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Abstract

We examine empirically whether the level of data aggregation affects the assess-
ment of misallocation in agriculture. Using data from Ugandan farmers, we document
a substantial discrepancy between misallocation measures calculated at the plot and at
the farm levels. Estimates of misallocation at the plot level are much higher than those
obtained with the same data but aggregated at the farm level. Even after accounting
for measurement error and unobserved heterogeneity, estimates of misallocation at the
plot level are extremely high, with potential nationwide agricultural productivity gains
of 562%. Furthermore, we find suggestive evidence that granular data may be more sus-
ceptible to measurement error in survey data and that data aggregation can attenuate
the relative magnitude of measurement error in misallocation measures. Our findings
suggest caution in generalizing insights on measurement error and misallocation from
plot-level analysis to those at the farm level.
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1 Introduction

A growing literature documents a large dispersion in measures of marginal products of inputs

across farms. This finding has been interpreted as evidence of factor misallocation. Under

this interpretation, reallocation of agricultural inputs could lead to substantial efficiency

gains and aggregate productivity growth (Restuccia and Rogerson, 2017). A concern with

this interpretation is that some of the observed dispersion could reflect other factors, such

as unobserved heterogeneity or measurement error. In this case, dispersion measures would

overestimate the importance of misallocation in agriculture.

To address this potential concern, a promising approach is to use information from disag-

gregated data, at the plot level, to remove measurement error and unobserved heterogeneity

from misallocation measures (Gollin and Udry, 2021). This approach exploits the assump-

tion of efficient allocation of resources across plots within a farm, which implies that the

marginal productivity of inputs should be equalized across plots, and, thus, any observed

dispersion across plots within farms could be attributed to other sources than misallocation.

However, we do not know if the estimates of misallocation are affected by the level

of data aggregation. This limitation is important because most of the existing evidence

on misallocation in agriculture uses data at the farm (household) level (e.g., Chen et al.,

2023). If aggregation matters, then the insights obtained using plot-level data might not be

comparable to existing evidence and could lead to conflicting assessments of the magnitude

and sources of misallocation.

We use data from Ugandan farmers to empirically show that the level of data aggregation

matters and can lead to quantitatively different conclusions regarding factor misallocation

in agriculture. To do so, we calculate and compare misallocation measures using data at the

plot level and the same data aggregated at the farm level. Similarly to the recent macroeco-

nomic literature, our main measure of misallocation is potential efficiency gains (henceforth,
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efficiency gains), i.e., the change in aggregate output that could be obtained if inputs were

reallocated across production units according to a hypothetical efficient benchmark. We

calculate efficiency gains by assuming reallocation of resources within different geographical

units (villages, regions, and nationwide), and by using different estimates of the production

function from previous studies.

We find that the efficiency gains at the plot level are extremely large, even after adjusting

for measurement error. Using production function estimates from Gollin and Udry (2021),

the calculated efficiency gains in Ugandan agriculture are 2,268% allowing for reallocation

nationwide, and 311% assuming only reallocation within villages. After purging for mea-

surement error and unobserved heterogeneity, nationwide efficiency gains remain extremely

large at 562%. These estimates imply an extent of misallocation much greater than previ-

ously documented in the literature. As a comparison, previous studies using farm-level data

from China, Ethiopia, and Malawi document nationwide efficiency gains ranging from 53%

to 259% (Adamopoulos et al., 2022; Chen et al., 2022, 2023).

Furthermore, estimated efficiency gains for Uganda decrease by more than half when

aggregating the same unadjusted data at the farm level. We emphasize that this result is

not driven by changes in the calculation procedure, underlying data, or production function

parameters which we keep unchanged; but just by the level of data aggregation. We obtain

similar results using data from another country (Tanzania), and alternative measures of

misallocation such as productivity dispersion and the elasticity of inputs with respect to

total factor productivity across production units (i.e., input-productivity elasticity).

We interpret the discrepancy between measures of misallocation at the plot and farm

levels as evidence that, when assessing misallocation in agriculture, the level of data ag-

gregation matters. This finding casts doubts on the validity of extrapolating the insights

obtained using plot-level analysis to the results obtained at the farm level.

This issue becomes apparent when assessing the role of measurement error in factor
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misallocation. For example, in a plot-level analysis of our same data, Gollin and Udry

(2021) report that “Late-season production shocks, measurement error, and heterogeneity

in inputs together account for as much as 70% of the variance in measured productivity.

Since these are not susceptible to reallocation, our estimates for the aggregate productivity

gains that could be attained from a reallocation exercise are correspondingly smaller" (p. 5).

Furthermore, Gollin and Udry (2021) conclude that "[...] commonly used approaches in the

literature overstate the dispersion of log TFP by about 100%. The gains from a hypothetical

reallocation are thus correspondingly overstated by a factor of two or three" (p. 48).

Our results indicate that this conclusion is unfounded. A substantial proportion of the

productivity dispersion at the plot level reflects the higher granularity of the data. We

find that aggregating the data at the farm level alone (without any correction for mismea-

surement) reduces productivity dispersion by 40%. Moreover, given the large estimates of

plot-level productivity dispersion, even a substantial reduction in dispersion still leaves size-

able potential reallocation gains. In this case, even with a lower productivity dispersion at

the plot level after correcting for mismeasurement, the efficiency gains range from 562% na-

tionwide to 143% within villages. These magnitudes are quantitatively important and much

higher than previous estimates in the literature.

