luminophore tracers (30 g  aquarium−1, 125–250 μm diameter, 12 days 09/01/2020–21/01/2020120). 
All four aquarium sides were imaged under UV light (Canon EOS 400D, 3888 × 2592 pixels, effective resolution 
74 × 74 μm  pixel−1), stitched together (Adobe Photoshop CC 2019; Supplementary Figs. S8–S12), and the distri-
bution of luminophores was analysed using ImageJ (version 1.46r120). From these profile data (Supplementary 
Fig. S13), we calculated the mean (f-SPILmean, time dependent indication of mixing), median (f-SPILmed, typical 
short-term depth of mixing) and maximum (f-SPILmax, maximum extent of mixing) mixed depth of particle 
redistribution. Given the shape of the vertical distribution of luminophores (non-continuous), f-SPILmean was an 
unsuitable descriptor of the distribution profile and not considered for statistical analysis. The rugosity of the 
sediment–water interface (upper–lower limit = surface boundary roughness, SBR) provides an indication of 
surficial activity.

Ventilation  behaviour101 of all five species was estimated from absolute changes in the concentration of 
sodium bromide  [NaBr]54. Dissolved [NaBr] was standardised across all aquaria (mean starting concentra-
tion = 1353.816 ± 317.264 mg  L−1) and [NaBr] was determined using a Tecator flow injection auto-analyser (FIA 
Star 5010 series). Negative values of [NaBr] (∆[Br−] mg  L−1) over an 8-h period indicate increased infaunal 
ventilatory activity.

As faunal activity mediates nutrient concentrations, we determined water column  [NH4-N],  [NO3-N], 
 [NO2-N] and  [PO4-P] (µmol  L−1, ~ 10 ml, filtered 0.45 μm NALGENE nylon matrix) for all five species once a 
month (Supplementary Fig. S14) using a QuAAtro 39 auto-analyser (SEAL Analytical) as a measure of ecosystem 
functioning. As nutrient concentrations will also reflect differences in the volume of sediment between species 
treatments, we calculated the log response ratio (lnRR =  ln[concbefore/concafter]121), an effect size that quantifies 
proportionate change. As patterns of  [NOx-N] are reciprocal to those of  [NH4-N] but indicate beneficial biogeo-
chemical processes (e.g. denitrification), lnRR values for  [NO2-N] and  [NO3-N] were multiplied by −1 to align 
the direction of ecosystem functioning.

Statistical analysis
Analysis of Variance (ANOVA) models were developed for each dependent variable (movement and burial 
behaviour: response time, burial time; ecosystem process: SBR, f-SPILmedian, f-SPILmax, ∆[Br−]; ecosystem function-
ing:  [NH4-N],  [NO3-N],  [NO2-N],  [PO4-P]). For A. crenata and C. crispatus, we determined the effects of the 
independent variables; environmental condition (2 levels: ambient, future), location (2 levels: stations B13 and 
B16; Supplementary Fig. S1a), species identity (2 levels), and their interactions, whilst for A. eightsi and L. ellip-
tica, we determined the effects, alone and in combination, of the independent variables environmental condition 
(2 levels) and species identity (2 levels). As C. hyperborea was found at a single station, we determined only the 
effects of environmental condition (2 levels). Intra-specific variability within treatment levels was determined 
using the coefficient of variation.

Model assumptions were visually assessed using standardised residuals vs fitted values plots, Q-Q plots, and 
Cook’s  distance122. Where there was a violation of homogeneity of variance, we used a varIdent variance–covari-
ance structure and generalised least-squares (GLS)  estimation123,124 to allow residual spread to vary amongst 
groups. We determined the optimal fixed-effects structure using backward selection informed by Akaike Infor-
mation Criteria (AIC) and inspection of model residual patterns. For the GLS analysis, we determined the 
optimal variance–covariance structure using restricted maximum-likelihood (REML) estimation by comparing 
the initial ANOVA model without variance structure to equivalent GLS models incorporating specific variance 
terms. These models were compared against the initial ANOVA model using AIC informed by visualisation of 
model residuals. We determined the optimal fixed structure of the most suitable model by applying backward 
selection using the likelihood ratio test with maximum-likelihood (ML)  estimation122,124. For ANOVA models 
with interactions, we calculated the effect size (ω2125) of each independent variable in  R126 using the effectsize 
 package127. For GLS models with interactions, we determined the relative importance of each independent vari-
able by comparing the minimal adequate model with a model with the independent variable of interest, and all 
its interactions, removed using likelihood ratio (L-ratio) in the nlme  package123. Details of initial and minimal 
adequate models (Model S1 to S29) are provided in electronic supplementary material.

Data availability
All data associated with this analysis are available at the Polar Data Centre (https:// www. bas. ac. uk/ data/ uk- pdc/; 
https:// doi. org/ 10. 5285/ 7adc7 b14- abae- 4ab9- b60b- b9b6e 0e9f3 20; Data records S1). Extended data items, includ-
ing the “minimum datasets” that are necessary to interpret, verify and extend the research in the article, can be 
found in the electronic supplementary material.
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