Is there an appropriate level of analysis to understand misallocation in agriculture? Plot-

level data can be extremely useful in many applications. For instance, plot-level data has

been used to examine the efficiency of intra-household allocation (Udry, 1996; Shandal et

al., 2022), gender differences in the adoption of technology and agricultural productivity

(Slavchevska, 2015; Ndiritu et al., 2014), and the importance of measurement error in the

relationship between size and land productivity (Desiere and Jolliffe, 2018; Abay et al., 2019).

However, when evaluating the extent of factor misallocation in agriculture, we recommend

using aggregated data at the farm level.

Our recommendation is based on three main reasons. First, data aggregation can reduce
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the relative magnitude of measurement error in survey data. Comparing self-reported and

GPS measures of landholding area reveals systematic measurement error, which is larger at

granular levels and reduced when aggregated to the farm level. Second, the contribution of

measurement error to misallocation estimates is much smaller when the data are aggregated

to the farm level. Using an alternative method to assess measurement error with panel data

proposed by Bils et al. (2021), we find that additive measurement error explains less than

20% of the variation in a standard measure of misallocation across farms. This proportion

is much lower than the 70% contribution of mismeasurement at the plot level suggested by

Gollin and Udry (2021). Third, the analysis at the farm level would be in line with economic

theory and policy practice that treats the household farm, not the plot, as the relevant unit

of production and decision making (De Janvry et al., 1991; Restuccia, 2020).

The outline of the paper is as follows. Section 2 discusses the data and methods we

use to calculate productivity at plot and farm levels, efficiency gains, and other measures of

misallocation. Section 3 presents the main comparative results at the plot and farm levels.

Section 4 provides suggestive evidence of a larger measurement error in more granular data

that is attenuated when the data are aggregated at the farm level, and the results of an

alternative method to assess measurement error in misallocation measures at the farm level

when panel data are available. Section 5 concludes.

2 Methods

2.1 Data

Our analysis focuses on a dataset that combines four rounds of the Uganda Panel Survey

(2009-2010, 2010-2011, 2011-12 and 2013-14). This is a household-level survey collected

with support of the World Bank, as part of the LSMS-ISA project, and contains a rich set of

socioeconomic and agricultural information. Agricultural information includes the quantity
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of crop output harvested and the inputs used (land and labor) in each growing season.1

We construct a dataset with agricultural output and inputs at the plot level. This

dataset is the same as in Gollin and Udry (2021) and uses the same variable definitions.2

In particular, a plot is defined as a contiguous area in which a farmer grows a specific

crop or crop mixture. The output is measured as the value of the harvest. This value is

calculated using as prices the median crop values in a community. Labor is the total number

of person days (both family members and hired workers) employed in the plot. Land is the

self-reported area of the plot.

We aggregate the plot-level data by adding the value of output and inputs of all the

plots in a given farm. We define a farm as a set of plots operated by members of the same

household. Note that we do not change the definition of variables, but only the level of data

aggregation.

2.2 Measuring misallocation

Our approach is in line with current research on misallocation in agriculture (Adamopoulos

and Restuccia, 2014, 2020; Chen et al., 2023; Aragón et al., 2022). We quantify misallocation

by assessing the potential aggregate efficiency gains. Efficiency gains refer to the change in

aggregate output that could be achieved if resources, such as land and labor, were efficiently

allocated between production units. While it may be difficult in practice for an economy

to achieve the hypothetical efficient allocation, we use it as a benchmark for comparison of

the potential reallocation gains of inputs across plots and across farms. We define efficiency

gains as:

Efficiency gains = Y e − Y a

Y a
, (1)

1As a robustness check, we replicate our baseline analysis using data from Tanzania. See Online Appendix
A for additional details.

2We construct the dataset using the raw data and code in Gollin and Udry (2021)’s supplementary
material available at https://www.journals.uchicago.edu/doi/suppl/10.1086/711369.
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where Y e is the aggregate output assuming an efficient allocation of inputs, and Y a is the

aggregate output with the actual input allocation. We observe the actual input allocation

in the data. However, the efficient allocation is a counterfactual. To calculate it, we require

more structure.

Finding the efficient allocation. We assume an economy comprising n production units

indexed by i.3 Depending on the level of data aggregation, the production unit would be

the plot or the farm. Each production unit produces the same homogeneous good according

to the following Cobb-Douglas technology,

yi = si(`αi x1−α
i )γ, α, γ ∈ (0, 1), (2)

where si is the total factor productivity of the production unit, and `i and xi are the amounts

of land and labor allocated to (and used by) production unit i.4 Note that production units

are heterogeneous as they differ in their level of productivity si and potentially in the allo-

cation of inputs. We also emphasize that the assumption that γ is between 0 and 1 implies

that the production function features decreasing returns to scale and a non-degenerate dis-

tribution of production units even in the efficient allocation (Lucas Jr, 1978; Hopenhayn,

1992).

We obtain the efficient allocation by solving the following social planner problem:

maximize
{`i, xi ≥ 0}ni=1

Y =
n∑
i=1

yi(si, `i, xi)

subject to L =
n∑
i=1

`i and X =
n∑
i=1

xi,

where L and X are the total endowments of land and labor available in the economy.
3We treat the panel data as repeated cross-sections, and omit the time subscript for simplicity of expo-

sition.
4In what follows, we refer to si as total factor productivity or productivity interchangeably.
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In the efficient allocation, the marginal product of each factor is equalized across produc-

tion units. Using this result, we can write down the efficient allocation as

`ei = s
1/(1−γ)
i∑
i s

1/(1−γ)
i

L, xei = s
1/(1−γ)
i∑
i s

1/(1−γ)
i

X. (3)

Note that the efficient allocations of land and labor in production unit i are proportional to

s
1/(1−γ)
i , which implies that more productive units are allocated more inputs. In particular,

the efficient allocation implies a positive elasticity of inputs (land and labor) with respect to

productivity si, which is approximately equal to 1/(1−γ). This value serves as a benchmark

for comparing the empirical elasticities implied by actual allocations, which may be different

and could even be negative.

Calculating efficiency gains. We first calculate the efficient allocation (3) using esti-

mates of the production function parameters, and data on the actual output and inputs

used (`ai , xai ). L and X are obtained by adding up the actual allocations of all production

units. We then calculate the output that each production unit would have obtained in the

efficient and actual allocation (yei , yai ). These values are obtained by evaluating (2) using

the estimated parameters of the production function and the respective allocation of inputs.

Finally, we aggregate the output of each production unit to obtain aggregate efficient and

actual output Y e = ∑
i y

e
i and Y a = ∑

i y
a
i , and calculate the efficiency gains using the

definition in equation (1).

We also calculate efficiency gains assuming reallocation of inputs within narrower ge-

ographical areas, such as regions or villages. To do so, we use the same procedure but

instead calculate area-specific efficient allocations. For example, if there are J areas, then
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the efficient allocation for production units in area j is defined as:

`eij = s
1/(1−γ)
i∑

i∈j s
1/(1−γ)
i

Lj, xeij = s
1/(1−γ)
i∑

i∈j s
1/(1−γ)
i

Xj, (4)

where Lj = ∑
i∈j `

a
i and Xj = ∑

i∈j x
a
i .

In practice, we observe outputs and inputs for each growing season and thus obtain

several measures of efficiency gains (one for each period). We report simple averages.

2.3 Production function estimates

we use two sets of estimates of production function parameters from previous studies: (a)

estimates from Gollin and Udry (2021) and (b) parameter values commonly used in the

macroeconomic literature on misallocation. We acknowledge that these estimates carry con-

siderable uncertainty, and we do not assert that one set is superior to the other. However,

we prefer to use them instead of estimating our own production function to focus on the

comparative assessment of misallocation in agriculture between the plot and the farm, rather

than on providing the most accurate estimate of misallocation.

Gollin and Udry (2021) estimates. First, we rely on the two-stage least squares (2SLS)

estimates from Gollin and Udry (2021). They estimate the following Cobb-Douglas produc-

tion function:

ln yi = αL ln `i + αX ln xi +WY β + εi, (5)

where WY is a set of other drivers of plot-level output including year-region-season-crop

group fixed effects, plot characteristics (soil quality, water source, slope, etc), interaction

of soil quality with weather shocks (rain, drought, and floods), and an indicator of the

household having received advice on agricultural production. As instruments for ln `i and

ln xi, Gollin and Udry (2021) use a rich set of household shocks (such as illness events and
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weather shocks), plot, farmer and household characteristics. Their estimates are αL = 0.69

and αX = 0.22. Note that in terms of our production function (2), these estimates imply

values of α = 0.76 and γ = 0.91.

We calculate plot-level productivity (ln si) as a residual of the regression (5). We use

the microdata and estimates of the production function parameters already provided in

Gollin and Udry (2021)’s replication package. We also calculate an adjusted measure of

productivity using the correction in Gollin and Udry (2021). This correction is built on the

assumptions of efficient allocation within a farm and classical measurement error. Under

these assumptions, Gollin and Udry (2021) show that the covariances of the output and

inputs of plots within a farm contain information to estimate the dispersion attributed to

measurement error and late-season shocks. Their correction subtracts this dispersion from

the observed productivity, so that the variance of the adjusted productivity is smaller.5

To construct measures of farm-level productivity, we aggregate the output and input

measures of all plots operated by the farm household and then calculate the residual assuming

the same production function ln s = ln y − αL ln ` − αX ln x. The main distinction from

the plot-level residual obtained from equation (5) is that the farm-level residual does not

control for other covariates. However, following an alternative approach that incorporates the

covariates’ information in the farm-level estimates, we obtain quantitatively similar results.6

Macro estimates. As an alternative and for comparability, we use parameters commonly

used in the macroeconomic literature on misallocation (Adamopoulos et al., 2022; Chen et

al., 2022, 2023). We emphasize that these parameters are not estimated using econometric
5See Appendix A.2 and equation (18) in Gollin and Udry (2021) for further details.
6An alternative approach to measure farm-level productivity is to calculate a weighted average of plot-

level productivity of all the plots operated by the household. Denoting the unadjusted productivity of plot
p in farm i as sip, the farm-level productivity would be

∑
p sip(φLip)αL(φXip)αX , where φLip and φXip are the

shares of farm i’s land and labor used in plot p. This alternative measure contains the same information as
the productivity at the plot level. We opt for using a simpler measure to preserve comparability with the
results using macro-estimates.
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methods, but selected to match observed factor income shares. We select γ = 0.70 to be

within the range of values (0.54,0.85) used in previous studies (Restuccia and Rogerson,

2008; Adamopoulos and Restuccia, 2014). This value is also similar to the returns to scale

estimated by recent studies using farm-level data such as Shenoy (2017), Aragón et al. (2022),

and Manysheva (2021).

We then select α = 0.57 to imply a share of land income of 40%. This land share is higher

than that observed in U.S. agriculture but comparable to estimates from less developed

countries (Chen et al., 2022; Adamopoulos et al., 2022). In the same spirit as before, we

calculate productivity, both at the plot and the farm levels, as a residual from equation (2),

i.e., ln si = ln yi − γα ln `i − γ(1− α) ln xi.

3 Main results

Table 1 presents our estimates of the efficiency gains for Uganda. We calculate efficiency gains

using two sets of production function parameters and two different levels of data aggregation

(plot and farm levels). We highlight the following observations:

Obs. 1: Efficiency gains using plot-level data are extremely large. The estimates in

column (1) indicate that if the actual allocations of land and labor shift to their efficient levels

at the national level, agricultural output would increase by 2,268%. Even when reallocation

is limited to smaller geographic areas, the estimated efficiency gains are substantial: 1,552%

within regions and 311% within villages.

These estimates are remarkably large and suggest a level of misallocation that far exceeds

what has been documented in the macroeconomics literature. To provide a comparative

context, the estimated efficiency gains in agriculture at the national level in China, Ethiopia,

and Malawi are 53%, 97%, and 259%, respectively (Adamopoulos et al., 2022; Chen et al.,
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Table 1: Analysis of misallocation in Uganda

Gollin and Udry (2021) estimates Macro estimates
Plot Plot Farm Plot Farm
level level level level level

(adjusted)
(1) (2) (3) (4) (5)

A. Efficiency gains (%)
Nationwide 2,268 562 1,112 223 107
Region 1,552 438 647 210 98
Parish (Village) 311 143 105 105 40

B. Productivity dispersion
Var(ln si) 1.26 0.52 0.77 1.22 0.81

C. Input-productivity elasticities
Land −0.16 −0.25 −0.06 0.00 0.21
Labor −0.03 −0.04 0.08 −0.01 0.18
Efficient 11.11 11.11 11.11 3.33 3.33

D. Parameters
α 0.76 0.76 0.76 0.57 0.57
γ 0.91 0.91 0.91 0.70 0.70

Number of
production units 41,731 41,731 15,377 41,731 15,377

Notes: Efficiency gains refer to the increase in aggregate output associated with changing actual allocation
to efficient allocations, expressed in percentage change, and averaged over growing seasons. All columns use
the same plot-level data, but columns (3) and (5) use the data aggregated to the farm-level. Columns (1)-(3)
use estimates of the parameters of the production function from Gollin and Udry (2021), while columns (4)
and (5) use estimates from the macroeconomics literature. Column (1) uses as production unit productivity
(si) the unadjusted plot-level productivity estimated by Gollin and Udry (2021), while column (2) uses
plot-level productivity adjusted for measurement error and unobserved heterogeneity. Columns (3) to (5)
calculate productivity as the residual ln si = ln yi − γα ln `i − γ(1 − α) ln xi. Input-productivity elasticities
are obtained by regressing ln input on ln si and season-year fixed effects.
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2022, 2023).

Obs. 2: Efficiency gains remain large even after adjusting for measurement error

and unobserved heterogeneity. In column (2), we adjust the measure of productivity to

remove other sources of dispersion following Gollin and Udry (2021). We obtain a substantial

decrease in productivity dispersion of 59%, from 1.26 to 0.52 (see Panel B), along with a

corresponding drop in the estimated efficiency gains between 54 and 75% depending on

the geographical scope of reallocation. Despite this large relative reduction in productivity

dispersion and efficiency gains, the level of efficiency gains remains quite large: 562% for

reallocation at the national level and 143% for reallocation within villages.

A possible interpretation of these two observations is that misallocation in Uganda is ac-

tually quite large, higher than previously documented in other countries. Moreover, it would

suggest that measurement error and unobserved heterogeneity explain a large proportion of

previous estimates of misallocation, as argued by Gollin and Udry (2021). However, this

interpretation implicitly assumes that estimates of misallocation using plot and farm-level

data (as in previous studies) are comparable. The next observation suggests that this as-

sumption is not warranted, but rather that the level of data aggregation matters for the

results.

Obs. 3: Efficiency gains are much smaller when aggregating the same data to the

farm level. Data aggregation alone in column (3) reduces the estimated efficiency gains

by 50-66% and productivity dispersion by almost 40% relative to the estimates in column

(1). This reduction in productivity dispersion and efficiency gains is achieved without any

correction for measurement error or unobserved heterogeneity. Moreover, some of the level

estimates of efficiency gains at the farm level (column 3) are smaller than those obtained

using the adjusted plot-level productivity (column 2). For example, the efficiency gain within

villages at the farm level is 105%, while with adjusted plot-level productivity is 143%.
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We observe similar qualitative patterns when using a different set of parameters of the

production function from the macroeconomics literature (columns 4 and 5). In this case, the

efficiency gains at the farm level are also relatively smaller than at the plot level. However, the

efficiency gains calculated with these alternative parameters are substantially smaller than

those of columns (1) to (3), and closer in magnitude to estimates from previous macroeco-

nomic studies of misallocation. The efficiency gains in column (4), at the plot level, range

from 105% within villages to 223% nationwide. These values are well below the efficiency

gains calculated using Gollin and Udry (2021)’s production function estimates, with and

without adjustments for measurement error in columns (1) and (2). This substantial reduc-

tion in the level of misallocation occurs even though the productivity dispersion of the macro

estimates is larger (1.22 vs. 0.52).

This result illustrates the importance of production function estimates and the limitation

of using productivity dispersion as a measure of misallocation. In general, the magnitude of

efficiency gains (and the implied reallocation gains) is a function of productivity dispersion,

economies of scale, and the relationship between input allocation and productivity. Thus,

production dispersion alone is not enough to compare the extent of misallocation across

different contexts.

Our baseline results focus on efficiency gains as our main measure of misallocation. How-

ever, we obtain similar results when using other measures, such as the productivity dispersion

and the elasticity of each input with respect to total factor productivity (input-productivity

elasticity) as documented in panels B and C in Table 1.

In the efficient allocation, the input-productivity elasticities should be positive and larger

than one (see equation (3)). In contrast, in the data, we observe that the estimated elasticities

at the plot level are quite small and even negative. This result implies that the actual

allocations of inputs across plots differ substantially from the efficient allocation. Instead

of allocating more resources to more productive plots, less productive plots receive larger
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amounts of land and labor.

Moreover, estimated input-productivity elasticities at the plot level are not affected by

the correction for unobserved heterogeneity and measurement error. We also observe that

the estimated elasticities are greater at the farm level than at the plot. This observation is

consistent with a lower degree of misallocation when the granular data are aggregated at the

farm level.

Discussion. We observe large discrepancies when calculating efficiency gains and other

measures of misallocation at the plot and farm levels. These findings are not unique to

Uganda. We find similar differences using data from Tanzania (see Appendix A). We in-

terpret these differences as evidence that measures of misallocation using different levels of

data aggregation are not comparable. In short, when assessing misallocation in agriculture,

data aggregation matters.

This finding has two important implications for researchers and policy makers. First,

it underscores the need to take into account the level of data aggregation when assessing

misallocation in a country, performing cross-country comparisons, or evaluating the impact

of policies. Analysis at the plot level may produce larger estimates that are not comparable

to measures using more aggregated data.

Second, it illustrates the limitations of extrapolating insights from plot-level analysis to

the farm level. This limitation becomes evident when plot-level data are used to assess

the importance of measurement error in misallocation. For example, a researcher using plot-

level data would observe that measurement error explains a large fraction of the productivity

dispersion and wrongly conclude that estimates using farm-level or other data overstate the

magnitude of misallocation. Our analysis indicates a high degree of input misallocation

in Ugandan agriculture, highlighting the need for research identifying the sources of this

misallocation and potential policy remediation.
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4 Measurement error and misallocation

We now examine measurement errors and misallocation using data at different levels of

aggregation. First, we show that more granular data feature a relatively larger measurement

error than the same data aggregated at the farm level. Second, we apply a method recently

proposed by Bils et al. (2021) to assess misallocation in the presence of additive measurement

error. Using panel data at the farm level, we find that measurement error accounts for less

than 20% of the observed dispersion in measures of misallocation. This share is much smaller

than the importance of mismeasurement at the plot level emphasized in Gollin and Udry

(2021).

4.1 Measurement error in disaggregated data

Due to data availability, we focus on measurement error in land input. To assess measurement

error, we compare two measures of the size of landholdings: self-reported area provided by

the farmer and land areas calculated using Global Positioning System (GPS) information

collected by the survey enumerators. Although not exempt from potential error, the GPS

measure is arguably more precise and less prone to farmer misreporting (Carletto et al.,

2017).

We use the same data sources as in the previous section, i.e., four rounds of the Uganda

Panel Survey, and construct a data set with information on land areas at the farm and

parcel levels. A parcel is a set of plots within a farm; hence, the parcel-level data are less

disaggregated than the plot-level data. However, we choose this level of aggregation due to

data limitations since the GPS measure is not available at the plot level, only available at

the parcel level. This implies that our evidence below of larger measurement error at the

parcel level compared to the farm level is conservative of the likely larger measurement error

in plot-level self-reported data.
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The data comprise around 20,400 parcel-time observations, of which only 9,900 (48%)

have GPS data. We note, however, that the analysis in this Section is performed using

only the parcel observations for which we have both GPS and self-reported data. To obtain

farm-level data, we first drop parcels without GPS data and then aggregate the self-reported

(or GPS) areas of the remaining parcels.

Our sample comprises 6,069 farms with at least one parcel with GPS information (3,036

of those have only one parcel with GPS information) compared to 9,148 farms with self-

reported data. On average, there are 2.2 parcels per farm with self-reported data, whereas

our sample with GPS information comprises 1.6 parcels per farm. Moreover, the distribution

of farms and parcels self-reported area is similar regardless of having or not having a GPS

measure. This observation reduces concerns about systematic bias in the collection of GPS

data.

Figure 1 shows the distribution of the landholding area in hectares using different levels

of data aggregation, but the same scale on the axes. The solid lines represent self-reported

values, while the dashed lines correspond to GPS values. There are three relevant observa-

tions.

1. There are obvious discrepancies between self-reported and GPS measures of landhold-

ing area. The discrepancy has been documented in other studies and interpreted as

evidence of measurement error in self-reported values (Judge and Schechter, 2009;

Carletto et al., 2015; Gourlay et al., 2019; Abay et al., 2021). Interestingly, the GPS

measure follows a smooth bell-shaped distribution, whereas self-reported measures are

heaped around certain values. The observed ‘heaping’ is indicative of respondents (or

enumerators) rounding the reported size (Abay et al., 2019, 2021; Carletto et al., 2013).

2. The discrepancy between self-reported and GPS measures is more pronounced among

smaller units on the left side of the distribution. This evidence suggests that the
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measurement error is not classical, but is correlated with the unit size. This pattern has

been documented in other studies. For example, Abay et al. (2021) reports a negative

correlation between plot size and land measurement error in four sub-Saharan African

countries.

3. The discrepancy between self-reported and GPS measures appears to be greater in

more granular data at the parcel level compared with the farm level.

Figure 1: Distribution of landholding size, self-reported and GPS measures

(a) Parcel level (b) Farm level

Notes: Distribution of the log area of land holdings at the parcel level (panel a) and aggregated to the farm
level (panel b). Solid lines represent self-reported values, while red-dashed lines represent GPS measures.

The last observation suggests that aggregating data at the farm level might attenuate

some of the measurement error at a more granular level. To quantitatively assess this ob-

servation, we use two measures of the relative importance of measurement error. First, we

examine the average relative error:

E(relative error) = 1
n

n∑
i=1

(
areaSELFi − areaGPSi

areaGPSi

)
, (6)

where areaSELFi and areaGPSi refer to the area of the i-th parcel (or farm) self-reported by
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the farmer or calculated using GPS. This indicator measures the average overreporting of

the landholding size.

Second, we define ln errori = ln areaSELFi − ln areaGPSi , and calculate the relative log-

variance of the error:
Var(ln errori)

Var(ln areaGPSi ) . (7)

This measure captures the dispersion of measurement error relative to the dispersion of GPS

landholding sizes. We use this measure as an indicator of how much measurement error

could contribute to the dispersion of productivity estimates. To obtain our estimates, we

first trim the 1% tails of the relative error and the log error. Then, we estimate (6), (7) and

their difference using bootstrapping with 100 replications.

Table 2 reports our findings. We find evidence of measurement error (column 1). The

average parcel is reported to be 26.1% larger than its GPS measurement. We find a similar

pattern in the relative dispersion of the error. In the parcel data, the log-variance of the error

is almost a quarter of the log-variance of the GPS landholding area. However, the relative

importance of measurement error decreases when the data are aggregated at the farm level

(column 2). For example, at the farm level, average overreporting drops by almost a third,

from 26.2% to 17.7%, while the relative log-variance of the error decreases by almost 20%,

from 23.2% to 18.0%.

Our central point is that disaggregated data (at the parcel or more granular level) is

much worse in terms of measurement error, than data aggregated at the farm level. This

conclusion has two caveats. First, due to data limitations, we cannot directly assess the

extent of measurement error at the plot level. However, because plot-level data are even

more granular than the data at the parcel level, it is likely that measurement error problems

in plot-level data are actually worse. Second, our findings are illustrative of the Ugandan

case and might not extrapolate to other contexts.
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Table 2: Relative importance of measurement error in landholding area

Parcel-level Farm-level Difference
landholding landholding between

area area (1)− (2)
(1) (2) (3)

E(relative error) 0.262 0.177 0.085
(0.009) (0.010) (0.008)

Var(ln errori)
Var(ln areaGP S

i ) 0.232 0.180 0.051
(0.005) (0.005) (0.004)

No. obs. 9,907 6,069

Notes: E(relative error) is the average relative error defined as the ratio of self-reported and GPS area minus
one. ln error is the difference between ln self-reported area and ln GPS area. Bootstrapped standard errors
are in parentheses. Column (3) reports the estimated difference between the measures in columns (1) and
(2).

4.2 Measurement error and misallocation at the farm level

If measurement error is larger in more granular data at the plot level, how can we assess

the contribution of measurement error to measures of misallocation at the farm level? To

answer this question, we implement an alternative method proposed by Bils et al. (2021) to

correct for additive measurement error when panel data are available.

Their method is based on the observation that the growth of output (or revenue) of a

production unit would be proportional to the growth of inputs. However, this elasticity

would be affected by additive measurement error. For example, if there is over-reporting of

inputs, then the output (or revenue) would increase proportionally less, and the observed

elasticity would be smaller. The method exploits how this elasticity varies across production

units to correct measures of misallocation from additive measurement error.

Following Bils et al. (2021) and assuming a Cobb-Douglas production function as in equa-

tion (2), we define output per unit of composite input (TFPR or average revenue productivity
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in their context) as:

TFPRit ≡
R̂it

Îit
≡ yit
`αitx

1−α
it

(8)

where R̂it is the observed output in farm i in period t and Îit is a composite input calculated

using the observed inputs of land and labor. Note that TFPRit is not a measure of total

factor productivity sit, which would be R̂it/Îit
γ, but instead a measure of the average and

marginal product of inputs.7

TFPRit serves as an indicator of distortions because, in an efficient allocation, it is equal-

ized across production units. Therefore, dispersion in TFPRit would signal misallocation.

However, if the observed TFPRit contains measurement error, its dispersion would be larger,

leading to an overestimation of the extent of misallocation

Bils et al. (2021) show that, with additive measurement error in either output or inputs,

the dispersion of the observed TFPRit can be corrected using the following expression:

Var(ln τit) = Var(ln TFPRit) + Cov(ln TFPRit, ln βk), (9)

where τit is the true value of TFPRit without measurement error, and βk is the elasticity of

observed output with respect to observed inputs, conditional on TFPRit taking a particular

value TFPRk. In the empirical application, TFPRk corresponds to the k-th decile of the

TFPRit distribution.8

We implement Bils et al. (2021)’s method using the same data as in Section 3 and the

following procedure:9

7We add the subscript t to acknowledge the time dimension of the panel data. In our previous results,
we treated the data as a series of repeated cross-sections and omitted the time subscript to simplify the
exposition.

8Formally βk ≡ Covk(∆R̂it,∆Îit)
Vark(∆Îit) , where ∆ represents percentage changes, and Covk and V ark are the

conditional covariance and variance.
9Our procedure follows the steps described in Section 5 of Bils et al. (2021)’s online appendix. The

appendix is available at https://ars.els-cdn.com/content/image/1-s2.0-S0304393221000970-mmc1.
pdf.
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1. We aggregate the plot-level data to the farm-level to construct a panel of farms with

year-season as the time period.

2. We construct TFPRit using the real value of agricultural output yit as the measure of

R̂it and assuming similar values of α as in Table 1. We trim the 1% tails of the TFPRit

distribution, but we also present results without trimming.

3. To obtain deciles of the TFPRit distribution, we first calculate the deviation of ln(TFPRit)

from the period average. Then, we average these deviations at the farm level to obtain

Tornqvist ln(TFPRi) deviations, and place them into deciles. We trim observations

with extreme values of TFPR growth (i.e. within-farm increase or decrease by a factor

of 5 or more relative to the period average)

4. We regress output growth on input growth and period fixed effects separately for each

decile of the TFPRit distribution. The coefficients on input growth are the βk estimates.

The results of these estimates are reported in Table B.1 in the Appendix.

5. We merge the βk estimates to the farm data using the decile’s cutoff values and the

expected value of the Tornqvist ln(TFPRi) conditional on ln(TFPRit). Bils et al.

(2021) implement this correction to adjust for the compression of the distribution of

Tornqvist ln(TFPRi).

6. We calculate Var(ln TFPRit) and Cov(ln TFPRit, ln βk) for each decile, and use ex-

pression (9) to obtain Var(ln τit) and the ratio Var(ln τit)
Var(ln TFPRit) . This ratio measures the

fraction of the observed dispersion of TFPRi that reflects distortions, not measurement

error.

The results are presented in Table 3. The ratio Var(ln τit)
Var(ln TFPRit) ranges from 0.80 to 0.87.10

The estimated ratio is slightly smaller than the findings of Adamopoulos et al. (2022). They
10We obtain values for this ratio closer to one using data from Tanzania. See Table A.2 in the online

appendix.
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use a similar correction with a panel of Chinese farms and estimate a ratio of around 0.90.

However, our estimates are larger than the ratio documented by Bils et al. (2021) for man-

ufacturing sectors in India (0.70-0.76) and the United States (0.27-0.43).

Our findings imply that approximately 13-20% of the variation in observed TFPRit can

be attributed to measurement error. This result contrasts with Gollin and Udry (2021),

who emphasize that measurement error in plot-level data is quite important and can ex-

plain 59-70% of productivity dispersion. We interpret these findings as suggestive evidence

that measurement error could play a more important role in assessing misallocation with

disaggregated data.

Table 3: Dispersion in marginal products and TFPR in Uganda

Trimming 1% No trimming
(1) (2) (3) (4)

Value of α 0.76 0.57 0.76 0.57

Var(ln τ)
Var(ln TFPR) 0.87 0.84 0.81 0.80

Var(ln τ) 0.56 0.52 0.65 0.61

Var(ln TFPR) 0.64 0.62 0.80 0.77

Notes: The table shows the log-variance of the true dispersion (τ), revenue productivity (TFPR), and their
ratio estimated using the correction proposed by Bils et al. (2021). TFPR is calculated using the same values
of α as in Table 1. Columns 1 and 2 trim the 1% tails of the TFPR distribution.

5 Conclusion

We examine whether the level of data aggregation, plot level or farm level, affects measures

of the extent of misallocation in agriculture. Using detailed micro-data from Uganda and

Tanzania, we show that the plot-level analysis produces much larger estimates of misalloca-

tion than the analysis at the farm level. Even after controlling for unobserved heterogeneity
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and measurement error, the extent of misallocation from plot-level analysis remains quite

large. Our findings suggest that the level of data aggregation matters in the assessment of

misallocation and can lead to large discrepancies in the comparative literature that focuses

on the farm as the main unit of analysis.

The large discrepancy in assessed misallocation suggests caution in extrapolating insights

obtained from plot-level analysis, such as the relative importance of measurement error, to

results obtained at the farm level. We also show that differences in estimates of produc-

tion function parameters are important for the level of assessed misallocation, and hence

its comparability across studies. We provide suggestive evidence from self-reported and

GPS landholding areas that data granularity can lead to larger measurement error that is

attenuated in aggregated data at the farm level.

Our findings have important implications for researchers and policy makers. First, they

imply that estimates of misallocation at the plot and farm levels are not comparable. In

particular, analysis at the plot level might lead to much larger estimates of misallocation.

This issue should be taken into account when assessing the extent of misallocation in a

country, making cross-country comparisons, or evaluating the impact of policies. Second,

they suggest caution in generalizing insights from plot-level analysis to the farm level. For

example, a researcher using plot-level data would observe that measurement error explains

a large fraction of the productivity dispersion and wrongly conclude that misallocation in

agriculture is not an important issue for productivity in less developed countries.
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ONLINE APPENDIX

A Evidence from Tanzania

We replicate the baseline analysis using data from Tanzania. We use four rounds of the

National Panel Survey (years 2008, 2010, 2012 and 2014).11 This survey is also collected

as part of the World Bank’s LSMS-ISA project and contains similar data to the Uganda

dataset.

We use the same procedure described in Section 2 to construct measures of agricultural

output, inputs and productivity, aggregate the plot-level data, and calculate efficiency gains.

The main difference is that we do not use Gollin and Udry (2021)’s 2SLS estimates for

Tanzania, but instead those obtained using the instrumental variables correlated random

coefficients estimator (IVCRC). The reason is that the 2SLS estimates effectively imply

constant returns to scale (γ = 1.01) which leads to a corner solution in the efficient allocation,

and an undefined value of efficiency gains. The IVCRC estimates are αL = 0.61 and αX =

0.26. In terms of our production function (2), these estimates imply values of α = 0.70 and

γ = 0.87.

Table A.1 presents the estimated measures of misallocation.

11This dataset is also available in Gollin and Udry (2021)’s supplementary material at https://www.
journals.uchicago.edu/doi/suppl/10.1086/711369.
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Table A.1: Analysis of misallocation in Tanzania

Gollin and Udry (2021) estimates Macro estimates
Plot Plot Farm Plot Farm
level level level level level

(adjusted)
(1) (2) (3) (4) (5)

A. Efficiency gains (%)
Nationwide 4,022 664 1,336 205 142
Region 925 253 394 151 104
Parish (Village) 283 118 132 91 58

B. Productivity dispersion
Var(ln si) 1.19 0.47 0.93 1.15 0.93

C. Input-productivity elasticities
Land −0.22 −0.35 −0.09 0.04 0.12
Labor −0.08 −0.13 0.00 0.02 0.08
Efficient 7.69 7.69 7.69 3.33 3.33

D. Parameters
α 0.70 0.70 0.70 0.57 0.57
γ 0.87 0.87 0.87 0.70 0.70

Number of
production units 14,535 14,535 8,293 14,535 8,293

Notes: Efficiency gains are the increase in aggregate output from changing the actual allocation to the
efficient one, expressed in percentage change, and averaged over growing seasons. All columns use the same
plot-level data, except columns (3) and (5) which aggregate data at the farm-level. Columns (1)-(3) use
estimates of the parameters of the production function from Gollin and Udry (2021), while columns (4)
and (5) use estimates from the macroeconomics literature. Column (1) uses as production unit productivity
(si) the unadjusted plot-level productivity estimated by Gollin and Udry (2021), while column (2) uses the
plot-level productivity adjusted for measurement error and unobserved heterogeneity. Columns (3) to (5)
calculate productivity as the residual ln si = ln yi − γα ln `i − γ(1− α) ln xi]. Input-productivity elasticities
are obtained by regressing ln input on ln si and season-yer fixed effects.
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Table A.2: Dispersion in observed and true distortions in Tanzania

Trimming 1% No trimming
(1) (2) (3) (4)

Value of α 0.70 0.70 0.57 0.57

Var(ln τ)
Var(ln TFPR) 0.98 0.94 0.89 0.86

Var(ln τ) 0.77 0.73 0.84 0.81

Var(ln TFPR) 0.78 0.77 0.95 0.94

Notes: The table shows the log-variance of the true dispersion (τ), revenue productivity (TFPR), and their
ratio estimated using the correction proposed by Bils et al. (2021). TFPR is calculated using the same values
of α as in Table A.1. Columns 1 and 2 trim the 1% tails of the TFPR distribution.

B Additional tables

Table B.1: Estimates of βk

Decile (k)
1 2 3 4 5 6 7 8 9 10

β̂k 1.109 0.977 0.883 0.868 0.828 0.737 0.728 0.800 0.701 0.640
(0.055) (0.051) (0.046) (0.044) (0.044) (0.041) (0.041) (0.040) (0.038) (0.034)

Notes: The table presents estimates of βk used to calculate Var(τ) in column 1 of Table 3. k refers to the
decile of the TFPR distribution. Standard errors are in parentheses.
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